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Human intention recognition by
deep LSTM and transformer
networks for real-time
human-robot collaboration

Matija Mavsar*, Mihael Simoni¢ and Ale§ Ude

Humanoid and Cognitive Robotics Laboratory, Department of Automatics, Biocybernetics, and
Robotics, Jozef Stefan Institute, Ljubljana, Slovenia

Collaboration between humans and robots is essential for optimizing
the performance of complex tasks in industrial environments, reducing
worker strain, and improving safety. This paper presents an integrated
human-robot collaboration (HRC) system that leverages advanced intention
recognition for real-time task sharing and interaction. By utilizing state-of-
the-art human pose estimation combined with deep learning models, we
developed a robust framework for detecting and predicting worker intentions.
Specifically, we employed LSTM-based and transformer-based neural networks
with convolutional and pooling layers to classify human hand trajectories,
achieving higher accuracy compared to previous approaches. Additionally, our
system integrates dynamic movement primitives (DMPs) for smooth robot
motion transitions, collision prevention, and automatic motion onset/cessation
detection. We validated the system in a real-world industrial assembly task,
demonstrating its effectiveness in enhancing the fluency, safety, and efficiency
of human-robot collaboration. The proposed method shows promise in
improving real-time decision-making in collaborative environments, offering a
safer and more intuitive interaction between humans and robots.

human-robot collaboration, deep neural networks, LSTM, transformer, intention
recognition

1 Introduction

The growing availability of collaborative robots in the market has paved the way for the
development of human-robot collaboration (HRC) approaches, designed to enhance the
efficiency of workspace sharing between humans and robots. The primary goal of HRC is to
enable robots to perform tasks that would be too complex to execute independently, while
simultaneously alleviating the burden on human workers by delegating the most challenging
and repetitive aspects of the work to the robots.

One of the possible ways to increase efficiency of cooperation is through recognition
and anticipation of human worker activity. Human pose estimation and prediction
are crucial in this context, as they enable robots to better understand and respond
to human behavior. By anticipating and classifying human motions, we can predict
intentions and adapt the robots’ behavior accordingly. This leads to more natural and
intuitive human-robot interactions. For example, if a robot can predict that a human
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is reaching for an object, it can offer assistance or adjust its own
movements to avoid interference.

Machine vision can be employed to obtain useful information
about the state of the cooperative workspace and control the
robot in a way that increases safety and fluidity of collaboration.
Recurrent neural networks (RNNs) are a promising technology
for collaborative tasks that require anticipation of an agent’s
motion since. One variant are RNNs with long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) units, which can
analyze time-dependent processes based on partially observed data
and predict future states, as opposed to vanilla neural networks,
which require entire inputs, e.g., motion trajectories, to provide
predictions. RNNs have for example been utilized for labeling
or predicting human motion based on measurements of past
poses or captured images (Zhang et al., 2020; Wang et al., 2019;
Yang et al, 2021; Mavsar et al, 2024). Another deep neural
architecture that has seen a big rise in popularity are transformer
networks with attention mechanism (Vaswani et al., 2017), which
are largely being used for natural language processing tasks, as
well as for trajectory prediction (Giuliari et al., 2021). While
mostly employed for sequence-to-sequence tasks, they are also
used for sequence classification tasks, e.g. trajectory classification.
These techniques, along with increasingly capable and affordable
sensors such as depth cameras, enable efficient processing of
information in a HRC system and, consequently, optimization of the
collaborative process.

In this paper, we present an integrated system for supervision
of a collaborative environment that facilitates dynamic and safe
task sharing by utilizing a single RGB-D camera (Figure 1). We
employ an existing human body pose estimation method and
combine it with depth information from the camera to obtain
position of the worker’s hand in global coordinates. To increase task
fluency, we perform human intention recognition by classifying the
observed hand trajectory in real time, where we compare several
deep learning architectures for sequence classification. Moreover, we
successfully integrated collision prevention and automatic initiation
of motion prediction to enhance the autonomous functionality of
our system. The first one is ensured by monitoring the distance
between the human and the robot, enabling us to identify and
avoid potential collisions, and the second one by detecting the onset
and cessation of worker’s motion to determine when the intention
recognition system should start and stop forecasting the worker’s
hand trajectory.

The main contributions of this paper are:

1. Two intention (LSTM- and

transformer-based with convolution/pooling layers) that

recognition architectures

achieve higher real-time classification accuracy than a recent
transformer baseline.

A third-order
Movement Primitives (DMPs) in Cartesian space, enabling

quaternion formulation of Dynamic

smooth trajectory and orientation switching when
goals change.

An integrated HRC supervision system that combines
intention recognition, motion onset/cessation detection,
DMP-based motion generation, and adaptive collision
prevention, validated in an industrial assembly scenario for

improved fluency and safety.
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2 Related work
2.1 Human-robot collaboration (HRC)

The field of human-robot collaboration (HRC) has seen
significant progress in recent years, driven by the increasing demand
for service robots in both home and industrial environments
(Ajoudani et al, 2018). In such settings, robots must operate
seamlessly with humans to accomplish shared tasks. A review by
Matheson et al. (2019) highlights the growing use of collaborative
robots (cobots) in HRC research. Cobots incorporate features
such as force and torque sensors, force limits, and anti-collision
systems to enhance safe and effective collaboration. Key research
goals in HRC include improving task performance, enabling robot
learning through physical interaction (Simonic et al., 2021), and
ensuring both fluency (Hoffman, 2019) and safety (Marvel and
Norcross, 2017; Byner et al., 2019).

2.2 Intention recognition and prediction
methods

A crucial step toward achieving fluent collaboration is
enabling robots to recognize and predict human intentions.
Accurate prediction enhances control efficiency and boosts
overall productivity. Spatial-Temporal Graph Convolutional
Networks (ST-GCNs) have been proposed for skeleton-based action
recognition (Yan et al., 2018), automatically learning both spatial
and temporal patterns of human joints. These networks demonstrate
strong generalization capabilities without relying on hand-crafted
features, although they require complete trajectories before making
predictions.

Recurrent neural networks (RNNs) have been applied for
activity recognition, such as predicting description labels from RGB-
D videos (Wang et al., 2017) or classifying 2D trajectories into
travel categories (Liu et al., 2019). Other methods employ skeleton
motion data to predict future poses (Zhang et al., 2020; Yasar and
Igbal, 2021) or action probability distributions (Schydlo et al., 2018),
while Abuduweili et al. (2019) use RNN with attention, but do
not explore the effect of preprocessing. Moon and Seo (2019)
combine robot, haptic and depth image data to predict future human
positions using an RNN, however do not perform classification. An
alternative to RNNs is the framework by Callens et al. (2020), which
uses probabilistic principal component analysis to learn motion
models. Hybrid methods, combining both learning and model-
based optimization for human intention recognition and robot
control have also been proposed; Gao et al. (2021) introduced a
hybrid recurrent neural network combining improved bidirectional
and unidirectional LSTM layers for intention recognition from
human motion data, while Tassi et al. (2022) developed a vision-
based ergonomic HRC framework to ensure smooth, adaptive, and
ergonomic robot motion.

Ali et al. (2024) explore the use of Large Language Models
(LLMs) to infer human intentions in a collaborative object
categorization task with a physical robot, while Jing et al. (2025)
employ LLMs for intention recognition in the context of spacecrafts.
Although these works demonstrate the feasibility of intention
recognition using Large Language Models (LLMs), our task
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FIGURE 1
Experimental collaborative setup in a real industrial workcell. Human and robot cooperate in picking up copper rings from the loading area (bottom left
part of the image) and placing them into one of the slots inside the casting model on the table. Since they are performing the task simultaneously, we
employ an integrated supervision system to detect the worker's hand and predict their intention, in order to adapt the robot motion accordingly.

requires specialized classifiers trained explicitly for continuous
hand-trajectory data. Unlike general-purpose LLMs designed for
high-level reasoning over textual or multimodal inputs, our system
demands a lightweight, domain-specific model capable of real-time
inference.

While originally developed for natural language processing,
transformer networks have recently been adapted for motion-related
tasks. They have shown strong performance in pedestrian intention
recognition (Sui et al, 2021), pedestrian trajectory forecasting
(Yu et al, 2020; Sui et al., 2021), and trajectory classification
(Liang et al., 2022). A simpler architecture with adaptive pooling
layers has also proven successful in action recognition tasks
(Abdu-Aguye et al., 2020). Moreover, Pettersson and Falkman
(2023) compared gaze-based human intention recognition using
both LSTM and transformer-based networks. We thus decided to
combine the efficacy of pooling layers, transformers and LSTM
networks into novel architectures and compare them to baselines
without preprocessing.

2.3 Dynamic movement primitives

Dynamic Movement Primitives (DMPs) provide smooth,
timescalable motion representations for dynamic tasks (Nemec
and Ude, 2012). In HRC, DMPs have been adapted to increase
adaptability and robustness. Tu et al. (2022) used coupled DMPs to
coordinate arm and base motions for compliant whole-body control,
while Caiand Liu (2023) introduced a probabilistic DMP framework
that removes frame dependency, and Sidiropoulos and Doulgeri
(2024) improved spatial generalization with dynamic via-points.

Earlier studies applied DMPs to classical HRC tasks such
as handovers and repetitive actions. Prada et al. (2013) showed
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that DMPs adapt effectively to moving goals in handover
scenarios, while Gams et al. (2014) used periodic DMPs for tasks
like surface wiping with force feedback and human coaching.
Overall, these works highlight the ability of DMPs to adapt
trajectories online, though safety and collision avoidance are often
handled by separate modules. The integration of motion onset
detection or partial trajectory data into DMP frameworks remains
underexplored, offering potential for combining predictive intention
recognition with adaptive control.

While
imitation learning and reinforcement learning are powerful
(Byeon et al., 2025; Qi and Zhu, 2018), they often require large, task-
specific datasets, extensive online interaction, and careful reward

modern learning-based  approaches such as

design, which can conflict with the real-time and safety constraints
of collaborative industrial cells. Moreover, their learned policies
may produce discontinuous or non-deterministic behavior during
task switching. In contrast, Dynamic Movement Primitives (DMPs)
provide a compact and analytically stable motion representation
that guarantees smooth, continuous transitions between motion
goals. This property is essential for maintaining safe, predictable,
and fluent robot motion in our system, where the robot must adapt
instantaneously to updated human intention estimates.

2.4 Motion onset and cessation detection

In addition to intention recognition, key challenges in human-
robot collaboration include detecting motion onset and cessation and
ensuring collision prevention. Motion onset detection determines
when prediction should begin. Hassani et al. (2022) used machine
learning for onset recognition in rehabilitation, while surveys
highlight electromyography (EMG) as a physiological cue for early
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detection (Carvalho et al., 2023). Other works fuse IMU and EMG to
recognize onset and direction in real time (Tortora et al., 2019), and
probabilistic motion models have been applied to jointly recognize
and predict human motions (Callens et al., 2020). We focus on a
simpler approach by leveraging the knowledge of hand positions to
determine when the hand enters or leaves areas of interest.

2.5 Our previous work and limitations

In our previous work (Mavsar et al, 2021), we developed
LSTM networks capable of classifying observed motions using both
RGB-D videos and position sequences obtained via a marker-
based tracking system. However, when using RGB-D images,
variations in background and camera angles strongly affected
predictions, while marker-based systems are costly and impractical
in dynamic environments. Yan et al. (2019) addressed this by
combining skeleton data from a Kinect depth camera with an
LSTM for pose prediction, but they did not exploit detailed RGB
information. In contrast, publicly available pose estimation methods
(Lugaresi et al., 2019; Fang et al., 2022) can provide 2D landmarks
that, when combined with depth data, yield 3D human motion
trajectories.

Building on this, we propose LSTM- and transformer-based
networks with additional convolutional and pooling layers, inspired
by the work of Abdu-Aguye et al. (2020), to capture both local
and global temporal features. We compare our models against the
transformer network by Pettersson and Falkman (2023), which
was most effective in gaze-based intention recognition. While
their architecture relies on fixed-size data windows, our dataset
consists of variable-length and partial trajectories, enabling real-
time prediction from incomplete motion sequences.

3 Materials and methods

In this section we present the methods used to automate the
collaborative process, where a human and a robot concurrently
perform a task. The proposed approach involves the estimation and
prediction of human motion, as well as adaptive robot control that
reacts to the actions of the human worker. The diagram of the control
system, integrating the proposed methods, is shown in Figure 2.

3.1 Hand position estimation

Several open-source frameworks for human motion estimation
are available, typically trained on large datasets, which enhances
their effectiveness in diverse environments. By leveraging a general
human motion estimation system, we can avoid the need to train
custom image processing networks for specific applications. One
of the most widely used frameworks for human pose estimation
is MediaPipe (Lugaresi et al., 2019), which offers high accuracy in
tracking body, hand, and face landmarks while maintaining fast
processing speeds, even without the use of GPUs. Our approach
utilizes MediaPipe’s hand detection solution, which predicts the
2D pixel locations of 21 hand landmarks from an RGB image. For
motion classification, it suffices to focus on a single landmark, as
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our primary goal is to distinguish the destinations of different hand
trajectories. We select the landmark at the top of the index finger, as
it is typically the most stable part of the hand when holding an object
between the index finger and thumb. However, since the output from
MediaPipe consists of 2D pixel locations, we additionally use the
cameras depth image to convert these coordinates into 3D positions
within the camera’s coordinate system.

Each hand landmark is represented by its corresponding pixel
coordinates u = [, v]T, where u € [0,W—1],v€ [0,H-1], and W
and H denote the width and height of input camera frames F(t) €
R"*H3_Our aim is to obtain the world coordinates of the detected
hand landmark, ¢ = [x,y, z]T. Let’s denote the landmark position in
camera coordinates as ¢, = [x,,y,,2.]". MediaPipe returns the pixel
coordinates of each hand landmark. When using a depth camera
with aligned color and depth frames, we can take the calculated pixel
coordinates of the landmark, « and v, and find the value of the depth
image at this location. This value is the distance of the landmark
from the origin of the camera coordinate system, i.e., z.. For the
calculation of the remaining camera coordinates x, and y_, we start
with the relationship between a 3D point ¢ and its image projection
u as per Zhang (2000):

u
s
1

Here A is the camera intrinsic matrix,

=A[R ¢

oy U
A=10 B
0 0 1

with (u,,v,) being the coordinates of the principle point, & and f
the scale factors in image’s u and v axes, and y the skew of image
axes. R and t are the extrinsic parameters, denoting rotation and
translation of the world coordinate system related to the camera
coordinate system.

Writing out the equation system

u X,
s|lv|=A Yo >
1 z

we can compute x, and y_:

In order to obtain the landmark location in the world coordinate
system, we use a matrix that defines the transformation from world
to camera coordinates:

c= RTcC -RTt.

To compute the intrinsic camera parameters A, we move the
calibration board to several different locations within the workcell
and gather the calibration data. For the last location, we place
the calibration board at the position and orientation coinciding
with the origin of the world coordinate system. The intrinsic
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The proposed human-robot collaboration system with intention recognition. The pose of the worker's hand is passed through a motion classification
network to provide predictions of human intention, as well as into a module for collision detection and a module for motion onset and cessation
detection. Based on the signal from the motion onset detection module, the intention recognition system is activated and its results are passed into the
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camera parameters and the transformation matrices from the
camera coordinate system to all locations of the calibration board
can then be computed using the method described by Zhang
(2000). As the location of the last placement of the calibration
board coincides with the world coordinate system, it corresponds
to the transformation matrix [R,t] from world to camera
coordinates.

Using the above procedure, we can sample a sequence of hand
positions c(tj) € R3, j=1,...,n, from a camera stream of the
observed human worker’s motion. This way we obtain the input
data for our system for intention recognition, which is the basis
for guiding the robot in a collaborative setting and realizing safe
human-robot collaboration.

3.2 Intention recognition

We propose a system for classification of the human worker’s
motion based on partial hand position trajectories. The output
consists of predicted motion classes from a predefined set of possible
motions, denoted as k € {1,...,m}, where m represents the total
number of classes. These motion classes correspond to different
versions of the collaborative task the worker can perform. In the
practical experiment described in Section 4, several distinct slots
are available for the human worker to complete an assembly task.
The system predicts the specific motion category towards a goal
slot where the worker intends to place a workpiece and directs the
robot to simultaneously perform the assembly task at a different slot.
Although human motions in our experiment are related to the goal
slots, the proposed system is adaptable and can classify a wide range
of motion classes.

As described in Section 3.1, the RGB image sequences of
the observed human motion are processed using MediaPipe
and combined with depth images to obtain hand position
trajectories c(t) € R®. These trajectories are passed to the intention
recognition neural network that classifies the observed motion.
We compare three different architectures to classify human hand
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position trajectories, namely a custom LSTM network, a custom
transformer-based network, and a transformer-based network
proposed by Pettersson and Falkman (2023).

The transformer architecture originally consists of an encoder
and a decoder network. For sequence-to-sequence tasks, both the
encoder and decoder part of the transformer architecture are used.
However, for classification tasks it is customary to utilize only the
encoder part of the transformer (Pettersson and Falkman, 2023;
Liang et al, 2022), which is also how we design our proposed
transformer architecture. Inspired by Abdu-Aguye et al. (2020),
the two proposed networks (i.e. LSTM and transformer) include
also convolutional and pooling layers. The aim of the convolutional
layers is to extract spatial information from input trajectories, while
the pooling layers of different sizes retrieve both local and global
temporal properties.

Although LSTM and transformer architectures are well-
established, our novelty lies in adapting and integrating them for
real-time intention recognition from partial and variable-length
hand trajectories. We also introduce a lightweight preprocessing
module with multi-scale convolutional and pooling layers to extract
both local and global temporal features, improving early prediction
accuracy from incomplete motion data. Our networks operate
continuously at 15 Hz, enabling real-time updates. The proposed
models are further integrated with a DMP-based control scheme
to achieve smooth, adaptive robot motion, representing the key
methodological contribution of this work.

The two proposed networks are graphically shown in Figure 3.
In both cases, the input is a sampled variable-length hand trajectory
c, = [c(tl),c(tz),...c(t,,)]T € R™3. Both networks are trained on
partial to full hand trajectories. The input data are first processed
by convolutional layers to increase the number of channels, and
pooling layers with kernels (or windows) of different sizes and a
stride of 1 in order to extract local and global temporal changes. The
resulting channels are then concatenated into n vectors of size 960
and added to a signal of size 1 x 960, obtained by passing the input
trajectory through a fully connected layer with 960 neurons, which
bypasses the convolutional and pooling layers. This forms a residual
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The proposed networks for intention recognition based on input human hand trajectory. The lefthand side of both architectures includes the
preprocessing modules with convolutional and pooling layers, which process the input trajectory and pass the output into either transformer-based or
LSTM-based network. All convolutional, fully connected and LSTM layers are followed by nonlinear activation layers, which are not shown for simplicity.

connection, which has been shown to ease training and improve
performance of neural networks (Quan et al., 2021). Each vector in
the resulting sum is finally processed by the same fully connected
network with 256 output neurons, giving an overall output of size n x
256. The data processed this way is then fed into either a transformer
network or an LSTM network.

When using the transformer (top architecture in Figure 3),
the input is first augmented by adding positional encodings, as
proposed by Vaswani et al. (2017). Positional encoding injects
information about the relative position of individual sequence
elements. The result is passed through 4 heads of the multihead
attention module with learnable weights. This module allows
processing of variable-length sequences and extracts dependencies
between different elements in the input sequence, i.e. hand
trajectory. Let’s denote the modules input as h € R™?¢, Each
element in the input sequence is first passed separately through three
different linear networks of each attention module head, followed by
a scaled dot product of the three resulting sequences

hw_ ) (hw, )t
a; = softmax —( q'l)( ) h

d

wi>

in

where d;, is the dimension of the input samples, in our case 256,
and W, Wi, W,; € R?6*2%6 are the weights of linear networks
included in the i-th head. The resulting output vectors a; €
R™6 i=1,....4, into ae€R™10% and

multiplied with learnable weights W, € R'%*2% to again obtain

are concatenated

output of size n x 256. This is added to the input h and normalized.
Each row vector of dimension 256 is then passed through a feed
forward network with a hidden dimension of 256, producing the
overall output of size n x 256. This is followed by another add and
norm operation. The entire process is repeated 4 times, i.e. we use
4 encoder layers. From the transformer output matrix, the vector
on the last, i.e. n-th, row is extracted and finally passed through
another fully connected network with output layer of size m, where
m denotes the number of motion classes. A softmax function is
applied to obtain a probability distribution across motion classes.

Frontiers in Robotics and Al

When the LSTM network (bottom architecture in Figure 3) is
used, the output of the preprocessing module is passed through
three consecutive LSTM layers with a recurrent structure, which
stores information through different time steps. Elements in the
input sequence are therefore processed one after the other, with
internal LSTM states being updated in each iteration. The output of
the final LSTM layer is added to the input into the first LSTM in each
time step, forming a residual connection, similar to the one in the
preprocessing module. The result is passed through a fully connected
network with output layer of size m, and again the softmax function
is applied to obtain a probability distribution across motion classes.
Note that for an efficient LSTM implementation, the partial input
sequences of length n do not need to be passed in their entirety
through the LSTM architecture in each time step, since only the last
16 samples change in each time step (due to the use of convolutional
filters and average pooling). For this reason, the internal states of all
LSTM layers at 16 time steps in the past must be stored so that we
compute the new LSTM output using only the latest 16 elements in
the input sequence.

The performance of the proposed networks was compared to
the best-performing transformer architecture by Pettersson and
Falkman (2023) that was used for gaze-based human intention
recognition. Original implementation has two parallel output layers,
which we merged into one output layer with m outputs, representing
motion classes, for use in our experiments. The rest of the
architecture was kept the same.

The data used for training of the intention recognition network
consists of the following trajectory sample-motion class pairs:

D={{c;}", kj}jfl,c,.j €Rk € (L,...,m}, )

where M is the number of training trajectories and L; denotes
the number of samples for the j-th trajectory. To implement
the loss function, cross entropy minimization is employed. The
networks from Figure 3 output a probability distribution p=

{p1opas--
by utilizing the softmax layer. Given the predicted probability

,p,,} over m possible classes (versions of the task)
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distribution p,, for a partial trajectory with n samples and a correct
target class k, the loss is defined as

L, (p,k)=-log(p,;)

where p, , represents the predicted probability of the correct class
k when using a partial trajectory with n samples as input to the
neural network.

A weighted sum of losses at each sampling step is employed
to decrease the significance of early input values and increase the
significance of later values. For each input trajectory of length L, the
total loss is given as

L
L= % Z ynl:n (Pn,k)’
n=1

where y, represents the weight for the #-th input, computed using a
logistic function

3.2.1 Detection of motion onset and cessation

Intention recognition processes sequences of hand positions
to predict the task currently performed by the human worker.
However, predictions should only be made during active motion,
which requires determining when a movement begins and ends.
To address this, we implemented a motion onset and cessation
detection mechanism that automatically activates and deactivates
the intention recognition system based on the worker’s hand
position. Two 3D regions are defined within the workeell: a starting
area, where workpieces are picked up, and a goal area, where they
are placed.

Motion onset is detected when the worker’s hand leaves the
starting area, marking the beginning of the prediction process.
Motion cessation is recognized when the hand enters the goal
area, indicating the completion of a movement. To improve
detection robustness, a small number of samples before and
after each transition are also included in the processing pipeline.
This approach enables precise timing of prediction sessions and
ensures that the intention recognition operates autonomously. The
system continuously tracks goal-slot occupancy based on predicted
intentions, allowing the robot to adapt its motion and continue the
assembly task at available locations.

3.3 Robot trajectory generation and
switching

We use Dynamic Movement Primitive (DMP) (Ijspeert
etal, 2013) representation specified in Cartesian space (Ude
etal., 2014) to specify robot motion in a collaborative task. DMPs
are well-suited to represent robot trajectories in HRC environments
because they can be used to smoothly pull the robot towards a new
motion trajectory when the desired motion changes. This makes it
possible to generate a smooth transition when switching from one
trajectory to another. By specifying trajectories in Cartesian space,
we ensure that transitions are smooth in Cartesian space, which
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reduces the chance of collisions with the environment, since the
switching between DMPs results in predictable trajectories.

In our setup, each of the classes is associated with a specific
collaborative robot motion. The proposed neural network
architectures in Figure 3 generate a new class prediction after each
input sample is processed. As the intention recognition system is not
perfect, the predicted class for the observed motion may change as
more frames become available. In general, the prediction accuracy
improves as more input data points become available. This requires
that the robot is capable of smoothly switching from one trajectory
to another when the predicted class changes. DMPs are well suited
for this purpose.

We adopted the third-order DMP system (Schaal et al., 2005;
Nemec and Ude, 2012) for joint space trajectories to Cartesian space
robot trajectories. In a Cartesian space DMP, the robot’s motion is
specified by its position y(¢) € R® and orientation trajectory q(t) €
R*, where q(t) denotes the unit quaternions at time . In the third-
order DMP system, the position trajectory can be described by the
following system of differential equations:

=K, (r-y)-D,v-xK, (r—y,) + K,f, (%), (2)
7=V, (3)
Tf:HP(gp—r)’ 4)

where r, v € R? are auxiliary variables, y,, 8 € R? are the start and
end position, respectively, K, H,, € R*? are spring matrices, D, e
R>*3 is a damping matrix, and 7> 0 is a temporal scaling factor,
usually set equal to the duration of motion. We set K, = K,I, D, =
D,L,H,=H,I,D,=24K,, H= \/?p, K, >0, which provides for the
critical damping of the dynamic system. The phase variable x is used
to remove the direct time dependency from the DMP formulation

(©)

X = 0, X,

where a, >0 is a positive constant. The forcing term f, from
Equation 2 is defined as a linear combination of M radial
basis functions

M
1

- - Zx‘l’,. (x)wf, Y (x) = eXP(—hf(x_ Ci)z)’ (©)

Z?;II‘I’Z- (x) i=1

with weights w‘f € R? set in such a way that by integrating the

£,(0) =

equation system Equations 2-5, we obtain the desired trajectory y
starting at the initial position y, and ending at the goal position 8-
See (Ude et al., 2020) for more details about how to compute wf’ The
desired robot trajectory is obtained by integrating the differential
equation system Equations 2-5, with the initial values set to y =
Yoo V=0, r=g, and x = 1. Note that if the goal position g, changes
abruptly, r and consequently y converge to the new goal position
without causing any discontinuities in the velocity and acceleration
ofy.

A DMP equation system for standard, i.e., second-order DMPs
in a unit quaternion space has been proposed by Ude et al. (2014).
Building on this approach, we propose the following equations for
third-order quaternion DMPs:

i =K, 2log(o*q)-D,n+Kf, (x), (7)
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. 1
Q=1 q ®)

rw, = H,2 log(g, *0), ©)

where 77 € R® and o € R* are auxiliary variables, and w, € R? is the
angular velocity of the auxiliary unit quaternion trajectory o. *
denotes the quaternion product and q is the conjugate of quaternion
q. Note that Equation 7 is not completely analogous to Equation 2.
Namely, we have omitted the term —xK_ 2 log(o * q,) because this
term causes problems when computing the quaternion DMP’s initial
state. Variables q,, g, € R* are the unit quaternions specifying start
and end orientation, respectively. 7 is the temporal scaling factor, just
like in Equations 2-5. K,, H, € R¥?, D, € R¥? are diagonal positive
definite matrices defined similarly as in Equations 2-4. The forcing
term f, is defined as f, in Equation 6. Finally, the unit quaternion
logarithm is defined as follows

arccos (v) l, u+0

log(q) = log([v,uT]T) = [[all

[0,0,0]T, otherwise

where v € R and u e R® are the scalar and vector part of unit
quaternion q.

The differential Equation 5 is used jointly with the position
DMP to integrate the phase. The distinguishing property of the third
order system Equations 7-9 compared to the standard second-order
quaternion DMP (Ude et al., 2014) is that it smoothly transitions
the orientation trajectory to a new goal when the goal orientation
g, changes.

In our practical experiment, the robot and human worker
both start moving towards a slot where they intend to perform
the required assembly operation. As explained in Section 3.1, the
human worker motion is observed by an RGB-D camera and if
the intention recognition system described in Section 3.2 estimates
that the human worker’s target slot is the same as the currently
selected robot’s target slot, the robot motion is adapted towards a
different slot.

Let’s denote the current DMP integration state as Yo Vpr Tp and
the terms defined by the previous and next DMP (temporal scaling
-
and 7,,,f,, 8.,y ,» respectively. To ensure that the position, velocity

factor, forcing term, end and initial configuration)

and acceleration of robot motion remain smooth when switching
to a different goal position, we initialize the next DMP integration
states y,,v,,r, as

Yo =Yp (10)
Tn
=y 11
™ (an
B, L nn Bhon
r,=—r,+ + K 'Dv
n TIZ) P 1-x YP Tf,(l—x) p

1
+_
1—x<

We continue the integration from the current phase x using

< | st

(xY&p+fp(x))_xY0>n_fn(x)>- (12)

the DMP parameters of the new trajectory, starting with values
Equations 10-12. These initial values are not guaranteed to lie on
the initially programmed trajectory. However, since every DMP
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defines a control policy, the integration converges to the new
desired motion.

Switching to a new quaternion DMP occurs in a similar way.
For the initialization of the variables of the orientational part of the
trajectory, let’s denote the current Cartesian DMP integration state
as g, 11,0, and the terms defined by the current and next Cartesian
DMP (temporal scaling factor, forcing term, end and initial
orientation) as 7,,f, .8, .4y, and 7,,, £, .8, .,y ,» respectively. The
next DMP integration state q,,#,,0, should be initialized so that
the position, angular velocity and angular acceleration of the robot
motion remain smooth, i.e., q, =9, W, = @y, (bp = @,. By taking
into account that q,, is a unit quaternion, we can use Equations 7-9
to compute the following initialization values for the integration of
the next quaternion DMP, starting at the current phase x:

qn qp’
Th
’1n - T_ ’1p

3.4 Collision prevention

To prevent the worker and the robot to collide while
simultaneously performing a collaborative task, we developed a
robot control system that adapts the robot’s speed based on the
distance between the end effector and the worker’s hand. This is
necessary to prevent interference and injury. By utilizing the RGB-
D camera and the procedure from Section 3.1, we obtain the 3D
position of the worker’s hand in world coordinates at all times.

We adapt the speed of the robot by changing the 7 parameter,
used in Equations 2-9 for generation of the robot trajectory. The
parameter is adapted based on the distance of the robot end effector
to the worker’s hand in such a way, that the speed and thus 7 is not
changed when the distance is larger than 30 cm and the speed is set
to zero when the distance is less than 5 cm, i.e., Tis increased towards
infinity. For distances between these two values, a minimum jerk
polynomial (Spong et al., 2006) is defined to smoothly increase 7. By
denoting the distance between the robot and hand as d = |ly — ¢||, the
“safe” distance of 30 cm as d, and “unsafe” distance of 5 cm as d,,, we
can then write the expression for k., which modifies the parameter
7 to obtain the adapted parameter 7,

s 1
T=—"T1,
k.(d)
where
1, d>d,
10(d-d,)* 15(d-d)* e6(d-d,)°
k,(d) = ( “z I “1 ( “)5, d;>d=>d,+9,
(ds - du) (ds - du) (ds - du)
e d<d,+d,

where 8 =107 and & = k,(d,, + 8). As k, approaches 0, T increases
towards infinity. We set the value of k, for d<d,+0J to ¢ to
prevent division by zero. The coefficients for the minimum jerk
polynomial, which is a function of d, were calculated by considering
the boundary conditions, i.e., the first and second derivatives of the
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polynomial at d = d,, and d = d, are zero, while k.(d,) =0, k,(d,) =
1. This way we ensure the smoothness of robot motion even when 7
starts changing.

4 Experiments and results

We aimed to evaluate the performance of our proposed intention
recognition system and to test the integrated HRC supervision
system in a real use case scenario. We compared several different
architectures for human hand trajectory classification, namely a
transformer-based network by Pettersson and Falkman (2023) and
our two proposed LSTM and transformer networks. The networks
were used to detect the goal slot where the human worker intended
to place an object. The best performing network was tested in a real-
life industrial scenario, along with the collision prevention system
and the motion onset and cessation detection system.

4.1 Experimental setup

The experimental setting is presented in Figure 1. The setup is
the same as in a real-life industrial scenario for the production of
car starters. The robot and the human perform the same task, i.e.,
they pick up a copper ring from the loading area and insert it into
the casting model on the table. They execute the task simultaneously,
which means that the human may attempt to insert a ring into the
same slot as the robot.

The casting model is composed of four insertion slots, where the
robot and the human can access all slots. The aim of the intention
recognition system is to quickly predict the slot where the human
operator intends to place the copper ring and adapt the robot motion
plan to prevent interference in the workspace.

4.1.1 Data acquisition

During the process of data gathering, the human worker
was given instructions to move an object from the designated
starting area and place it into one of the four available slots of
the casting model on the table. The subjects performed various
motions, replicating the actions typically carried out in production
environments, where workers execute smooth and deliberate
movements.

At the initiation of each subject’s motion, video recording was
started at a rate of 30 Hz, using the Intel RealSense Depth Camera
D435. The recording ceased when the subject reached one of the
slots on the casting model. This procedure resulted in 215 samples,
consisting of RGB-D videos and task version labels k € {1,...,4},
indicating the slot where the object was placed (recorded trajectories
are shown in Figure 4). By employing the techniques described in
Section 3.1, we transformed the RGB-D videos into 3D trajectories
of hand motion c(#), finally obtaining a dataset from Equation 1.

To evaluate the performance of our networks, we randomly
split the available data five times into non-overlapping training,
validation, and testing subsets. The testing subsets between the
splits are non-overlapping. The division of data into different splits
allows us to evaluate statistical significance of our results. After
each subdivision, we digitally enlarged our training, validation, and
testing subsets by randomizing the available data (trajectories). As
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explained above, we employ DMPs to specify the desired robot
motions, but their properties allow us to utilize them for data
randomization as well, since they result in a smooth and natural
motion even if random noise is introduced in their parameters. Thus
for digital data augmentation, we encoded the recorded trajectories
using DMPs and randomly changed the initial position y,, final
position g and trajectory duration 7, where the scale of noise was
set based on the variation of these parameters in the training data.
We then integrated Equations 2-5 to obtain modified trajectories
and finally introduced random Gaussian noise to hand position
measurements. This resulted in a dataset with higher variability,
encompassing a wide range of subjects’ motions. The total number
of training, validation and test trajectories obtained in this way was
890, 300 and 235, respectively, for each data split.

4.1.2 Training method

We train all networks using trajectories in the training dataset
D from Equation 1, including partial trajectories. This approach
enables the network to learn and predict not only from complete
trajectories but also from partial observations, which is crucial
in real-time HRC scenarios, where the system needs to make
predictions based on incomplete or partial data.

The proposed networks were implemented using the PyTorch
(Paszke et al, 2019) framework and trained using the Adam
optimization algorithm (Kingma and Ba, 2015) with a learning rate
0f 0.001 and a batch size of 40, where the training was stopped after
100 consecutive epochs of no error reduction on the validation set.

4.2 Results
The intention recognition networks were evaluated
on five different datasets, obtained through the process

described in Section 4.1.1. The input samples (sequences of hand
position measurements c¢) were passed through the proposed
networks to obtain the predicted intention of the human worker, i.e.
the label of the target slot the worker is moving the object towards.

Upon processing each element of the input sample, the
networks compute the probability distributions across four target
slots. These distributions represent the predicted probabilities
for each slot. As new position measurements (calculated by
processing camera frames) are received, the predicted probabilities
are continuously updated. This enables the prediction of
the worker’s intention in real-time as the motion is being
performed.

To evaluate and compare the accuracy of intention recognition
architectures, we calculated prediction accuracy for all three
networks in relation to the percentage of the input motion processed,
as shown in Figure 5a. This was done for all 5 data splits, and box-
and-whiskers plots were generated to show variability of results
across splits. For all tested networks, the results demonstrate that
as a larger portion of input motion becomes available, the average
accuracy of intention recognition improves. The accuracy is above
90% at the end of motion. For the best performing network, the
average accuracy reaches approximately 46% at 40% of motion
completion, 92% at 70% of motion and improves to nearly 100%
at the end of motion. The network with LSTM layers in average
performed best at human motion classification in our experiments,
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Raw recorded trajectories shown in the xy-plane in world coordinates, with different colors denoting different goal slots (k € {1,...,4}). The motions
begin on the bottom left side of the graph and end on the upper right side, where the four different goal areas are clearly distinguishable.

especially towards the end of motion, although its structure is
significantly simpler than transformer architecture. This may be
due to the dataset being relatively small, while the advantages
of transformer networks typically become more pronounced with
extremely large datasets (Xu et al., 2021; Wang et al., 2022). Both
of our proposed architectures performed significantly better than
the transformer-based network by Pettersson and Falkman (2023),
with the accuracy being around 15% to 30% higher in the middle
part of motion. At 70% and 100% of the processed motion, the
average accuracy of the LSTM network is 23% and 9% higher than
the network by Pettersson and Falkman (2023), respectively.

To show the prediction accuracy of the best performing network
also in terms of Cartesian distance to the goal slots, we plotted all test
trajectories from data split number 1 in the xy-plane, and highlighted
the parts of trajectories where the network’ classification was correct
with green color (see Figure 6), and the parts where classification was
wrong with red color. This gives a better overview of how far from the
goal slots the networks first give a correct prediction. As expected, the
percentage of green, i.e. correctly classified trajectories, increases the
closer the worker’s hand is to the goal slots. We can notice that there
are slightly more green parts closer to goal slots when LSTM network
is used for classification, which is in line with the results from Figure 5.
Some trajectories are green from the beginning, more so when the
transformer is employed, however this is most probably due to a lucky
guess since the available information at the start of motion is minimal.

4.3 Ablation study

The two types of the proposed network architectures, i.e. the
LSTM and the transformer network, were tested with and without
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convolutional and pooling layers (preprocessing module) to assess
their effect. The accuracy of the resulting networks across five data
splits are displayed in Figure 5b.

The positive effect of the preprocessing module is noticeable
both with the LSTM architecture, as well as with the transformer
network. The average accuracy of motion classification is higher when
the preprocessing module is included regardless of the percentage
of the processed motion, except at the beginning of motions where
limited information is available and the correct predictions are mostly
the result of chance. Convolutional and pooling layers improve the
accuracy of the LSTM architecture by around 3 — 9%, with the highest
improvement in the middle part of the observed motion. The increase
is slightly lower with the transformer, possibly because transformers
process entire input sequences in each time step, and may therefore
benefit less from preprocessing. However, even a small increase in
prediction accuracy can prove important when optimizing HRC tasks,
especially towards the end of motion where predictions should be
as accurate as possible.

4.4 Implementation of a human-robot
collaborative task

The proposed intention recognition system was deployed in real-
time to control a robot in a collaborative task. In the scenario, a
human and a Franka Emika robot collaborated to simultaneously
transfer copper rings to one of the available target slots. A video
demonstrating the combined methods in the HRC use case is
available as Supplementary Material for this paper.

Robot Operating System (ROS)
communication between the Intel RealSense camera, LSTM

was used to enable
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FIGURE 5
Temporal accuracy of the tested motion classification networks. The left graph (a) shows accuracy comparison between the adapted transformer

network from (Pettersson and Falkman, 2023) and our proposed LSTM and transformer networks with the preprocessing module (comprising
convolutional and pooling layers), while the right graph (b) demonstrates the performance of our networks with and without convolution and pooling
layers. The presented results were calculated after partial observations of input trajectories, from 10% to 100%. The bars show the mean accuracy
across all five data splits for each network at a certain percentage of processed input motion. The box-and-whisker plots display the variation of results
across data splits. Boxes show the range of data between the first quartile Q1 (25%) and the third quartile Q3 (75%), black line is the median, and the
whiskers extend from the 5-th to the 95-th percentile.
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FIGURE 6
Classification accuracy of the networks on one of the test datasets, shown in the xy-plane. Motions start in the left lower part of the graph and end in

the right upper part of the graph at one of the four goal slots. Parts of the trajectories where the networks’ predictions were correct are shown in green,
while the trajectory parts where the predictions were incorrect are shown in red.

network and the Franka Emika robot. The robot was controlled  was predicted as k = 1, the robot would switch to slot k = 4). The
in Cartesian impedance mode, which ensures that it is compliant ~ adjustment of robot motion in response to new predictions was
and yields in the case of collisions, reducing impact forces. Four ~ implemented by switching from one DMP to another (as described
robot trajectories to each target slot were first recorded using  in Section 3.3).

kinesthetic guiding and encoded with DMP parameters (see The HRC supervision system proved to enhance the efficiency
Section 3.3). During collaborative task execution, the workers  of human-robot cooperation during the task, since it quickly
motion was continuously observed by an RGB-D camera and the  adapted the robot motion to prevent placing an object into the
frames were processed by MediaPipe to obtain a 3D trajectory  same slot as the human, which resulted in a robust collaborative
of hand motion (see Section 3.1). This trajectory was passed  task execution. The overall safety was also improved, as the
through the LSTM architecture to obtain the predicted probability =~ robot slowed down or stopped if the worker’s hand came too
distribution across target slots ¥, which was then sent to the close to the robot end effector. The predictions were output
robot control system. Slot k with the highest probability was  at a rate of 15 Hz, showing that real-time performance can be
selected as the intended target of the worker’s motion and the  achieved. Note that the robot is controlled with a much higher
robot reacted accordingly; if the predicted workers target slot  frequency (1 kHz). The effectiveness of the proposed DMP-based
was the same or adjacent to the goal slot of the robot, the robot  control system is demonstrated in Figure 7. We can see that the
would change the goal slot to the farthest one possible (e.g., if the  robot can smoothly switch from one motion to another without
robot was moving towards slot k =2, and the worker’s intention  abrupt changes.
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FIGURE 7
Example switching between two DMPs for positional (top) and quaternion (bottom) part of the trajectory. The robot switched from a motion towards

slot k =1 (dashed lines) to a motion towards slot k = 4 (dash-dotted lines). The executed motion is shown with solid lines. The robot was controlled with
a frequency of 100 Hz.

5 Discussion To implement the worker’s intention recognition, we compared
three different approaches to classify the human’s hand trajectory.

In this paper we propose an integrated system for supervision ~ We trained two custom architectures with convolutional and pooling
and control of a human-robot collaboration task. We combine layers followed by LSTM or transformer layers, and an existing
several techniques for ensuring a safe and dynamic cooperation  transformer-based architecture. Both of our networks performed
between a human worker and a robot, such as predicting the worker’s  significantly better than the existing one, with LSTM-based network
intention, detecting the position of the workers hand to prevent  performing slightly better than the transformer-based network.
collisions, and automatic motion onset and cessation detection. Although their structure is more complex and allows for powerful
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sequence processing, transformers typically require large amounts
of training data to perform well (Xu et al., 2021; Wang et al., 2022),
while data is rather limited in our use case. Another reason for
LSTM’s better performance may be the nature of the input data.
We process continuous motion trajectories, meaning that the output
should not change abruptly when new measurements are processed.
LSTM networks inherently take this into account by iteratively
adapting the hidden states with each new input, reducing the chance
of abrupt changes, while transformers compute attention over the
entire input sequence each time. We also showed that the added
preprocessing module positively contributes to the performance
of both the LSTM network and the transformer network. The
increase in accuracy is slightly higher with the LSTM network,
which may be due to the fact that transformers process entire
input sequences, thus obtaining less additional information from
convolution and pooling. The methods were applied to a relatively
simple task, i.e., four different classes, however they can be easily
extended to a more complex problem by increasing the output
layer size.

The obtained results show that a transformer network, while
more complex, may not be fit for all tasks, especially where only
a limited amount of training data is available. One advantage of
LSTMs over transformers that is especially important for real-time
processing is also that the sensor data at each time step can be
fed continuously into the LSTM to obtain a new output state,
while entire partial sequences of input data must be fed into the
transformer network at each time step.

Another important contribution of this paper is the third-order
quaternion based DMP representation, which allows for smooth
switching up to the second order derivatives. This is important for
ensuring smooth robot motion when the intended goal position
and orientation change. We demonstrated the effectiveness of
the proposed HRC system in a real industrial scenario. The
system was shown to improve safety and fluency of human-robot
collaboration due to better robot task selection and interference
avoidance.

The proposed framework currently applies to tasks where
the robot has prior knowledge of all possible goals and
trajectories, which are acquired through the programming by
demonstration. This is usually the case in most practical situations
in industrial environments. While this ensures robustness and
safety in structured collaborative tasks, it limits flexibility in
more dynamic environments. Additional supporting systems
would be needed for the robot to fully exploit the estimation
of human movement to re-plan its movements and goals in
real time.

For future work we plan to address a potential issue that
can occur when the robot blocks the view of the worker’s
hand, disabling hand position estimation, and, consequently,
intention recognition. This could be prevented by including multiple
cameras in the workcell to ensure that the worker’s hand is
always in line of sight. Another improvement of the system
would be for the robot to smoothly avoid the worker’s arm
without significantly reducing speed. In the future, we also plan
to test transformer architectures that are optimized for smaller
datasets, with some solutions proposed by Xu et al. (2021) and
Wang et al. (2022).
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