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Myocardial strain imaging by echocardiography or cardiac magnetic resonance (CMR) is a powerful method to diagnose

cardiac disease. Strain imaging provides measures of myocardial shortening, thickening, and lengthening and can be

applied to any cardiac chamber. Left ventricular (LV) global longitudinal strain by speckle-tracking echocardiography is

the most widely used clinical strain parameter. Several CMR-based modalities are available and are ready to be imple-

mented clinically. Clinical applications of strain include global longitudinal strain as a more sensitive method than ejection

fraction for diagnosing mild systolic dysfunction. This applies to patients suspected of having heart failure with normal

LV ejection fraction, to early systolic dysfunction in valvular disease, and when monitoring myocardial function

during cancer chemotherapy. Segmental LV strain maps provide diagnostic clues in specific cardiomyopathies,

when evaluating LV dyssynchrony and ischemic dysfunction. Strain imaging is a promising modality to quantify

right ventricular function. Left atrial strain may be used to evaluate LV diastolic function and filling pressure.

(JACC Cardiovasc Imaging. 2025;18:340–381) © 2025 The Authors. Published by Elsevier on behalf of the American

College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
S train is a term that originates from the field of
continuum mechanics and may be used to
describe deformations of any structure,

including the heart. In cardiac imaging, the term
strain is used to describe myocardial shortening and
thickening, which are the fundamental features of
myocardial fiber function. Figure 1A illustrates the
most commonly measured myocardial strains. These
include left ventricular (LV) longitudinal and
circumferential shortening strains and radial thick-
ening strain. Both longitudinal and circumferential
strains contribute to LV wall thickening. In addition
to these orthogonal normal strains, a complete
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characterization of LV deformation includes 3 shear
strains that are less commonly measured:
circumferential-longitudinal shear, or so-called
twist, results from 2 short-axis planes rotating rela-
tive to each other, as illustrated in Figure 1B;
circumferential-radial shear can be described as the
subendocardium is rotating more or less than the
epicardium; and radial-longitudinal shear involves
the subendocardium is moving more or less longitu-
dinally than the epicardium.

When calculating myocardial strain, it is most
common to use a Lagrangian description that uses
the end-diastolic length as a reference (L0 and T0 in
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AB BR E V I A T I O N S

AND ACRONYM S

2D = 2-dimensional

3D = 3-dimensional

CMR = cardiac magnetic

resonance

EF = ejection fraction

FT = feature tracking

GLS = global longitudinal

strain

LA = left atrial/atrium

LV = left ventricle/ventricular

LVEF = left ventricular

ejection fraction

ROI = region of interest

RV = right ventricle/ventricular
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Figure 1) and expresses the change in length as a
percentage of this reference length. A Eulerian
description uses the deformed configuration as a
reference. Historically, this was the first type of
strain that was introduced in echocardiographic
software, as it was calculated by integrating strain
rate from tissue velocity measurements, but it is
less used today. When strain based on the Eulerian
(εE) and Lagrangian approach (εL) are expressed as
fractions, they are related as εE ¼ ln(1 þ εL), where
ln is the natural logarithm.

Strain imaging provides complementary informa-
tion to left ventricular ejection fraction (LVEF), as it
allows the quantification of segmental as well as
global function and can be used to assess both sys-
tolic and diastolic function. Whereas myocardial
strain imaging has traditionally been applied to
FIGURE 1 Definition of Myocardial Strain

- Strain is a measure of deformation
 calculated as relative(%) change in
 length (Lagrangian strain).

- Strain imaging is used clinically to
 measure myocardial shortening
 and thickening.
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or so-called twist, calculated as the difference between rotations at the
study the LV, it is currently implemented
also as a tool for the quantification of right
ventricular (RV) and left atrial (LA) function.
In this paper we review the theory behind
strain as a measure of myocardial function,
current clinical applications of strain imag-
ing, and prospects for the technology. The
Central Illustration summarizes the current
strain technologies and applications.
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CENTRAL ILLUSTRATION Strain Imaging: Technologies and Clinical Applications
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ANT ¼ anterior; GLS ¼ global longitudinal strain; HCM ¼ hypertrophic cardiomyopathy; HFpEF ¼ heart failure with preserved ejection

fraction; INF ¼ inferior; LAT ¼ lateral; LV ¼ left ventricle/ventricular; POST ¼ posterior; SEP ¼ septal.
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markers implanted in a grid pattern so their
3-dimensional (3D) movement could be tracked by
high-speed biplane cineradiography to derive the
deformations.2 Myocardial strain imaging as a clinical
modality is rooted in cardiac magnetic resonance
(CMR). The earliest CMR methods used radio-
frequency pulses and multiple saturation planes,
which resulted in distinct lines in the myocardium
that could be used as a means of tissue tagging, as
they follow myocardial deformation throughout the
cardiac cycle.3 By the late 1980s, this had been refined
to produce a 3D grid of tags known as spatial modu-
lation of magnetization,4 and it was applied to inter-
rogate myocardial velocities in 1991.5 This method
enabled characterizations of segmental strains in
both healthy and diseased myocardium, with early
studies focusing mainly on the infarcted or hyper-
trophied myocardium.4,6,7 This method, which is



FIGURE 2 History of Myocardial Strain Technologies
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Graphical illustration of the history of strain imaging. (A) Data from an experimental study in which sonomicrometry was used to measure myocardial percentage

shortening and thickening. (B) Illustration of LV strain measured by cardiac magnetic resonance (CMR) with tissue tagging. (C) Illustration of LV strain measured using

tissue Doppler echocardiography. (D) Illustration of LV strain measured using speckle-tracking echocardiography. (E) Illustration of strain by CMR feature tracking.

(F) Displacement encoding with stimulated echoes (DENSE) imaging CMR is an emerging clinical method for strain measurement. (A) Adapted with permission from

Bugge-Asperheim et al.1 (B) Adapted under CC BY-NC-ND 4.0 license from Shehata et al.234 (E) Adapted under CC BY 4.0 license from Backhaus et al.235 (F) Adapted

under CC BY-NC-ND 4.0 license from Auger et al.236 4CH ¼ 4-chamber view; AVC ¼ aortic valve closure; other abbreviation as in Figure 1.
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primarily a research tool, is considered the clinical
gold standard for the validation of new strain
methods such as those based on echocardiography.
Contemporaneously with the development of spatial
modulation of magnetization tagging methods, CMR
tissue phase velocity mapping methods for strain
imaging also surfaced.8 This technique in general has
not been adopted widely, because of lower temporal



FIGURE 3 Strain by Myocardial Tissue Tagging

Tagged Image

Image showing myocardial tagging: a grid of dark tag lines

applied across a short-axis image.
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resolution. This was overcome by the development of
navigated high–temporal resolution sequences by
2006,9 but long acquisition times have limited its use.

Strain rate and strain by echocardiography were
first introduced as a 1-dimensional tissue Doppler
imaging–based method.10,11 For routine clinical use,
this method was later superseded by 2-dimensional
(2D) speckle-tracking echocardiography (STE), which
provides multidirectional strains.12-15 Currently,
strain by STE is the most commonly used method.

The next phase of CMR strain imaging built on this
echocardiography approach, which was applied to
standard CMR cine images as feature tracking (FT).
Despite greater variability and some discrepancy from
the earlier “gold standard” tagging methods, as a
result of the simplicity of postprocessing of standard
cine images FT CMR is now the dominant strain
method used by the CMR community. More recently,
other methods have emerged, including 3D FT and
techniques such as displacement encoding with
stimulated echoes and strain-encoded magnetic
resonance imaging. The latter has superior spatial
and temporal resolution compared with tagging16 and
affords the opportunity of real-time imaging.

STE has also been applied to 3D data sets, theo-
retically overcoming the problem of through-plane
motion of 2D speckle tracking and allows a compre-
hensive description of the deformation of the entire
ventricle. Nevertheless, challenging data acquisition
as well as the lower temporal and spatial resolution of
3D STE limit its clinical use.

Interestingly, a recent study showed that the
analysis of myocardial deformation is also feasible on
time-resolved 3D cardiac computed tomographic im-
ages.17 The method is based on the calculations of
global strain based entirely on the 3D displacement of
the segmental myocardial volumes over the cardiac
cycle using a deformable image registration–based
tracking approach. The proposed method was re-
ported to allow automatic and robust tracking of the
LV myocardium using clinical computed tomographic
image sequences, but data on clinical applications are
still lacking.

METHODOLOGY: CMR

A wide range of CMR methods are available to assess
myocardial strain. These methods offer various ap-
proaches to quantify strain, enabling clinicians and
researchers to comprehensively analyze cardiac me-
chanics. Brief descriptions of the main approaches
(myocardial tagging and FT) are provided in the
following sections, with the main focus on imaging of
the LV. More detailed information can be found
elsewhere.18,19

MYOCARDIAL TAGGING. With this method, perturb-
ing the magnetization with radiofrequency saturation
pulses creates a grid of visible markers (“tags”) in the
tissue (Figure 3). Myocardial strain is measured by
tracking these markers during the cardiac cycle
(Video 1). Tags are typically applied at end-diastole,
with imaging being performed across the whole car-
diac cycle. At lower heart rates, the tags can fade
during early diastole, which limits diastolic func-
tional assessment. Higher field strength 3.0-T mag-
nets can result in longer tag duration throughout the
cardiac cycle.

CMR TAGGING SEQUENCES. All CMR tagging se-
quences consist of 2 main parts, the tagging part and
the image acquisition part. It is the differences in how
tagging and data acquisition are performed that make
each of the techniques unique.

The simplest and most commonly used method for
tagging is called spatial modulation of magnetization.
Its tagging part consists of 2 nonselective radio-
frequency pulses (usually 90�), separated by a tagging
gradient (Figure 4). After the first pulse, the tagging
gradient disperses the excited spins, creating a mod-
ulation on the basis of incremental phase shifts. The
second pulse then stores the modulated spins in the
longitudinal plane, and a spoiler gradient is then
applied to remove any remaining transverse

https://doi.org/10.1016/j.jcmg.2024.07.011


FIGURE 4 A Representative Tagging Sequence
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FIGURE 5 A Representative Displacement Encoding With Stimulated Echoes Sequence
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magnetization. Spatial modulation of magnetization
uses conventional data acquisition for imaging.

More advanced CMR tagging techniques use a
combination of modulation and demodulation gradi-
ents to better store strain information. One example
is the displacement encoding with stimulated echoes
technique, which uses a stimulated echo acquisition
mode sequence for tagging (Figure 5). Stimulated
echo acquisition mode consists of 3 90� pulses to
generate a stimulated echo. Equal-magnitude
displacement encoding (modulation) and decoding
(demodulation) gradients are added after the first and
third pulses of the stimulated echo acquisition mode
sequence, respectively. To eliminate any remaining
transverse magnetization, crusher gradients are
applied during the mixing period in between modu-
lation and demodulation. Similar to spatial modula-
tion of magnetization, the acquisition part uses
conventional imaging readout. Displacement encod-
ing with stimulated echoes provides higher spatial
resolution and uses pixel-by-pixel displacement,
making it possible to draw representative displace-
ment vectors, with vector magnitude and direction
representing the displacement value and orientation.
Figure 6 shows an example of displacement encoding
with stimulated echoes imaging CMR.

Another example of advanced tagging sequence is
strain-encoded imaging, which uses similar tagging
part as spatial modulation of magnetization, but in
this case, the tagging gradients are applied parallel to
and inside the imaging plane to capture through-
plane strain (Figure 7). During the imaging part of
strain-encoded magnetic resonance imaging, further
demodulation (tuning) gradients are applied between
the section selection and data readout gradients to
reduce scan time. Two sets of demodulated images
are ultimately acquired. The low-tuning images rep-
resents static tissue, and the high-tuning images
represent contracting tissue, exhibiting a high mod-
ulation frequency caused by tissue contraction. By
comparing the image pixel by pixel and comparing
the low-tuning and high-tuning images, myocardial
strain can be quantified into a strain map.

Another CMR tagging technique is called tissue
phase mapping. It uses velocity-encoded bipolar
gradients to encode the tissue velocity in the phase of
the signal. This allows the calculation of the velocities
of different points within the myocardium. Myocar-
dial velocities are then integrated in 3 directions (and
over time) to show myocardial displacement and
allow the evaluation of regional strains in the longi-
tudinal, circumferential, and radial directions. As this
method involves long imaging times, which can result
in motion artifacts, strain derivation is thus poten-
tially less accurate, and 3D velocity data are typically
reported rather than the strain (Figure 8).

FT. CMR FT is a postprocessing method for quanti-
fying tissue deformation that uses routinely acquired
contrast-free CMR cine images (Figure 9). It is based
on tracking small image features (eg, details of the
endocardial contour) from frame to frame. Combining
information on the direction and magnitude of the
displacement of several features makes it possible to
calculate tissue deformation in all directions within



FIGURE 6 CMR Displacement Encoding With Stimulated Echoes Imaging
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Reproduced with permission under CC BY-NC-ND 4.0 license from Auger et al.236 ANT ¼ anterior; INF ¼ inferior; other abbreviation as in Figure 2.
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the image plane. When considering frame rate in
addition, the method provides information on veloc-
ity and strain rate. FT CMR requires high-quality im-
age acquisition with adequate temporal and spatial
resolution.

FT postprocessing begins with defining a region of
interest (ROI), usually comprising the endocardial
and epicardial borders on short- or long-axis cine
images (Figure 9). In the following step, the software
detects and tracks features and produces a 2D strain
map. Myocardial deformation can then be visualized
through graphical markers on the image or quantified
via strain curves. Three-dimensional data sets allow
the simultaneous estimation of radial, circumferen-
tial, and longitudinal strain parameters.

METHODOLOGY: ECHOCARDIOGRAPHY

TISSUE DOPPLER VS SPECKLE TRACKING.

Echocardiography is currently the method of
choice for strain assessment in clinical practice.
Measurements of strain are obtained by STE using
dedicated speckle-tracking software during post-
processing of regular image loops. Strain based on
tissue Doppler imaging is also feasible in clinical
settings but is not widely used, as it requires



FIGURE 7 A Representative Strain-Encoding Sequence
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dedicated acquisitions, is dependent on the angle of
insonation, and is more time consuming when anal-
ysis in multiple directions and image planes
is required. Nevertheless, tissue Doppler imaging
enables higher temporal resolution than STE,
allows a more reliable assessment of strain rate and a
better recognition of short-lived events, and can be
FIGURE 8 CMR Tissue Phase Mapping
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FIGURE 9 CMR Feature Tracking: Circumferential Strain
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Diastole Systole

The top panels show the feature points that are tracked, and the bottom panels show resultant displacement by colored strain maps (below)

across the cardiac cycle. A ¼ anterior; IRP ¼ inferior right and posterior; L ¼ left; P ¼ posterior; R ¼ right; SLA ¼ superior left and anterior;

other abbreviation as in Figure 2.
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can be used as features for tracking.20,21 In contrast,
CMR FT tracks predominantly the endocardial border,
which explains some of the differences in results
found in direct comparisons of STE and CMR FT
(Table 1).22

Reliable and meaningful tracking requires an
appropriate placement of the ROI and enough track-
able features within it. Tracking is performed by some
software solutions by using a relatively thin ROI in
the subendocardial and sometimes in addition in the
midwall and in the subepicardial myocardium.
Despite the inclusion of approximately one-third of
the wall thickness, this region is often displayed only
as a thin line. Other software solutions try to use all
available speckles within the wall (“full wall
tracking”). Notably, as explained later, measured



TABLE 1 Summary of Technical Characteristics of Clinically Used Strain Methods

CMR FT 2D STE 3D STE

Dominant features used for tracking Endocardial borders Myocardial speckles and contour Myocardial speckles and contour

Signal-to-noise ratio High Moderate Low

Temporal resolution 30 phases per heart cycle 40-80 frames/s 34-50 frames/s

Spatial resolution Reasonable (1-2 mm in plane
and 8-10 mm through
plane)

Good (submillimeter radial; lateral
depends on number of beams and
image depth)

Poor (at least 3-4 times <2D STE)

Out-of-plane motion Yes Yes No

Feasibility Very high High (80%-97%)a Moderate (60%-83%)a

Reproducibility High High Moderate

Intervendor differences Significant Relatively small Significant

aData for left ventricular strain.14,237-239

2D ¼ 2-dimensional; 3D ¼ 3-dimensional; CMR ¼ cardiac magnetic resonance; FT ¼ feature tracking; STE ¼ speckle-tracking echocardiography.
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strain values from endocardial vs full wall tracking
may differ substantially, particularly in ventricles
with thick walls. Analysis of thin structures such as
atrial walls or separate layers of the LV wall is tech-
nically more challenging,23,24 resulting in less robust
strain estimates compared with full wall tracking.
Furthermore, full wall tracking is less susceptible to
foreshortened images, and there is less influence
from regional myocardial shape abnormalities, such
as regional bulging.25,26 These issues are discussed in
the section “Tips and Pitfalls When Measuring LV
Strain.”

Although speckles can be tracked in any direction
within a 2D or 3D data set, the quality of strain esti-
mates is not the same in all directions.20,21 Better
tracking quality is achieved in the direction of the
scan lines, where spatial resolution is higher than
perpendicular to them. Consequently, apical views
are most suitable for tracking longitudinal myocardial
function but may not allow reliable estimates in radial
direction. Additionally, as image quality and line
density deteriorate with the distance from the ultra-
sound probe, tracking is better in the near field of the
probe.

High-quality image data sets from standardized
echocardiographic views are crucial for good
tracking quality and reliable strain analysis.20,24

Suboptimal images with shadowing artifacts, ultra-
sound dropouts, and reverberations prevent a reli-
able assessment of speckle motion. Out-of-plane
motion of speckles is another potential source of
error affecting more short-axis views than apical
views.27 Tracking quality should not be judged from
the strain curves, as pathology may also result in
abnormal curve shapes. It is therefore of utmost
importance to visually compare the results of the
tracking process, best displayed as an overlay of
several dots, directly with the motion of the un-
derlying myocardium.20

The temporal resolution of regular 2D grayscale
images is sufficient for measuring systolic motion and
strain with STE but is insufficient for a reliable anal-
ysis of short-lived events and accurate measurement
of the high myocardial strain rates that occur during
isovolumic contraction and relaxation.23 Acquisition
of 3D data sets is done with substantially lower tem-
poral and spatial resolution than with 2D imaging,
which is a limitation for 3D speckle tracking.22,28

A minimum frame rate of 40 to 50 frames/s should be
maintained.29 However, despite theoretical advan-
tages, limitations in image quality as well as temporal
and spatial resolution and lack of standardization still
prevent the wide use of 3D STE in daily clinical
practice.21,22,30

STRAIN RATE. Potentially, peak systolic strain rate
may be superior to peak strain as a measure of LV
contractility because it is less influenced by changes
in cardiac load and structure.31,32 Furthermore, STE
with frame rates ranging from 40 to 80 frames/s does
not allow reliable assessment of the highest strain
rates. As suggested by experimental studies, there are
important deformations during isovolumic contrac-
tion and relaxation that cannot be measured with the
frame rates used in current speckle-tracking echo-
cardiographic technologies.33,34 Tissue Doppler has a
higher temporal resolution up to 300 to 400 frames/s
and may be used alternatively. Furthermore, there
are promising developments within high–frame rate
echocardiography that allow STE at frame rates that
exceed those of tissue Doppler.35,36 It remains to be
shown, however, that these very high sampling rates
provide clinically important information.



FIGURE 10 LV Rotation, Twist, and Torsion
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Strain components. A full description of the complex 3D
deformation of the heart requires 3 normal (meaning
that they are perpendicular to one another) strains that
describe longitudinal, radial, and circumferential
shortening and lengthening and may also include
shear strains. In clinical practice, however, evaluation
is commonly limited to measuring longitudinal strain
only. As shown by Risum et al,37 measurements of
radial and circumferential strains from the short-axis
views are less feasible and have higher variability
than longitudinal strain. In the latter study, variability
was higher for radial than for circumferential strain.



FIGURE 11 Measurement of LV Apical Rotation and Back-Rotation: Clinical Cases
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Longitudinal strain has been shown to be highly
feasible, robust, and reproducible, superior to many
other conventional echocardiographic parame-
ters.23,24,37-42 Shear strains can be assessed by
measuring twist or torsion, but low feasibility and
high variability have prevented widespread clinical
use so far. Likewise, although 3D STE would allow a
fast and comprehensive evaluation of multiple
strain components of all LV or RV segments from a
single 3D data set,39,43 it is hardly used for the same
reasons.44-46

MEASUREMENT OF LV ROTATION, TWIST, AND

TORSION. When viewed from the LV apex toward the
base, the apex rotates counterclockwise during sys-
tole, and the base rotates in the opposite direction. LV
twist is measured as difference between apical and
basal rotations and is expressed as twist angle (de-
grees or radians). Torsion is the twist angle normal-
ized to (divided by) the distance between the imaging
planes.

Torsion of the ventricle allows uniform distribu-
tion of fiber stress across the wall and contributes to
efficient systolic contraction. Furthermore, elastic
energy, which is stored in the myocardium in systole,
is released in early diastole by rapid untwisting and
contributes to filling by active suction of blood into
the ventricle.47,48

The structural basis for torsion is the spiral
architecture of myocardial fibers with sub-
endocardial and subepicardial fibers arranged in a
right-handed and left-handed helix, respectively.
Because of a larger lever arm and therefore larger
torque in the subepicardium, normal hearts have
systolic counterclockwise rotation of the apex
(Figure 10).

LV rotation and twist can be measured using
several methods, including CMR and STE.49-51 Refer-
ence values for LV twist in healthy subjects are re-
ported from the NORRE (Normal Reference Ranges for
Echocardiography) study.52 Figure 10 illustrates
measurements of LV rotation and twist. Because
rotation increases progressively toward the apex, it is
important to include the distal apex in the image. The
optimal distal cross-sectional image plane should
include only a small part or no part of the RV.
Furthermore, out-of-plane motion of the LV base
caused by longitudinal motion is a significant limita-
tion. Because 2D echocardiography does not provide



FIGURE 12 Transmural Gradient of LV Strains
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accurate measures of distance between the 2 image
planes, it is difficult to measure torsion in a clinical
setting. As illustrated in Figure 10C, rotation at the
apex makes the largest contribution to LV twist.
Therefore, it was suggested by Opdahl et al53 to use
apical rotation as a simplified bedside index of LV
twist.

Figure 11 illustrates the assessment of LV diastolic
function by measuring LV back-rotation (untwisting
rate). Untwisting has been shown to reflect LV relax-
ation and restoring forces.47,48,54

There are several potential applications of assess-
ing LV rotation and twist in clinical diagnostics,55

including the assessment of both systolic and dia-
stolic function. There are, however, unresolved is-
sues regarding feasibility, standardization, and
vendor dependency that currently limit the use of
rotation and twist as clinical measures.



FIGURE 13 Transmural Strain Gradients in Normal and Infarcted Left Ventricles
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LV LAYER-SPECIFIC STRAIN. It has been suggested
that LV transmural differences in strain may provide
incremental diagnostic information. As shown in
Figure 12, strains in a normal LV are higher in the
subendocardium than in the subepicardium, and the
gradient is most pronounced for radial and circum-
ferential strains. This can be explained by geometric
effects and does not imply a difference in contrac-
tility between the inner and outer wall layers. For LV
longitudinal strain, the difference between strain in
the inner and outer layers is much smaller than for
strain in short-axis images, reflecting the much larger
radius of curvature in the longitudinal direction of
the ventricle.

The rationale for using layer-specific longitudinal
strain analysis as a diagnostic approach is not
obvious, as the different layers are mechanically
connected (tethered). Therefore, motion in one layer
will be reflected in motion in all wall layers within the
same segment. Furthermore, the lateral resolution of
apical echocardiographic images is suboptimal for
differentiating between strains in different layers of
the LV wall. An echocardiographic study that
measured layered longitudinal strain could not
identify any differential behavior of layers between
normal and infarcted segments. The result was the
same with software from 4 different vendors
(Figure 13).56

At the present time, there is not sufficient evidence
to recommend layer-specific LV strain for clinical use.
Similar considerations apply to layer-specific FT by
CMR.

MODIFIERS OF LV STRAIN. The magnitude of
myocardial strain is influenced by loading conditions
(preload and afterload), heart rate, and chamber size
and geometry.57-63 How strain values should be
interpreted in the context of these factors was pre-
viously discussed in detail.28

Figure 14 illustrates reduction in global longitudi-
nal strain (GLS) in response to a moderate increase in
systolic arterial pressure induced by mental stress in
patients on cancer chemotherapy and in healthy
control subjects.64 The reduction in GLS during
mental stress was associated with a compensatory
increase in myocardial work, and the increase was
most marked in healthy control subjects. Impor-
tantly, none of the patients showed a relative reduc-
tion in GLS that exceeded 15%, which is the currently
recommended cutoff value for suspecting cardiotoxic
effect of chemotherapy. The study shows the
importance of recording blood pressure at the time of
the imaging study. Furthermore, to avoid this “white-
coat effect on LV strain,” communication about
stressful topics should be avoided during an echo-
cardiographic study.

STRAIN VS MITRAL ANNULAR PLANE SYSTOLIC

EXCURSION AND TRICUSPID ANNULAR PLANE

SYSTOLIC EXCURSION. M-mode-derived mitral
annular plane systolic excursion and tricuspid
annular plane systolic excursion are alternative
measures of LV and RV longitudinal systolic func-
tion.65 Some investigators have proposed that mean
global mitral annular plane systolic excursion
normalized to end-diastolic LV length might be an
equivalent to GLS.66 However, the correlation be-
tween GLS and normalized mitral annular plane sys-
tolic excursion was only moderate. Although mitral
annular plane systolic excursion is less dependent on
image quality and can be easily measured without
additional postprocessing, the clinical data on this
approach are limited.

Støylen et al65 showed how global LV strains can be
measured directly from LV 2D or M-mode recordings.
This approach, however, does not provide segmental
strains and therefore has limited ability to identify
regional dysfunction. Furthermore, errors in strain
estimates caused by angle dependency are a
limitation.



FIGURE 14 Afterload Sensitivity of LV GLS
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However, for bedside echocardiography in inten-
sive units, where image quality might be an issue,
mitral annular plane systolic excursion or mitral
annular plane systolic excursion normalized to LV
length could be used as an alternative index for
assessing LV function. It has been shown that the
simplicity and feasibility of these alternative param-
eters enable the detection of LV systolic dysfunction
also in critical ill patients.67

DERIVED METHODS. Myocardial work. Noninvasive
myocardial work index is a recent modality that
combines LV strain with an estimate of LV pressure68

(Figure 15). The method uses the principle that the
area of LV pressure-dimension loops reflects external
myocardial work, as suggested by Suga69 for global LV
function and by Tyberg et al70 for regional LV func-
tion (Figure 15A). The inspiration to translate these
basic principles into a clinical method originates from
collaboration between one of the inventors of the
work index method (O.A.S.) and John Tyberg.

There are 2 different methods to calculate external
myocardial work from LV strain and a noninvasive
estimate of LV pressure. First, analogous to the
calculation of LV stroke work as the area of the LV
pressure-volume loop, segmental LV work can be
calculated as area of the segmental pressure-strain
loop (mm Hg %). Figures 15A and 15B illustrate this



FIGURE 15 Methods to Estimate Myocardial Work by LVP-Strain Analysis
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method. In a validation study, Russell et al68 showed
that noninvasive LV pressure combined with LV
strain by STE could be applied to construct LV
pressure-strain loops clinically. In a subsequent
study, Russell et al71 introduced an alternative, and
currently more widely used, clinical method to mea-
sure myocardial work indexes. The method is illus-
trated in Figure 15C.

The myocardial work index is calculated for indi-
vidual segments and as a global parameter as the
average value for all the segments. In addition,
several indexes are also calculated for each LV
segment and globally. Constructive work is defined as
work performed by a segment during shortening in
systole and includes the small amount of work during
lengthening in isovolumic relaxation. Wasted work
represents energy not contributing to LV ejection and
is calculated as work performed on a segment that
lengthens in systole. Shortening during isovolumic
relaxation is also considered wasted work, as it costs
energy but makes no contribution to LV ejection.
Myocardial work efficiency is calculated as the per-
centage ratio of constructive work divided by the sum
of constructive and wasted work.

In patients with aortic stenosis, brachial cuff
pressure does not reflect peak LV pressure, and
therefore a modification of the method is needed to
obtain LV pressure.72 When estimating peak LV
pressure as the sum of cuff pressure and the aortic
pressure gradient, the work index could be estimated
with good accuracy in patients with aortic
stenosis.73,74 In a recent study by Ribic et al75 in pa-
tients with aortic stenosis, it was shown how the LV
pressure estimate could be improved by



FIGURE 16 Myocardial Work Index in Aortic Stenosis
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incorporating aortic diastolic pressure in the analysis
(Figure 16). In general, however, the original method
of Russell et al68 may be applied to measure LV work
in aortic stenosis, with the exception that the trans-
aortic pressure gradient must be added to cuff pres-
sure when estimating peak LV pressure. Similarly, in
patients with hypertrophic obstructive cardiomyop-
athy, it was suggested to calculate myocardial work
using the sum of brachial cuff pressure and an esti-
mate of the intraventricular pressure gradient to
represent peak systolic LV pressure.72

An advantage of assessing myocardial work
compared with just measuring strain is that work in-
dexes incorporate afterload. Furthermore, whereas
GLS provides a measure at only 1 time point during
the heart cycle, work uses strain values from the
entire systole from onset contraction until the onset
of LV filling. In addition, this modality includes a
measure of mechanical efficiency and therefore pro-
vides more comprehensive data on LV function than
by just measuring strain. Furthermore, regional dif-
ferences in myocardial work appear to reflect
myocardial glucose metabolism.68,76

Limitations of noninvasive myocardial work (by
both methods) compared with work in appropriate
physical units are the use of pressure instead of force
and relative instead of absolute dimensions. Estima-
tion of force, which would be a more appropriate
parameter than pressure, would require
measurement of LV radii of curvature and wall
thickness. One should also be aware that the current
method to calculate myocardial work indexes does
not take into consideration individual differences in
LV diastolic pressure.

Readers are referred to Manganaro et al77 for
normal reference values for myocardial work indexes.

There are promising data on the application of
myocardial work indexes in several clinical condi-
tions. It remains to be shown, however, whether
clinical decisions based on the assessment of
myocardial work will improve health outcomes.
Mechanical dispersion. As observed in patients with
long-QT syndrome, large intersegmental variability in
contraction duration, called mechanical dispersion, is
associated with increased risk for ventricular ar-
rhythmias.78,79 Mechanical dispersion is calculated as
the SD of contraction duration measured from the
peak Q wave or the start of the R wave on electro-
cardiography to peak shortening strain in multiple LV
segments.78 Mechanical dispersion is associated with
risk for ventricular arrhythmias in other diseases as
well, including patients with previous myocardial
infarction and nonischemic cardiomyopathy.80-82

In patients with long-QT syndrome, mechanical
dispersion is presumably caused by regional differ-
ences in action potential duration, which lead to
spatial nonuniformity in contraction duration. In
ischemic heart disease and cardiomyopathies, several



FIGURE 17 LV LS, CS, and RS in a Healthy Subject
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different mechanisms may potentially explain inter-
segmental differences in contraction duration,
including local delays in electromechanical activa-
tion, segmental contractile dysfunction, myocardial
scar, fibrosis or nonuniform loading conditions.

Mechanical dispersion is a promising parameter for
assessment of risk. There is, however, need for
further validation in prospective outcome studies
before a potential role in clinical routine can be
decided.

STRAIN MEASUREMENTS IN CARDIAC CHAMBERS.

The LV. Systolic function can be assessed by GLS,83

which has been shown to be a sensitive marker of
systolic dysfunction in a broad spectrum of cardiac
diseases, as addressed in subsequent sections of this



FIGURE 18 Practical Considerations When Measuring Myocardial Strain
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review. Circumferential and radial strains may pro-
vide incremental information but are currently not
widely implemented in clinical routine, because of
limitations previously discussed. Figure 17 illustrates
measurements of LV longitudinal, circumferential,
and radial strains.

Practically, depending on the software used,
analysis starts with a check of the electrocardio-
graphic trigger that defines end-diastole. If needed,
the time point is adjusted to mitral valve closure.
Next, an ROI is defined manually or automatically
that covers the entire myocardium and avoids the
echo-dense pericardium. If possible, the ROI is
regionally adapted to the actual wall thickness.
Larger, abrupt changes in wall thickness (bulging)
should be avoided or excluded (Figure 18). Tracking
is initiated manually or automatically, and the
tracking result is carefully checked. For this, an
overlay of markers indicating the tracked motion
(ideally several dots per segment) is compared with
the motion of the underlying myocardium. Im-
provements should be attempted only when neces-
sary and only by adjusting either the end-systolic or
the end-diastolic contour. When the definition of
end-systole is correct, peak strain values can be
accepted. Otherwise, end-systole needs to be
manually set to aortic valve closure.

Currently, there is no generally applicable lower
normal value for GLS. Instead, vendor-dependent
normal ranges of GLS have been proposed.84 Recent
studies demonstrated that GLS also varies with age,
sex, body weight, and blood pressure.84-86 An indi-
vidual patient meta-analysis suggested that regard-
less of vendors or clinical covariates, absolute
GLS <16% likely indicates significant myocardial
dysfunction. This is consistent with the lower limit of
normal of 15.7% reported in a recent study on a large
FIGURE 18 Continued
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guideline-directed chamber-specific recordings,
thereby limiting systematic and random variability.87

Importantly, loading conditions have an impact on
strain values and should be considered when using
GLS as parameter of systolic function.

Absolute GLS in the range $16% to <18% is
considered in a gray zone. Further grading of GLS
would be somewhat arbitrary, as there are not yet
sufficient data available to make firm recommenda-
tions. Studies of the prognostic impact of different
levels of GLS and validation by invasive contractility
measures would be helpful when defining criteria for
grading. As imaging reports are often received by
nonexperts in echocardiography, a verbal interpreta-
tion of the measured strain values, considering pa-
thology and the specifics of the software used, is
recommended to be included in echocardiography
reports.

LV GLS measurements obtained on 2D STE showed
very good reproducibility, with test-retest errors
within acceptable limits for clinical use (<10% rela-
tive error).40,88 For segmental longitudinal strains,
reproducibility was not as good as for GLS, making
the clinical use of numerical segmental strain values
challenging; nevertheless, strain curves and patterns
can provide important diagnostic information.89

TIPS AND PITFALLS WHEN MEASURING LV STRAIN.

Commercially available versions of speckle-tracking
software enable an easy and fast semiautomatic or
fully automatic strain analysis of all cardiac cham-
bers. Detailed practical step-by-step recommenda-
tions have been published.90-92 In the following, we
focus on common technical issues that can affect
strain estimates and consequently lead to measure-
ment errors (Figure 18).
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FIGURE 19 LA Strain by Speckle-Tracking Echocardiography
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� Using nonstandardized echocardiographic views
for STE may significantly affect strain values
(Figure 18). Foreshortening of the 2D LV apical
views can result in overestimation of absolute
GLS of approximately 10% to 20%, with a pre-
dominant effect on longitudinal strain in the apical
segments and in the endocardial layer.26 RV strain
measurements obtained from the recommended
RV-focused apical 4-chamber view are greater in
absolute magnitude than those obtained from a
conventional 4-chamber view.42 This difference
may be related to the assessment of different areas
of the RV free wall and the fact that the segments
of the RV free wall more distant to the interven-
tricular septum (corresponding to the largest RV
basal diameter) undergo the greatest longitudinal
deformation.

� Strain values are influenced by the selection of the
ROI, as illustrated in Figure 18. Modern software
determines ROIs (semi)automatically, but some-
times the regions need to be manually adjusted.
For full wall tracking, the entire wall should be
incorporated in the analysis, but not more. In
hearts with thick walls, a too thin (too endocardial)
ROI will result in an overestimation of the absolute
strain values compared with a correctly placed ROI.
Including bright pericardium will tether the ROI to
this nonmoving feature and lead to reduced strain
estimates. For both endocardial and full wall
tracking, care must be taken to avoid the inclusion
of papillary muscles or valve leaflet structures.
Using fully automated software without manual
editing options is therefore not recommended. A
correct definition of the ROI as well as images with
low noise and artifact burden are of highest
importance for accurate strain estimates.93

� Local abnormalities in chamber geometry and wall
thickness, such as septal bulging or sigmoid
septum, may influence both segmental and global
strain measurements (Figure 18C). Including a
septal bulge in the ROI results in a clinically rele-
vant underestimation of the absolute value of
longitudinal strain, especially when endocardial
tracking software is used, compared with full wall
tracking software, in which strain measurements
are less affected.25 When including a septal bulge
or similar structure in other locations in the
ventricle, radial strain may dominate and cause net
positive systolic strain when applying STE on im-
ages recorded from apical views. Therefore, to
correctly assess longitudinal shortening in the
presence of local thickening of the LV wall, the ROI
is best drawn straight and in the longitudinal di-
rection, excluding major local bulges. However,
when a marked wall thickening extends over more
than 1 full segment, we recommend that the ROI
include the thickening.

� The exact definition of timing of cardiac events has
a major impact on the accuracy of strain measure-
ments, especially in pathology (Figure 18D).94 End-
diastole, and with it zero strain, should correspond
to mitral valve closure. Most vendors approximate
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end-diastole using the QRS trigger on the electro-
cardiogram. As this is often programmed to detect
just a steep slope within the QRS complex, true
end-diastole may be missed in case of a distorted
QRS complex (eg, in conduction delays). End-
systole is commonly determined either on the ba-
sis of peak global deformation or an electrocar-
diographic analysis. Also, this approach may fail to
represent properly the traditional physiological
definition of end-systole as aortic valve closure.
T-wave analysis of the electrocardiogram can be
only a rough approximation, and peak deformation
may be delayed after aortic valve closure if several
pathologic (eg, infarcted) segments are in the im-
age. Timing should therefore be manually cor-
rected if deemed necessary using direct
observation of closure of the mitral and aortic
valves or a spectral Doppler evaluation thereof.23

In RV strain analysis, timing should be adjusted to
corresponding valve events in the right heart.24

Global and regional strain. All 3 strain components can
be applied for describing LV global (global strain) or
regional (segmental strain) function of a chamber.
GLS is a very reproducible measurement, as the value
is obtained from a large part of the ventricle, and
averaging data from multiple segments reduces ef-
fects of random signal noise and artifacts. Tracking
segmental strain is performed in a much smaller
myocardial region, which makes it also more sus-
ceptible to regional image artifacts and results in a
high degree of measurement variability.40,89,95

Accordingly, single-segment strain values should be
used with caution.

When several adjacent segments have abnormal
strains, these may be used to raise suspicion of
regional pathology (specific cardiomyopathies or
myocardial ischemia). It is important to note that
qualitative analysis of the patterns of segmental
strain curves, as well as the bull’s-eye display, should
be the preferred method for assessing regional strain.
Detailed analysis of pattern of segmental strain
curves, especially assessment of the time course of
myocardial contraction, such as postsystolic short-
ening in ischemic segments or typical strain pattern
of mechanical dyssynchrony, provide important
diagnostic information.32,96-99 The extent to which
qualitative strain curve shape analysis or relative
comparison between regions could compensate for
the relatively poor segmental strain reproducibility
remains to be determined.

The LA. Practically, LA strain analysis is performed on
a nonforeshortened apical 4-chamber view of the LA
and optionally also on an apical 2-chamber view.24
The ROI is drawn from mitral ring to mitral ring.
Available software extrapolates strain across the en-
tries of the pulmonary veins and across the base of
the appendage, which complicates the interpretation
of segmental strains. In clinical routine, LA strain is
assessed as GLS. The use of dedicated tracking soft-
ware for LA strain is preferable, as it significantly
improves measurement reproducibility.100

During LV systole, the LA serves as a reservoir that
collects blood from the pulmonary veins, and during
diastole, the reservoir volume is ejected into the LV
by passive LA contraction (recoil) in early diastole and
by active contraction in late diastole. During diastole
the atrium also functions as a conduit for transport of
blood from the pulmonary veins to the LV, and this
transport continues until it is interrupted by active
atrial contraction. A more extensive explanation of
the different components of LA function and how
they relate to pulmonary venous flow and LV function
is provided in a review by Hoit.101

For measurement of LA reservoir strain, it was
recommended by a joint European Association of
Cardiovascular Imaging and American Society of
Echocardiography task force to use ventricular end-
diastole to define the zero baseline.24 With this
definition, reservoir strain is measured as the dif-
ference between peak strain and strain at ventricular
end-diastole. An alternative would be to use the
onset of LA contraction as zero baseline. An advan-
tage of using end-diastole as zero is that this defi-
nition applies to all patients, including those in
atrial fibrillation. In patients with wide QRS com-
plex, as in bundle branch block, which complicates
the definition of end-diastole, one may use the
presystolic nadir of the atrial strain trace as zero
reference. LA pump strain is measured as difference
between strain values at ventricular end-diastole
and the onset of atrial contraction. Technically, LA
pump strain has a negative sign but is most often
reported as an absolute value. Figure 19 shows a
typical LA strain trace.

Whereas LA reservoir and pump function can be
assessed using strain imaging, the conduit function
is not reflected in LA strains. LA conduit function
represents the volume of blood that passes through
the LA that cannot be attributed to reservoir or
booster pump functions.102 Conduit volume can be
computed using 3D echocardiography or CMR, in the
absence of significant mitral or aortic regurgitation,
as: [LV stroke volume � (maximum LA volume �
minimum LA volume)],103 but this is cumbersome
and is rarely done clinically.104,105 Conduit function
is reflected in the D-wave of antegrade pulmonary
venous flow velocity.106 Sometimes the term conduit



FIGURE 20 Why GLS Is a More Sensitive Measure of LV Dysfunction Than EF
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strain is used for deformations in the LA in early
diastole, but the passive LA contraction after mitral
valve opening is not a measure of conduit function,
and therefore calling it conduit strain may lead to
misunderstandings. As proposed previously, a more
appropriate term for this passive early diastolic
contraction would be recoil strain.107 As recoil strain
approximates the difference between LA reservoir
strain and pump strain, one may question the utility
of measuring and reporting it as a separate
parameter.

The reported ranges of normal LA strains are rather
wide, which in part is caused by normal biological
variability but may also reflect imaging from non-
dedicated LA views and manual tracing instead of
semiautomated tracking software to define atrial
endocardium. Median values for normal LA reservoir
and pump strain have been reported as 42% and 14%,
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respectively,108 while the lower limits of normal are
17% and 6%, respectively.87 There is age dependency
of normal values for LA strain, with reduction in
reservoir strain and increase in pump strain with
ageing.108 There are only minor differences in LA
strain between sexes, and there appear to be no dif-
ferences among ethnic groups.108 Regardless of age
and sex, reservoir strain <20% to 23% is considered
abnormally low.

As demonstrated in several studies, LA strain by
STE has high feasibility and quite good reproduc-
ibility.109-112 Together with LV GLS, LA reservoir
strain was found to be among the most reliable pa-
rameters compared with several other echocardio-
graphic parameters in an intercenter reproducibility
study.113

Most studies of the reproducibility of LA strain
have been performed using echocardiography with
software developed for measuring LV strains. Some of
the vendors have developed dedicated semi-
automated software for measuring LA strain.

The terminology used to describe LA strain varies
somewhat in current published reports. One can
argue that the terminology for LA strain should be
consistent with that used for LV strain. One option
would be to use LA GLS as an equivalent to LV GLS.
However, names that refer to the function that is
being measured facilitate communication, and
therefore the terms LA reservoir strain and pump
strain are preferable.
The RV. Software developments as well as increasing
evidence supporting the clinical usefulness of
RV strain measurements have led to growing in-
terest in RV strain over the past few years. RV
longitudinal strain is useful to assess RV function
in several cardiomyopathies and offers incremental
functional information and prognostic value over
the conventional echocardiographic indexes of
RV systolic function in various cardiovascular
diseases.114

Practically, special care should be taken to use an
RV-focused apical 4-chamber view for achieving a
standardized RV display with clearly visualized
myocardium of the free wall.24 RV-focused views
result in higher reproducibility of strain measure-
ments compared with conventional apical 4-chamber
views.42 The ROI should be adjusted to the thin RV
free wall (3-5 mm).115 A layer-specific analysis is not
possible. RV deformation can be reported as global
strain, including septum and RV free wall, but RV free
wall longitudinal strain, which comprises only the
3 free wall segments, is commonly recommended for
clinical practice.24 The 2 measurements are not
interchangeable, as RV free wall strain has a larger
magnitude than RV global strain by about 5% strain
units.42,100,116 The normal reference ranges are much
wider for RV free wall strain than for LV GLS, meaning
the between-subject variability is larger than for LV
GLS.87 Data from 2 large cohorts of healthy subjects
suggested that absolute RV free wall strain <20% is
likely pathologic,117,118 while a recent large cohort
study reported a lower limit of normal of 17% for
absolute RV free wall strain.87

Consistent with previous results on LV strain, RV
free wall strain and RV GLS are both reproducible
measurements. Using dedicated RV tracking software
is more convenient but does not increase measure-
ment reproducibility.100 Segmental RV strain mea-
surements have an unacceptable level of variability
(up to 30%)42,95,100 and should be used with caution.

The complex anatomy of the RV makes the concept
of 3D STE analysis attractive, as it allows compre-
hensive assessment of the whole RV myocardium
with multiple strain components. The results are
promising, but the superiority of 3D strain over 2D
strain has not yet been proved.45,119,120

The right atrium. Few data exist on the clinical utility
of right atrial strain.121,122 Practically, an RV-focused
apical 4-chamber view is used,24 while the technical
principles of strain analysis are applied in analogy to
LA strain. A recent meta-analysis demonstrated very
wide ranges of right atrial strain values among
healthy subjects,123 which might limit the clinical
utility of this parameter.

STRAIN IMAGING IN LV DYSFUNCTION:

INCREMENTAL VALUE TO

EJECTION FRACTION

WHY IS GLS A MORE SENSITIVE THAN EJECTION

FRACTION AS PARAMETER OF SYSTOLIC

DYSFUNCTION? LV GLS is more sensitive than ejec-
tion fraction (EF) to diagnose mild systolic dysfunc-
tion, as shown in different patient populations,
including heart failure with preserved EF, coronary
artery disease, diabetes, hypertensive heart disease,
and cardiomyopathies with LV hypertrophy.124-129

Figure 20 illustrates 3 different mechanisms that may
explain why GLS is superior to EF as measure of mild
systolic dysfunction.

First, longitudinally oriented myofibers, which
determine GLS, dominate in the LV subendocardium,
whereas myofibers with circumferential orientation
are dominant in the midlayer of the wall. The inner



FIGURE 21 Segmental LV Strain Curves in Ischemia and Dyssynchrony
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(A) Schematic illustration of LV segmental strains in a heart with myocardial ischemia. Measurements from 3 different segments are shown.
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trace is from a segment with mild ischemia, as indicated by reduced systolic shortening and postsystolic shortening. (B) Example of

segmental strain curves in the septum (red) and LV lateral wall (blue) in typical left bundle branch block. The early activated septum shows

early systolic shortening (red arrow), followed by systolic rebound stretch (red asterisk). After AVC, during isovolumic relaxation, there is

further septal lengthening, probably reflecting earlier relaxation in the septum than in the LV lateral wall. The late activated lateral segment is
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layer of the LV wall tends to develop ischemia earlier
than the outer layers, and therefore the sub-
endocardium is the most vulnerable part of the wall.
Because myocardial fibers in different LV wall layers
are tethered together, reduced shortening in the
subendocardium leads to reduced shortening in all
layers in the wall. This is suggested as an explanation
for why reduction of GLS is an early sign of LV
dysfunction (Figure 20A).

The tendency to develop subendocardial in-
farctions in acute coronary syndrome is well known
and reflects the vulnerability of the inner wall layers.
The subendocardium is susceptible to ischemia also
in the absence of epicardial coronary artery stenosis.
This is attributed to higher compressive forces on the
intramyocardial vessels in the subendocardium than
in the outer layers130 and longer distance from the
epicardial coronary arteries. These effects are
enhanced in hypertrophic ventricles. Furthermore,
subendocardial perfusion may be impaired because of
microvascular remodeling and fibrosis, which tend to
occur first in the subendocardium.126 Therefore,
several factors may contribute to subendocardial
dysfunction and cause reduction in LV longitudinal
shortening.

Second, because of the elliptical geometry of the
ventricle, longitudinal contractions have less impact
on LV volume and LVEF than circumferential con-
tractions. This is illustrated in Figure 20B by a much
flatter slope for the relationship between GLS and EF
than for global circumferential strain and EF. As
shown in a simulation study, the contributions from
circumferential and longitudinal shortening to stroke
volume were 67% and 33%, respectively.131 With the
ventricle as an approximate ellipsoid, circumferential
contraction implies shortening of the entire LV short-
axis area (ie, 2 spatial dimensions, x and y), whereas
longitudinal shortening causes reduction in only 1
dimension (z). Using a cube as analogy makes this
distinction more obvious. As an example, when con-
tracting by 20% in both the x and y dimensions, vol-
ume is reduced to 64% (0.8 � 0.8) of the initial
volume. When contracting only in the z-axis (equiv-
alent to GLS), a 20% shortening results in a volume
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that is 80% of the initial volume. For patients with
EFs in the lower normal range, one would predict that
a moderate reduction in GLS will cause a small
reduction in EF to a subnormal value. However, for
ventricles with EFs in the midnormal or upper normal
range, EF may remain within the relatively wide
normal range, although GLS is mildly reduced. When
considering the 2 mechanisms illustrated in
Figures 20A and 20B together, they may explain why
mild LV systolic dysfunction is reflected in reduced
GLS, whereas EF may remain in the normal range.

Third, LV hypertrophy is an additional mechanism
that tends to preserve EF (pseudonormal function)
when there is impaired systolic function.131,132 This is
in part because hypertrophic and thick LV walls tend
to cause small LV diastolic cavity volumes. Therefore,
in hypertrophic LVs with reduced cavity size, a small
contraction and a small stroke volume may represent
a large relative change in cavity volume, and there-
fore EF may be normal in a dysfunctional ventricle. In
addition, the same percentage thickening results in
more absolute thickening when the wall is thicker
prior to contraction (Figure 20C). Therefore, hyper-
trophic ventricles with thick walls may have normal
EFs despite reduced systolic function. In some cases,
a hypertrophic ventricle with reduced contractility
may show almost complete closure of the cavity in
end-systole, which is measured as a supernormal EF.
In these cases, the systolic dysfunction is confirmed
by reduction in GLS. Typical examples are hypertro-
phic cardiomyopathy and amyloidosis. A similar
mechanism may explain normal EF but reduced long-
axis shortening in patients with hypertensive LV
hypertrophy.133

The results from the simulations shown in
Figures 20B and 20C are based upon a simplified
model that does not incorporate torsional deforma-
tion, and there are assumptions about LV geometry.
Therefore, the magnitude of effects on the different
cardiac parameters that are discussed previously and
presented in Figures 20B and 20C may be different in
real life.

In theory, reduced absolute GLS could be
compensated for by increased global circumferential
strain to maintain EF. However, studies have re-
ported preserved EF in cases with both reduced GLS
and global circumferential strain,128,134,135 which can
be explained as shown in Figure 20C, in which both
GLS and global circumferential strain are reduced but
EF is maintained because of a thicker wall. The
mathematical model shows how EF is less sensitive to
changes in GLS because of the geometric relations.
Nevertheless, it is not definitely determined if a
compensatory increase in global circumferential
strain exists in some cases, making EF even less
sensitive to reduced GLS.
LV GLS AND MECHANICAL DISPERSION AS PROGNOSTIC

MARKERS. As discussed under different topics in this
review, LV GLS is a strong prognostic marker. This
includes prognostic value in heart failure.136,137 As
shown by Park et al136 in patients with acute heart
failure, GLS has greater prognostic value than LVEF.
Furthermore, Haugaa et al82 showed in a study of
patients with previous myocardial infarction that
myocardial mechanical dispersion by strain imaging
was an independent predictor of arrhythmic events.
Both mechanical dispersion and GLS were markers of
arrhythmias in patients with non–ST-segment eleva-
tion myocardial infarction and in those with LVEFs
>35%, whereas LVEF was not. A combination of me-
chanical dispersion and global strain showed the best
positive predictive value for arrhythmic events.
Future studies should explore whether GLS and me-
chanical dispersion may be used to guide therapeutic
choices.

APPLICATION OF STRAIN IN

SPECIFIC DISORDERS

MYOCARDIAL ISCHEMIA. Strain imaging may be
applied to diagnose ischemia by showing reduction in
systolic shortening (hypokinesia), but equally
important is the demonstration of systolic length-
ening (dyskinesia) and postsystolic shortening, which
are the characteristic features of myocardial ischemic
injury (Figure 21A).138,139 Importantly, these features
are not specific to myocardial ischemia, as similar
abnormalities may be observed in cardiomyopathies
and in other disorders with myocardial dysfunction.
Furthermore, postsystolic shortening can also be
found in about one-third of myocardial segments in
healthy subjects. However, such physiological post-
systolic shortening that follows a normal systolic
strain is of minor amplitude and has no detrimental
effects on cardiac function.140

In the center of an ischemic region, there is the
most severe dysfunction, often reflected in systolic
lengthening. Neighboring segments with less marked
ischemia may have reduced systolic shortening and
postsystolic shortening. The postsystolic shortening
is often a reflection of elastic recoil in segments that
have been stretched in systole, whereas in other
cases, postsystolic shortening represents delayed
active contraction of an ischemic segment.141 There is
no easy way to differentiate passive from active
postsystolic shortening, as in most cases, invasive LV
pressure is needed to make the distinction.141 In
segments with transmural scar, postsystolic



FIGURE 22 Strain and Work Indexes in Patients Receiving CRT
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valve closure. (B) Regional myocardial work and reverse remodeling after CRT. Prior to CRT, a large difference in myocardial work between the septal and lateral walls

is detected, which is diminished with successful resynchronization. The lateral-to-septal myocardial work differences before implantation correlate with the degree of
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shortening reflects passive contraction in myocar-
dium that was stretched in the preceding systole.

Myocardial strain imaging is not widely imple-
mented as a modality to diagnose coronary artery
disease. The use of STE during stress echocardiogra-
phy is still a matter of debate, as there are challenges
with quality of measurements when there is exces-
sive myocardial motion, higher heart rates, and lack
of definition of cutoff levels of strain for the major
coronary artery regions.

In the 2019 European Society of Cardiology guide-
line on management of coronary artery disease, how-
ever, a role for strain imagingwas suggested in patients
with normal EFs, as regional dysfunction would in-
crease suspicion of ischemic myocardial damage.142
Furthermore, a recommendation (Class 2b)142 was
given regarding risk assessment, stating that GLS
provides incremental information to LVEF and may be
of value when assessing risk in patients with LVEFs
>35%.
DYSSYNCHRONY. In principle, there are 2 different
mechanisms of LV dyssynchrony: electrical conduc-
tion delay, such as in left bundle branch block, and
contractile disparity,143 which has nonelectrical eti-
ologies such as myocardial ischemia, scarring, and
nonuniformities of myocardial loading. Importantly,
only dyssynchrony caused by electrical conduction
delay is amenable to cardiac resynchronization ther-
apy. Therefore, distinction between the 2 funda-
mentally different mechanisms of LV dyssynchrony is



FIGURE 23 Longitudinal Strain Bull’s-Eye Plots in LV Hypertrophy With Different Etiologies
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important and was facilitated by the introduction of
strain imaging as a clinical tool.

In hearts with left bundle branch block, there is
early activation of the septum and delayed activation
of the LV lateral wall. Therefore, in typical left bundle
branch block cases, there is early contraction of the
septum (“septal flash”)144 inducing mitral valve
closure.145 Furthermore, LV pressure rises slowly, as
active septal contraction coincides with lengthening
of the late activated, passive LV lateral wall
(Figure 21B). Because the hyperextended lateral wall
has increased preload, it contracts forcefully, and the
associated increase in the transseptal pressure
gradient pushes the septum rightward, causing
“septal rebound stretch.”146

Another characteristic feature of hearts with left
bundle branch block is “apical rocking,”147 which is a
translational motion of the distal parts of the LV. The
motion starts with the early activated septum pulling
the apex toward the septum, and when the LV lateral
wall is activated, the apex is pulled back toward the
lateral wall. This motion can be measured but also
assessed visually.147 As these abnormal motions are
caused by active contractions, they are attenuated or
abolished when there is septal or LV lateral wall
scarring.148

Because electrical dyssynchrony and contractile
disparity interact, the resulting regional deformation
patterns are not always clearly attributable to one or
the other cause. Important modifiers of myocardial
strains patterns are regional dysfunction due to
ischemia or scar and progressive remodeling with
changes in LV structure.97,99,149 Particularly in a
severely remodeled septum, strain patterns caused by
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scar and electrical conduction delay may be difficult
to distinguish.

A series of studies of LV dyssynchrony by Prinzen
and Lumens and coworkers97,150 have shown how
strain imaging may be applied to quantify dyssyn-
chrony. Furthermore, they have shown how
nonelectrical factors such as regional contractile
dysfunction and myocardial scarring modify param-
eters of dyssynchrony. The clinical utility of these
novel insights should be explored in future clinical
studies of optimal diagnostic work-up in cardiac
resynchronization therapy candidates.

Likewise, the use of nuclear imaging to diagnose
impaired myocardial perfusion and the assessment of
myocardial viability are challenging in the presence
of left bundle branch block. Currently, CMR late
gadolinium enhancement is the modality of choice for
imaging myocardial scar in patients with left bundle
branch block.151 To what extent high–frame rate
echocardiography-based elastography may be used in
this context should be explored.152

Echocardiographic parameters focusing on
peak-to-peak time differences (eg, in tissue Doppler
curves) do not have the specificity needed to iden-
tify dyssynchrony patterns that can be amended by
cardiac resynchronization therapy. There is
growing evidence, however, that specific patterns
that can be analyzed visually (septal flash, apical
rocking) or quantified by segmental strain or work
analysis (see subsequent discussion) have a prog-
nostic value in cardiac resynchronization therapy
candidates.97-99,153-155 Next to the purely visual
analysis of septal flash and apical rocking,154 the
electromechanical substrate amendable by cardiac
resynchronization therapy can be identified by
measuring (antero)septal and (infero)lateral strain
patterns. A quantitative assessment is possible with
a combination of systolic prestretch of the LV
lateral wall and systolic rebound stretch of the
septum, known as systolic stretch index, using
longitudinal, circumferential, or radial strain
(Figure 22A).156,157 High values of baseline systolic
stretch index were associated with favorable clinical
outcomes after cardiac resynchronization therapy,
and GLS was additive to systolic stretch index in
predicting clinical outcomes (heart failure hospital-
ization or death).

Furthermore, dyssynchronous contraction causes a
redistribution of myocardial work, with reduced work
in the early activated septum and increased work in
late activated lateral wall.158 The larger the baseline
myocardial work differences between the lateral wall
and septum, the higher the reverse remodeling after
cardiac resynchronization therapy155 (Figure 22B).
When myocardial work difference is combined with
septal viability (eg, from CMR), it can accurately
predict remodeling and long-term survival after car-
diac resynchronization therapy (AUC: 0.88 [95% CI:
0.81-0.95]).

The importance of longitudinal strain curve fea-
tures over classical clinical and echocardiographic
characteristics to discriminate cardiac resynchroni-
zation therapy responders was recently demonstrated
also in an unsupervised machine learning study.159

However, using strain-guided LV lead placement
targeting the latest mechanically activated viable
segment did not increase response rate or survival in
a small randomized study.160 Although several
retrospective and prospective nonrandomized
studies strongly support mechanical dyssynchrony as
a marker of cardiac resynchronization therapy
response that appears additive or even superior to
guideline-based patient selection,99,153,161 there is
currently no guideline indication for using any of
these parameters. The commonly mentioned reason
is the lack of randomized studies. The ongoing pro-
spective randomized AMEND-CRT (Assessment of
Mechanical Dyssynchrony as Selection Criterion for
Cardiac Resynchronization Therapy; NCT04225520)
trial may provide this missing evidence.
SPECIFIC CARDIOMYOPATHIES. In the context of
cardiomyopathies, strain imaging can be useful for
identifying early functional abnormalities, especially
in ventricles with hypertrophy and normal EFs,
providing incremental information in diagnostic
evaluation, identifying patients with risk for ar-
rhythmias, and predicting outcomes.
Hypertrophic cardiomyopathy. Despite preserved LVEF,
GLS is impaired in patients with hypertrophic car-
diomyopathy. Segments with reduction of absolute
longitudinal strain typically correspond to sites of
hypertrophy or late gadolinium enhancement on
CMR.162,163 A bull’s-eye display of peak systolic strain
facilitates analysis in the clinic (Figure 23). Regional
longitudinal strain may also be abnormal in patients
with genotype-positive hypertrophic cardiomyopathy
without phenotypic expression, suggesting that sub-
tle functional and structural alterations are present
even before the development of increased wall
thickness.164 In patients with hypertrophic cardio-
myopathy, impaired GLS is associated with an
increased risk for ventricular arrhythmias, heart fail-
ure hospitalization, heart transplantation, and
death.165 There are currently not sufficient data to
propose a specific GLS cutoff for making clinical de-
cisions regarding implantable cardioverter-
defibrillator therapy. Mechanical dispersion metrics
significantly improved risk stratification for

https://clinicaltrials.gov/study/NCT04225520


TABLE 2 Cancer Therapy–Related Cardiovascular Toxicity Definitions

Symptomatic CTRCD (HF)a,b Very severe HF requiring inotropic support, mechanical circulatory support, or consideration of transplantation

Severe HF hospitalization

Moderate Need for outpatient intensification of diuretic and HF therapy

Mild Mild HF symptoms, no intensification of therapy required

Asymptomatic CTRCD Severe New LVEF reduction to <40%

Moderate New LVEF reduction by $10 percentage points to an LVEF of 40%-49%
or
New LVEF reduction by <10 percentage points to an LVEF of 40%-49% and either new relative decline in LV GLS

by >15% from baseline or new increases in cardiac biomarkers

Mild LVEF $ 50% and new relative decline in LV GLS >15% from baseline and/or new increases in cardiac biomarkers

aThe definitions are based on LVEF and supportive diagnostic biomarkers according to the 2021 European Society of Cardiology guidelines for the diagnosis and treatment of acute and chronic HF.
bSymptomatic CTRCD represents HF, defined as a clinical syndrome as defined by Lyon et al.198 Reproduced with permission from Lyon et al.198

CTRCD ¼ cancer therapy–related cardiac dysfunction; GLS ¼ global longitudinal strain; HF ¼ heart failure; LV ¼ left ventricular; LVEF ¼ left ventricular ejection fraction.
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malignant ventricular arrhythmias when added to
conventional scores. Reduced absolute GLS was also a
marker of risk for arrhythmic events but was inferior
to mechanical dispersion.166

Amyloidosis. Basal systolic strain and strain rate have
been shown to be impaired in cardiac amyloidosis
even without signs of heart failure. Once heart failure
is present, strain abnormalities may also extend to
other LV segments. Several indexes focusing on the
LV base-to-apex longitudinal strain gradient are
clinically useful in diagnosing cardiac amyloid-
osis.167,168 Also, differential changes in EF and GLS as
well as LA reservoir strain have been proposed for
differentiating cardiac amyloidosis from other hy-
pertrophic substrates.169,170 A relative apical sparing
phenomenon was present in nearly three-quarters of
patients with histologic cardiac amyloid infiltration,
while a significant base-to-apex gradient of longitu-
dinal strain was observed in all cases.171 No differ-
ences in strain patterns exist in the various subtypes
of amyloidosis.172 Observing a pattern of apical
sparing on longitudinal strain polar maps may be
used as a first indication for a possible amyloidosis
but has limited specificity in clinical routine, as it may
sometimes also occur in other causes of LV hyper-
trophy (eg, aortic stenosis).169,173,174 The importance
of strain parameters in the diagnostic work-up of
cardiac amyloidosis was recognized in the 2023
guideline recommendation for cardiomyopathies,
with relative apical sparing pattern and an EF/GLS
ratio >5 as the only echocardiographic parameters on
the list of clinical red flags.175

In patients with transthyretin amyloidosis cardio-
myopathy, average peak longitudinal strain from
apical 4-chamber view was independently associated
with mortality unrelated to the distinct genotype and
severity of the disease.176 Additionally, GLS and
myocardial work indexes might be used as potential
markers of monitoring treatment response to tafa-
midis in transthyretin amyloidosis cardiomyopa-
thy.177 Similarly, in light-chain amyloidosis with
cardiac involvement, GLS or average peak longitudi-
nal strain from 4-chamber view correlated with dis-
ease severity and was a strong, independent predictor
of survival beyond the existing Mayo staging
model.178,179 An absolute improvement of average
longitudinal strain from a 4-chamber view by 2 per-
centage points at 1 or 2 years after the initiation of
chemotherapy was associated with improved survival
and might serve as a measure of response to ther-
apy.179 Recently, strain data from all 4 chambers
demonstrated prognostic utility in patients with
biopsy-confirmed cardiac amyloidosis.180 LA and RV
strain data had additive prognostic value to GLS
and clinical or conventional echocardiographic
parameters.
Arrhythmogenic RV cardiomyopathy. In case of a clinical
suspicion of arrhythmogenic RV cardiomyopathy,
CMR is the preferred imaging technique for the
evaluation of RV dilatation and dysfunction. How-
ever, echocardiographic RV strain has also been
shown to be a promising parameter at an early stage
of the disease.181,182 Abnormal RV strain was present
in 71% of asymptomatic carriers of a pathogenic mu-
tation, predominantly in the basal segment of the RV
free wall, while conventional parameters such as
tricuspid annular plane systolic excursion and RV
fractional area change were comparable with those
among healthy control subjects. Normal segmental
RV strain patterns were associated with an absence of
disease progression during 4-year follow-up in these
individuals.181 Both abnormal RV strain patterns and
prolonged RV mechanical dispersion have been
shown to be associated with arrhythmic events.183,184

A recent expert consensus document therefore pro-
posed using RV free wall and/or RV GLS and RV



FIGURE 24 LV Strains in Hypertension and HFpEF
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mechanical dispersion in family screening and
follow-up of early arrhythmogenic RV cardiomyopa-
thy, considering RV mechanical dispersion more than
25 ms (3-segment model) or 30 ms (6-segment model)
as an indicator for further investigation.185

Dilated cardiomyopathy. The diagnostic role of strain
imaging is limited when there is already overt dilated
cardiomyopathy with reduced EF. However, it might
be used for screening of relatives of patients with
dilated cardiomyopathy with normal EFs.186

Abnormal GLS could identify those relatives at risk
for EF deterioration and adverse events who would
benefit from close follow-up. In patients with dilated
cardiomyopathy who do not fulfil current indications
for implantable cardioverter-defibrillator placement,
both GLS and mechanical dispersion showed greater
value than EF to identify patients at risk for ventric-
ular arrhythmias.80 Absolute GLS < 7.1% and me-
chanical dispersion more than 72 ms were associated
with arrhythmic events during a median of
22 months’ follow-up. Results from a recent CMR
study demonstrated that LA strain could further
improve risk stratification in dilated cardiomyopathy,
incremental to LV GLS or late gadolinium enhance-
ment.187 In patients with dilated cardiomyopathy and
LV conduction delays, segmental strain and work
analysis has, next to the visual assessment of septal
flash and apical rocking, a predictive value for cardiac
resynchronization therapy response.98,154,155

Other rare cardiomyopathies. In storage diseases, such
as Fabry disease and Danon disease, GLS is already
impaired in early disease, before the development of
LV hypertrophy, and it is related to worse clinical
outcomes.188-190 In Fabry disease, longitudinal strain
is typically reduced and shows the characteristics
pattern of postsystolic shortening, predominantly in
the basal inferolateral segments, which are prone to
replacement fibrosis.191

Distinguishing cardiomyopathies from athlete’s heart.
Differentiating pathologic LV hypertrophy or RV
remodeling from that of physiological adaptation in
athletes is challenging. GLS and RV strain in
competitive athletes are usually relatively pre-
served.192,193 In contrast, patients with hypertrophic
cardiomyopathy show reduction in absolute GLS, and
regional strain and may present significant



FIGURE 25 Determinants of LA Strain
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heterogeneity of regional function (Figure 23).194

Similarly, absolute global RV strain is typically
reduced in patients with arrhythmogenic RV cardio-
myopathy, whereas it is normal in athletes.195

Nevertheless, the discriminatory ability of LV strain
to distinguish an athletic heart from hypertensive
heart disease is low, while LA strain might have
added value.194,196 Morphologic and tissue Doppler
parameters as well as CMR data are complementary
for a clinical distinction between athlete’s hearts and
cardiomyopathies.194,195,197

CARDIO-ONCOLOGY. Myocardial toxic effects from
chemotherapy have become a leading cause of
morbidity and mortality in cancer survivors. There-
fore, protection of the heart during chemotherapy by
risk assessment, evaluation of cardiac function prior
to therapy, and monitoring during and after therapy
are important. Recently published international
guidelines summarize available evidence and provide
recommendations for the optimal care of oncology
patients with respect to cardiovascular health.198

According to the new guidelines,198 cardiovascular
imaging has an important role in identifying patients
with subclinical cardiovascular disease, determining
the degree of preexisting cardiac comorbidity prior to
decisions regarding cancer therapy, and serves as a
reference for the identification of changes during
treatment and long-term follow-up. As stated in the
guidelines, echocardiography is the preferred imag-
ing technique for baseline risk stratification, as it
provides quantitative assessment of LV and RV
function, chamber dilation, LV hypertrophy, regional
wall motion abnormalities, diastolic function,
valvular heart disease, pulmonary arterial pressure,
and pericardial disease, which may influence the
therapeutic decision. Table 2 shows imaging criteria
used in the guideline to define cancer therapy–related
cardiovascular toxicity in patients with symptomatic
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as well as asymptomatic cardiac dysfunction. The
criteria are based on the measurement of both EF and
GLS.

Measurement of GLS is recommended in all pa-
tients with cancer undergoing echocardiography, if
available. See the guidelines for details.198 Further
recommendations regarding the use of imaging in
screening for cardiac dysfunction before, during, and
after cancer therapy differ between therapeutic
agents and pretreatment risk for complications.

VALVULAR HEART DISEASE. When evaluating pa-
tients with valvular disease, it is not only clinical
condition and degree of valve dysfunction that mat-
ter but also the impact of valve dysfunction on the
ventricle. Strain imaging and measurement of GLS are
well suited to the evaluation of LV function in mitral
and aortic valve disease and may in some cases detect
myocardial dysfunction at an early stage, prior to a
reduction in EF. Several studies suggest that strain
may have added clinical value when evaluating LV
function in patients with valve disease.199-206

In the current American College of Cardiology and
American Heart Association clinical practice guide-
lines for the management of patients with valvular
heart disease, GLS by STE is referred to as a method to
identify LV dysfunction and remodeling and for risk
stratification.207 In asymptomatic patients with se-
vere primary mitral regurgitation who require peri-
odic transthoracic echocardiography to determine
optimal timing of intervention, it is stated that GLS
may be considered as an adjunct to guide timing of
intervention. Furthermore, it is stated that GLS ap-
pears more sensitive than EF to detect LV dysfunction
in patients with chronic mitral regurgitation and, as
such, might give warning that LV function is
declining before EF becomes abnormal.

In patients with aortic regurgitation, the European
Society of Cardiology and European Association for
Cardio-Thoracic Surgery guidelines for the manage-
ment of valvular heart disease208 recommend
considering measuring GLS in patients with border-
line LVEFs to help in the decision of timing for sur-
gery. In patients with asymptomatic aortic stenosis,
the measurement of GLS has a role. In addition to
transvalvular velocities and the calculation of pres-
sure gradient and aortic valve area, several diagnostic
and prognostic parameters are recommended. This
includes GLS as a measure of LV function, and a
threshold of 15% for absolute GLS is suggested to
identify patients with severe asymptomatic aortic
stenosis who are at higher risk for clinical deteriora-
tion or premature mortality.
There is a need for additional clinical outcome
studies on the role of strain imaging in valve patients.
These studies should test if decisions based on the
addition of strain imaging to quantify LV function
result in better health outcomes. Whether GLS as a
supplement to EF can improve decisions regarding
the timing of valve interventions and surgery,
measured as short- and long-term outcomes, should
be tested.

HEART FAILURE WITH PRESERVED EF AND DIASTOLIC

FUNCTION. LV GLS. In patients referred for sus-
pected heart failure with preserved EF, the evaluation
should include strain imaging by STE, as a large
fraction of patients with heart failure with preserved
EF have mild reductions in LV systolic function
measured as GLS (Figure 24).128,209 Therefore, when
conventional parameters of diastolic function are
nonconclusive, a finding of reduced absolute GLS
strengthens the suspicion of heart failure with pre-
served EF. Furthermore, there are several specific
cardiomyopathies with normal EF, for which
segmental strain maps provide clues about the sub-
strate of heart failure with preserved EF. Some of
these cardiomyopathies are discussed in other parts
of this document (eg, cardiac amyloidosis).
LA strain by echocardiography. LA strain imaging was
recently introduced as a method to evaluate LA
function. Both LA reservoir strain and pump strain
are closely related to LV mechanical function and may
be used clinically as markers of LV filling pressure.
Figure 25 illustrates the strong association between
LA reservoir strain and LV systolic function measured
as GLS. This association is explained by the tethering
of both chambers to the mitral ring so that LV longi-
tudinal shortening exerts a direct stretching effect on
the atrium.28,111,210 In addition to GLS, LV filling
pressure is an independent determinant of LA reser-
voir strain. This may reflect stiffening of the atrial
wall due to chronic remodeling in response to long-
standing high LA pressures. In addition, because of
the curvilinear shape of the LA passive pressure-
volume curve, there is an increase in LA operative
stiffness when LA pressure becomes elevated and
therefore less increase in LA volume for a given in-
crease in pressure. Finally, LA volume is a third in-
dependent determinant of LA reservoir strain.210 This
is because strain is relative change, and therefore a
larger atrium can accommodate a given blood volume
with less strain than a smaller atrium. As illustrated in
Figure 25, LV GLS was the strongest determinant of
reservoir strain, followed by LV filling pressure, and
LA volume was only a weak determinant.
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As illustrated in Figure 25, LA pump strain is also
associated with LV filling pressure. This reflects that
LA active shortening is determined by atrial preload,
afterload, and contractility. LA preload may be rep-
resented by LA pressure at onset atrial contraction
and LA afterload by LV end-diastolic pressure. The
afterload dependency implies that the elevation of
end-diastolic pressure leads to a reduction in LA
pump strain. Furthermore, reduced LA contractility,
as in atrial myopathy or atrial stunning following
atrial arrhythmia, is associated with low values of LA
pump strain, which are an important confounder
when using LA pump strain to evaluate LV filling
pressure.

Figure 25 illustrates determinants of LA reservoir
and pump strain in a study that included patients
with a wide range of cardiac diseases.111

LA pump strain has essentially similar correlation
with LV filling pressure as reservoir strain, and when
tested as predictors of LV filling pressure, accuracy
was similar for the 2 strains.111 A limitation of pump
strain, however, is that measurements are sometimes
not feasible when heart rate exceeds 100 to 105 beats/
min, because of loss of the inflection point that defines
the onset of atrial contraction. LA reservoir strain has
the largest body of evidence supporting its diagnostic
and prognostic value.122,211-214 In atrial fibrillation,
pump strain is absent, and there is need for further
studies to determine the utility of measuring reservoir
strain.111 In a recent study it was suggested that LA
reservoir strainmay be used in combinationwith other
echocardiographic parameters to assess LV filling
pressure in atrial fibrillation.215

When using LA strain to assess diastolic function,
elevated LV filling pressure is reflected in reductions
in LA reservoir and pump strain (Figure 25).216,217

Recent studies have shown that LA strain has a
stronger correlation with LV filling pressure than LA
volume index.111 Whereas reservoir strain <19% to
23% is considered abnormally low, somewhat lower
values are used as marker of elevated LV filling
pressure. Values of reservoir strain <18% may be used
as sign of elevated LV filling pressure, defined as
pulmonary capillary wedge pressure >12 mm Hg.111

When using pulmonary capillary wedge
pressure $15 mm Hg as a criterion for elevated filling
pressure, LA reservoir strain <16% may be used as
sign of elevated filling pressure. For LA pump strain
in young individuals (<40 years), the lower limit for
normal reference values is markedly lower than in
older individuals,108 which complicates the use of
this parameter. However, in middle-aged and older
individuals, values of LA pump strain <8% are
considered a sign of elevated LV filling pressure.111
The association between LA strain and LV filling
pressure is strongest in patients with reduced
LVEFs.111

High normal absolute values for LA pump strain
(>14%) in combination with normal LV GLS (>18%)
identified normal LV filling pressure with high accu-
racy.111 Apart from this combination of LA pump
strain and GLS values, pump strain provides essen-
tially similar information as reservoir strain.111

Importantly, the associations between LA strains and
LV filling pressure are not sufficiently strong to allow
LA strain to be used as single parameter of for the
assessment of LV filling pressure when making clin-
ical decisions.209 A recent study suggested using a
combination of mitral E/A ratio and LA reservoir
strain to differentiate between normal and elevated
LV filling pressures in patients suspected of having
precapillary pulmonary hypertension.218

LA strain by CMR. In addition to the role of CMR as
reference method for measurement of LA volume,
there is increasing clinical interest in using CMR FT to
measure LA strain. LA strain by CMR FT has high
feasibility and good reproducibility and is increas-
ingly used in research studies.219 As CMR FT provides
comprehensive and accurate diagnostic information
on both LA volume and function, it may have a large
potential as a method for use in clinical routine for
the evaluation of patients suspected of heart failure
as well as other cardiovascular disorders.

COMPARISON OF CMR

AND ECHOCARDIOGRAPHY

The technical advantages and limitations of clinically
used strain methods are summarized in Table 1. STE is
considered an accurate and convenient method to
assess myocardial strain and is widely available. It
provides angle-independent and objective quantifi-
cation of myocardial deformation. Despite this,
echocardiography can be affected by poor acoustic
windows, as in patients with lung disease and in
obese patients. Although CMR techniques are inde-
pendent of acoustic window, have larger fields of
view, and allow good data acquisition independent of
body habitus, they tend to have longer acquisition
times and poorer spatial and temporal resolution.
High cost, limited availability, and patient factors
such as claustrophobia or implanted cardiac devices
limit the widespread use of CMR FT.

As shown by Amzulescu et al220 in a study
comparing 2D STE and CMR tagging, overall accuracy
was confirmed for both methods, as they agreed well
when measuring global systolic longitudinal and
circumferential strains. For regional strains, however,



HIGHLIGHTS

� LV GLS by STE is a sensitive method to
diagnose mild systolic dysfunction.

� LV segmental strain maps can provide
diagnostic clues in several
cardiomyopathies.

� LA strain is a strong marker of LV filling
pressure.

� Myocardial strain imaging by STE and
CMR is ready for clinical implementation.
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CMR tagging was superior to STE to detect infarcted
segments. An additional advantage of CMR, when
combined with late gadolinium enhancement, is
diagnostic information regarding scarring and
fibrosis, which can be obtained with little prolonga-
tion of the study.

Currently, CMR FT is the most widely applied CMR
technique. In large clinical cohorts, CMR FT yields
relatively good inter-reader and intrareader repro-
ducibility for both LV and RV systolic and diastolic
global parameters.221 As with STE, strain values
derived from CMR FT show a significant intervendor
difference.222 STE and CMR FT strain parameters
show in general a good correlation, although CMR FT
strain values tend to be lower.223 In CMR images,
tracking algorithms cannot rely on intramyocardial
speckles as in STE, as the myocardium appears as a
homogeneous structure. On the contrary, myocardial
contours (endocardium or epicardium) are relatively
sharp and detailed and are therefore used for tracking
in CMR FT. Segmental strain measurements assessed
using CMR FT show high variability due to a lack of
trackable features within the myocardium and should
not be used in the clinic.

VENDOR DEPENDENCY OF

STRAIN MEASUREMENTS

For both echocardiography and CMR, strain mea-
surements are subject to clinically relevant inter-
vendor variability.30,40,95,222,224 In an intervendor
comparison of strain by STE, GLS values were re-
ported to differ up to 3.7 percentage points (strain
units)40 among different vendors, indicating differing
performance of different tracking algorithms. A very
recent repetition of this study showed a favorable
convergence of measurements of clinical strain
tracking software solutions.225 Furthermore, different
tracking approaches (endocardial and/or epicardial vs
full wall tracking) lead to different results.40,88 As
illustrated in Figure 18B, an ROI that includes only the
endocardium and the inner layer of the LV wall gives
higher absolute strain values than an ROI that in-
cludes the entire wall thickness (full wall tracking).
Normative recommendations from professional soci-
eties based on available evidence are needed to
overcome this problem.

Limited data exist regarding vendor differences in
RV and atrial strain assessment. So far, intervendor
variability does not seem to dominate over the mea-
surement variability of the parameters,95 but larger
studies on this issue are ongoing.

Echocardiographic 3D LV data acquisition and
postprocessing are strongly vendor specific. The
intervendor variability of strain measurements is very
high, and the degree of variability varies among
different 3D strain parameters, with the highest
variability for twist and the lowest for GLS.30

CMR FT has limited accuracy in regional strain
analysis, whereas GLS measurements show accept-
able accuracy. Nevertheless, intervendor differences
of CMR global strain measurements are significant,
and repetitive measurements should be compared
only when performed using the same vendor’s
equipment and software.222,226 Segmental strain
analysis with CMR cannot be recommended.
FUTURE DIRECTIONS

The clinical application of 2D strain imaging has
grown tremendously in recent years, and measuring
global strain by echocardiography has become widely
adopted as A standard parameter for the assessment
of myocardial function. Efforts of the imaging soci-
eties to provide guidance on how strain should be
assessed in a standardized manner may have
contributed to this success.23,24 However, several
challenges remain. Most important, companies still
use different default settings for strain acquisition
and reporting. A new joint consensus document of
the European Association of Cardiovascular Imaging
and the American Society of Echocardiography is in
preparation that will further clarify the recommen-
dation from the user’s perspective. Furthermore,
measurement of strain in single LV segments has
relatively high variability. Potentially, analytical ap-
proaches that focus on the shape of segmental strain
curves and supported by artificial intelligence will be
more useful than just measuring a single segmental
strain value. Furthermore, segmental strain maps,
which are already implemented in the study of
patients with suspected cardiomyopathy, may have
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potential in the diagnostic work-up of other cardiac
diseases as well.

The potential of using myocardial strain rate in
clinical routine is limited by the frame rate of the
technology. Technological advancements, such as
high–frame rate imaging,35 may help overcoming
this limitation. This would allow the reliable
assessment of strain rate and provide a parameter
that is more closely linked to contractility than
strain. Furthermore, short-lived events, as during
LV isovolumetric phases, and cardiac function dur-
ing stress echocardiography could be better
analyzed. Current experience with high–frame rate
STE is limited to a few research laboratories, but
first attempts have been made to translate the
technology to clinical practice.

Both 3D STE and CMR strain imaging have the po-
tential to overcome some limitations of 2D STE in the
assessment of complex cardiac mechanics. The
establishment of normal reference values are essen-
tial before the widespread clinical use of 3D STE and
CMR strain imaging.

Advances in artificial intelligence technology will
further improve reproducibility and workflow effi-
ciency of CMR and echocardiographic measurements,
including strain. Artificial intelligence–automated
segmentation of the LV myocardium for FT or DENSE-
derived strains provide comparable strain values as
manual segmentation.227,228 Fully automated mea-
surements of GLS using deep learning technology
remove the need for user interaction and may help
increasing efficiency, precision, and reproducibility
of strain measurements.229,230 Open-source, vendor-
independent artificial intelligence–based strain
measurement approaches are promising231 and might
promote the widespread use of strain imaging in
clinical practice. Furthermore, artificial intelligence
algorithms integrating strain information may in
the future aid in determination of diagnosis and
prognosis of patients.159,232,233
Future studies should explore how strain imag-
ing can be combined efficiently with imaging of
cardiac structure, myocardial perfusion, and meta-
bolism. Furthermore, the implementation of strain
imaging in point-of-care settings and in first-line
health care is a growing demand that should be
met by the use of semiautomated approaches,
artificial intelligence, and telemedicine guidance for
image interpretation.

Ultimately, the clinical value of applying strain
imaging technologies depends upon their contribu-
tion to patient management in terms of cost efficiency
and impact on health outcome. Relatively few of the
large number of imaging modalities presently avail-
able have proven added value on top of conventional
and simpler diagnostic methods. There is a need for
prospective clinicals studies that explore and define
the added value of strain imaging when making
clinical decisions.
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