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ABSTRACT
The characterization and assessment of soil functions is a prerequisite for agricultural and environmental policies aimed at 
soil health. However, there is a lack of satisfactory models for the assessment of soil functions supply to support national and 
intergovernmental initiatives. In this study we fill this gap by restructuring models developed to assess the multifunctionality of 
agricultural soils at the field scale. The multi-criteria decision models rely on soil properties, site characteristics and management 
information to assess the following five soil functions: (1) water regulation, (2) climate regulation, (3) nutrient cycling, (4) primary 
productivity and (5) provision of habitat for biodiversity. We develop models to assess soil functions supply at regional and na-
tional scales by adapting their structure to cope with the general lack of information on soil management at larger geographical 
scales. The restructured models are verified and a sensitivity analysis of the new model structure is performed. We further ap-
plied a comparison of the upscaled models with results from validated field-scale models using real data from 94 sites spanning 
across 13 European countries. We found that the upscaled models showed a similar sensitivity to the variability of the input data 
from the 94 sampling sites as the base models from which they were developed and that their overall supply is expected to be 
comparable. We describe the model structure of the upscaled models as well as their qualitative scales and integration rules. We 
propose the application of the models can serve for large-scale assessment of soil functions supply as part of soil health assess-
ment for regional and national environmental and agricultural policies.

1   |   Introduction

Soil is an essential part of terrestrial ecosystems because it pro-
vides habitats for biodiversity, supports plant growth and pri-
mary production, is a medium for the recycling of nutrients and 
regulates the quantity and quality of water flows (Blum 2005). 
Soil functions emerge from bundles of soil processes in inter-
action with soil properties (Bünemann et al. 2018) and, in turn, 
when considering the wider human demand, can determine 
the delivery of ecosystem services (Bouma 2014; Adhikari and 
Hartemink  2016). The notions of soil functions and services 
have been recognized in recent national and intergovernmental 

agricultural and environmental policies focused on the improve-
ment of soil health. The European Union's proposed Directive 
on Soil Monitoring and Resilience, for example, aims to achieve 
soil health on a European scale by 2050 by ‘maintaining or en-
hancing the ecosystem services provided by the soil without 
impairing the functions enabling those services’ (European 
Commission  2023) and by establishing soil districts (Wadoux, 
Courteille, et al. 2024). The Global Soil Partnership of the Food 
and Agriculture Organization of the United Nations (FAO and 
ITPS  2015) is committed to global initiatives that recognize 
the contribution of soils to ecosystem services. Considering 
the need to support policy and management of land resources, 
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the question arises as to how soil functions can be effectively 
characterized and their supply assessed at these policy decision-
relevant levels.

Several methods for assessing soil functions are known, many of 
which have been developed under the umbrella terms of soil qual-
ity (Bünemann et al. 2018), soil health (Kibblewhite et al. 2008) 
and more recently soil security (Evangelista et  al.  2023). Soil 
functions supply is usually estimated based on measured val-
ues of soil properties used as indicators of a given soil functional 
capacity. Popular examples of indicators include soil organic 
carbon content, nutrients, and bulk density (Van de Broek 
et  al.  2019). Greiner et  al.  (2017) defined three approaches to 
soil function assessment. The first approaches are often referred 
to as indicator or static approaches, in contrast to the dynamic 
approach, which includes biophysical or process-based models. 
Using biophysical models is likely the preferred method for soil 
function assessment, as it better represents the underlying soil 
processes that deliver these functions. Examples of biophysical 
models are APSIM (Keating et al. 2003) and BODIUM (König 
et  al.  2023). This approach is the most resource-intensive and 
time-consuming, as each case study requires substantial effort 
for data collection, processing, parameter calibration, mapping 
and validation. Despite some efforts (e.g. in Leip et al. 2008), out-
puts from static and indicator approaches are easier to commu-
nicate and are currently better suited for large-scale planning 
and scoping activities. In the indicator or static approaches, indi-
cator values are normalized to a unitless value, usually between 
0 and 1, and aggregated to a single estimate of either a particular 
soil function or, in some capacity, attempts have been made to 
derive a single index for soil health. In Halvorson et al. (1996), 
for example, six continuous indicators (e.g. electrical conductiv-
ity or total inorganic N) were measured at 220 locations. These 
continuous indicators were then transformed into indicators 
with nominal values depending on whether they exceeded a 
threshold value or not. Soil quality was considered satisfactory 
if no more than one indicator scored below its threshold value.

Soil functions supply is based on several indicators which are 
aggregated into a single value or index that describes the overall 
supply of the evaluated function. Rabot et al. (2017) classified ag-
gregation methods into expert-based approaches in which scores 
according to thresholds define how a soil function is supplied 
(e.g. Lilburne et al. 2004), while statistical approaches utilize al-
gorithms and statistical analyses for the selection of appropriate 
indicators from a wider set of parameters and the definition of 
scores and aggregation (e.g. Bastida et al. 2006). The first aggre-
gation method leads to qualitative and the second to quantita-
tive estimates, which can take various forms, such as decision 

trees, influence diagrams and multi-criteria decision models 
(MCDM). The MCDM has been recognized as a useful method 
for integrating different qualitative and quantitative indicators 
for evaluating variables in many application domains (e.g. Van 
Calker et al. 2006; Sinclair et al. 2015; Ikram et al. 2024).

This study builds on the work of Debeljak et  al.  (2019), who 
developed and validated a field-scale decision support system 
(DSS) for farmers to assess and manage the multifunctional-
ity of their soils. The DSS called Soil Navigator (http://​www.​
soiln​aviga​tor.​eu/​) is based on MCDM where Decision Expert 
(DEX, Bohanec et al. 2013) utilizes an integrative methodology. 
The resulting five qualitative MCDM corresponded to five soil 
functions described by Schulte et  al.  (2014) as (1) provision of 
food, fibre and fuel (primary productivity), (2) soil as a habitat 
for biodiversity (habitat provision), (3) the ability of a soil to re-
ceive, recycle and supply nutrients to plants (nutrient cycling), 
(4) water regulation and purification, and (5) the capacity of a 
soil to store carbon and reduce losses of greenhouse gases for 
climate regulation. Before the models were integrated into the 
DSS Soil Navigator, they underwent a verification and validation 
process carried out in a series of studies focusing on specific soil 
functions (the function soil biodiversity and habitat provisioning 
in Van Leeuwen et al. 2019, for example), while the synergies 
and trade-offs between these five functions were elaborated in 
Zwetsloot et al. (2021) and Vazquez et al. (2021). In these stud-
ies, in addition to soil properties and site characteristics, man-
agement information was also used to estimate soil functions 
supply, as they were originally developed as a tool that can be 
applied at a scale that meets the needs of farmers and farm advi-
sors (Vazquez et al. 2021).

Building on the successful application of the methodology for 
the development of field-level soil function assessment models, 
this study aims to apply the same MCDM framework using the 
integrative DEX methodology for the development of models for 
the assessment of soil functions supply at the regional and na-
tional scales. Hereafter, scale refers to the geographical extent 
or areas under study. Field scale refers to the level of individual 
farms or plots, where data collection, monitoring or interven-
tions are applied directly to these specific management units. 
Regional scale, used hereafter, refers to a broader geographic 
area that may encompass multiple fields, farms or even admin-
istrative zones (e.g. districts, provinces or watersheds). Regional 
assessments complement field-level analyses: they help identify 
spatial patterns, highlight local areas of interest and determine 
where targeted support may be most needed to maintain or en-
hance soil functions.

Our research has several objectives. First, we aim to adapt 
existing decision models for soil function supply assessment 
from the field scale to the regional scale. Detailed soil man-
agement information that is readily available at the field level 
is generally lacking at the regional and national levels, mak-
ing the calibration and use of the developed models inappro-
priate. Next, we verify and perform a sensitivity analysis of the 
new model structures to iteratively refine their structure and 
achieve realistic outputs. We report the MCDM models that 
are designed to support regional and national decision makers 
in environmental and agricultural policy. Finally, we provide 
an overview of the strengths and weaknesses of the models 

Highlights

•	 Adapted models from field-scale soil function assess-
ment models.

•	 Models assess the supply of five soil functions.

•	 Models adapted for the regional or national scale eval-
uation of soil functions.

•	 Support assessment and implementation of environ-
mental and agricultural policy.
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and discuss the future potential of large-scale assessment of 
soil functions through qualitative multi-attribute modelling. 
In this way, we aim to bridge the gap between current and 
future research efforts in regional and national soil function 
supply assessment.

2   |   Qualitative Multi-Criteria Decision Models

The Soil Strategy 2030 and the communication for a proposed 
Directive on Soil Monitoring and Resilience aim to improve 
the state of soils across Europe to a healthy status by 2050 
(European Commission  2021, 2023). A healthy soil consti-
tutes a soil that is not degraded and therefore has the capac-
ity to provide its multiple functions and services (European 
Commission 2021). While assessing the multifunctionality of 
soils at the local scale has been the basis of many research pa-
pers (e.g. Calzolari et al. 2016; Zwetsloot et al. 2021; Vazquez 
et  al.  2021), which combine information on soil properties 
with environmental factors and often management practices, 
this is more challenging at a pan-European scale. Assessing 
multifunctionality at the European scale is perceived as a dif-
ficult task, as it requires the amalgamation of information on 
soil parameters, environmental conditions and land manage-
ment factors at a large spatial extent, and yet this information 
needs to remain meaningful in assessing the underlying rela-
tionships that define multi-functionality. While information 
exists on environmental conditions at larger spatial extents, 
detailed soil property information is limited to pan-European 
soil monitoring, such as the LUCAS topsoil survey (Tóth 
et al. 2013), which collects primarily soil chemical data with a 
small set of soil physical and biological data (the latter at a lim-
ited number of sites). The LUCAS Topsoil survey also provides 
information on land-cover parameters, but not on manage-
ment practices applied. Thus, the application of models devel-
oped for the assessment of multifunctionality at the local scale 
is often too demanding for the data available at the European 
extent. This begs the question: what level of information is 
needed at a pan-European scale of assessment? Does it require 
detailed point-specific information that incorporates detailed 
management information at the field level, or should the model 
provide broad trends in the potential soil multifunctionality, 
considering the genoform (soil forming conditions) that can 
then be further investigated at a more appropriate scale of as-
sessment in combination with management practices at the 
local scale? The search for regulatory and management mea-
sures for soil multifunctionality therefore remains a complex 
decision problem that is currently the basis for the proposed 
Directive on Soil Monitoring and Resilience, which aims to 
collect sufficient information at a pan-European scale to en-
able assessment of soil health (European Commission 2023).

To address this complex decision problem, we use multi-criteria 
decision analysis (MCDA, Greco et al. 2016) for the evaluation 
of soil functions. MCDA, which is an early form of artificial in-
telligence (Wadoux 2025), involves the formulation of complex 
decision problems, the identification of key objectives, the for-
mulation of criteria, the development of multi-criteria decision 
models and their use for decision-making tasks such as the 
selection, evaluation, ranking and analysis of decision alterna-
tives. Based on the specifics of a decision problem at hand, data 

and expertise availability and required features of soil function 
models, the DEX methodology of MCDA (Bohanec  2003) was 
chosen. DEX has been found particularly suitable for sorting and 
classification decision tasks aimed at assigning decision alter-
natives to predefined categories, which can be either preferen-
tially ordered (‘sorting’) or unordered (‘classification’) (Craheix 
et al. 2015; Meunier et al. 2022). DEX is implemented through 
a MCDM where a decision model is developed first and inde-
pendently from individual decision alternatives (Bohanec 2017). 
These alternatives are then evaluated by the model, first by scor-
ing them for each criterion and then aggregating these evalua-
tions into a global score (Bohanec 2003).

MCDM built by DEX methodology consists of hierarchically 
structured attributes. Attributes in a DEX model represent ob-
servable properties of the decision problem and decision alter-
natives. Each attribute is defined as an ordered set of qualitative 
(i.e. symbolic) values that rarely consist of more than five values. 
Scale values are represented by words (e.g. high, medium and 
low) rather than numbers, and they can be either ordered or un-
ordered. Attributes are aggregated into a hierarchical structure. 
Attributes without parents are called roots and represent the 
main outputs of the model. Attributes without descendants are 
called basic (i.e. input) attributes and represent model inputs. 
Attributes with descendants and parents are referred to as ag-
gregate attributes and are also considered partial intermediate 
outputs of the model. The structure is based on an aggregation 
function represented by decision tables, which serve for the eval-
uation of an aggregate attribute based on the values of its im-
mediate descendants in the model structure. The decision table 
provides rules that define the elementary decision rules that ag-
gregate child attributes into a parent attribute.

In the DEX methodology, utility functions, also referred to as ag-
gregation or integration functions, combine values of lower-level 
qualitative attributes into higher-level evaluations within a hier-
archical decision model. Formally, each DEX utility function is 
an aggregate function:

where Dxi
 and Dy are finite, linearly ordered sets of qualitative 

values (e.g. low, medium, high or acceptable, good, excellent). 
These functions are defined using decision tables that compre-
hensively enumerate ‘if–then’ rules to specify the output for 
every possible input combination. In this way, DEX aggregation 
functions provide deterministic, complete and interpretable 
mappings that satisfy the formal definition of utility functions 
in multi-criteria decision-making theory (Bohanec 2022).

Once the DEX MCDM is developed, it serves for the evalua-
tion and analysis of decision alternatives. Each alternative is 
represented by a set of values of input attributes describing the 
assessed item (e.g. the organic carbon content of a soil sam-
ple). Once the DEX model is populated by input data, the model 
provides an evaluation of the alternatives by the calculation of 
the output values. The evaluation is carried out as a bottom-up 
aggregation of model inputs towards its outputs, according to 
the hierarchical structure of attributes and associated aggre-
gation functions. The main outputs are assigned to the root 
attribute, while values assigned to the remaining aggregate 

(1)f :Dx1
× Dx2

× ⋯ × Dxn
→ Dy,
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attributes provide additional information about the assessed 
alternative and help explain the main result (i.e. the value of 
the root attribute).

Since we are dealing with qualitative models, input data have to 
be transformed to a required format. In the case of numerical 
values of soil properties, data discretization has to be applied. 
The discretization requires a definition of thresholds. In case an 
input attribute is calculated or synthesized from several vari-
ables, the mathematical function for each synthesized attribute 
has to be predefined.

The DEX MCDM were built with the software modelling tool 
DEXi (Bohanec  2023a). DEXi is a desktop application for MS 
Windows that supports the interactive creation and editing of 
all components of DEX models (attributes, their hierarchy and 
scales, decision tables and alternatives) and provides methods 
for evaluating and analysing decision alternatives (what-if anal-
ysis, ‘plus-minus-1’ analysis, selective explanation, comparison 
of alternatives, option generator) (Bohanec  2017, 2022). There 
are also additional DEXi-related software tools that facilitate 
the use of DEXi models in different environments, such as com-
mand line, Java, C# and HTML (https://​dex.​ijs.​si/​dexic​lassic/​
dexic​lassic.​html).

3   |   Methods

3.1   |   Base Models

We have used the concept of base models to develop decision 
models for the assessment of soil functions. Base models pro-
vide the core structure and underlying principles on which more 
specific and complex models can be built and adapted. In our 
study, we used the soil function assessment models developed by 
DEX methodology described in the previous section which are 
integrated into Soil Navigator DSS (Debeljak et al. 2019). Base 
models address cropland and grassland soil. More information 
on the models and structures as well as on validation can be 
found in the previously published studies of Sandén et al. (2019), 
Van Leeuwen et  al.  (2019), Schröder et  al.  (2016), Trajanov 
et  al.  (2019), Van de Broek et  al.  (2019) and Wall et  al.  (2020) 
for the primary productivity, habitat for biodiversity, nutrient 
cycling, climate regulation and water regulation functions, 
respectively.

Having outlined the general concept of the base models ap-
proach, the following section provides a brief overview of the 
individual base models of the five soil functions.

The base model for assessment of primary productivity con-
sists of sub-models that describe the environmental conditions, 
the inherent soil conditions (physical, chemical, biological), the 
soil management and crop properties. Primary productivity, 
as the top attribute, integrates the sub-models, resulting in an 
assessment of the soil's ability to produce biomass. A detailed 
description of the primary productivity model can be found in 
Sandén et al. (2019) and Wenng et al. (2018).

The nutrient cycling base model uses three integrated sub-
modules to assess a soil's ability to provide and cycle nutrients. 

These sub-modules address (i) the nutrient fertilizer replace-
ment value, which indicates the extent to which nutrients from 
organic residues can replace manufactured fertilizers, (ii) the 
nutrient uptake efficiency of plants, which represents the effec-
tiveness with which plants use the available nutrients and (iii) 
the harvest index, which reflects the proportion of nutrients 
taken up by plants that are ultimately removed from the field by 
harvesting (Schröder et al. 2016; Trajanov et al. 2019).

The base model for climate regulation comprises three mod-
ules: carbon sequestration, N2O emissions and soil CH4 emis-
sions. The carbon sequestration module estimates the balance 
between carbon inputs, carbon losses and soil organic carbon 
concentration. The N2O emissions module distinguishes be-
tween direct emissions that occur in agricultural fields and 
indirect emissions that result from emissions occurring from 
NO3 and NH3 losses. Finally, the CH4 emissions module eval-
uates the effects of artificial drainage on organic soils. A more 
detailed description of the base model can be found in Van de 
Broek et al. (2019).

The base model for the water regulation and purification 
soil function integrates three modules that represent the pri-
mary water pathways in the soil: water storage, water runoff and 
infiltration. Water storage is determined by attributes that assess 
the water holding capacity and moisture deficit of the soil. Water 
runoff is estimated using attributes that consider water, sedi-
ment and nutrient losses. Finally, the water infiltration module 
uses attributes to assess the drainage of excess water beyond the 
storage capacity of the soil and the resulting nutrient leaching 
and losses (Wall et al. 2020).

The base model for soil biodiversity and habitat provision 
comprises four interlinked aspects: soil nutrients (assessing 
their status, trends, turnover and availability), soil biology (ana-
lysing the diversity, biomass and activity of soil organisms), soil 
structure considering soil properties at meso and macro levels 
and finally soil hydrology, which examines soil moisture and 
water flow pathways. A more detailed description of the base 
model can be found in Van Leeuwen et al. (2019).

The base models presented in Debeljak et  al.  (2019) for esti-
mating different soil functions share the same basic structural 
features (e.g. hierarchical structure, number of attributes to be 
aggregated—up to three). For all five models, a DEX structur-
ing methodology for a systematic decomposition of complex 
soil functions into manageable sub-components (e.g. modules) 
has been used. However, despite this common methodological 
framework, there are also differences between the models. As 
shown in Table 1, the structural features of the individual mod-
els differ. The water regulation and purification model and the 
biodiversity and habitat model are more complex than the other 
models. This reflects the inherent complexity of these two soil 
functions, which are influenced by a larger number of factors. 
In contrast, models for functions such as primary productivity 
or nutrient cycling may rely on a less extensive set of attributes 
and rules, reflecting their simpler relationships to specific soil 
properties. In addition, a set of 75 unique attributes across the 
five sets of input attributes is required to populate all five base 
models. These structural properties provide insight into the 
strengths and limitations of each base model in representing the 
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different soil functions supply and their ability to be scaled for 
application at the regional level.

3.2   |   Refining Base Models for Regional 
Application

While the base models for Soil Navigator have been developed 
for application at the field level, their direct application at the 
regional level is constrained by the lack of detailed informa-
tion on soil management. To overcome this limitation and en-
sure the applicability of the model across different assessment 
scenarios, we refined the base models described in the previ-
ous section by upscaling them for application at the regional 
level. This upscaling process involved an analysis of the base 
models and their potential for regional application. Such a re-
view was crucial in identifying and refining the structure of 
the base models to ensure their functionality in the face of po-
tentially limited regional data availability, while maintaining 
their ability to reliably assess soil functions supply at a larger 
(i.e. regional) scale.

The upscaled models were developed within the framework of 
MCDA using the DEX modelling methodology, as described in 
Section 2. We found that this approach is well suited to deal with 
complex decision problems such as the assessment of soil func-
tions supply at the regional level. The implementation of MCDA 
through DEX modelling enabled the clear formulation of the 
main modelling objectives, the development of integration rules 
and the construction of upscaled multi-criteria models in the 
form of MCDM specifically tailored to the regional data avail-
ability and assessment needs.

Since the DEX models work with qualitative data, the numerical 
input data must be transformed through a discretization process 
that includes the definition of a threshold. For input attributes 
derived from multiple quantitative variables, mathematical 
functions have been predefined to ensure consistent calcula-
tions and their further discretization.

DEXi software was used to create, edit and analyse the upscaled 
DEX models. In addition, the functions of this decision model-
ling tool were used to evaluate and analyse the behaviour of the 
upscaled models (e.g. sensitivity, calibration and verification), to 
facilitate the interpretation of the results, and to support various 
tasks such as what-if analyses and selective explanations of as-
sessed soil functions.

3.3   |   Verification and Sensitivity Analysis 
of Upscaled Models

Once the upscaled models were structured, a verification was 
conducted to ensure that their internal operational logic and 
behaviour worked as intended. We simulated data from poten-
tial soil samples covering a wide range of input data variability. 
The models' results were compared with the expected supply of 
the soil functions. Where the model results differed from ex-
pectations, the integration rules were carefully reviewed and, 
if necessary, adjustments were made to the model structure 
itself.

Following verification, a sensitivity analysis was performed. 
The sensitivity of the DEX models is based on the contribu-
tion of each attribute to the results of the model, as expressed 
by attribute weights. Unlike traditional MCDM methods that 
rely heavily on weights to define the importance of attributes to 
model outputs (Greco et al. 2016), the DEX qualitative modelling 
method does not work with weights associated with qualitative 
attributes and decision rules. To achieve consistency between 
MCDM and DEX regarding attribute weights, DEX employs an 
estimation of the weights by approximate bi-directional trans-
formations between weights and integration rules in decision ta-
bles. These transformations are explained in detail by Bohanec 
and Zupan (2004) and Bohanec (2020).

As the attributes in our models have different value scales (e.g. 
Low, Medium and High), the normalized weights (from 0% to 
100%) were used to determine the relative importance of each 
attribute to its integrated attribute (local normalized weight) or 
the value of the top (root) attribute (global normalized weight) 
(Bohanec  2020). Attributes with negligible importance were 
removed from the model structure (i.e. with weights of < 1%), 
which required corresponding adjustments of the model struc-
ture and the rules within the integration tables. A verification 
and sensitivity analysis of such a refined model was repeated 
until the structure of the model was recognized as suitable for 
addressing its modelling tasks.

3.4   |   Validation of Upscaled Soil Function Models

The validation of qualitative multi-attribute models for the as-
sessment of regional soil functions poses a unique challenge, 
as a direct comparison of predicted values with known real 
observations on soil function supply at the regional scale is 

TABLE 1    |    Summary of the structure for the five soil function models, from Debeljak et al. (2019).

Soil function
Total number 
of attributes

Number of 
aggregated 
attributes

Number 
of input 

attribute

Number of 
hierarchical 

levels

Number of 
integration 

rules

Water regulation 116 77 39 6 800

Climate regulation 54 21 19 5 301

Nutrient cycling 51 27 24 5 302

Primary productivity 42 16 25 4 294

Habitat for biodiversity 55 24 31 5 612
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not possible because such data do not exist. To overcome this 
challenge, we used an approach adapted to the limitations of 
data availability. The approach consists of two steps. The first 
step is the sensitivity analysis of the upscaled soil function 
models with respect to the variability of the input data. Since 
regional soil properties show considerable spatial variability, 
we tested the sensitivity of the models with data from different 
pedoclimatic (soil and climate) and land-use conditions. We 
used the Landmark H2020 dataset (Saby et  al.  2020), which 
includes data collected at 94 sites in 13 countries, represent-
ing five climate zones and two land use types (cropland and 
grassland). Detailed information on the selection of sampling 
sites, the sampling method used and the field and laboratory 
measurements can be found in Zwetsloot et al. (2021). Before 
using this dataset with the upscaled models, we ensured its 
applicability by checking and adjusting the consistency of the 
input attribute scales and their discretization thresholds with 
the input data requirements of the models. Once the dataset 
was harmonized for use by the upscaled models, the models 
were populated with the input data, and the results were col-
lected. Note that missing measured data (e.g. tillage) was ob-
tained from existing maps. This specific aspect is covered in 
the Discussion.

The second step of our approach was to compare the results 
of the upscaled models with the results of the validated base 
models applied to data from the same sampling sites using Soil 
Navigator (Debeljak et al. 2019). Although the base models work 
at the field level and the upscaled models at the regional level, 
this comparison provides valuable insights. As the base models 
are validated, similarities in the relative ranking of soil func-
tional supply between the two scales (regional and field) argue 
in favour of the validity of the upscaled models. This comparison 
essentially utilizes the existing validation of the base models to 
provide confidence in the ability of the upscaled version to cap-
ture similar trends.

For all 94 sampling sites, we counted how often the results of 
the individual soil function models were categorized as Low, 
Medium or High. We did this for each of the five soil func-
tions and for both types of land use (i.e. grassland and crop-
land). The distribution of these results was then compared 
with the distribution of results from Soil Navigator (Debeljak 
et al. 2019), which used data from the same sample sites. This 
approach that utilizes sensitivity analyses and comparison 
with base models enables some confidence in the results of 
the upscaled models for the assessment of regional soil func-
tions. This method is of particular value because it solves the 
problem of the lack of ground-truth data needed to evaluate 
the performance of soil functions supply estimates at the re-
gional level.

4   |   Results

Based on the methodological steps described above, the follow-
ing aspects of the models' each functions were described:

•	 The model structure, which is described by an overview of 
the hierarchical model, similar to Figure 2 for the water reg-
ulation function. It describes the number of input attributes 

and aggregated attributes highlighting the changes that 
have been made to the original base models to improve the 
estimation of soil function at a large area.

•	 Qualitative scales of both input and aggregated attributes.

•	 Utility functions (integration rules), which are used to com-
bine information from different attributes to arrive at an 
overall assessment of the soil function.

By following this consistent structure, the descriptions for each 
upscaled model provide a comprehensive understanding of the 
strengths and limitations of each model. Furthermore, the struc-
tured description facilitates the comparison between the struc-
ture of developed soil function assessment models on a regional 
scale with the structural characteristics of the base models pre-
sented in Table 1.

4.1   |   Water Regulation

The hierarchical structure of the upscaled model for an assess-
ment of the water regulation function is shown in Figure  1. 
The model has 13 input attributes and 18 aggregated attri-
butes, of which three are module attributes and one is the root 
attribute for the overall evaluation of the function. Five input 
attributes (i.e. precipitation in winter, clay and organic car-
bon content, artificial and natural drainage) are included in 
all three modules. The upscaled model has 50% fewer input 
attributes than the base model of Wall et al. (2020).

The upscaled model retains the same scales of attributes that 
were included in the original base model. Four types of qualita-
tive scales are used in the model, the most common of which is 
the three-level scale of Low, Medium and High, with an ordering 
scale depending on the attribute (indicated with the red, black 
and green colours in the Supporting Information). In addition to 
this three-level scale, three binary scales are used 12 times, for 
example, to characterize the absence or presence (e.g. yes, no) or 
a threshold value (e.g. above or below rooting depth) of an input 
attribute feature.

Table 2 shows the utility functions represented as rules that are 
used to integrate the three modules' aggregated attributes into 
the top root attribute, which represents the soil water regulation 
function. The water regulation function is poorly supplied if one 
of the three attributes has a low value. A majority of the medium 
leads to a medium fulfilment, while a high fulfilment of the soil 
function always occurs with at least two high fulfilments of its 
sub-attributes, of which the remaining one must be medium or 
higher.

4.2   |   Climate Regulation

Figure  2 shows the upscaled model for the assessment of the 
climate regulation function. The model has 10 input attributes 
and 15 aggregated attributes, including three module attributes 
and the root attribute for the soil function evaluation. Five 
input attributes (i.e. artificial drainage, total N and organic car-
bon content, annual precipitation and temperature) are used 
in more than one module. The upscaled model has 52% fewer 
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input attributes than the base model of Van de Broek et al. (2019) 
while other structural features of this model are listed in the 
Supporting Information.

The upscaled model has nine different qualitative scales (see also 
the Supporting Information) that were included in the original 

base model. The most common scale is the three-value scale com-
posed of Low, Medium and High. This scale appears 17 times in 
total and is ordered in both ways (i.e. Low can be either positive or 
negative, see colours in the Supporting Information). In addition 
to this scale, eight attributes have a three-value scale (e.g. Sand, 
Silt or Clay), and four have binary scales (e.g. Organic or Mineral).

FIGURE 1    |    Structure of the model for the water regulation function. Grey rectangles represent aggregated attributes, whereas coloured rectan-
gles are soil, management or environmental attributes.
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Table  3 shows the utility functions relating the climate reg-
ulation function to its three subordinate attributes. The cli-
mate regulation is poorly supplied when at least one of the 
attributes is poorly supplied too (e.g. high CH4 emissions). A 
medium fulfilment is obtained when there is a majority of me-
dium fulfilment, or when a balanced is obtained between high 
and low fulfilment between attributes. The climate regulation 
function of a soil is high when a majority of good fulfilment of 
the attributes occurs or when there is a high fulfilment of the 

carbon storage attribute with all other attributes supplied with 
medium or higher.

4.3   |   Nutrient Cycling

The hierarchical structure of the upscaled model for nutrient 
cycling is shown in Figure 3. The model has 14 input attributes 
and 17 aggregated attributes, including the root attribute for 

FIGURE 2    |    Structure of the model for the climate regulation function. Grey rectangles represent aggregated attributes and coloured rectangles 
are soil, management or environmental attributes.

TABLE 2    |    Utility functions relating the function soil water regulation to its three modules.

Note: The asterisk ‘*’ denotes any of the three values of the scale.
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the evaluation of the function and three module attributes. The 
input attributes soil texture, natural drainage, annual precipi-
tation and days with average temperature above 5°C are used 
more than once as input to the model. The restructured model 
has 25% fewer input attributes compared to the original base 
model of Schröder et al. (2016) and Trajanov et al. (2019).

The upscaled model for the nutrient cycling function has six 
different qualitative scales, the most common of which is the 
three-value scale of Low, Medium and High, with an order 
changing depending on the attribute (see also the red and 
green colour in the Supporting Information). In addition to 
this three-value scale, there are seven attributes with another 
three-value scale (e.g. Well drained, Moderately drained or 
Poorly drained) and eight attributes with a binary scale (e.g. 
Yes or No).

Table 4 shows the utility functions for relating the nutrient cy-
cling function to its three subordinate module attributes. The 
nutrient cycling function is poorly supplied when at least two 
attributes are poorly supplied too. Having one attribute with 
a scale of Medium or Low leads to Medium nutrient cycling. 
Having one attribute supplied at its maximum with the two 
other attributes at the scale Medium or higher leads to High ful-
filment of the nutrient cycling function.

4.4   |   Primary Productivity

Figure 4 shows the upscaled model for the evaluation of the pri-
mary productivity function. The model has 17 input attributes 
and 11 aggregated attributes, including the root attribute for the 
function evaluation and two module attributes. The restruc-
tured model has a reduction of 43% of input attributes from the 
based model.

The upscaled model for the primary productivity function has 
two different qualitative scales, the most common of which 
is the three-value scale of Low, Medium and High, with an 
order changing depending on the attribute (see also the red 
and green colour in the Supporting Information). In addi-
tion, another scale is composed of the three values denoted 

Unsuitable, Neutral and Suitable or Optimal. This scale occurs 
for seven attributes.

Table 5 shows the utility functions for relating the primary pro-
ductivity function to its two subordinate module attributes. The 
primary productivity function has a low fulfilment when the 
soil is unsuitable or when the soil is neutral or worse and the 
environment is unsuitable. A medium soil function fulfilment is 
obtained when both soils and environment are neutral or when 
a balance is obtained with a suitable soil but unsuitable envi-
ronment. A high primary productivity function fulfilment is 
obtained when either of the two attributes is optimal or suitable 
and the other is neutral.

4.5   |   Habitat for Biodiversity

Figure  5 represents the upscaled model for the evaluation of 
the habitat for biodiversity function. The model has 12 input 
attributes and 12 attributes, including the root attribute for the 
evaluation of the function, and three module attributes. The re-
structured model has 61% fewer input attributes compared to the 
base model of Van Leeuwen et al. (2019).

The upscaled model for the habitat for biodiversity function has 
four different qualitative scales, the most common of which is 
the three-value scale of Low, Medium and High, with an order 
changing depending on the attribute (see also the red and green 
colour in the Supporting Information). In addition to this three-
value scale, there are 10 attributes with another scale, either 
with three values (e.g. Poor performance, Moderate performance 
or Good performance) or with two values (e.g. Yes or No).

Table 6 shows the utility functions of the habitat for biodiver-
sity function with its three subordinate module attributes. The 
habitat for biodiversity has a low fulfilment when at least two at-
tributes have poor performance and the third one has moderate 
performance or lower. A medium fulfilment of the function is 
obtained when the majority of attributes have moderate perfor-
mance or when a balance between poor and good performance 
is obtained. A high function fulfilment, conversely, is obtained 
for either two attributes with good performance or one attribute 

TABLE 3    |    Utility functions relating the function soil climate regulation to its three module attributes.

Note: The asterisk ‘*’ denotes any of the three values of the scale.
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with high performance and the two others with moderate per-
formance or higher.

4.6   |   Verification and Sensitivity Analysis 
of Upscaled Models

The weights of the attributes in Table  7 show how differently 
the individual soil functions prioritize their contributing at-
tributes (modules). Examining these variations reflects our 

understanding of the relative importance of each attribute for a 
given soil function, which was coded by integration rules formu-
lated based on our knowledge of soil functions and the knowl-
edge used in the construction of the base models.

In particular, the climate-regulating soil function is determined 
by a relationship between carbon sequestration and greenhouse 
gas mitigation. With the highest weight (43%) assigned to car-
bon storage, the model prioritizes the soil's ability to seques-
ter carbon. However, N2O emissions (39%) and CH4 emissions 

FIGURE 3    |    Structure of the model for the nutrient cycling function. Grey rectangles represent aggregated attributes and coloured rectangles are 
soil, management or environmental attributes.
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(17%) are also weighted significantly, which emphasizes their 
importance alongside carbon sequestration. The nutrient cycling 
soil function is determined almost equally by the modulus at-
tributes included (mineralization 35%, nutrient availability 30% 
and nutrient recovery 35%). This even distribution of weights 
shows that the model considers all aspects of the nutrient cycle 
to be equally important for this soil function. For the primary 
productivity soil function, soil properties (63%) take precedence 
over environmental factors (38%) that influence plant growth. A 
higher weighting of soil properties indicates that the inherent 
characteristics of the soil itself, such as texture and organic mat-
ter content, were considered to be the most important factors for 
plants growth. The weights of the attributes that determine the 
water regulation soil functions are evenly distributed across all 
three modulus attributes. This balanced approach illustrates that 
the model considers all three aspects of water management, that 
is, storing sufficient water, preventing excessive runoff and pro-
moting adequate drainage, to be equally important for this soil 
function. Finally, for the habitat for biodiversity soil function, nu-
trient availability and soil structure were recognized as the most 
important factors for promoting diverse soil communities. The 
highest weighting of nutrients (42%) indicates that the availabil-
ity of nutrients is seen as the most important factor in supporting 
a diversity of soil organisms, as is good soil structure (35%) with 
its influence on suitable habitat conditions through soil aeration 
and water infiltration. Hydrology (23%), which stands for water 
availability for organisms, receives a slightly lower weighting but 
still plays an important role in creating suitable habitats.

4.7   |   Comparison of Upscaled Soil Function 
Models Results

Figure 6 shows the distribution of results from Soil Navigator 
(Debeljak et al. 2019) compared to that of the upscaled mod-
els. The frequency distribution of the qualitative results of 
the upscaled and base models (Figure  6) shows that the up-
scaled models have a similar sensitivity to the base models of 
soil functions. Thus, the upscaled models successfully capture 
the variability of the input data from 94 sampling points in a 
similar way to the validated base models. However, some dif-
ferences between the two distributions are visible, particularly 
in the relative frequency of certain qualitative classes for the 
primary productivity and climate regulation functions applied 
to grassland.

5   |   Discussion

Upscaling models from the field to the regional level was a 
challenge, mainly because there is little detailed information 
on land management practices at large geographical scales. 
The Land Use and Coverage Area frame Survey (LUCAS) 
dataset (Orgiazzi et al. 2018), for example, is the largest harmo-
nized soil database in the European Union but does not contain 
soil management information beyond the usual dynamic soil 
properties (e.g. organic carbon, bulk density). Similar types of 
large-scale datasets without detailed management informa-
tion are found in the United States Soil Survey Geographic 
Database (SSURGO, Soil Survey Staff  2017) and Australian 
Soil Data Federator web API (Searle et  al.  2021). We solved 
this problem by refining the base models and using DEX meth-
odology, which has proven to be a flexible approach for the 
development of soil function assessment models (e.g. Sandén 
et al. 2019; Trajanov et al. 2019), especially in contexts where 
data availability is limited. Its hierarchical structure facilitates 
the decomposition of complex soil functions into manageable 
sub-components and enables the integration of both qualitative 
and quantitative data. This ability is especially useful when 
addressing the qualitative nature of soil function assessments 
and the scarcity of detailed data at the regional level. In our 
case, the restructuring of the models was also guided by the 
availability of management attributes at large scales, for ex-
ample, tillage (Porwollik et al. 2019), artificial drainage Feick 
et al. (2005) and irrigation (Siebert et al. 2005), of which maps 
are available. For Europe, high-resolution information is avail-
able, such as the cover-crop map from Fendrich et al.  (2023) 
and the global SoilGrids dataset of Poggio et al. (2021), while 
other regional or Europe-specific datasets can also be used. 
This ensures the applicability of the models to other areas 
where there is data within the European continent as this is 
the area on which they were evaluated in this study. If using 
maps as input to the base models for mapping purposes, it 
would be valuable to propagate map uncertainty to the model 
outputs. This could be done through Monte Carlo simulation 
of the map uncertainty, if such information is available.

Figure 6 reflects the capacity of the upscaled models to be sim-
ilarly sensitive to the input data as the base models, as tested 
on a European dataset of 94 sites. Recall that the base and up-
scaled models used different input datasets. While the overall 
pattern in soil function assessment was similar, some expected 

TABLE 4    |    Utility functions relating the function nutrient cycling to its three module attributes.

Note: The asterisk ‘*’ denotes any of the three values of the scale.
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FIGURE 4    |    Structure of the model for the primary productivity function. Grey rectangles represent aggregated attributes, and coloured rectan-
gles are soil, management or environmental attributes.

TABLE 5    |    Utility functions relating the function primary productivity to its three module attributes.

Note: The asterisk ‘*’ denotes any of the three values of the scale.
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differences reflected the effects of spatial generalization, differ-
ences in input data and model assumptions during upscaling. 
This comparison step was by no means a statistical validation of 
the upscaled models, as such validation would require observed 
values of the soil functions, which do not exist.

Although DEX utility functions operate on symbolic values, they 
can be quantitatively interpreted using techniques such as the 
Linear Approximation (LA) method (Bohanec and Zupan 2004; 
Bohanec  2023b). In this approach, each symbolic rule is rep-
resented in Euclidean space by assigning numerical ranks to 

FIGURE 5    |    Structure of the model for the habitat for biodiversity function. Grey rectangles represent aggregated attributes, and coloured rectan-
gles are soil, management or environmental attributes.

TABLE 6    |    Utility functions relating the function habitat for biodiversity to its three module attributes.

Note: The asterisk ‘*’ denotes any of the three values of the scale.
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qualitative values, and a least-squares hyperplane is fitted to 
the resulting dataset. The derived weights are obtained directly 
from the structure of the decision rules rather than being as-
signed subjectively, thereby enhancing both transparency and 
analytical rigour. This contrasts with the formulation used by 

Ng et al. (2024) within the Soil Security Assessment Framework 
(Evangelista et al. 2024), where utility functions are expressed 
as continuous transformations of quantitative indicators into 
normalized [0, 1] scores, typically using logistic, Gaussian or 
other fitted response curves based on expert expectations. 
While Ng et al. (2024)'s approach prioritizes numerical precision 
through curve fitting and DEX emphasizes rule-based symbolic 
reasoning, both share the fundamental aim of formalizing ex-
pert judgement within a structured multi-criteria aggregation 
process. In this sense, DEX utility functions are not ad hoc 
heuristics but rigorously defined, mathematically interpretable 
mappings that are fully consistent with the broader methodolog-
ical principles articulated in Ng et al. (2024).

One limitation of the current approach is the subjectivity asso-
ciated with defining the structure of assessment models and in-
tegration rules in decision tables. These methodological issues 
were addressed by using a panel of soil scientists with expertise 
in different soil functions and consulting them in the elabora-
tion of the base models and integration rules. In addition to 
the expert-based definition of integration rules, best practices 
were used to check the obtained attribute weights and the se-
lected thresholds for discretization on numerical input data, 
following Bohanec  (2021) and Bohanec  (2023b). We believe 
that this helped reduce the subjectivity involved the definition 
of the integration rules. In the literature, the integration of dif-
ferent sub-scores into a single index has been done similarly 
with expert knowledge and stakeholder involvement (Orgiazzi 
et  al.  2016; Mendes et  al.  2021). It was also done empirically 
using principal component analysis (e.g. Andrews et al. 2002) 
or sub-scores weighting (e.g. Wadoux, Dobarco, et  al.  2024). 
It is often challenging to construct a set of decision rules for 
model integration. While it would be worthwhile to test contin-
uous integration rules, as is commonly done in the literature, 

TABLE 7    |    Contribution (weights) of the attributes for the results of 
the considered soil functions in the upscaled models.

Climate regulation

Carbon storage N2O emissions CH4 emissions

39% 43% 17%

Nutrient cycling

Mineralization Nutrient recovery Nutrient 
availability

35% 30% 35%

Primary productivity

Soil Environment

63% 38%

Water regulation

Water storage Water runoff Water drainage

33% 33% 33%

Habitat for biodiversity

Nutrients Structure Hydrology

42% 35% 23%

Note: The weights of all attributes for the five soil functions and the two land 
uses (i.e. grassland and cropland) can be found in the Supporting Information. 
The weights given here are the same for the two land use models. Weights are 
rounded to the nearest integer.

FIGURE 6    |    Scores of the restructured model for the valuation of the five functions and two land uses (i.e. grassland on top, cropland at the bot-
tom). The size of the dot indicates the number of sites within this class. For each soil function, the dots on the left side denote the output of the re-
structured model, whereas the dots on the right side represent the output of the original base models.
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their potential to improve results is not straightforward and 
difficult to evaluate. This is due to significant uncertainty in 
defining the shape of these continuous functions and select-
ing appropriate thresholds. Moreover, such an approach does 
not resolve the problem of subjectivity involved in establish-
ing the integration rules themselves. In future work, it may be 
more informative to assess the model sensitivity to rule sets 
defined by different experts. This could then be compared to 
the uncertainty propagated from the input data and help to 
identify which source of uncertainty has the greatest influence 
on model outcomes.

Another limitation is the static nature of the categorical outputs: 
a slight change in input might push a result from one category to 
another, even if the actual difference is small. As mentioned pre-
viously, these thresholds could be made continuous, although 
there is no obvious improvement in doing so, and evaluating 
this improvement is challenging. In our study, the thresholds 
varied between climate zones. This is surely an improvement 
over using the same threshold across all of Europe and for dif-
ferent land uses. In the future, we might want to test the use of 
site-specific thresholds or thresholds varying for each small unit 
(e.g. a field or a soil district). While this would be worthwhile, 
it would require a large number of high-quality, measured soil 
property values to define localized thresholds and validate their 
relevance. Without such data, the risk of introducing noise or 
bias may outweigh the potential benefits of having greater spa-
tial specificity.

The application of the DEX methodology for the development 
of models at a regional scale illustrates its potential for wider 
use in agricultural and environmental research and manage-
ment. This provides a tool for the regional assessment (general 
trends) of the capacity of differing soil genoforms (with the 
addition of very basic soil management information) to sup-
port the five soil functions. This could be utilized as a baseline 
for assessing soil health at larger spatial scales or analysing 
the environmental impacts of land use change at the regional 
scale. However, the lack of expertise and data availability at 
the regional level may require modifications to the DEX meth-
odology to successfully address these specificities and ensure 
its effectiveness and use in decision modelling. The proposed 
Directive on Soil Monitoring and Resilience currently pro-
poses a minimum indicator set, which focuses on the quan-
tification of land degradation across Europe (See Supporting 
Information). However, it also provides an opportunity to 
collect indicators that form the basis of these models, which 
can define the spatial trends of soil functions in relation to 
soil genoforms at larger spatial extents, for example, for soil 
districts. This approach can then be further enhanced by the 
collection of soil management data within soil districts, which 
facilitates the quantification of soil multifunctionality and as-
sociated soil health at the local scale of assessment (Wadoux, 
Courteille, et al. 2024).

The primary changes in the aggregated attributes pertain to 
the input attributes available for large-scale studies. These in-
clude all basic measured soil properties and global datasets for 
which maps are available (e.g. irrigation and drainage). It is 
important to note that maps are predictions and generally less 
accurate than direct measurements and field observations. 

Therefore, whenever feasible, measured input attributes 
should be prioritized over maps. However, for the large-scale 
models developed in this study, we contend that incorporating 
maps as an additional source of input attributes is reasonable. 
This is because in the upscaled models the discretization of in-
puts for use in the rules means that small differences in input 
values may not change the modelled assessment. Typically, a 
minor change in the input attribute does not lead to a change 
in the aggregation rule's level. Future research could test this 
through a sensitivity analysis of the model output relative to 
the input attributes.

The evaluation of upscaled soil function models was another 
methodological challenge due to the lack of site-specific data on 
soil functions in European regions. Our approach offers an alter-
native to classical validation based on measured values at the field 
scale. By comparing the results of the upscaled model with those 
of a validated field-level model, we have shown that the sensitiv-
ity of the upscaled models to input variability generally follows 
the behaviour of the validated field-level model under compara-
ble conditions, which increases confidence in the results of the 
upscaled models. Further, by comparing the model results at dif-
ferent scales (field vs. region), we gained insight into how the up-
scaled models respond to variability in the soil functions. These 
insights will be of use for further modelling improvements if 
needed. Our results are consistent with the experiences from other 
studies where proxy validation has been applied (Mezbahuddin 
et al. 2023; Eum and Gupta 2019). Although classical validation 
(i.e. the pairwise comparison of predicted vs. observed values) re-
mains the ideal approach when feasible, it was not possible here. 
In some cases, the soil function can be measured (e.g. the biomass 
production) and so a validation using validation statistics may be 
employed.

Overall, the sensitivity analysis and the comparison approach 
have resulted in reliable upscaled models for the assessment of 
soil functions at the regional scale. Although we recognize the 
limitations of the DEX methodology and the lack of data availabil-
ity at the regional scale, our research paves the way for the use of 
the developed models to support soil management and policy de-
cisions, promote sustainable land use practices and monitor soil 
health. The development of the models in this study is a first step 
to assess soil multifunctionality in large areas, particularly in the 
European Union where a Soil Monitoring Law is under develop-
ment. The application of the soil function models developed in 
this study on the LUCAS dataset would certainly make a valuable 
contribution to soil health assessment in Europe. In the future, 
we may explore uncertainty quantification of our approach to 
foster the inclusion of soil function assessment in soil monitoring 
initiatives. We also envision further application of the models for 
estimating changes in soil functions in response to threats and 
for projection of climate change, and to link the existing supply 
with the demand.

Finally, at the regional scale, the adapted model can provide 
decision-makers with an overview of the variability of soil 
functions across Europe using harmonized, continental-scale 
datasets. Such outputs can inform the design of national poli-
cies and the implementation of EU regulations by identifying 
priority areas for intervention and enabling the efficient tar-
geting of resources. Beyond soil management, these results 
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can support inter-sectoral policy development, linking soils to 
biodiversity conservation, ecosystem restoration and climate 
regulation objectives. For example, a policy-maker could use 
model outputs to determine where soil restoration measures 
would also deliver biodiversity benefits, thereby guiding inte-
grated strategies. While the primary audience at this scale is 
policy-makers, indirect users include farm advisors, who can 
apply the regional insights to coordinate activities and align 
local management recommendations with broader policy 
objectives.

6   |   Conclusions

We adapted existing base field-scale soil functions assessment 
models for use in a regional and national context. The restruc-
ture of the base models accounts for the general lack of man-
agement information available at large geographical scales. The 
new models were verified and tested for sensitivity using real 
soil data. From the results and discussion we draw the following 
conclusions:

•	 Five models for the large-scale assessment of soil functions 
are developed, corresponding to the five soil functions of 
water regulation, climate regulation, nutrient cycling, pri-
mary productivity and habitat for biodiversity.

•	 The models are specifically designed to assess soil functions 
over large geographical scale by requiring few management 
attributes as input.

•	 The developed DEX MCDMs successfully decompose a 
complex soil function evaluation problem into a hierarchi-
cal structure of less complex and therefore more manage-
able sub-problems, taking into account both qualitative and 
quantitative available input data.

•	 The definition of utility functions and threshold values is a 
critical step of the methodology. We used a expert-based ap-
proaches but empirical and data-driven approach exist.

•	 All upscaled models were verified and tested for sensitivity. 
Their response to a large range of values were similar to that 
of the field-scale base models.

Overall, the results suggest that the models are suited for ap-
plication over large areas. In the future, we envision the appli-
cation of the models to existing soil databases, for example, the 
European LUCAS dataset, in support of large-scale policy im-
plementation and the estimation of soil change due to external 
factors (e.g. climate change, urbanization) or threats (e.g. acidi-
fication, erosion).
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