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ABSTRACT

The characterization and assessment of soil functions is a prerequisite for agricultural and environmental policies aimed at
soil health. However, there is a lack of satisfactory models for the assessment of soil functions supply to support national and
intergovernmental initiatives. In this study we fill this gap by restructuring models developed to assess the multifunctionality of
agricultural soils at the field scale. The multi-criteria decision models rely on soil properties, site characteristics and management
information to assess the following five soil functions: (1) water regulation, (2) climate regulation, (3) nutrient cycling, (4) primary
productivity and (5) provision of habitat for biodiversity. We develop models to assess soil functions supply at regional and na-
tional scales by adapting their structure to cope with the general lack of information on soil management at larger geographical
scales. The restructured models are verified and a sensitivity analysis of the new model structure is performed. We further ap-
plied a comparison of the upscaled models with results from validated field-scale models using real data from 94 sites spanning
across 13 European countries. We found that the upscaled models showed a similar sensitivity to the variability of the input data
from the 94 sampling sites as the base models from which they were developed and that their overall supply is expected to be
comparable. We describe the model structure of the upscaled models as well as their qualitative scales and integration rules. We
propose the application of the models can serve for large-scale assessment of soil functions supply as part of soil health assess-
ment for regional and national environmental and agricultural policies.

1 | Introduction

Soil is an essential part of terrestrial ecosystems because it pro-
vides habitats for biodiversity, supports plant growth and pri-
mary production, is a medium for the recycling of nutrients and
regulates the quantity and quality of water flows (Blum 2005).
Soil functions emerge from bundles of soil processes in inter-
action with soil properties (Biinemann et al. 2018) and, in turn,
when considering the wider human demand, can determine
the delivery of ecosystem services (Bouma 2014; Adhikari and
Hartemink 2016). The notions of soil functions and services
have been recognized in recent national and intergovernmental

agricultural and environmental policies focused on the improve-
ment of soil health. The European Union's proposed Directive
on Soil Monitoring and Resilience, for example, aims to achieve
soil health on a European scale by 2050 by ‘maintaining or en-
hancing the ecosystem services provided by the soil without
impairing the functions enabling those services’ (European
Commission 2023) and by establishing soil districts (Wadoux,
Courteille, et al. 2024). The Global Soil Partnership of the Food
and Agriculture Organization of the United Nations (FAO and
ITPS 2015) is committed to global initiatives that recognize
the contribution of soils to ecosystem services. Considering
the need to support policy and management of land resources,
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Highlights

« Adapted models from field-scale soil function assess-
ment models.

+ Models assess the supply of five soil functions.

» Models adapted for the regional or national scale eval-
uation of soil functions.

 Support assessment and implementation of environ-
mental and agricultural policy.

the question arises as to how soil functions can be effectively
characterized and their supply assessed at these policy decision-
relevant levels.

Several methods for assessing soil functions are known, many of
which have been developed under the umbrella terms of soil qual-
ity (Blinemann et al. 2018), soil health (Kibblewhite et al. 2008)
and more recently soil security (Evangelista et al. 2023). Soil
functions supply is usually estimated based on measured val-
ues of soil properties used as indicators of a given soil functional
capacity. Popular examples of indicators include soil organic
carbon content, nutrients, and bulk density (Van de Broek
et al. 2019). Greiner et al. (2017) defined three approaches to
soil function assessment. The first approaches are often referred
to as indicator or static approaches, in contrast to the dynamic
approach, which includes biophysical or process-based models.
Using biophysical models is likely the preferred method for soil
function assessment, as it better represents the underlying soil
processes that deliver these functions. Examples of biophysical
models are APSIM (Keating et al. 2003) and BODIUM (Konig
et al. 2023). This approach is the most resource-intensive and
time-consuming, as each case study requires substantial effort
for data collection, processing, parameter calibration, mapping
and validation. Despite some efforts (e.g. in Leip et al. 2008), out-
puts from static and indicator approaches are easier to commu-
nicate and are currently better suited for large-scale planning
and scoping activities. In the indicator or static approaches, indi-
cator values are normalized to a unitless value, usually between
0and 1, and aggregated to a single estimate of either a particular
soil function or, in some capacity, attempts have been made to
derive a single index for soil health. In Halvorson et al. (1996),
for example, six continuous indicators (e.g. electrical conductiv-
ity or total inorganic N) were measured at 220 locations. These
continuous indicators were then transformed into indicators
with nominal values depending on whether they exceeded a
threshold value or not. Soil quality was considered satisfactory
if no more than one indicator scored below its threshold value.

Soil functions supply is based on several indicators which are
aggregated into a single value or index that describes the overall
supply of the evaluated function. Rabot et al. (2017) classified ag-
gregation methods into expert-based approaches in which scores
according to thresholds define how a soil function is supplied
(e.g. Lilburne et al. 2004), while statistical approaches utilize al-
gorithms and statistical analyses for the selection of appropriate
indicators from a wider set of parameters and the definition of
scores and aggregation (e.g. Bastida et al. 2006). The first aggre-
gation method leads to qualitative and the second to quantita-
tive estimates, which can take various forms, such as decision

trees, influence diagrams and multi-criteria decision models
(MCDM). The MCDM has been recognized as a useful method
for integrating different qualitative and quantitative indicators
for evaluating variables in many application domains (e.g. Van
Calker et al. 2006; Sinclair et al. 2015; Ikram et al. 2024).

This study builds on the work of Debeljak et al. (2019), who
developed and validated a field-scale decision support system
(DSS) for farmers to assess and manage the multifunctional-
ity of their soils. The DSS called Soil Navigator (http://www.
soilnavigator.eu/) is based on MCDM where Decision Expert
(DEX, Bohanec et al. 2013) utilizes an integrative methodology.
The resulting five qualitative MCDM corresponded to five soil
functions described by Schulte et al. (2014) as (1) provision of
food, fibre and fuel (primary productivity), (2) soil as a habitat
for biodiversity (habitat provision), (3) the ability of a soil to re-
ceive, recycle and supply nutrients to plants (nutrient cycling),
(4) water regulation and purification, and (5) the capacity of a
soil to store carbon and reduce losses of greenhouse gases for
climate regulation. Before the models were integrated into the
DSS Soil Navigator, they underwent a verification and validation
process carried out in a series of studies focusing on specific soil
functions (the function soil biodiversity and habitat provisioning
in Van Leeuwen et al. 2019, for example), while the synergies
and trade-offs between these five functions were elaborated in
Zwetsloot et al. (2021) and Vazquez et al. (2021). In these stud-
ies, in addition to soil properties and site characteristics, man-
agement information was also used to estimate soil functions
supply, as they were originally developed as a tool that can be
applied at a scale that meets the needs of farmers and farm advi-
sors (Vazquez et al. 2021).

Building on the successful application of the methodology for
the development of field-level soil function assessment models,
this study aims to apply the same MCDM framework using the
integrative DEX methodology for the development of models for
the assessment of soil functions supply at the regional and na-
tional scales. Hereafter, scale refers to the geographical extent
or areas under study. Field scale refers to the level of individual
farms or plots, where data collection, monitoring or interven-
tions are applied directly to these specific management units.
Regional scale, used hereafter, refers to a broader geographic
area that may encompass multiple fields, farms or even admin-
istrative zones (e.g. districts, provinces or watersheds). Regional
assessments complement field-level analyses: they help identify
spatial patterns, highlight local areas of interest and determine
where targeted support may be most needed to maintain or en-
hance soil functions.

Our research has several objectives. First, we aim to adapt
existing decision models for soil function supply assessment
from the field scale to the regional scale. Detailed soil man-
agement information that is readily available at the field level
is generally lacking at the regional and national levels, mak-
ing the calibration and use of the developed models inappro-
priate. Next, we verify and perform a sensitivity analysis of the
new model structures to iteratively refine their structure and
achieve realistic outputs. We report the MCDM models that
are designed to support regional and national decision makers
in environmental and agricultural policy. Finally, we provide
an overview of the strengths and weaknesses of the models
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and discuss the future potential of large-scale assessment of
soil functions through qualitative multi-attribute modelling.
In this way, we aim to bridge the gap between current and
future research efforts in regional and national soil function
supply assessment.

2 | Qualitative Multi-Criteria Decision Models

The Soil Strategy 2030 and the communication for a proposed
Directive on Soil Monitoring and Resilience aim to improve
the state of soils across Europe to a healthy status by 2050
(European Commission 2021, 2023). A healthy soil consti-
tutes a soil that is not degraded and therefore has the capac-
ity to provide its multiple functions and services (European
Commission 2021). While assessing the multifunctionality of
soils at the local scale has been the basis of many research pa-
pers (e.g. Calzolari et al. 2016; Zwetsloot et al. 2021; Vazquez
et al. 2021), which combine information on soil properties
with environmental factors and often management practices,
this is more challenging at a pan-European scale. Assessing
multifunctionality at the European scale is perceived as a dif-
ficult task, as it requires the amalgamation of information on
soil parameters, environmental conditions and land manage-
ment factors at a large spatial extent, and yet this information
needs to remain meaningful in assessing the underlying rela-
tionships that define multi-functionality. While information
exists on environmental conditions at larger spatial extents,
detailed soil property information is limited to pan-European
soil monitoring, such as the LUCAS topsoil survey (Téth
et al. 2013), which collects primarily soil chemical data with a
small set of soil physical and biological data (the latter at a lim-
ited number of sites). The LUCAS Topsoil survey also provides
information on land-cover parameters, but not on manage-
ment practices applied. Thus, the application of models devel-
oped for the assessment of multifunctionality at the local scale
is often too demanding for the data available at the European
extent. This begs the question: what level of information is
needed at a pan-European scale of assessment? Does it require
detailed point-specific information that incorporates detailed
management information at the field level, or should the model
provide broad trends in the potential soil multifunctionality,
considering the genoform (soil forming conditions) that can
then be further investigated at a more appropriate scale of as-
sessment in combination with management practices at the
local scale? The search for regulatory and management mea-
sures for soil multifunctionality therefore remains a complex
decision problem that is currently the basis for the proposed
Directive on Soil Monitoring and Resilience, which aims to
collect sufficient information at a pan-European scale to en-
able assessment of soil health (European Commission 2023).

To address this complex decision problem, we use multi-criteria
decision analysis (MCDA, Greco et al. 2016) for the evaluation
of soil functions. MCDA, which is an early form of artificial in-
telligence (Wadoux 2025), involves the formulation of complex
decision problems, the identification of key objectives, the for-
mulation of criteria, the development of multi-criteria decision
models and their use for decision-making tasks such as the
selection, evaluation, ranking and analysis of decision alterna-
tives. Based on the specifics of a decision problem at hand, data

and expertise availability and required features of soil function
models, the DEX methodology of MCDA (Bohanec 2003) was
chosen. DEX has been found particularly suitable for sorting and
classification decision tasks aimed at assigning decision alter-
natives to predefined categories, which can be either preferen-
tially ordered (‘sorting’) or unordered (‘classification’) (Craheix
et al. 2015; Meunier et al. 2022). DEX is implemented through
a MCDM where a decision model is developed first and inde-
pendently from individual decision alternatives (Bohanec 2017).
These alternatives are then evaluated by the model, first by scor-
ing them for each criterion and then aggregating these evalua-
tions into a global score (Bohanec 2003).

MCDM built by DEX methodology consists of hierarchically
structured attributes. Attributes in a DEX model represent ob-
servable properties of the decision problem and decision alter-
natives. Each attribute is defined as an ordered set of qualitative
(i.e. symbolic) values that rarely consist of more than five values.
Scale values are represented by words (e.g. high, medium and
low) rather than numbers, and they can be either ordered or un-
ordered. Attributes are aggregated into a hierarchical structure.
Attributes without parents are called roots and represent the
main outputs of the model. Attributes without descendants are
called basic (i.e. input) attributes and represent model inputs.
Attributes with descendants and parents are referred to as ag-
gregate attributes and are also considered partial intermediate
outputs of the model. The structure is based on an aggregation
function represented by decision tables, which serve for the eval-
uation of an aggregate attribute based on the values of its im-
mediate descendants in the model structure. The decision table
provides rules that define the elementary decision rules that ag-
gregate child attributes into a parent attribute.

In the DEX methodology, utility functions, also referred to as ag-
gregation or integration functions, combine values of lower-level
qualitative attributes into higher-level evaluations within a hier-
archical decision model. Formally, each DEX utility function is
an aggregate function:

fiDy XDy X -+ XD, =D, €))

where Dx,» and D, are finite, linearly ordered sets of qualitative
values (e.g. low, medium, high or acceptable, good, excellent).
These functions are defined using decision tables that compre-
hensively enumerate ‘if-then’ rules to specify the output for
every possible input combination. In this way, DEX aggregation
functions provide deterministic, complete and interpretable
mappings that satisfy the formal definition of utility functions
in multi-criteria decision-making theory (Bohanec 2022).

Once the DEX MCDM is developed, it serves for the evalua-
tion and analysis of decision alternatives. Each alternative is
represented by a set of values of input attributes describing the
assessed item (e.g. the organic carbon content of a soil sam-
ple). Once the DEX model is populated by input data, the model
provides an evaluation of the alternatives by the calculation of
the output values. The evaluation is carried out as a bottom-up
aggregation of model inputs towards its outputs, according to
the hierarchical structure of attributes and associated aggre-
gation functions. The main outputs are assigned to the root
attribute, while values assigned to the remaining aggregate
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attributes provide additional information about the assessed
alternative and help explain the main result (i.e. the value of
the root attribute).

Since we are dealing with qualitative models, input data have to
be transformed to a required format. In the case of numerical
values of soil properties, data discretization has to be applied.
The discretization requires a definition of thresholds. In case an
input attribute is calculated or synthesized from several vari-
ables, the mathematical function for each synthesized attribute
has to be predefined.

The DEX MCDM were built with the software modelling tool
DEXi (Bohanec 2023a). DEXi is a desktop application for MS
Windows that supports the interactive creation and editing of
all components of DEX models (attributes, their hierarchy and
scales, decision tables and alternatives) and provides methods
for evaluating and analysing decision alternatives (what-if anal-
ysis, ‘plus-minus-1’ analysis, selective explanation, comparison
of alternatives, option generator) (Bohanec 2017, 2022). There
are also additional DEXi-related software tools that facilitate
the use of DEXi models in different environments, such as com-
mand line, Java, C# and HTML (https://dex.ijs.si/dexiclassic/
dexiclassic.html).

3 | Methods
3.1 | Base Models

We have used the concept of base models to develop decision
models for the assessment of soil functions. Base models pro-
vide the core structure and underlying principles on which more
specific and complex models can be built and adapted. In our
study, we used the soil function assessment models developed by
DEX methodology described in the previous section which are
integrated into Soil Navigator DSS (Debeljak et al. 2019). Base
models address cropland and grassland soil. More information
on the models and structures as well as on validation can be
found in the previously published studies of Sandén et al. (2019),
Van Leeuwen et al. (2019), Schroder et al. (2016), Trajanov
et al. (2019), Van de Broek et al. (2019) and Wall et al. (2020)
for the primary productivity, habitat for biodiversity, nutrient
cycling, climate regulation and water regulation functions,
respectively.

Having outlined the general concept of the base models ap-
proach, the following section provides a brief overview of the
individual base models of the five soil functions.

The base model for assessment of primary productivity con-
sists of sub-models that describe the environmental conditions,
the inherent soil conditions (physical, chemical, biological), the
soil management and crop properties. Primary productivity,
as the top attribute, integrates the sub-models, resulting in an
assessment of the soil's ability to produce biomass. A detailed
description of the primary productivity model can be found in
Sandén et al. (2019) and Wenng et al. (2018).

The nutrient cycling base model uses three integrated sub-
modules to assess a soil's ability to provide and cycle nutrients.

These sub-modules address (i) the nutrient fertilizer replace-
ment value, which indicates the extent to which nutrients from
organic residues can replace manufactured fertilizers, (ii) the
nutrient uptake efficiency of plants, which represents the effec-
tiveness with which plants use the available nutrients and (iii)
the harvest index, which reflects the proportion of nutrients
taken up by plants that are ultimately removed from the field by
harvesting (Schrdder et al. 2016; Trajanov et al. 2019).

The base model for climate regulation comprises three mod-
ules: carbon sequestration, N,O emissions and soil CH, emis-
sions. The carbon sequestration module estimates the balance
between carbon inputs, carbon losses and soil organic carbon
concentration. The N,O emissions module distinguishes be-
tween direct emissions that occur in agricultural fields and
indirect emissions that result from emissions occurring from
NO, and NH, losses. Finally, the CH, emissions module eval-
uates the effects of artificial drainage on organic soils. A more
detailed description of the base model can be found in Van de
Broek et al. (2019).

The base model for the water regulation and purification
soil function integrates three modules that represent the pri-
mary water pathways in the soil: water storage, water runoff and
infiltration. Water storage is determined by attributes that assess
the water holding capacity and moisture deficit of the soil. Water
runoff is estimated using attributes that consider water, sedi-
ment and nutrient losses. Finally, the water infiltration module
uses attributes to assess the drainage of excess water beyond the
storage capacity of the soil and the resulting nutrient leaching
and losses (Wall et al. 2020).

The base model for soil biodiversity and habitat provision
comprises four interlinked aspects: soil nutrients (assessing
their status, trends, turnover and availability), soil biology (ana-
lysing the diversity, biomass and activity of soil organisms), soil
structure considering soil properties at meso and macro levels
and finally soil hydrology, which examines soil moisture and
water flow pathways. A more detailed description of the base
model can be found in Van Leeuwen et al. (2019).

The base models presented in Debeljak et al. (2019) for esti-
mating different soil functions share the same basic structural
features (e.g. hierarchical structure, number of attributes to be
aggregated—up to three). For all five models, a DEX structur-
ing methodology for a systematic decomposition of complex
soil functions into manageable sub-components (e.g. modules)
has been used. However, despite this common methodological
framework, there are also differences between the models. As
shown in Table 1, the structural features of the individual mod-
els differ. The water regulation and purification model and the
biodiversity and habitat model are more complex than the other
models. This reflects the inherent complexity of these two soil
functions, which are influenced by a larger number of factors.
In contrast, models for functions such as primary productivity
or nutrient cycling may rely on a less extensive set of attributes
and rules, reflecting their simpler relationships to specific soil
properties. In addition, a set of 75 unique attributes across the
five sets of input attributes is required to populate all five base
models. These structural properties provide insight into the
strengths and limitations of each base model in representing the
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TABLE1 | Summary of the structure for the five soil function models, from Debeljak et al. (2019).

Number of Number Number of Number of
Total number aggregated of input hierarchical integration
Soil function of attributes attributes attribute levels rules
Water regulation 116 77 39 6 800
Climate regulation 54 21 19 5 301
Nutrient cycling 51 27 24 5 302
Primary productivity 42 16 25 4 294
Habitat for biodiversity 55 24 31 5 612

different soil functions supply and their ability to be scaled for
application at the regional level.

3.2 | Refining Base Models for Regional
Application

While the base models for Soil Navigator have been developed
for application at the field level, their direct application at the
regional level is constrained by the lack of detailed informa-
tion on soil management. To overcome this limitation and en-
sure the applicability of the model across different assessment
scenarios, we refined the base models described in the previ-
ous section by upscaling them for application at the regional
level. This upscaling process involved an analysis of the base
models and their potential for regional application. Such a re-
view was crucial in identifying and refining the structure of
the base models to ensure their functionality in the face of po-
tentially limited regional data availability, while maintaining
their ability to reliably assess soil functions supply at a larger
(i.e. regional) scale.

The upscaled models were developed within the framework of
MCDA using the DEX modelling methodology, as described in
Section 2. We found that this approach is well suited to deal with
complex decision problems such as the assessment of soil func-
tions supply at the regional level. The implementation of MCDA
through DEX modelling enabled the clear formulation of the
main modelling objectives, the development of integration rules
and the construction of upscaled multi-criteria models in the
form of MCDM specifically tailored to the regional data avail-
ability and assessment needs.

Since the DEX models work with qualitative data, the numerical
input data must be transformed through a discretization process
that includes the definition of a threshold. For input attributes
derived from multiple quantitative variables, mathematical
functions have been predefined to ensure consistent calcula-
tions and their further discretization.

DEXi software was used to create, edit and analyse the upscaled
DEX models. In addition, the functions of this decision model-
ling tool were used to evaluate and analyse the behaviour of the
upscaled models (e.g. sensitivity, calibration and verification), to
facilitate the interpretation of the results, and to support various
tasks such as what-if analyses and selective explanations of as-
sessed soil functions.

3.3 | Verification and Sensitivity Analysis
of Upscaled Models

Once the upscaled models were structured, a verification was
conducted to ensure that their internal operational logic and
behaviour worked as intended. We simulated data from poten-
tial soil samples covering a wide range of input data variability.
The models' results were compared with the expected supply of
the soil functions. Where the model results differed from ex-
pectations, the integration rules were carefully reviewed and,
if necessary, adjustments were made to the model structure
itself.

Following verification, a sensitivity analysis was performed.
The sensitivity of the DEX models is based on the contribu-
tion of each attribute to the results of the model, as expressed
by attribute weights. Unlike traditional MCDM methods that
rely heavily on weights to define the importance of attributes to
model outputs (Greco et al. 2016), the DEX qualitative modelling
method does not work with weights associated with qualitative
attributes and decision rules. To achieve consistency between
MCDM and DEX regarding attribute weights, DEX employs an
estimation of the weights by approximate bi-directional trans-
formations between weights and integration rules in decision ta-
bles. These transformations are explained in detail by Bohanec
and Zupan (2004) and Bohanec (2020).

As the attributes in our models have different value scales (e.g.
Low, Medium and High), the normalized weights (from 0% to
100%) were used to determine the relative importance of each
attribute to its integrated attribute (local normalized weight) or
the value of the top (root) attribute (global normalized weight)
(Bohanec 2020). Attributes with negligible importance were
removed from the model structure (i.e. with weights of <1%),
which required corresponding adjustments of the model struc-
ture and the rules within the integration tables. A verification
and sensitivity analysis of such a refined model was repeated
until the structure of the model was recognized as suitable for
addressing its modelling tasks.

3.4 | Validation of Upscaled Soil Function Models

The validation of qualitative multi-attribute models for the as-
sessment of regional soil functions poses a unique challenge,
as a direct comparison of predicted values with known real
observations on soil function supply at the regional scale is
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not possible because such data do not exist. To overcome this
challenge, we used an approach adapted to the limitations of
data availability. The approach consists of two steps. The first
step is the sensitivity analysis of the upscaled soil function
models with respect to the variability of the input data. Since
regional soil properties show considerable spatial variability,
we tested the sensitivity of the models with data from different
pedoclimatic (soil and climate) and land-use conditions. We
used the Landmark H2020 dataset (Saby et al. 2020), which
includes data collected at 94 sites in 13 countries, represent-
ing five climate zones and two land use types (cropland and
grassland). Detailed information on the selection of sampling
sites, the sampling method used and the field and laboratory
measurements can be found in Zwetsloot et al. (2021). Before
using this dataset with the upscaled models, we ensured its
applicability by checking and adjusting the consistency of the
input attribute scales and their discretization thresholds with
the input data requirements of the models. Once the dataset
was harmonized for use by the upscaled models, the models
were populated with the input data, and the results were col-
lected. Note that missing measured data (e.g. tillage) was ob-
tained from existing maps. This specific aspect is covered in
the Discussion.

The second step of our approach was to compare the results
of the upscaled models with the results of the validated base
models applied to data from the same sampling sites using Soil
Navigator (Debeljak et al. 2019). Although the base models work
at the field level and the upscaled models at the regional level,
this comparison provides valuable insights. As the base models
are validated, similarities in the relative ranking of soil func-
tional supply between the two scales (regional and field) argue
in favour of the validity of the upscaled models. This comparison
essentially utilizes the existing validation of the base models to
provide confidence in the ability of the upscaled version to cap-
ture similar trends.

For all 94 sampling sites, we counted how often the results of
the individual soil function models were categorized as Low,
Medium or High. We did this for each of the five soil func-
tions and for both types of land use (i.e. grassland and crop-
land). The distribution of these results was then compared
with the distribution of results from Soil Navigator (Debeljak
et al. 2019), which used data from the same sample sites. This
approach that utilizes sensitivity analyses and comparison
with base models enables some confidence in the results of
the upscaled models for the assessment of regional soil func-
tions. This method is of particular value because it solves the
problem of the lack of ground-truth data needed to evaluate
the performance of soil functions supply estimates at the re-
gional level.

4 | Results

Based on the methodological steps described above, the follow-
ing aspects of the models’ each functions were described:

« The model structure, which is described by an overview of
the hierarchical model, similar to Figure 2 for the water reg-
ulation function. It describes the number of input attributes

and aggregated attributes highlighting the changes that
have been made to the original base models to improve the
estimation of soil function at a large area.

« Qualitative scales of both input and aggregated attributes.

« Utility functions (integration rules), which are used to com-
bine information from different attributes to arrive at an
overall assessment of the soil function.

By following this consistent structure, the descriptions for each
upscaled model provide a comprehensive understanding of the
strengths and limitations of each model. Furthermore, the struc-
tured description facilitates the comparison between the struc-
ture of developed soil function assessment models on a regional
scale with the structural characteristics of the base models pre-
sented in Table 1.

4.1 | Water Regulation

The hierarchical structure of the upscaled model for an assess-
ment of the water regulation function is shown in Figure 1.
The model has 13 input attributes and 18 aggregated attri-
butes, of which three are module attributes and one is the root
attribute for the overall evaluation of the function. Five input
attributes (i.e. precipitation in winter, clay and organic car-
bon content, artificial and natural drainage) are included in
all three modules. The upscaled model has 50% fewer input
attributes than the base model of Wall et al. (2020).

The upscaled model retains the same scales of attributes that
were included in the original base model. Four types of qualita-
tive scales are used in the model, the most common of which is
the three-level scale of Low, Medium and High, with an ordering
scale depending on the attribute (indicated with the red, black
and green colours in the Supporting Information). In addition to
this three-level scale, three binary scales are used 12 times, for
example, to characterize the absence or presence (e.g. yes, no) or
a threshold value (e.g. above or below rooting depth) of an input
attribute feature.

Table 2 shows the utility functions represented as rules that are
used to integrate the three modules’ aggregated attributes into
the top root attribute, which represents the soil water regulation
function. The water regulation function is poorly supplied if one
of the three attributes has a low value. A majority of the medium
leads to a medium fulfilment, while a high fulfilment of the soil
function always occurs with at least two high fulfilments of its
sub-attributes, of which the remaining one must be medium or
higher.

4.2 | Climate Regulation

Figure 2 shows the upscaled model for the assessment of the
climate regulation function. The model has 10 input attributes
and 15 aggregated attributes, including three module attributes
and the root attribute for the soil function evaluation. Five
input attributes (i.e. artificial drainage, total N and organic car-
bon content, annual precipitation and temperature) are used
in more than one module. The upscaled model has 52% fewer
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FIGURE1 | Structure of the model for the water regulation function. Grey rectangles represent aggregated attributes, whereas coloured rectan-

gles are soil, management or environmental attributes.

input attributes than the base model of Van de Broek et al. (2019)
while other structural features of this model are listed in the
Supporting Information.

The upscaled model has nine different qualitative scales (see also
the Supporting Information) that were included in the original

base model. The most common scale is the three-value scale com-
posed of Low, Medium and High. This scale appears 17 times in
total and is ordered in both ways (i.e. Low can be either positive or
negative, see colours in the Supporting Information). In addition
to this scale, eight attributes have a three-value scale (e.g. Sand,
Silt or Clay), and four have binary scales (e.g. Organic or Mineral).
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TABLE 2 | Utility functions relating the function soil water regulation to its three modules.

Water storage Water runoff

Water drainage Water regulation

Low * * Low
* High * Low
* * High Low
Medium Medium > Medium Medium
Medium > Medium Medium Medium
> Medium Medium Medium Medium
> Medium Low Low High
High > Medium Low High
High Low > Medium High
Note: The asterisk “*’ denotes any of the three values of the scale.
Artificial drainage
CH, emissions
- Cover crops
Soil type Management

Indirect
N,O emissions

N,O emissions

Climate
regulation

Direct N,O emissions -

- NO3; and NH; losses —

Soil related

Artificial drainage

/ related

Soil related

Total N content

Annual precipitation

Soil drainage
Water

/ Total N content
Organic carbon content

Irrigation

e Annual precipitation

related

Annual temperature

Organic carbon content

Carbon storage Soil texture

Environment
related

- Soil function

[ Module attribute

- Soil attribute

Integrated attribute

Annual temperature

Annual precipitation

Il Management attribute

- Environment attribute

FIGURE 2 | Structure of the model for the climate regulation function. Grey rectangles represent aggregated attributes and coloured rectangles

are soil, management or environmental attributes.

Table 3 shows the utility functions relating the climate reg-
ulation function to its three subordinate attributes. The cli-
mate regulation is poorly supplied when at least one of the
attributes is poorly supplied too (e.g. high CH, emissions). A
medium fulfilment is obtained when there is a majority of me-
dium fulfilment, or when a balanced is obtained between high
and low fulfilment between attributes. The climate regulation
function of a soil is high when a majority of good fulfilment of
the attributes occurs or when there is a high fulfilment of the

carbon storage attribute with all other attributes supplied with
medium or higher.

4.3 | Nutrient Cycling
The hierarchical structure of the upscaled model for nutrient

cycling is shown in Figure 3. The model has 14 input attributes
and 17 aggregated attributes, including the root attribute for
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TABLE 3 | Utility functions relating the function soil climate regulation to its three module attributes.

Carbon storage N3O emissions CH,4 emissions ‘ Climate regulation
Low < Medium * Low

< Medium High * Low

* High High Low
Low Low * Medium
< Medium Low < Medium Medium
* Low High Medium
Medium Medium * Medium
Medium > Medium < Medium Medium
> Medium > Medium High Medium
High High > Medium Medium
> Medium Low Low High
High > Medium > Medium High

Note: The asterisk “*” denotes any of the three values of the scale.

the evaluation of the function and three module attributes. The
input attributes soil texture, natural drainage, annual precipi-
tation and days with average temperature above 5°C are used
more than once as input to the model. The restructured model
has 25% fewer input attributes compared to the original base
model of Schroder et al. (2016) and Trajanov et al. (2019).

The upscaled model for the nutrient cycling function has six
different qualitative scales, the most common of which is the
three-value scale of Low, Medium and High, with an order
changing depending on the attribute (see also the red and
green colour in the Supporting Information). In addition to
this three-value scale, there are seven attributes with another
three-value scale (e.g. Well drained, Moderately drained or
Poorly drained) and eight attributes with a binary scale (e.g.
Yes or No).

Table 4 shows the utility functions for relating the nutrient cy-
cling function to its three subordinate module attributes. The
nutrient cycling function is poorly supplied when at least two
attributes are poorly supplied too. Having one attribute with
a scale of Medium or Low leads to Medium nutrient cycling.
Having one attribute supplied at its maximum with the two
other attributes at the scale Medium or higher leads to High ful-
filment of the nutrient cycling function.

4.4 | Primary Productivity

Figure 4 shows the upscaled model for the evaluation of the pri-
mary productivity function. The model has 17 input attributes
and 11 aggregated attributes, including the root attribute for the
function evaluation and two module attributes. The restruc-
tured model has a reduction of 43% of input attributes from the
based model.

The upscaled model for the primary productivity function has
two different qualitative scales, the most common of which
is the three-value scale of Low, Medium and High, with an
order changing depending on the attribute (see also the red
and green colour in the Supporting Information). In addi-
tion, another scale is composed of the three values denoted

Unsuitable, Neutral and Suitable or Optimal. This scale occurs
for seven attributes.

Table 5 shows the utility functions for relating the primary pro-
ductivity function to its two subordinate module attributes. The
primary productivity function has a low fulfilment when the
soil is unsuitable or when the soil is neutral or worse and the
environment is unsuitable. A medium soil function fulfilment is
obtained when both soils and environment are neutral or when
a balance is obtained with a suitable soil but unsuitable envi-
ronment. A high primary productivity function fulfilment is
obtained when either of the two attributes is optimal or suitable
and the other is neutral.

4.5 | Habitat for Biodiversity

Figure 5 represents the upscaled model for the evaluation of
the habitat for biodiversity function. The model has 12 input
attributes and 12 attributes, including the root attribute for the
evaluation of the function, and three module attributes. The re-
structured model has 61% fewer input attributes compared to the
base model of Van Leeuwen et al. (2019).

The upscaled model for the habitat for biodiversity function has
four different qualitative scales, the most common of which is
the three-value scale of Low, Medium and High, with an order
changing depending on the attribute (see also the red and green
colour in the Supporting Information). In addition to this three-
value scale, there are 10 attributes with another scale, either
with three values (e.g. Poor performance, Moderate performance
or Good performance) or with two values (e.g. Yes or No).

Table 6 shows the utility functions of the habitat for biodiver-
sity function with its three subordinate module attributes. The
habitat for biodiversity has a low fulfilment when at least two at-
tributes have poor performance and the third one has moderate
performance or lower. A medium fulfilment of the function is
obtained when the majority of attributes have moderate perfor-
mance or when a balance between poor and good performance
is obtained. A high function fulfilment, conversely, is obtained
for either two attributes with good performance or one attribute
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with high performance and the two others with moderate per-
formance or higher.

4.6 | Verification and Sensitivity Analysis
of Upscaled Models

The weights of the attributes in Table 7 show how differently
the individual soil functions prioritize their contributing at-
tributes (modules). Examining these variations reflects our

N

I

N
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Structure of the model for the nutrient cycling function. Grey rectangles represent aggregated attributes and coloured rectangles are
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understanding of the relative importance of each attribute for a
given soil function, which was coded by integration rules formu-
lated based on our knowledge of soil functions and the knowl-
edge used in the construction of the base models.

In particular, the climate-regulating soil function is determined
by a relationship between carbon sequestration and greenhouse
gas mitigation. With the highest weight (43%) assigned to car-
bon storage, the model prioritizes the soil's ability to seques-
ter carbon. However, N,O emissions (39%) and CH, emissions
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TABLE 4 | Utility functions relating the function nutrient cycling to its three module attributes.

Mineralization Nutrient recovery Nutrient availability ‘ Nutrient cycling
Low Low * Low
Low * Low Low

* Low Low Low
Low > Medium > Medium Medium
< Medium > Medium Medium Medium
Medium * Medium Medium
> Medium Low > Medium Medium
Medium > Medium < Medium Medium
> Medium > Medium Low Medium
> Medium > Medium High High
High > Medium > Medium High

Note: The asterisk “*’ denotes any of the three values of the scale.

(17%) are also weighted significantly, which emphasizes their
importance alongside carbon sequestration. The nutrient cycling
soil function is determined almost equally by the modulus at-
tributes included (mineralization 35%, nutrient availability 30%
and nutrient recovery 35%). This even distribution of weights
shows that the model considers all aspects of the nutrient cycle
to be equally important for this soil function. For the primary
productivity soil function, soil properties (63%) take precedence
over environmental factors (38%) that influence plant growth. A
higher weighting of soil properties indicates that the inherent
characteristics of the soil itself, such as texture and organic mat-
ter content, were considered to be the most important factors for
plants growth. The weights of the attributes that determine the
water regulation soil functions are evenly distributed across all
three modulus attributes. This balanced approach illustrates that
the model considers all three aspects of water management, that
is, storing sufficient water, preventing excessive runoff and pro-
moting adequate drainage, to be equally important for this soil
function. Finally, for the habitat for biodiversity soil function, nu-
trient availability and soil structure were recognized as the most
important factors for promoting diverse soil communities. The
highest weighting of nutrients (42%) indicates that the availabil-
ity of nutrients is seen as the most important factor in supporting
a diversity of soil organisms, as is good soil structure (35%) with
its influence on suitable habitat conditions through soil aeration
and water infiltration. Hydrology (23%), which stands for water
availability for organisms, receives a slightly lower weighting but
still plays an important role in creating suitable habitats.

4.7 | Comparison of Upscaled Soil Function
Models Results

Figure 6 shows the distribution of results from Soil Navigator
(Debeljak et al. 2019) compared to that of the upscaled mod-
els. The frequency distribution of the qualitative results of
the upscaled and base models (Figure 6) shows that the up-
scaled models have a similar sensitivity to the base models of
soil functions. Thus, the upscaled models successfully capture
the variability of the input data from 94 sampling points in a
similar way to the validated base models. However, some dif-
ferences between the two distributions are visible, particularly
in the relative frequency of certain qualitative classes for the
primary productivity and climate regulation functions applied
to grassland.

5 | Discussion

Upscaling models from the field to the regional level was a
challenge, mainly because there is little detailed information
on land management practices at large geographical scales.
The Land Use and Coverage Area frame Survey (LUCAS)
dataset (Orgiazzi et al. 2018), for example, is the largest harmo-
nized soil database in the European Union but does not contain
soil management information beyond the usual dynamic soil
properties (e.g. organic carbon, bulk density). Similar types of
large-scale datasets without detailed management informa-
tion are found in the United States Soil Survey Geographic
Database (SSURGO, Soil Survey Staff 2017) and Australian
Soil Data Federator web API (Searle et al. 2021). We solved
this problem by refining the base models and using DEX meth-
odology, which has proven to be a flexible approach for the
development of soil function assessment models (e.g. Sandén
et al. 2019; Trajanov et al. 2019), especially in contexts where
data availability is limited. Its hierarchical structure facilitates
the decomposition of complex soil functions into manageable
sub-components and enables the integration of both qualitative
and quantitative data. This ability is especially useful when
addressing the qualitative nature of soil function assessments
and the scarcity of detailed data at the regional level. In our
case, the restructuring of the models was also guided by the
availability of management attributes at large scales, for ex-
ample, tillage (Porwollik et al. 2019), artificial drainage Feick
et al. (2005) and irrigation (Siebert et al. 2005), of which maps
are available. For Europe, high-resolution information is avail-
able, such as the cover-crop map from Fendrich et al. (2023)
and the global SoilGrids dataset of Poggio et al. (2021), while
other regional or Europe-specific datasets can also be used.
This ensures the applicability of the models to other areas
where there is data within the European continent as this is
the area on which they were evaluated in this study. If using
maps as input to the base models for mapping purposes, it
would be valuable to propagate map uncertainty to the model
outputs. This could be done through Monte Carlo simulation
of the map uncertainty, if such information is available.

Figure 6 reflects the capacity of the upscaled models to be sim-
ilarly sensitive to the input data as the base models, as tested
on a European dataset of 94 sites. Recall that the base and up-
scaled models used different input datasets. While the overall
pattern in soil function assessment was similar, some expected
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TABLE 5 | Utility functions relating the function primary productivity to its three module attributes.

Soil Environment | Primary productivity
Unsuitable * Low

< Neutral Unsuitable Low

Neutral Suitable Medium

Suitable Unsuitable Medium

< Neutral Optimal High

Suitable < Suitable High

Note: The asterisk “*’ denotes any of the three values of the scale.
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| Utility functions relating the function habitat for biodiversity to its three module attributes.

Organic carbon content

\ Organic matter Soil C:N ratio
Soil N:P ratio

I Management attribute

Nutrients Structure Hydrology ‘ Habitat for biodiversity
Poor performance Poor performance * Low
Poor performance < Moderate performance  Poor performance Low

< Moderate performance  Poor performance < Moderate performance | Low
Poor performance Moderate performance > Moderate performance | Medium
Poor performance > Moderate performance  Moderate performance Medium
< Moderate performance  Moderate performance Moderate performance Medium
Poor performance Good performance < Moderate performance | Medium
< Moderate performance  Good performance Poor performance Medium
Moderate performance Poor performance Good performance Medium
Moderate performance Moderate performance < Moderate performance | Medium
Moderate performance > Moderate performance  Poor performance Medium
Good performance Poor performance Poor performance Medium
* Good performance Good performance High

> Moderate performance > Moderate performance  Good performance High

> Moderate performance  Good performance > Moderate performance | High
Good performance * > Moderate performance | High
Good performance > Moderate performance  * High

Note: The asterisk “*” denotes any of the three values of the scale.

differences reflected the effects of spatial generalization, differ-
ences in input data and model assumptions during upscaling.
This comparison step was by no means a statistical validation of
the upscaled models, as such validation would require observed
values of the soil functions, which do not exist.

Although DEX utility functions operate on symbolic values, they
can be quantitatively interpreted using techniques such as the
Linear Approximation (LA) method (Bohanec and Zupan 2004;
Bohanec 2023b). In this approach, each symbolic rule is rep-
resented in Euclidean space by assigning numerical ranks to
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qualitative values, and a least-squares hyperplane is fitted to
the resulting dataset. The derived weights are obtained directly
from the structure of the decision rules rather than being as-
signed subjectively, thereby enhancing both transparency and
analytical rigour. This contrasts with the formulation used by

TABLE 7 | Contribution (weights) of the attributes for the results of
the considered soil functions in the upscaled models.

Climate regulation

Carbon storage N,O emissions CH, emissions
39% 43% 17%

Nutrient cycling

Mineralization Nutrient recovery Nutrient
availability
35% 30% 35%
Primary productivity
Soil Environment
63% 38%

Water regulation

Water storage Water runoff Water drainage
33% 33% 33%

Habitat for biodiversity

Structure

Nutrients Hydrology

42% 35% 23%

Note: The weights of all attributes for the five soil functions and the two land
uses (i.e. grassland and cropland) can be found in the Supporting Information.
The weights given here are the same for the two land use models. Weights are
rounded to the nearest integer.

O Primary productivity . Nutrient cycling . Water regulation

Grassland
High @) O ([ J [ ] [ )
o
S Medium ) O [ ] [ ] [ )
%)
Low O O . [ ] [ ]
Cropland
High O O o [ ) (]
o
8 Medium O O [ ] [ ] [ ]
%)
Low O O . . L]

Ng et al. (2024) within the Soil Security Assessment Framework
(Evangelista et al. 2024), where utility functions are expressed
as continuous transformations of quantitative indicators into
normalized [0, 1] scores, typically using logistic, Gaussian or
other fitted response curves based on expert expectations.
While Ng et al. (2024)'s approach prioritizes numerical precision
through curve fitting and DEX emphasizes rule-based symbolic
reasoning, both share the fundamental aim of formalizing ex-
pert judgement within a structured multi-criteria aggregation
process. In this sense, DEX utility functions are not ad hoc
heuristics but rigorously defined, mathematically interpretable
mappings that are fully consistent with the broader methodolog-
ical principles articulated in Ng et al. (2024).

One limitation of the current approach is the subjectivity asso-
ciated with defining the structure of assessment models and in-
tegration rules in decision tables. These methodological issues
were addressed by using a panel of soil scientists with expertise
in different soil functions and consulting them in the elabora-
tion of the base models and integration rules. In addition to
the expert-based definition of integration rules, best practices
were used to check the obtained attribute weights and the se-
lected thresholds for discretization on numerical input data,
following Bohanec (2021) and Bohanec (2023b). We believe
that this helped reduce the subjectivity involved the definition
of the integration rules. In the literature, the integration of dif-
ferent sub-scores into a single index has been done similarly
with expert knowledge and stakeholder involvement (Orgiazzi
et al. 2016; Mendes et al. 2021). It was also done empirically
using principal component analysis (e.g. Andrews et al. 2002)
or sub-scores weighting (e.g. Wadoux, Dobarco, et al. 2024).
It is often challenging to construct a set of decision rules for
model integration. While it would be worthwhile to test contin-
uous integration rules, as is commonly done in the literature,
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FIGURE 6 | Scores of the restructured model for the valuation of the five functions and two land uses (i.e. grassland on top, cropland at the bot-

tom). The size of the dot indicates the number of sites within this class. For each soil function, the dots on the left side denote the output of the re-

structured model, whereas the dots on the right side represent the output of the original base models.
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their potential to improve results is not straightforward and
difficult to evaluate. This is due to significant uncertainty in
defining the shape of these continuous functions and select-
ing appropriate thresholds. Moreover, such an approach does
not resolve the problem of subjectivity involved in establish-
ing the integration rules themselves. In future work, it may be
more informative to assess the model sensitivity to rule sets
defined by different experts. This could then be compared to
the uncertainty propagated from the input data and help to
identify which source of uncertainty has the greatest influence
on model outcomes.

Another limitation is the static nature of the categorical outputs:
aslight change in input might push a result from one category to
another, even if the actual difference is small. As mentioned pre-
viously, these thresholds could be made continuous, although
there is no obvious improvement in doing so, and evaluating
this improvement is challenging. In our study, the thresholds
varied between climate zones. This is surely an improvement
over using the same threshold across all of Europe and for dif-
ferent land uses. In the future, we might want to test the use of
site-specific thresholds or thresholds varying for each small unit
(e.g. a field or a soil district). While this would be worthwhile,
it would require a large number of high-quality, measured soil
property values to define localized thresholds and validate their
relevance. Without such data, the risk of introducing noise or
bias may outweigh the potential benefits of having greater spa-
tial specificity.

The application of the DEX methodology for the development
of models at a regional scale illustrates its potential for wider
use in agricultural and environmental research and manage-
ment. This provides a tool for the regional assessment (general
trends) of the capacity of differing soil genoforms (with the
addition of very basic soil management information) to sup-
port the five soil functions. This could be utilized as a baseline
for assessing soil health at larger spatial scales or analysing
the environmental impacts of land use change at the regional
scale. However, the lack of expertise and data availability at
the regional level may require modifications to the DEX meth-
odology to successfully address these specificities and ensure
its effectiveness and use in decision modelling. The proposed
Directive on Soil Monitoring and Resilience currently pro-
poses a minimum indicator set, which focuses on the quan-
tification of land degradation across Europe (See Supporting
Information). However, it also provides an opportunity to
collect indicators that form the basis of these models, which
can define the spatial trends of soil functions in relation to
soil genoforms at larger spatial extents, for example, for soil
districts. This approach can then be further enhanced by the
collection of soil management data within soil districts, which
facilitates the quantification of soil multifunctionality and as-
sociated soil health at the local scale of assessment (Wadoux,
Courteille, et al. 2024).

The primary changes in the aggregated attributes pertain to
the input attributes available for large-scale studies. These in-
clude all basic measured soil properties and global datasets for
which maps are available (e.g. irrigation and drainage). It is
important to note that maps are predictions and generally less
accurate than direct measurements and field observations.

Therefore, whenever feasible, measured input attributes
should be prioritized over maps. However, for the large-scale
models developed in this study, we contend that incorporating
maps as an additional source of input attributes is reasonable.
This is because in the upscaled models the discretization of in-
puts for use in the rules means that small differences in input
values may not change the modelled assessment. Typically, a
minor change in the input attribute does not lead to a change
in the aggregation rule's level. Future research could test this
through a sensitivity analysis of the model output relative to
the input attributes.

The evaluation of upscaled soil function models was another
methodological challenge due to the lack of site-specific data on
soil functions in European regions. Our approach offers an alter-
native to classical validation based on measured values at the field
scale. By comparing the results of the upscaled model with those
of a validated field-level model, we have shown that the sensitiv-
ity of the upscaled models to input variability generally follows
the behaviour of the validated field-level model under compara-
ble conditions, which increases confidence in the results of the
upscaled models. Further, by comparing the model results at dif-
ferent scales (field vs. region), we gained insight into how the up-
scaled models respond to variability in the soil functions. These
insights will be of use for further modelling improvements if
needed. Our results are consistent with the experiences from other
studies where proxy validation has been applied (Mezbahuddin
et al. 2023; Eum and Gupta 2019). Although classical validation
(i.e. the pairwise comparison of predicted vs. observed values) re-
mains the ideal approach when feasible, it was not possible here.
In some cases, the soil function can be measured (e.g. the biomass
production) and so a validation using validation statistics may be
employed.

Overall, the sensitivity analysis and the comparison approach
have resulted in reliable upscaled models for the assessment of
soil functions at the regional scale. Although we recognize the
limitations of the DEX methodology and the lack of data availabil-
ity at the regional scale, our research paves the way for the use of
the developed models to support soil management and policy de-
cisions, promote sustainable land use practices and monitor soil
health. The development of the models in this study is a first step
to assess soil multifunctionality in large areas, particularly in the
European Union where a Soil Monitoring Law is under develop-
ment. The application of the soil function models developed in
this study on the LUCAS dataset would certainly make a valuable
contribution to soil health assessment in Europe. In the future,
we may explore uncertainty quantification of our approach to
foster the inclusion of soil function assessment in soil monitoring
initiatives. We also envision further application of the models for
estimating changes in soil functions in response to threats and
for projection of climate change, and to link the existing supply
with the demand.

Finally, at the regional scale, the adapted model can provide
decision-makers with an overview of the variability of soil
functions across Europe using harmonized, continental-scale
datasets. Such outputs can inform the design of national poli-
cies and the implementation of EU regulations by identifying
priority areas for intervention and enabling the efficient tar-
geting of resources. Beyond soil management, these results
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can support inter-sectoral policy development, linking soils to
biodiversity conservation, ecosystem restoration and climate
regulation objectives. For example, a policy-maker could use
model outputs to determine where soil restoration measures
would also deliver biodiversity benefits, thereby guiding inte-
grated strategies. While the primary audience at this scale is
policy-makers, indirect users include farm advisors, who can
apply the regional insights to coordinate activities and align
local management recommendations with broader policy
objectives.

6 | Conclusions

We adapted existing base field-scale soil functions assessment
models for use in a regional and national context. The restruc-
ture of the base models accounts for the general lack of man-
agement information available at large geographical scales. The
new models were verified and tested for sensitivity using real
soil data. From the results and discussion we draw the following
conclusions:

« Five models for the large-scale assessment of soil functions
are developed, corresponding to the five soil functions of
water regulation, climate regulation, nutrient cycling, pri-
mary productivity and habitat for biodiversity.

« The models are specifically designed to assess soil functions
over large geographical scale by requiring few management
attributes as input.

« The developed DEX MCDMs successfully decompose a
complex soil function evaluation problem into a hierarchi-
cal structure of less complex and therefore more manage-
able sub-problems, taking into account both qualitative and
quantitative available input data.

+ The definition of utility functions and threshold values is a
critical step of the methodology. We used a expert-based ap-
proaches but empirical and data-driven approach exist.

+ All upscaled models were verified and tested for sensitivity.
Their response to a large range of values were similar to that
of the field-scale base models.

Overall, the results suggest that the models are suited for ap-
plication over large areas. In the future, we envision the appli-
cation of the models to existing soil databases, for example, the
European LUCAS dataset, in support of large-scale policy im-
plementation and the estimation of soil change due to external
factors (e.g. climate change, urbanization) or threats (e.g. acidi-
fication, erosion).
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