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ARTICLE INFO ABSTRACT

Keywords: Scour erosion continues to cause significant issues for the stability and lifespan of bridges worldwide. In Slovenia,

Scour extreme flooding in 2023 caused the collapse or failure of many bridges, primarily due to scour, which was

lc))yna;nicg exacerbated by debris accumulation. Despite advances in predicting and monitoring scour, it remains among the

Fver urcen top reasons for the failure of bridges during flooding. Recent advances in vibration-based health monitoring
requenc; . . .

Dar:age v suggest that scour erosion can be detected using methods such as changes in natural frequency, mode shapes,

Bridges flexibility-based deflection, and other approaches using offline sensors such as passing vehicle responses. Many

of these methods have been trialled numerically where scour is implemented as a reduction in the soil level (or
stiffness) around a given bridge foundation. The most common way to model scour is to lower the soil level
around a foundation, however, this ignores any contribution that the scour hole shape makes to the stiffness and
strength of the soil beneath the scour hole. This paper investigates how the shape of scour holes influences the
stiffness and strength of the remaining soil to understand the impact on the modal behaviour of a bridge. A
numerical model of a bridge is developed where scour is implemented by removing Winkler springs from the
model, and different scour hole shapes are considered in terms of how the remaining overburden influences the
stiffness and strength of the soil springs. Scour hole shape properties are considered by means of varying the
depth, width, and slope angle of the hole around a given foundation element. For the analyses in this paper,
different scour hole shapes are implemented on an example bridge corresponding to local scour holes with
narrow width; wider local scour holes; and general scour, where the full soil layer is removed (infinite width).
The changes in the modal periods and mode shapes of the bridge in the traffic and river flow directions are
assessed to understand the impact of the different scour types on the vibration characteristics.

Scour hole shape

location of bridge substructural elements (piers and abutments) [2]; and
local scour, which is caused by the presence of obstacles to the flow such
as bridge piers and foundations, resulting in vortex generation [6] and
downward flow that erodes the soil. Local scour can be further

1. Introduction

Climate change, specifically the increase in global average temper-
ature, is potentially causing more frequent and larger magnitude
flooding events in certain regions worldwide [1]. Bridges are a critical
part of our transport infrastructure, and are particularly vulnerable to
climate change and flooding. Scour erosion, where flowing water
washes away soil [2,3], affects bridges with submerged foundations.
There are three main types of scour: general scour, which refers to
natural changes in riverbed morphology due to changes in governing
hydraulic parameters [4,5]; contraction scour, which is caused by the
presence of bridge openings increasing flow velocity and corresponding
bed shear stresses as the river channel width is constricted at the
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complicated for bridges located in coastal areas, such as sea-crossing
bridges, where sediment beds might be inclined, resulting in
slope-induced vortex enhancement and deeper scour holes [7]. All three
forms of scour can occur at a given bridge location, and the resulting
scour hole depth is the summation of these mechanisms.

Local scour poses a specific risk to bridge structures with foundations
in water. The depth and width of a local scour hole that can form is a
function of the water flow characteristics (flow rate, water height), the
shape of the bridge elements, and the properties of the sediment. Scour
can occur under relatively moderate flow conditions [8], but is
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Nomenclature

A Cross-section area (m?)

A, Normalised resistance factor in p-y spring calculation

Agy Shear area of cross-section in local y-axis (m?)

As, Shear area of cross-section in local z-axis (m?)

Aoral Total area of the scour zone of influence (m?)

ds Scour depth (m)

D Pile diameter (m)

E Elastic modulus (kN/m?)

G Shear modulus (kN/m?)

L Torsional moment of inertia of cross-section (m*)

Iy Moment of inertia of cross-section about the local y-axis
(m*)

L, Moment of inertia of cross-section about the local z-axis
(m*)

k Coefficient of subgrade reaction of the p-y springs (kN/m?%)

K Coefficient of lateral earth pressure

Ny Bearing factor of the pile

DPa Atmospheric pressure (100 kPa)

Du Ultimate soil resistance per unit length (kN/m)

P, Ultimate force of p-y spring (kN)

Qu Ultimate force of g-z spring (kN)

T x Principal vibration period in x- (traffic) direction under
scour (s)

Tsy Principal vibration period in y- (flow) direction under
scour (s)

Ty Ultimate force of t-z spring (kN)

Tox Principal vibration period in x- (traffic) direction without
scour (s)

Toy Principal vibration period in y- (flow) direction without
scour (s)

Ylim Limiting width of the zone of scour influence (5D)

¥s Scour hole base width (m)

Yiop Scour hole top width (m)

Y50 Displacements at 50 % of the ultimate force of the p-y
spring (m)

z Depth of the spring (m)

Zs off Effective height of overburden above the scour hole base
due to scour hole shape (m)

24250 Displacements at 50 % of the ultimate force of the g-z
spring (m)

2250 Displacements at 50 % of the ultimate force of the t-z
spring (m)

a Angle of the scour hole (°)

y Unit weight (kN/m®)

Az Vertical spacing between p-y, t-z and g-z springs (tributary
length) (m)

S Friction angle of the soil-foundation interface (°)

a, Vertical effective stress (kN/m?)

¢ Angle of friction of the soil (°)

bio Mode shape vector of the unscoured bridge in ith direction
of analysis; i = {X,Y}

bis Mode shape vector of the bridge under scour in ith
direction of analysis; i = {X,Y}

significantly exacerbated under flood conditions [9,10], and can be
drastically intensified by debris accumulation [11]. Due to the interde-
pendence on many parameters, accurately predicting scour hole for-
mation remains an active area of research [12].

The removal of soil by scour erosion can lead to reduced stiffness and
capacity in bridge foundations. In severe cases, this can result in
serviceability failure through excessive settlements, secondary damage
such as cracks forming from differential settlements [13], or partial to
total bridge collapse [14]. Fig. 1 shows an example of a scour-related
bridge failure in Slovenia in 2023. Detecting and quantifying scour
occurrence is very important for bridge asset managers.

The most common approach for detecting and monitoring scour is
via visual inspection [3], whereby divers physically inspect the

condition of foundations at discrete time intervals. This is generally
labour-intensive, costly, and subjective. Moreover, it only provides a
picture of the scour problem as a snapshot in time and can generally only
be conducted once flood conditions have subsided. Therefore, it is of
questionable efficacy for scour risk assessments, as scour conditions can
change rapidly during a flood, and local scour holes tend to infill when
floods subside, masking the issue. To combat this, researchers have
developed a range of approaches to reduce or even replace the need for
divers, using installed instrumentation that can remotely monitor scour
hole development. Examples include float-out devices [3,15,16], radar
(and sound pulse) measurement [4,17-20], moving sensors installed on
rods in the soil [21,22], and sensors that detect changes in electrical
conductivity to locate a scour hole by identifying where the soil level lies

Fig. 1. Example of bridge collapse under scour in Slovenian flood in 2023.
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[3,20]. Although this is an improvement on the use of physical divers,
many of these sensors can only detect the scour condition local to the
sensor and tend not to provide any information on the condition of the
bridge due to the presence of a scour hole.

With ever-increasing levels of digitisation and smart monitoring,
approaches have been developed to detect scour erosion by monitoring
the vibration response of bridge structures under environmental or
traffic loading. Vibration-based Structural Health Monitoring (SHM) of
bridges is an active area of research. It works on the premise that
damage to a structure can alter the fundamental dynamic properties of
that structure; and that by measuring these changes, one can deduce the
damage condition or extent. Sensors placed on a structure can measure
structural accelerations or velocities resulting from external actions such
as environmental or traffic loading, and these data can be analysed to
derive modal properties such as natural frequency, mode shapes, or
damping ratios, for example. Observing changes in these (and other)
properties can be used to infer damage. Many researchers have inves-
tigated approaches to detecting damage such as cracking in bridge ele-
ments by analysing local and global dynamic behaviour (e.g. [23-27]).

The application of vibration-based SHM to detecting scour has
gained significant traction in recent years. Scour effectively leads to a
change in stiffness at the bridge foundation, which manifests as a change
in the dynamic properties of the structure [28]. The most commonly
investigated vibration-based SHM approach for scour detection relates
to detecting changes in the natural frequency, arguably the simplest of
the modal parameters to measure. Prendergast et al. [29] investigated
the change in frequency of a single foundation pile under scour and
developed a simple Winkler-beam model [30,31] to track the frequency
change, with the soil properties informed from geotechnical test data.
Scour was modelled as the incremental removal of springs from the
Winkler model to simulate the action of soil erosion. The approach was
extended to assessing if scour could be detected around a bridge foun-
dation by developing a vehicle-bridge-soil interaction model and simu-
lating excitation from passing vehicles [32-34]. It was concluded that
excitations from passing vehicles could be used to determine if scour
existed at a given foundation by analysing the first natural frequency of
the bridge response [32], and also which foundation (in
multi-foundation bridges) was affected by analysing different modal
frequencies and sensor locations [33]. Kong and Cai [35] investigated
how scour erosion affected the response of a bridge under a traversing
vehicle in the presence of wave loading on the substructure, and
concluded that scour significantly influenced the natural frequencies of
the bridge pile. Chen et al. [36] investigated how scour affecting the
pylon support of a cable-stayed bridge could be detected by analysing
the local natural frequencies of the pylon and varying the soil level in a
numerical model to determine the scour depth. Ju [37] created a
three-dimensional numerical model of a bridge and investigated how
scour influenced the natural frequencies in the presence of water-added
mass. They note that the change in frequency with scour is not smooth
due to non-uniform foundation elements. [38]. Other authors have
investigated various approaches to detecting and monitoring scour, such
as: mode shape-based methods [38-42]; flexibility-based deflections
[42,43]; and offline methods using the response of passing vehicles to
detect the presence of scour damage [44,45].

One issue that remains broadly unresolved is how much of a
behaviour change, e.g., a change in natural frequency or mode shape,
needs to occur to indicate if a scour problem exists with a given bridge
structure. A key challenge is determining thresholds for these changes in
dynamic properties that signal significant structural risk. Moreover,
little research has focussed on how different scour hole shapes might
affect the dynamic behaviour of a given bridge, and the resulting impact
on the magnitude of changes that need to occur to indicate the presence
of damage. Bao et al. [46] investigated how the shape of a scour hole
(whether symmetrical or asymmetrical) affected the measured natural
frequency of a single-pier model under scour. The scour shape effect was
considered by imposing different scour levels (depths) on either side of
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the modelled pier. Frequency was observed to reduce with scour, and
the effect of the asymmetrical scour shape was to change the magnitude
of the detected frequency at a given scour depth. The research was
applied to a single free-ended pier model, so the bridge superstructure’s
additional interaction was not considered. This leaves a gap in under-
standing how complex bridge structures might behave under similar
scour conditions. Other authors have focussed on the lateral deflections
of individual piles under different scour conditions. Lin et al. [47]
investigated how scour affects the lateral loading response of piles in
sand, considering the change in soil stress history due to the occurrence
of the scour hole. The soil stress history changes from
normally-consolidated to over-consolidated as a result of the scour
occurrence removing overburden. By considering this stress history, the
remaining soil below the scour level exhibited an increased lateral
resistance for the over-consolidated case, which resulted in lower lateral
deflections in the pile than observed in the model where stress history
was not considered. The authors conclude that ignoring the effects of
stress history, i.e. the increased resistance generated, is conservative for
lateral pile design. Zhang et al. [48] investigated the influence of scour
hole shape and changes in soil stress history on the response of
laterally-loaded piles in clay. They show that total removal of a soil
layer, i.e. general scour, leads to lower soil resistance in the remaining
soil than in the case where the scour hole geometry is considered.
Moreover, they note that scour depth has the largest influence on the
response among the various scour hole dimensions (e.g. scour depth,
scour width, scour-hole slope angle). Lin et al. [49] undertook a similar
analysis for laterally-loaded piles in sand considering scour hole shape
dimensions. A simplified method was adopted to modify lateral
load-displacement p-y models to account for the three-dimensional scour
hole geometry. Similar to Zhang et al. [48], the authors concluded that
scour depth is the most influential scour dimension affecting the lateral
response, and considering the presence of the scour geometry leads to a
reduction in the predicted lateral displacement of a pile compared to the
case where the entire soil layer is considered to be removed. The same
authors investigated the lateral response of piles in clay considering
scour-hole dimensions [50], and concluded that ignoring the scour-hole
geometry leads to larger deflections than occur if the scour geometry is
explicitly considered. A lot of ongoing research in this area is focussed
on offshore structures such as wind turbine foundations, in addition to
bridge foundations, offering novel insights to scour effects on structures
[51-58].

While there has been some encouraging research focussing on the
response of single piles to scour considering the scour hole geometry,
limited research has focussed on the modal responses of a full bridge
when scour hole geometry is taken into account. Tubaldi et al. [59]
performed experimental and numerical studies on the effect of scour
hole shapes on the dynamic properties of bridges with shallow foun-
dations. The study investigated various modelling approaches for the
soil-foundation-structural system as informed from testing on a struc-
tural prototype. Results indicate that frequencies of vibration of the
bridge were observed to decrease linearly with increasing scour hole
width. However, the analyses did not consider bridges with piled
foundations. This is crucial to understand as the influence of scour hole
geometry on the behaviour of piled bridges is likely to affect the per-
formance of vibration-based SHM approaches tasked with detecting the
presence of scour. Moreover, there is limited practical guidance on how
to consider scour hole shapes in routine analyses of bridges on piles,
impacting the ability for asset managers to link changes in SHM pa-
rameters to underlying scour conditions. This paper addresses these gaps
and investigates how differently shaped scour holes might impact the
vibration characteristics of an example bridge structure; specifically
how modal frequencies are affected for different scour hole shapes. The
purpose of the study is to highlight the potential complexity of detecting
and quantifying scour occurrence using vibration-based approaches
under variable scour conditions. The bridge model developed in Kosi¢
et al. [11] is enhanced to consider a pile group foundation affected by
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scour erosion with different scour hole shapes. A simplified, novel,
practice-oriented method is developed to consider the contribution of
soil overburden stresses from various shapes of scour holes in sand, and
the resulting influence on the foundation stiffness and strength. Scour
hole shapes are varied to consider local scour (with hole widths varying
from narrow to wide) [60,61], as well as general scour (full removal of a
soil layer), and the impact on the change in the bridge dynamic char-
acteristics is assessed, and contextualised for the use of structural health
monitoring systems.

2. Bridge model
2.1. Description of bridge

The bridge model developed in Kosic et al. [11] is considered in this
paper, with an enhancement to the foundation for the purpose of
assessing scour hole shape effects. The bridge is based on a girder bridge
spanning the Kupa river in Croatia, with two main spans. Each span is
48.6 m in length, supported on a central pier. The bridge width is
12.4 m, supporting two traffic lanes and a cantilevered pedestrian zone.
The main geometrical and material properties are provided in Table 1,
and Fig. 2 shows a schematic of the bridge. Table Al in the appendix
provides more detailed information on the properties of the bridge
elements.

The central pier is considered to be supported on a 1.0 m deep
pilecap, founded on six piles. The pile dimensions have been designed
for the purpose of the analysis in this paper, whereby a factor of safety
(FoS) of 2 is adopted against axial capacity failure. Three soil profiles are
considered: a loose sand, a medium-dense sand, and a dense sand pro-
file. The pile design is conducted according to Meyerhof’s [62] method
for axial capacity. The resulting pile dimensions are provided in Table 2
for the three soil profiles considered. The purpose of using different pile
geometries is to investigate the impact of different scour geometries on
the modal properties of a bridge, for a given foundation where the same
FoS is considered for each. Note, while the superstructure of the bridge is
based on a real structure, the foundation model is developed solely for
the analyses in this paper. Hence, the bridge is not considered to model
any particular structure.

2.2. Numerical modelling

A numerical model of the roadway bridge is developed in OpenSees
software [63,64]. The structural modelling, soil-structure interaction,
and scour modelling approaches are presented herein. A schematic of
the modelled bridge is shown in Fig. 3, showing the boundary condi-
tions, foundation schematic, and the soil modelling framework adopted.
Table Al in the appendix provides detailed material and geometrical
properties of the model. Fig. 3 also schematically shows the different
scour shape scenarios considered; namely local narrow scour, local wide
scour, and general scour, affecting the foundation. Note that the global
coordinate axis (X,Y,Z) is used to reference the directions with regard to
the modal behaviour in this paper. A local coordinate axis is used for the

Table 1
Geometry and material properties of the modelled bridge.
Element Property Base E (kN/ G (kN/ y (kN/
material m?) m?) m®)
Deck Composite Steel 2.10E+ 08  8.08E+07 77
section
Pier Rectangular Concrete 3.10E+ 07 1.29E+ 07 25
section
Stiff* - - 2.10E+ 14 8.08E+ 13 0
Foundation  Circular Concrete 3.10E+ 07 1.29E+ 07 25

section

" Stiff and weightless element used to provide connectivity in numerical
model
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Fig. 2. Schematic of the model bridge (modified after Kosi¢ et al. [11], di-
mensions in m).

Table 2
Pile geometries for each soil type (resulting in same FoS for each model).

Soil profile Pile diameter (m) Pile length (m)
Loose sand 1.5 16
Medium-dense sand 1.0 12
Dense sand 0.8 8

soil-structure interaction to remain in keeping with the terminology
used in that field, i.e. the lateral springs are referred to as lateral load
(p)-lateral displacement (y) regardless of the horizontal direction in
which they act. Horizontal springs are considered to act in both the X
and Y directions, with vertical springs acting in the Z direction.

2.2.1. Structural modelling

The superstructure and foundations of the bridge are modelled using
linear elastic Timoshenko beam-column elements, with elemental mass
and stiffness matrices as available in Kwon and Bang [65]. The bridge
deck is modelled using an equivalent beam element and is considered to
be supported on bearings. Variation in stiffness of the deck due to
changing thicknesses of the main girder flanges is considered using an
array of beam elements with varying properties. The central pier is
modelled in a similar manner. A long stiff element is used to model the
pilecap, and six piles are modelled using an array of discrete elements
along their depths. Each element is considered to be 0.1 m in length.
Roller bearings are used at the bridge boundaries to model free trans-
lation behaviour of the deck sitting on rigid abutments.
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Fig. 3. Numerical schematic of the modelled bridge.

2.2.2. Soil-structure interaction (SSI)

The soil-structure interaction is considered using a Winkler-beam
framework [30,31], by means of lateral load-displacement p-y springs,
vertical shear stress-displacement t-z springs, and a vertical base
resistance-displacement g-z spring, see the insert in Fig. 3. The springs
are incorporated into the OpenSees model using ZeroLength elements,
which connect the pile nodes to fixed nodes to represent the connection
with the ground. The load-displacement behaviour of the p-y, t-z and q-z
springs is modelled using OpenSees uniaxial material PySimplel [66],
TzSimplel [67] and QzSimplel [68], respectively, for each resistance
mechanism, described below. These functions require input parameters,
namely ultimate force values (P,, T,, Q,) and respective displace-
ments at 50 % of the ultimate force (ys0, 2Zws0, 2gz50), for each spring
type.

The lateral load-displacement p-y backbone curve was derived ac-
cording to the API code [69], with the ultimate resistance (P,) computed
according to Reese and Van Impe [70], as follows:

Pu = Xxpqu (1)

where A; is the normalised resistance factor, which is a function of the

ratio Zfd‘% (z is the depth of the spring relative to the original ground
level, d, is the scour hole depth, z; . is the effective height of overburden
above the scour hole base due to scour hole shape [derivation provided
in Section 2.2.3], D is the foundation diameter); p, is the ultimate soil
resistance per unit length [70]; and Az is the vertical spacing between
soil springs. The displacement at 50 % of the ultimate load is calculated
based on the API [69] hyperbolic load-displacement curve:

Ys0 = k( o atanh(0.5) @

z— ds + Zs,eff)
where k is the coefficient of subgrade reaction, which is a function of soil
density (or friction angle), and varies depending on whether conditions
are saturated or unsaturated.

The vertical shear stress-displacement t-z backbone curve is
described as a bilinear (Mohr-Coulomb) curve, with the ultimate resis-
tance derived as follows [71]:

T, = Kd,tan(6)zDAz 3

The coefficient of lateral earth pressure is assumed as K= 1.0 for full
displacement piles, ¢, is the vertical effective stress (including the
contribution from the overburden at the scour hole — see Section 2.2.3),
and 4 is the soil-pile interface friction angle, specified as 0.9¢" (where

¢'is the angle of friction of the soil). The displacement at 50 % of the

ultimate load (2s0) is taken as 1.27 mm [72].

The vertical base resistance-displacement g-z backbone curve is
defined according to the Vijayvergiya’s [73] recommendations with the
ultimate tip bearing resistance of the pile computed according to
Meyerhof [62]:

, D? 1 D?
Q= [GVN;]HT < [o.spaN;tan(qa) " )

where N is the bearing factor of the pile, and p, is atmospheric pressure
(100 kPa). The displacement at 50 % of the capacity (z4,50) is assumed as
12.5 % of the pile ultimate displacement [73]. The latter is assumed to
be attained at the displacement equal to 5% of the pile diameter
(0.05D).

2.2.3. Scour hole modelling

A practical and simplified scour modelling approach is proposed that
can account for differently-shaped scour holes. The method is intended
to be used in conjunction with Winkler modelling approaches for SSI,
which are popular in industry (see Section 2.2.2). Scour is modelled by
removing springs from the model to simulate the action of water eroding
soil [32,33], with the properties of the remaining springs adjusted to
account for scour hole shape variations (different depths, widths, and
slope angles). To account for the presence of overburden, an effective
depth is considered, which takes into account the extra overburden that
exists above the base of the scour hole for different scour hole shapes.
This effective depth, z; ., is considered to act above the base of the scour
hole, shown schematically in Fig. 4, to account for the overburden
presence. Different types of scour are considered, ranging from local
narrow and local wide scour, to general scour. Narrow scour refers to the
scour hole being immediately adjacent to the foundation, wide scour
assumes a flat base to the scour hole around the foundation, and general
scour refers to complete layer removal or the scour hole being wider
than the zone of influence around the foundation. Local narrow, wide,
and general scour cases are shown schematically in the inset in Fig. 3.
The distance around the foundation where the overburden is considered
to have an influence is assumed as 5D away from the foundation,
conservatively larger than the value of 4 suggested in other studies [74].
The effective depth accounting for the influence of overburden is
derived by assuming a wedge of soil within the zone of influence acting
as a proportion of the total soil area that would exist in the absence of
scour. Four cases can occur, as elaborated in Fig. 4.

Fig. 4(a) and (b) demonstrate the case where a local narrow to wide
scour hole forms, without and with a base width y;, whereby the top
width y,,p is less than the limiting width of the zone of influence yji,. The
area of the wedge of soil within the limiting distance is calculated using:
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Ao = 0.5bd, + <ynm - ymp)ds (5)

The total area of soil that would exist in the same limiting distance in
the absence of scour is calculated as:

Atotal = ylimds (6)

The effective overburden depth to be added to the scour hole base, as
a function of the scour depth, is calculated as:

Asoil ds (7)

Zseff =
Atotal

Zserr 1S included in the calculation of effective stress or ultimate
resistance in the derivation of the parameters for the soil springs
described in Section 2.2.2. Fig. 4(c) presents the case of wide local scour
where the top width of the scour hole exceeds the limiting distance,
while the bottom width does not, resulting in a smaller wedge of soil
contributing to the overburden influence in the calculations. In this case,
Ason is calculated as:

Asoil = 0~5(,ylim 7ys)h (8)

where h = (yum —Ys)tan(a), and a is the angle of the scour hole.
Zsert 1S then derived using Eq.(7). Fig. 4(d) demonstrates the case
where the scour hole bottom width is larger than the zone of influence,
resulting in no effective overburden being added to the calculation of
effective stress, i.e. Z5e¢r = 0.

The calculations consider the problem as a 2D area ratio. This
simplification is adopted as it is assumed an approximately circular
scour hole in 3D would result in the same volume ratio of soil over-
burden to total soil volume in the absence of scour. Moreover, as p-y, t-z,
and g-z springs inherently consider the SSI in a plane-strain manner, it is
sensible to derive the additional overburden as an equivalent effective
depth of soil using the above approach. The modifications to the SSI
parameters to account for scour hole shape inherently assume the scour
depth is uniform across the foundation. While scour depth tends to vary

between the upstream and downstream end of a given foundation in real
cases, the implementation of uniform scour can be considered as a
representative mean scour condition affecting a given foundation.
Moreover, Winkler springs are implemented in the model in both the
global X and Y directions, hence the scour hole properties are considered
the same in both directions for this case. It should be noted that while
the SSI implemented in this paper follows the API code [69], the effec-
tive depth to account for scour hole overburden can be implemented into
any Winkler-type SSI model, provided an estimate of depth or effective
stress is required in the spring derivation. Non-uniform or layered soil
profiles can be considered in this manner.

3. Analysis and results

In this section, the influence of the shape of scour holes on the modal
periods and mode shapes of the modelled bridge are presented, dis-
cussed, and contextualised in the frame of structural health monitoring
applications. Different scour hole shapes are considered by varying the
depth and width of scour holes.

3.1. Influence of scour hole shape on modal periods

Using the procedure to calculate an effective overburden contribu-
tion to the strength and stiffness of the soil springs below a scour hole for
varying scour hole shapes, the influence of differently-shaped scour
holes on the modal periods of the bridge is presented herein. A given
model is created with an imposed scour depth, width, and slope angle,
and modal periods are derived in the model by performing an Eigena-
nalysis with small-strain properties of the soil springs adopted, i.e. the
small-strain stiffness of the respective soil springs are used at the oper-
ational strain level of the springs under the imposed bridge loads.
Figs. 5-7 show the impact of different scour conditions on the relative
change in principal vibration periods of the bridge in the longitudinal
(traffic, X) and transverse (flow, Y) directions for different soil



M. Kosic et al.

1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

Ts. X / TO. x

(@)

Structures 82 (2025) 110648

13

1.2
<

2 L1
Kk

1.0

()

Fig. 5. Impact of scour depth (ds) and width (y,) on the relative increase of principal vibration periods (T) in (a) traffic, and (b) flow direction — loose soil profile (pile

length 16 m, diameter 1.5 m). Subscripts s = scoured, 0 = unscoured.
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Fig. 6. Impact of scour depth (ds) and width (y;) on relative increase of principal vibration periods in (a) traffic, and (b) flow direction — medium dense soil profile

(pile length 12 m, diameter 1.0 m).

Ts, «/ TO..:

(@)

% (m)

(®)

Fig. 7. Impact of scour depth (d;) and width (y;) on relative increase of principal vibration periods in (a) traffic, and (b) flow direction — dense soil profile (pile length

8 m, diameter 0.8 m).

conditions (loose, medium-dense, and dense soil profiles), respectively.
These plots are generated by creating a range of models with varying
scour depths and widths, and plotting the resulting modal periods from
the Eigenanalyses. In total, 176 simulations were run (scour depths 0 m
to 5 m in 0.5 m steps, and scour width 0 m to 7.5 m in 0.5 m steps, with
constant slope angle of 30°) to create the data in Fig. 5, for example.

Regardless of the soil type, the presence of scour increases the vibration
periods in both traffic and flow directions due to the decreased foun-
dation stiffness under scour, a well-known result observed in many
previous studies. For a given soil profile and vibration direction, the
modal period increases with an increase in scour depth, d;. However,
there is also an increase evident with scour hole width, y,, due to the
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change in overburden contribution. Wider scour holes contribute less
overburden than narrower scour holes. For smaller scour depths, the
influence of the scour hole width is less significant than at larger scour
depths. Asymptotic (plateau) behaviour is evident at larger scour
depths, whereby as scour hole width increases progressively from nar-
row to wide, there is a larger increase in modal period than for cases
with wider (towards general) scour. This is particularly evident in Fig. 7
(a) for a scour depth of 5 m, whereby the modal periods increase much
more for lower scour width values than for larger ones.

The increase in modal period is larger in the traffic direction
compared with the flow direction in the considered bridge model. This is
a result of the traffic direction having lower stiffness as a result of the
pile arrangement (i.e. this is the weaker structural axis for the bridge
modelled). In this direction, the horizontal stiffness of the bridge is
provided only by cantilever action of the pier, as the abutment con-
nections are on roller bearings. The impact of the scour is smaller in the
flow direction due to the larger foundation dimensions and additional
stiffness provided by the deck. This trend can be seen by comparing the
‘(a)’ plots in Figs. 5-7 with the ‘(b)’ plots, noting the magnitude of the
change on the colour bar in each plot.

By comparing Figs. 5-7 the relative impact of scour differs for the
three soil profiles. This is a result of the different pile dimensions used to
satisfy the axial pile design, i.e. each bridge has the same FoS against
axial capacity failure (FoS = 2), resulting in different pile lengths for
each soil density, see Table 2. Scour has the largest impact on the dense
soil profile, Fig. 7 (smallest pile length), with lower impacts for the
medium-dense, Fig. 6, and loose sand, Fig. 5, profiles (longer pile
lengths).

Figs. 8 and 9 show the same data as in Figs. 5 and 6, condensed to two
dimensions to facilitate a comparison of the behaviour. For the loose soil
profile in Fig. 8, the relative change in vibration periods in both di-
rections increases smoothly with an increase in d; and y;. The same
behaviour is evident for the medium-dense sand profile in Fig. 9, but
only for the case of the vibration periods in the traffic (longitudinal)
direction (Fig. 9a). In Fig. 9(b), for the flow (transverse) direction, a non-
smooth transition is observed for two specific scour conditions, namely
{ds, ys}= {1.0 m, 3.5 m} and {ds, y;} = {1.5 m, 1.5 m}. This non-smooth
change with scour indicates a fundamental change in the modal
behaviour of the bridge under specific circumstances. Examining the
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bridge mode shapes indicates that for these specific scour conditions in
this bridge arrangement, the predominant transverse and vertical vi-
bration periods align, resulting in coupling between these specific mode
shapes. This mobilises a distinct mode shape, which does not occur in
the unscoured bridge. The impact of varying scour conditions on the
change in mode shapes is further examined in the next section (Section
3.2). The data for the dense sand profile are presented in Appendix B.

3.2. Influence of scour hole shape on mode shapes

The impact of scour hole shape (varying depth and widths) on the
change in mode shapes of the bridge is examined herein. Similar to the
modal periods, the mode shapes are derived by performing an Eigena-
nalysis at the operational strain level of the soil springs under the
imposed loads. To effectively track the change of the bridge’s mode
shapes for different scour conditions, the Modal Assurance Criterion
(MAC) is used, which quantifies the degree of consistency or correlation
between mode shapes, allowing a measure of linearity between two
modes be established [75]. MAC is defined as:

2

¢i7,'0 ¢i.s

o) (i) T ®

MAC (¢i,0a ¢i,s) =

where ¢;, and ¢, ; represent the mode shape vectors of two states, e.g.,
the benchmark model (0) and the model with scour (s), while the index i
represents the direction of analysis. The MAC value ranges between
0 and 1, with a value of 1 indicating perfect correlation and 0 indicating
no correlation. In the present study, MAC is applied to assess the simi-
larity between the mode shapes of the benchmark finite element model
(representing the bridge under the no-scour condition) and those of
comparative numerical models with varying scour conditions modelled.
The impact of different scour depths and widths on the dynamic
behaviour of the bridge can be evaluated in this way, facilitating a
deeper understanding of how scour-induced changes affect structural
modal properties.

Figs. 10 and 11 present the change in MAC values between the
unscoured bridge modes and the scoured bridge modes for various scour
conditions in the (a) traffic, and (b) flow directions, for loose and
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Fig. 8. Relative change of global vibration period in (a) traffic, and (b) flow direction for different scour depths (d;) and widths (y;) — loose soil profile.
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Fig. 9. Relative change of global vibration period in (a) traffic, and (b) flow direction for different scour depths (d;) and widths (y;) — medium dense soil profile.
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Fig. 10. MAC values of the (a) traffic, and (b) flow direction mode shape under different scour conditions, benchmarked against the mode shape of the unscoured

bridge - loose soil profile.

medium-dense soil profiles, respectively. In Fig. 10(a) and (b), the MAC
value is observed to reduce as scour depth, d, increases. Moreover, for a
given scour depth, the MAC value further reduces as the scour width, y;,
is increased. For larger scour hole widths, the influence reduces, as
shown by the asymptotic behaviour of each line as scour widths increase
to large values approaching general scour. This analysis suggests that
the change in the bridge boundary condition due to scour leads to a
smooth change in the MAC as the scoured bridge mode deviates away
from the unscoured bridge mode. This finding is as expected, in that the
gradual softening of the bridge boundary constraint under increasing
scour depth and width leads to a smooth change in the mode shapes for

the first modal periods in the traffic and flow directions.

Fig. 11(a) shows a similar behaviour to that in Fig. 10(a), except that
for the medium-dense soil (with the correspondingly shorter pile), the
influence of scour is larger with a greater change in the MAC values
observed for a given scour depth. Moreover, the plots level off at smaller
scour width values as the scour width approaches general scour (5D), for
this denser soil profile (and smaller diameter pile).

In Fig. 11(b), which shows the change in MAC value between unsc-
oured and scoured bridge modes in the flow direction for medium-dense
soil, a non-smooth transition in MAC value with the progression of scour
width is observed for certain scour hole widths. This is a result of the
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Fig. 11. MAC values of the (a) traffic, and (b) flow direction mode shape under different scour conditions, benchmarked against the mode shape of the unscoured

bridge — medium dense soil profile.

mode coupling phenomenon observed in Fig. 9(b), which results from
the predominant transverse and vertical vibration periods aligning for
the given scour conditions, resulting in a significant change in the MAC
value at these specific conditions. The data for the dense sand profile are
presented in Appendix B.

The principle of mode coupling at specific scour conditions is illus-
trated in Fig. 12, where the mode shapes of the unscoured bridge are
compared to those of the scoured bridge for two specific scenarios in the
bridge model with a medium dense soil profile. Each subfigure shows a
three-dimensional mode shape of the bridge, with a colour bar to indi-
cate the magnitude of modal displacement across the structure, from
minimum (blue) to maximum (red).

In the first scenario, scour depth (d;) is set to 1.0 m, while in the
second scenario, d; is increased to 3.0 m. Scour width (y;) is then set to
3.5 m for both scenarios to demonstrate the mode coupling phenome-
non. Fig. 12(a-c) shows the mode shapes of the bridge in the traffic, flow,
and vertical directions for the case where no scour affects the bridge.
Fig. 12(g-i) shows the mode shapes of the bridge in each direction when
the scour hole depth is 3.0 m, and the scour hole width is 3.5 m. The
mode shapes are similar in shape to those in Fig. 12 (a-c), with only
minor variations, in line with the results in Fig. 11(b) for the 3 m scour
depth. As expected, the modal periods increase more for the 3 m scour
depth in Fig. 12(g-i) than for those of the 1 m scour depth in Fig. 12(d-f).

The mode shapes in Fig. 12(d-f) are quite different from those in
Fig. 12(a-c) in a given direction. Comparing Fig. 12(b), (e), and (h), one
would expect to see the mode shape gradually change as the modal
period increases for increasing scour. Instead, the mode shape for the
1 m scour depth in the flow direction differs from that of no scour and
3 m scour. This demonstrates visually the mode coupling effect for
specific scour depths, and shows why the MAC values in Fig. 11(b)
exhibit a non-smooth change with increasing scour width for specific
scour depth values. The flow direction and vertical direction modes
become coupled for these conditions as the modal periods closely align;
note the modal periods are 0.404 s and 0.408 s for these scour condi-
tions in the flow and vertical directions, respectively. This finding
highlights a potential complexity with regard to scour monitoring using
changes in modal periods or frequency for complex structures. The data
in Fig. 12 demonstrates the phenomenon for the scour combination {d;,
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¥sy= {1.0 m, 3.5 m}. The same coupling occurs for the {d;, y;} = {1.5 m,
1.5 m} case.

The previous analysis highlights the complexity with regard to
monitoring scour erosion progression using data-driven vibration-based
methods that rely on detecting changes in modal periods or mode shapes
of a scoured bridge. For certain scour hole depths or widths affecting
complex structures, it is possible that mode shapes may become coupled,
which would mask the true scour condition, potentially suggesting that
the scour issue is worse than expected, i.e. a sudden change in MAC
value between unscoured and scoured modes might suggest a problem
when one does not exist. This highlights the significant difficulty with
using purely data-driven approaches, whereby damage is evaluated by
benchmarking data from the damaged system with that of the healthy
system without reference to a numerical model that could shed insight to
the behaviour. Conversely, the study highlights the importance of hav-
ing accurate reference models to benchmark data and understand sys-
tem behaviour, suggesting model-based structural health monitoring is
still very important in an increasingly data-driven industry. The key is to
balance data-driven innovations with rigorous model-based validations,
ensuring more reliable and actionable insights in understanding com-
plex soil-structure interaction behaviour.

4. Conclusions

In this paper, a simplified and practical method is proposed to modify
Winkler-type springs used in SSI to account for the shape of a scour hole
affecting a piled bridge. The scour hole shape is considered by applying
an effective overburden depth to account for the additional soil strength
and stiffness that would exist beneath a scour hole for different types of
scour; from local narrow scour to local wide scour; and general scour,
where the full soil layer is removed. The effective overburden is calcu-
lated as the volume of soil within a zone of influence that contributes
effective stress to the soil beneath the scour hole base. An analysis is
conducted on the change in the modal behaviour of an example two-
span piled bridge affected by differently-shaped scour hole develop-
ment, where scour holes with varying depths and widths are modelled.

The study focuses on how the modal properties of the bridge, spe-
cifically the modal periods and mode shapes, vary in both the traffic and
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Fig. 12. Global mode shapes of the unscoured bridge and the corresponding mode shapes of the bridge under two scour scenarios in (a, d, g) traffic, (b, e, h) flow, and

(c, f, i) vertical direction — medium dense soil profile.

flow directions as scour hole depth and width increase. Three different
foundations and soil densities are considered, corresponding to loose,
medium-dense, and dense sand profiles, with the pile properties varied
to provide the same FoS against axial capacity failure for the purpose of
comparison. Modal periods and mode shapes before and after scour are
compared, with mode shapes benchmarked using MAC values. In gen-
eral, a smooth increase in modal periods is observed as scour depth and
width increase for a given soil profile. For the medium dense profile and
the considered bridge, this is observed to be less smooth. An analysis of
the change in MAC values between scoured and unscoured conditions
reveals that mode coupling can occur for a certain soil density, scour
depth, and width, which gives an apparent decrease in the MAC value
under certain conditions. This results from the mode shapes in different
directions, such as in the flow direction and vertical direction, becoming
coupled due to the aligning of the modal periods. This has practical
implications for asset managers implementing vibration-based struc-
tural health monitoring approaches on scour-affected bridges, as it can
mask the true scour condition if the modal behaviour is not well-
understood. It should be noted that water-added mass effects are not
considered, as the presence of water is not explicitly modelled. This
would have the effect of increasing the absolute values of the modal
periods, but no influence on the observed trends are expected.

The main contribution of the work is a practical method to modify
soil springs to account for scour hole shapes (varying depth, width, and
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slope angle), facilitating practitioners to understand the likely changes
in behaviour that can result from scour development. The findings of the
case study conducted are relevant to the field of vibration-based struc-
tural health monitoring of bridges affected by scour erosion. Specif-
ically, the results suggest that data-driven health monitoring may be
impacted by unforeseen modal coupling under certain damage condi-
tions, and highlights the importance of model-based methods that can
shed light on the physics underlying observed phenomena. Without the
capability to practically model scour hole shape influences in physics-
based bridge models, this behaviour would be difficult to predict. An
example real-world application of the model lies in the development of
digital twins of scour-affected bridges, used for the purpose of bench-
marking SHM data from a real structure against likely scour conditions
affecting a target structure. By varying scour hole shape parameters in
the reference (digital twin) model, practitioners would be able to assess
the sensitivity of the real structure to variations in scour hole di-
mensions, and moreover understand if mode coupling or other effects
might pose issues to the infrastructure. The practical nature of the model
and the ease of use with Winkler-based SSI models is a tangible benefit to
the method. The results of this study are therefore likely to interest asset
management agencies and practitioners implementing vibration-based
bridge scour monitoring.

The developed model can be enhanced with a number of consider-
ations. In the present paper, three foundation schemes providing a FOS
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against axial capacity failure of 2 were considered. Future studies should
explore different FOS values and how they influence the results. More-
over, the derivation of the effective stress to account for the overburden
assumes plain strain conditions and a 2D area ratio. In order to consider
non-uniform scour conditions, the approach would need to consider the
3D volume of the scour hole. Additionally, the method has only been
developed for unform sand sites. Multi-layered or clay sites requires
further model development. These enhancements to the method should
be conducted as part of future work. The method has been developed in
the present work for application to bridges. It can equally be modified
and applied in other contexts such as offshore wind turbine foundation
scour monitoring. Finally, the method should be trialled against exper-
imental measurements of the modal responses of real piled bridges
affected by scour with varying dimensions, to ascertain the accuracy of
the framework. This is required before firm conclusions on the perfor-
mance and sensitivity of the method can be provided.
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APPENDIX A

Table A.1

Properties of bridge elements used in the numerical model
Element E (kN/m?) G (kN/m?) 7 (kN/m>) A (m?) Ix (m%) I,y (m*%) I, (m*) Agy (m?) Ag (m?)
Deck 1 2.1E+ 08 8.1E+ 07 77 0.41 0.0035 0.1694 6.64 0.041 0.036
Deck 2 2.1E+ 08 8.1E+ 07 77 0.45 0.0035 0.2435 7.74 0.042 0.037
Deck 3 2.1E+ 08 8.1E+ 07 77 0.49 0.0036 0.3188 8.83 0.042 0.038
Deck 4 2.1E+ 08 8.1E+ 07 77 0.53 0.0038 0.3963 9.90 0.042 0.039
Deck 5 2.1E+ 08 8.1E+ 07 77 0.61 0.0045 0.5580 12.06 0.042 0.040
Deck 6 2.1E+ 08 8.1E+ 07 77 0.65 0.0050 0.6424 13.14 0.043 0.041
Deck 7 2.1E+ 08 8.1E+ 07 77 0.69 0.0056 0.7293 14.21 0.043 0.042
Pier 3.1E+ 07 1.3E+ 07 25 22.51 22.30 5.90 294.22 18.91 19.08
Stiff 2.1E+ 14 8.1E+ 13 0 0.25 0.0088 0.0052 0.01 0.208 0.208

APPENDIX B. - Summary of results obtained for dense soil profile

This appendix provides a summary of results related to the impact of scour on global vibration periods and mode shapes for the case of the dense
soil profile. Fig. B1 presents the relative change of the global vibration period in both directions for different scour conditions affecting the bridge with
a dense soil profile. The results show trends similar to those obtained for the medium dense soil profile in Fig. 9, namely a smooth increase in vibration
period with increasing d; and y; in the longitudinal (traffic) direction in Fig. B1(a), and mode coupling between the global transverse and vertical
modes resulting in a non-smooth increase in vibration period at particular scour conditions in the flow direction in Fig. B1(b). In the longitudinal
(traffic) direction in Fig. B1(a), for scour depths exceeding 4.5 m, a significant shift in modal periods is observed, which is a function of the extreme
scour-related stiffness loss in the foundation, resulting in rigid body behaviour and a likely exceedance of capacity (not modelled).

12



Structures 82 (2025) 110648

M. Kosic et al.
1.80
2.50 1 /
2.25 1 1.60 _/
= 2.00 1 %
t 1.75 - v\Mode shape change E 1.40 -
1.50 - Mode coupling
1.25 1 /
—
1.00 1.00
0.0 1.5 3.0 4.5 6.0 7.5 0.0 1.5 3.0 4.5 6.0 7:5
(a) ys (m) (b) ys (m)
— d;=0.0m dy=15m dy=30m —— d;=45m
— dy=0.5m dy=2.0m dy=35m —_— dy=50m
— dy=10m dy=25m dy=4.0m

Fig. B1. Relative change of global vibration period in (a) traffic, and (b) flow direction for different scour depths (ds) and widths (y;) — dense soil profile

The effects observed in Fig. B1 are also visible in the MAC plots presented in Fig. B2, which show the change in MAC values between the unscoured
bridge modes and the scoured bridge modes for various scour conditions in the traffic and flow directions for dense soil conditions. In general, scour
leads to a gradual decrease in MAC values as the boundary conditions of the bridge progressively deviate from the initial, unscoured state. However,
when mode coupling occurs, a pronounced drop in MAC values is observed, since the resulting mode shape does not exist in the unscoured bridge. For
scour depths exceeding 4.5 m, the change in MAC is more complex as the foundation behaviour changes as a result of the extreme scour altering the
mechanism of bending to rigid-body rotation. These data are included for completeness, but it should be noted that in a real structure the bridge would

likely have exceeded its capacity for these cases.
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Fig. B2. MAC values of the (a) traffic, and (b) flow direction mode shape under different scour conditions, benchmarked against the mode shape of the unscoured
bridge — dense soil profile
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