

1 **Supporting Information for**

2 Functionality of potato virus Y coat protein in cell-to-cell movement
3 dynamics is defined by its N terminal region

4 Anže Vozelj^{1,2*}, Tjaša Mahkovec Povalej¹, Katja Stare¹, Magda Tušek Žnidarič¹, Katarina Bačnik¹,
5 Valentina Levak^{1,2}, Ion Gutiérrez-Aguirre¹, Marjetka Podobnik³, Kristina Gruden¹, Anna Coll^{1†},
6 Tjaša Lukanc^{1†*}

7 * Corresponding authors. Email: anze.vozelj@nib.si, tjasa.lukan@nib.si

8 **This PDF file includes:**

9
10 **Supplementary Text S1.** Construction of PVY-N605(123)- GFP CP N-terminal mutants
11 **Fig. S1.** ΔN50-CP ΔN40-CP viral replication.
12 **Fig. S2.** Viral replication ΔN26-CP.
13 **Fig. S3.** ΔN19-CP_ΔN14-CP_WT-CP cell-to-cell spread dynamics.
14 **Fig. S4.** ΔN26-CP inability of systemic spread
15 **Fig. S5.** Independent experiment for point mutants G20P, P24A and WT-CP to check
16 viral abundance.
17 **Fig. S6.** Cell-to-cell viral spread of D14A, E18A, G20P, S21G and P24A point mutants.
18 **Fig. S7.** Virus abundance D14A, E18A, WT-CP.
19 **Fig. S8.** Point mutants systemic spread.
20 **Fig. S9.** Alignment of first 50 amino acid residues from the PVY N terminal region across
21 all PVY isolates.
22 **Fig. S10.** Transmission electron microscopy (TEM) micrographs of deletion and point
23 mutants.
24 **Table S1.** ΔN26-CP viral limitation on single cells or cell-to-cell spread.
25 **Table S2.** Replication efficiency of ΔN40-CP and S21G mutant is the same as the one of
26 WT-CP PVY.

27
28 **Other supporting materials for this manuscript are openly available on Zenodo**
29 (<https://doi.org/10.5281/zenodo.17643798>), including the following:

30
31 **Dataset S1 (Microsoft Excel format).** Normalized qPCR data for constructed PVY
32 mutants.
33 **Dataset S2 (Microsoft Excel format).** General sample information including sample
34 name, plant and leaf number, date of putting plants into the soil, date of bombardment.
35 **Dataset S3 (Microsoft Excel format).** Viral cell-to-cell spread evaluation after *N.*
36 *clevelandii* inoculation with constructed mutant ΔN23/G-CP and WT-CP.
37 **Dataset S4 (Microsoft Excel format).** Viral cell-to-cell spread evaluation after *N.*
38 *clevelandii* inoculation with constructed mutants ΔN19-CP, ΔN14-CP and WT-CP.
39 **Dataset S5 (Microsoft Excel format).** Viral cell-to-cell spread evaluation after *N.*
40 *clevelandii* inoculation with constructed mutants ΔN19-CP, ΔN14-CP and WT-CP in
41 replicate experiment.
42 **Dataset S6 (Microsoft Excel format).** Foci analysis comparisons between experiments.
43 **Dataset S7 (Microsoft Excel format).** Systemic spread dynamic analysis.
44 **Dataset S8 (Microsoft Excel format).** Systemic viral spread of G20P and P24A point
45 mutants.
46 **Dataset S9 (Microsoft Excel format).** Systemic viral spread of G20P and P24A point
47 mutants in replicate experiment.
48 **Dataset S10 (Microsoft Excel format).** Systemic viral spread of D14A point mutant.
49 **Dataset S11 (Microsoft Excel format).** Systemic viral spread of E18A point mutant.
50 **Dataset S12 (Microsoft Excel format).** Primers and megaprimer sequences.

51 **Supporting Information Text S1. Construction of PVY-N605(123)- GFP CP N-terminal**
52 **mutants.**

53 Mutants were prepared with mutagenic PCR using QuikChange II XL Site-Directed Mutagenesis
54 Kit (Agilent Technologies). As a template previously constructed GFP infectious clone PVY-
55 N605(123) was used (1). The megaprimer were synthesized using the N-terminal region
56 sequence of GFP tagged PVY-N605(123) plasmid, according to defined guidelines (2). All
57 megaprimer used in the study are listed in dataset S12. Mutagenic touchdown PCR reaction
58 program with the following reaction mixture in the final volume of 25 μ L were the same for all
59 generated mutants according to previously published protocol for generation of PVY deletion
60 mutants (2), with minor modifications listed below.

Component	Final concentration	Volume [μ L]
10x reaction buffer	1x	2,5
dNTP mix	200 μ M	0,5
forward megaprimer	0,5 μ M	1,25
reverse megaprimer	0,5 μ M	1,25
QuikSolution	/	1,5
PVY-N605(123)	200 ng	1,2
PfuUltra HF DNA polymerase	/	1

Temperature	Time	Step
92°C	2 min	hold
92°C	50 s	
65°C to 55°C	50 s	10cycles
68°C	30 min*	
92°C	50 s	
55°C	50 s	8 cycles
68°C	30 min*	
68°C	60 min	hold

62

63

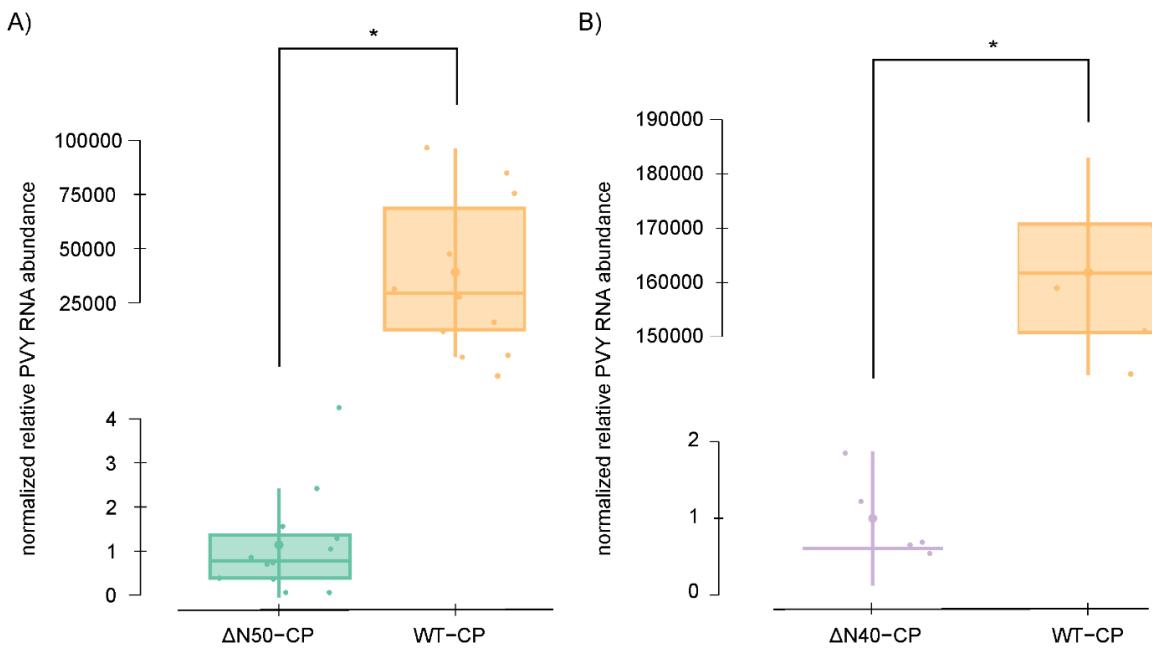
64 After amplification, 4 μ L of DpnI enzyme (Agilent Technologies) was added to the mutagenesis
 65 reaction mixture, following 2h on 37°C incubation. Following DpnI digestion, 2 μ L of mutagenesis
 66 mixture was used for transformation into *E. coli* XL-10 Gold Ultracompetent Cells (Agilent
 67 Technologies). We used 45 μ L cell aliquot supplemented with 2 μ L of β -mercaptoethanol for the
 68 standard heat-shock transformation protocol in accordance with the manufacturer's instructions
 69 (Agilent Technologies). Transformation mixtures were plated on LB agar containing ampicillin and
 70 incubated overnight at 37°C. Transformants were analyzed with colony PCR using primers PVY
 71 GFP_F and PVY uni_R with KAPA2G Robust HotStart Kit (Agilent Technologies) with the
 72 following 10 μ L reaction mixture and cycling conditions stated below.

73

74

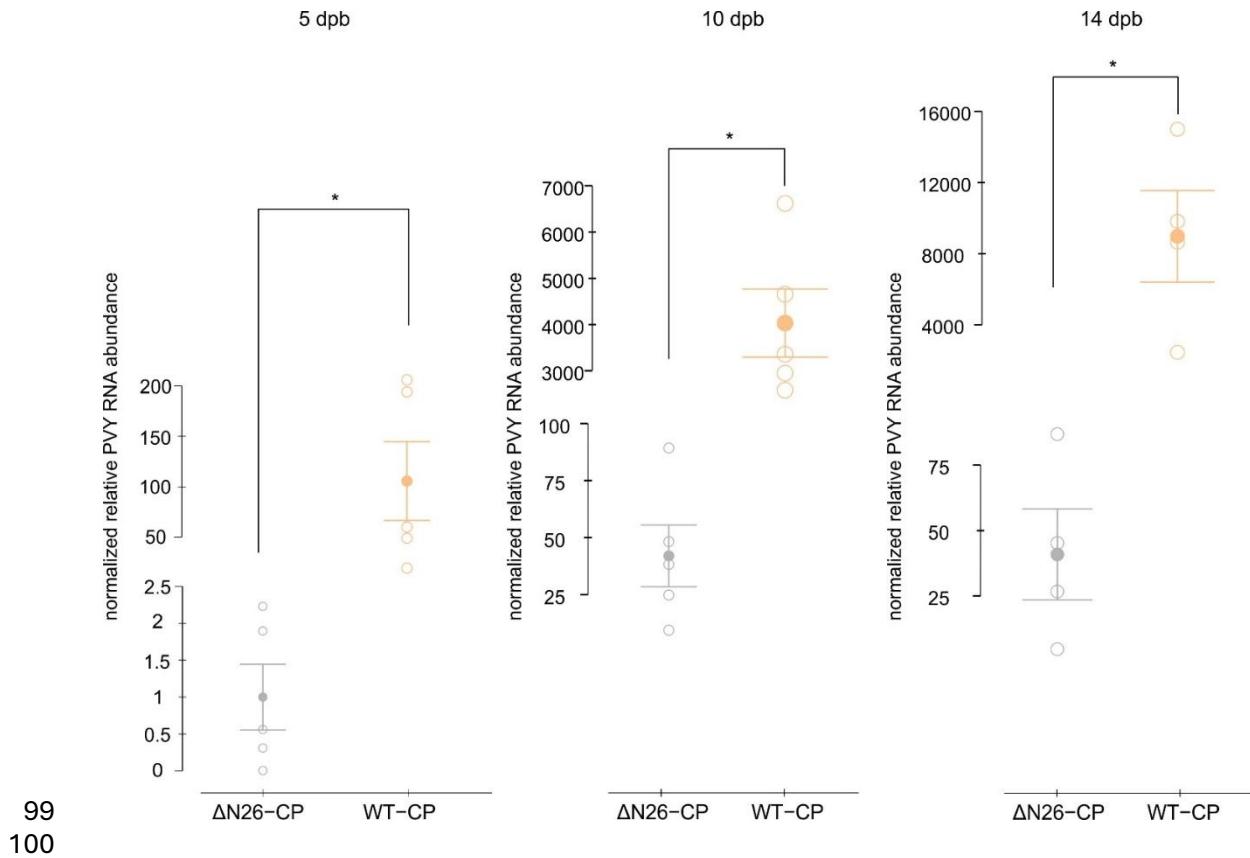
Component	Final concentration	Volume [μ L]
5x Buffer B	1x	2
10 mM dNTP	200 μ M	0,2
10 μ M PVY GFP_F	300 nM	0,3
10 μ M PVY uni_R	300 nM	0,3
5 U/ μ L KAPA2G polymerase	0,3 U	0,06
Colony suspension	/	1
H2O		6,14

Temperature	Time	Step
95 °C	10min	Hold
95 °C	30 s	
55 °C	15 s	30 cycles
72 °C	1 min	
72 °C	5 min	Hold


75 Sanger sequencing, using the same primers as for the colony PCR, of positive colonies was
 76 performed to confirm correct sequence of the PVY coding part.
 77

78 Designed mutants PVY-N605(123)-GFP with desired mutations were amplified in One Shot®
79 TOP10 *E. coli* and 50 µg of constructed plasmid mutants were isolated from overnight cultures
80 using GenElute Plasmid MiniPrep Kit (Sigma-Aldrich). Isolated plasmids were subsequently used
81 to coat 6.25 mg of gold microcarriers (0,6 µm) to prepare gene gun bullets according to the
82 manufacturers protocol and were used for *Nicotiana clevelandii* bombardment using a
83 Helios®gene gun (Bio-Rad) at 200 psi (2).

84


85 **Supporting figures and tables**

86

87
88

89 **Fig. S1. Δ N50-CP Δ N40-CP viral replication.** Normalized relative PVY RNA abundance in
90 bombarded *N. clevelandii* leaves for constructed PVY mutants lacking 50 (Δ N50-CP) (A) and 40
91 (Δ N40-CP) (B) amino acids at CP N-terminus. Results were obtained 14 days post bombardment
92 (dpb). Non-mutated infectious clone (WT-CP) was used as a control. Data normalization was
93 performed as described in dataset S1. Results are presented as boxplots with normalized relative
94 PVY RNA abundance for each sample shown as dots. Differences between Δ N50-CP and WT-CP
95 and between Δ N50-CP and WT-CP were statistically evaluated using Welch's t test. Statistically
96 significant differences ($p<0,05$) are marked with an asterisk (*). Vertical lines present all points
97 except outliers.

98

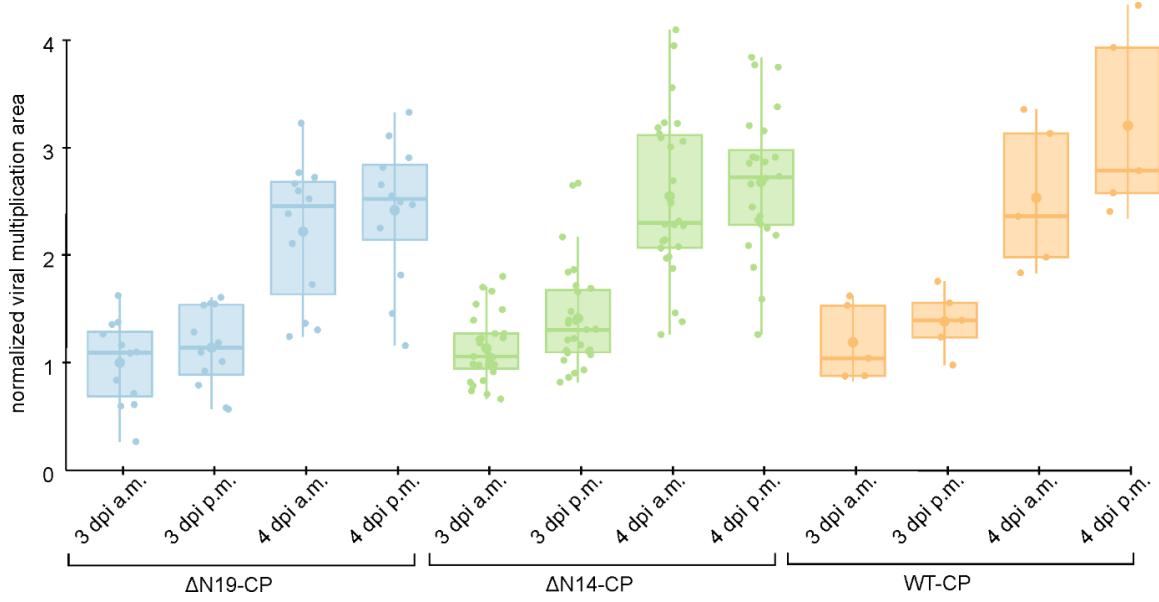
101 **Fig. S2. Viral replication ΔN26-CP.** Normalized relative PVY RNA abundance in bombarded *N.*

102 *clevelandii* leaves for constructed PVY mutant lacking 26 amino acids residues, in three

103 timepoints including 5, 10 and 14 dpb (from left to right). Non-mutated infectious clone (WT-CP)

104 was used as a control. Data normalization was performed as described in dataset S1. Results are

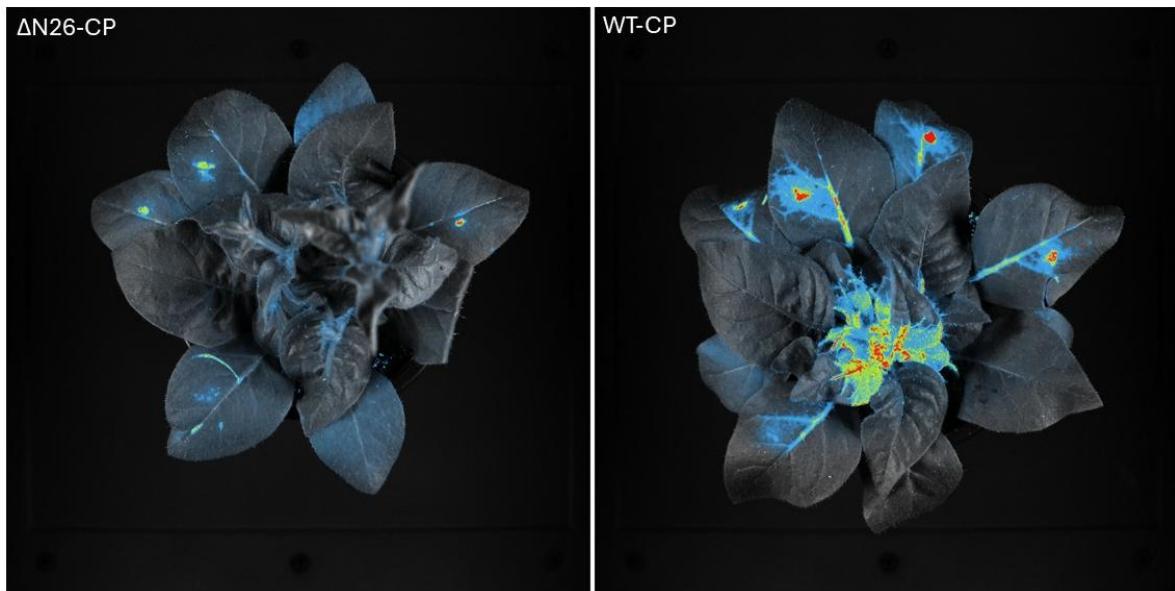
105 presented as mean (represented with filled dot) and standard error. Individual measurements are

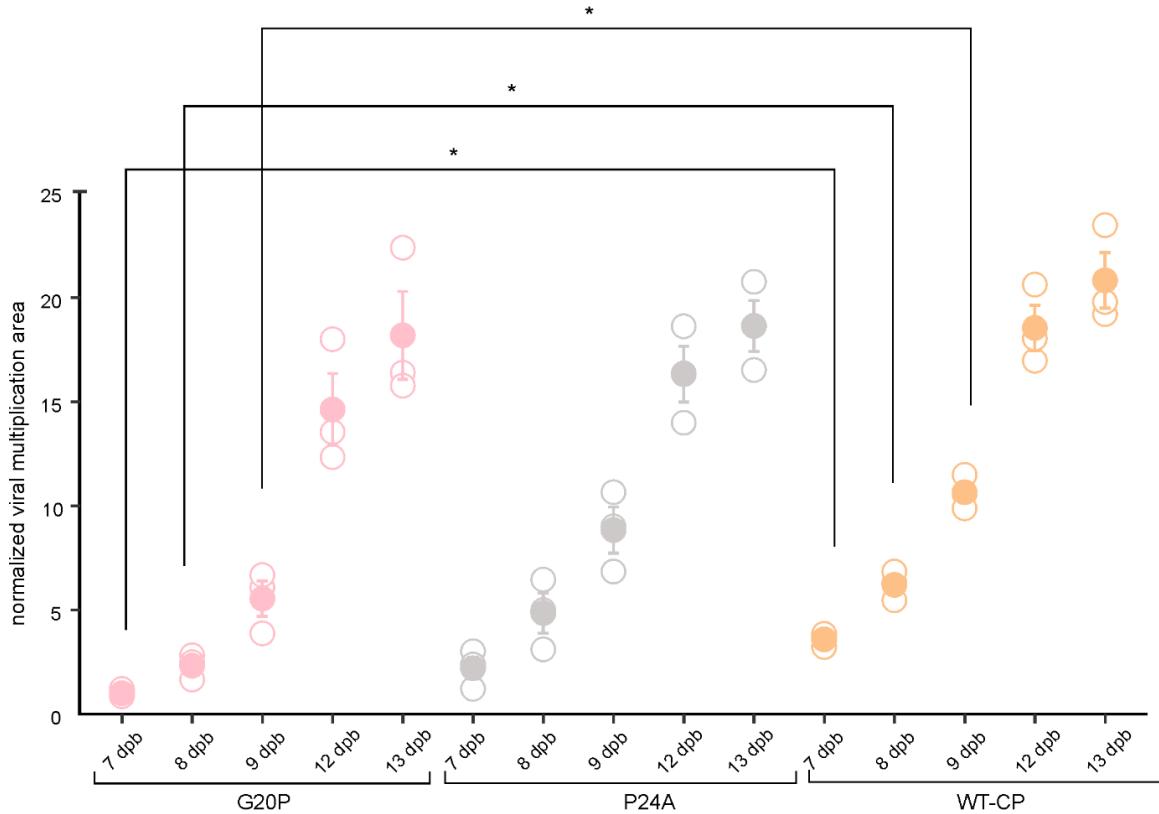

106 shown as empty dots, representing normalized relative PVY RNA abundance. Differences

107 between constructed deletion mutants and WT-CP were statistically evaluated using Welch's t

108 test. Statistically significant differences ($p < 0,05$) are marked with an asterisk (*). Note that the

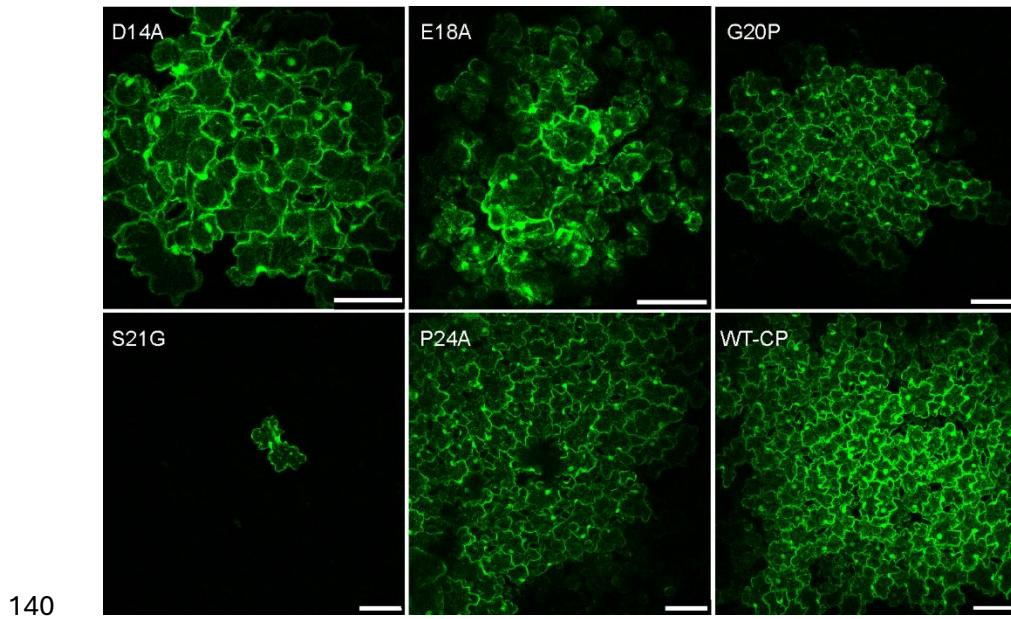
109 scales are different between time points.


110


111

112 **Fig. S3. N19-CP_ΔN14-CP_WT-CP cell-to-cell spread dynamics.** Viral cell-to-cell spread
 113 dynamics was quantified with normalized viral multiplication analysis as described in Materials
 114 and methods. Results are presented as boxplots for tested mutants ΔN19-CP, ΔN14-CP and WT-
 115 CP in 4 tested timepoints including 3 dpi a.m., 3 dpi p.m., 4 dpi a.m. and 4 dpi p.m., where dots
 116 are representing normalized viral multiplication area as described in dataset S5. Differences
 117 were statistically evaluated using Welch's t test. Vertical lines present all points except outliers.
 118 The differences were not statistically significant, due to autofluorescence of trichomes which
 119 resulted in saturated pixels.

120



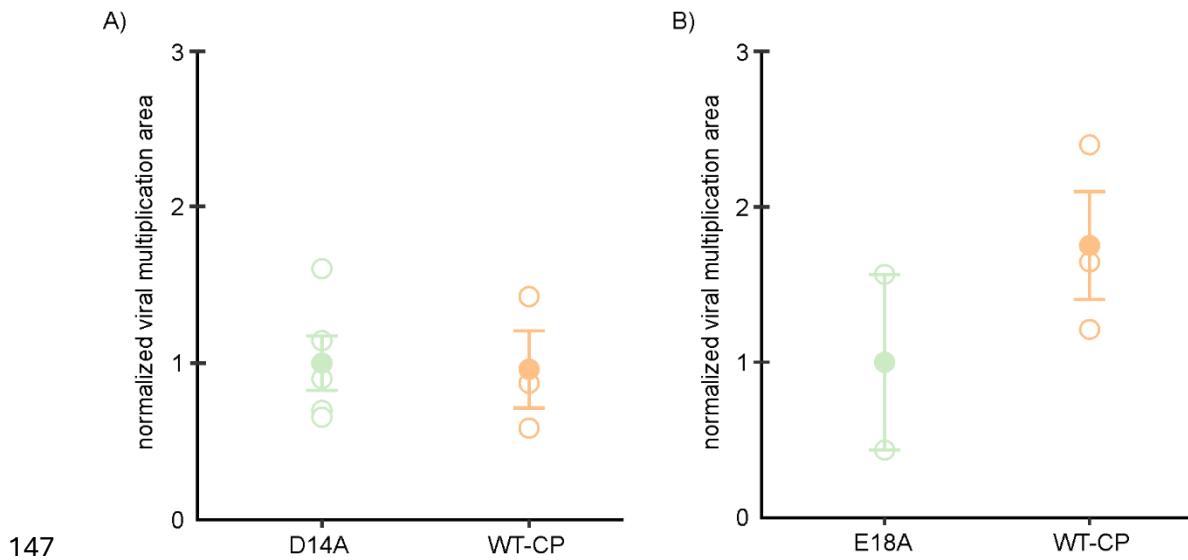
127

128

129 **Fig. S5. Independent experiment for point mutants G20P, P24A and WT-CP to check viral**
 130 **abundance.** Quantification of virus abundance in the upper leaves of bombarded *N. clevelandii*
 131 expressed as total count per mutant 7, 8, 9, 12 and 13 dpb with exposure time 50 s (A). Other
 132 measurements settings are the same as stated in Materials and methods. Mean (represented
 133 with filled dot) and standard error are shown. Individual measurements are shown as empty dots,
 134 representing normalized viral multiplication area. Statistically significant difference in normalized
 135 viral multiplication area between mutants was evaluated by Welch's t test. Statistically significant
 136 differences ($p < 0.05$) are demarcated with an asterisk (*). Raw and normalized data, number of
 137 plants and results of statistical analysis are specified in dataset S9. Note that there was no
 138 statistically significant difference between G20P and WT-CP at 12 and 13 dpb due to signal
 139 oversaturation due to high exposure time (50 s).

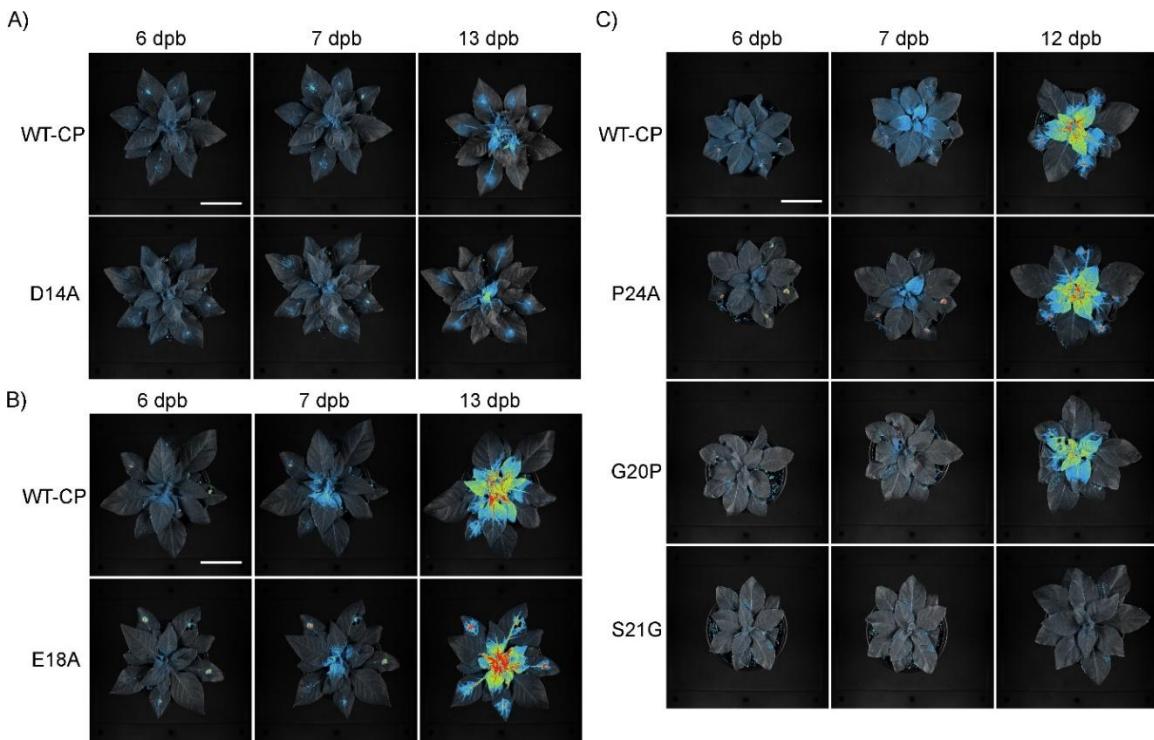
140

141 **Fig. S6. Cell-to-cell viral spread of D14A, E18A, G20P, S21G and P24A point mutants.**


142 Confocal microscopy images showing viral cell-to-cell spread of D14A, E18A, G20P, S21G, P24A

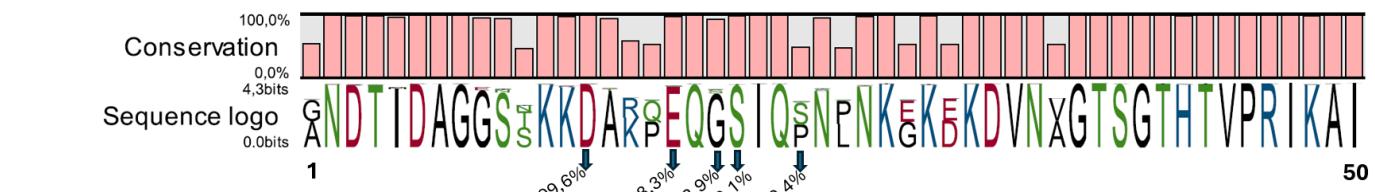
143 point mutants and WT-CP 5 dpb. Note that there we have comparisons of D14A and E18A point

144 mutants with the others (G20P, S21G, P24A) already included in the article main text (Fig. 4B).


145 Other confocal microscopy settings are specified in Materials and methods. Scale is 100 μ m.

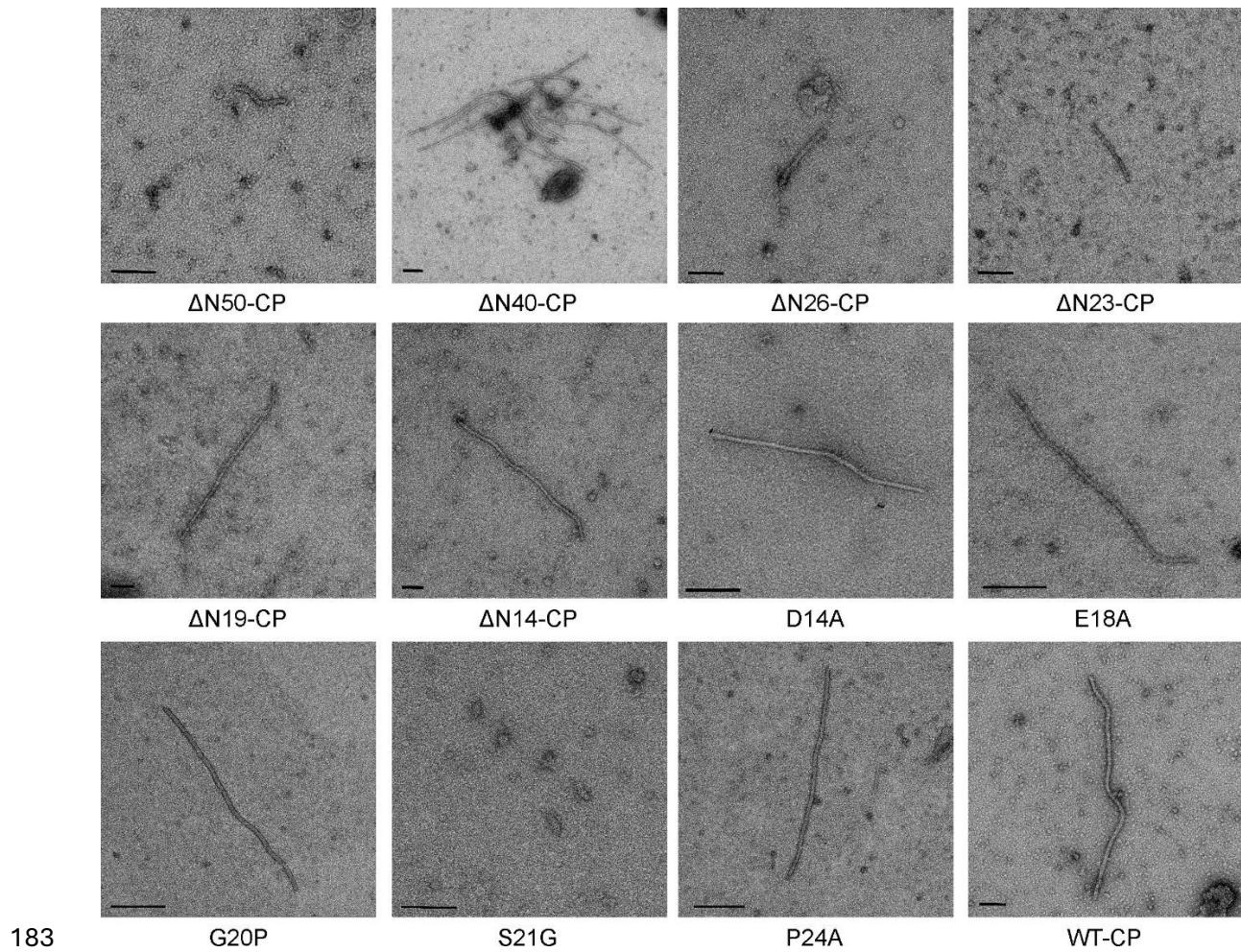
146

Fig. S7. Virus abundance D14A, E18A, WT-CP. Quantification of virus abundance in the upper leaves of bombarded *N. clevelandii* expressed as total count per mutant 7 dpb with exposure time 50s (A) and (B) for E18A mutant 7 dpb with exposure time 50 (s). Other measurements settings are the same as stated in Materials and methods. Mean (represented with filled dot) and standard error are shown. Individual measurements are shown as empty dots, representing normalized viral multiplication area. There was no statistically significant difference in normalized viral multiplication area between mutants evaluated by Welch's t test. Raw and normalized data, number of plants and results of statistical analysis are specified in dataset S10 and S11).


158

159 **Fig. S8. Point mutants systemic spread.** Spatio-temporal PVY distribution in *N. clevelandii*
 160 systemic tissue using whole plant imaging system. Systemic spread of constructed point mutants
 161 was followed 6 dpb, 7 dpb and 13 dpb in case of D14A (A) and E18A (B), while systemic spread
 162 of P24A, G20P and S21G. (C) was followed 6 dpb, 7 dpb and 12 dpb. Note that pictures for
 163 P24A, S21G and WT-CP 12 dpb are the same as in the main text (Fig. 4C). Imaging settings are
 164 specified in Materials and methods. Plants were imaged with exposure time 50 s. In case of D14A
 165 and WT-CP at 13 dpb, exposure time was 5 s to avoid oversaturation due to a higher signal.
 166 Scale is 5 cm.

167


168
169

170

171 **Fig. S9 Alignment of first 50 amino acid residues from the PVY N terminal region across all**
172 **PVY isolates.** To assess the conservation of mutated amino acid residues D14A, E18A, G20P,
173 S21G and P24A, we performed multiple sequence alignment of the first 50 amino acid residues of
174 the PVY coat protein, using CLC Genomics Workbench 25 (QIAGEN, Hilden, Germany) and
175 pairwise sequence alignment. Note that for the multiple alignment analysis, only complete
176 sequences containing the first 50 amino acid residues of the PVY coat protein N terminal region
177 were included, as this region corresponds to our engineered deletion and point mutants.
178 Altogether 2112 sequences were obtained from NCBI Virus database. Sequence logo represents
179 the amino acid sequence conservation in the mutated region with arrows showing the
180 conservation percentage of each point mutated amino acid (D14A, E18A, G20P, S21G, P24A)
181 across all obtained sequences.

182

183

G20P

S21G

P24A

WT-CP

184

Fig. S10 Transmission electron microscopy (TEM) micrographs of deletion and point

185 **mutants.** Representative TEM micrographs of deletion mutants and point mutants. Results were
 186 obtained with negative staining. Scale bars for deletion mutants and WT-CP are 100 nm and for
 187 point mutations 200 nm except in case of S21G (50 nm). Additional images of the mutant viruses
 188 were deposited at Zenodo (doi: [10.5281/zenodo.17643798](https://doi.org/10.5281/zenodo.17643798)).

189

190 **Table S1. Δ N26-CP viral limitation on single cells or cell-to-cell spread.** Number of plants
191 with viral cell-to-cell spread or viral limitation to single cells 10 and 14 dpb. Note that 5 dpb virus
192 was limited to single cells in all observed plants.

		ΔN26-CP	WT-CP
10 dpb	single cells	3/8	0/2
	cell-to-cell	5/8	2/2
14 dpb	single cells	2/3	0/2
	cell-to-cell	1/3	2/2

193

194

195 **Table S2. Replication efficiency of Δ N40-CP and S21G mutant is the same as the one of**
 196 **WT-CP PVY.** To confirm that detected fluorescent signal in Δ N40-CP and S21G PVY mutants,
 197 was the consequence of viral replication and not the continuous expression of viral genes from
 198 the original plasmid of PVY driven by the constitutive 35S promoter, ROI (regions of interests)
 199 mean intensities of individual cells in confocal microscopy images were assessed. Mean
 200 intensities in selected ROIs 5 dpb for Δ N40-CP (A) and S21G (B) compared to WT-CP PVY are
 201 shown. Statistical significance of differences was evaluated using Welch's t test. Note that all
 202 images were taken using the same settings (objective, zoom, gain).

A)

Δ N40-CP	WT-CP	Welch's t test
24.4	13.8	0.6
14.0	17.1	
9.7	15.5	
13.3	9.4	
8.4	15.2	
4.8	21.6	
11.5	13.7	
8.6	15.6	
13.1	8.7	
25.7	15.9	
13.3	14.6	average

B)

S21G	WT-CP	Welch's t test
6.8	7.1	0.2
6.8	9.4	
6.8	12.8	
6.8	9.8	average

203

204 **Supplemental material references**

205 1. Lukan T, Županič A, Mahkovec Povalej T, Brunkard JO, Kmetič M, Juteršek M, Baebler Š,
206 Gruden K. Chloroplast redox state changes mark cell-to-cell signaling in the
207 hypersensitive response. *New Phytologist*. 2023; 237(2): 548-562.

208 2. Stare K, Coll A, Gutiérrez-Aguirre I, Žnidarič MT, Ravnikar M, Kežar A, Kavčič L,
209 Podobnik M, Gruden K. Generation and in *Planta* Functional Analysis of Potato Virus Y
210 mutants. *Bio Protoc.* 2020; 10: e3692.

211 3. Kežar A, Kavčič L, Polák M, Nováček J, Gutiérrez-Aguirre I, Žnidarič MT, Coll A, Stare K,
212 Gruden K, Ravnikar M, Pahovnik D, Žagar E, Merzel F, Anderluh G, Podobnik M. 2019.
213 Structural basis for the multitasking nature of the potato virus Y coat protein. *Sci Adv*
214 5:eaaw3808. <https://doi.org/10.1126/sciadv.aaw3808>.

215 4. Kogovšek P, Gow L, Pompe-Novak M, Gruden K, Foster GD, Boonham N, Ravnikar M.
216 2008. Single-step RT real-time PCR for sensitive detection and discrimination of Potato
217 virus Y isolates. *J Virol Methods* 149:1–11. <https://doi.org/10.1016/j.jviromet.2008.01.025>.

218 5. Weller SA, Elphinstone JG, Smith NC, Boonham N, Stead DE. 2000. Detection of
219 *Ralstonia solanacearum* strains with a quantitative, multiplex, real-time, fluorogenic PCR
220 (TaqMan) assay. *Appl Environ Microbiol* 66:2853–2858.
221 <https://doi.org/10.1128/AEM.66.7.2853-2858.2000>

222

223

224

225