
1

A Representation Learning Approach to Feature
Drift Detection in Wireless Networks

Athanasios Tziouvaras ∗, Blaž Bertalanič †, George Floros ∥∗∗, Kostas Kolomvatsos §, Panagiotis Sarigiannidis‡

and Carolina Fortuna†
∗ Business and IoT Integrated Solutions LTD, Nicosia, Cyprus

† Jožef Stefan Institute, Slovenia
∥ Trinity College Dublin, Dublin, Ireland
∗∗ University of Thessaly, Volos, Greece
§ University of Thessaly, Lamia, Greece

‡ University of Western Macedonia, Kozani, Greece
attziouv@bi2s.eu, blaz.bertalanic@ijs.si, florosg@tcd.ie, kostasks@uth.gr, psarigiannidis@uowm.gr, carolina.fortuna@ijs.si

Abstract—Artificial Intelligence (AI) is foreseen to be a cen-
terpiece in next generation wireless networks enabling ubiq-
uitous communication as well as new services. However, in
real deployment, feature distribution changes may degrade the
performance of AI models and lead to undesired behaviors. To
counter for undetected model degradation, we propose ALERT;
a method that can detect feature distribution changes and trigger
model re-training that works well on two wireless network use
cases: wireless fingerprinting and link anomaly detection. ALERT
includes three components: representation learning, statistical
testing and utility assessment. We rely on Multi-layer Perceptron
(MLP) for designing the representation learning component, on
Kolmogorov–Smirnov (KS) and Population Stability Index (PSI)
tests for designing the statistical testing and a new function
for utility assessment. We show the superiority of the proposed
method against ten standard drift detection methods available in
the literature on two wireless network use cases.

Index Terms—feature drift detection, machine learning, artifi-
cial intelligence, wireless networks, fingerprinting, link anomaly
detection

I. INTRODUCTION

Artificial Intelligence (AI) is foreseen to be a centerpiece
in next generation wireless networks, including 6th Gener-
ation Wireless Cellular Networks (6G) and beyond cellular
networks [1] by enabling ubiquitous communication, new
services including high-accuracy localization [2], anomaly
fault and detection [3] as well as replacing traditionally
networking functionality by AI based realization towards so-
called AI native functionality [4], [5]. AI models are typically
developed offline by using a pre-defined amount of data and
a set of Machine Learning (ML) techniques that are tuned
(semi-)manually to find the best performing combination for
the respective training data [6]. However, when deployed
in a real, production environment, the model development
workflow is managed by the so-called AI/ML workflow [7]
realized through Machine Learning Operations (MLOps) tools
[8]. The combination of those tools and their deployment
enable MLOps pipelines that automatically manage the data
preparation, model training, evaluation, selection and serving
in production systems.

Once deployed in a production setting, the data collec-
tion, MLOps pipeline and integrated AI models are typically
managed by different teams, sometimes without significant
coordination between each other [9]. In such setting, it may
happen that input data distribution changes occur naturally due
to changes in the observed systems, but it may also happen
that unstable data dependencies such as re-calibrations done
by the team responsible for data collection is not propagated
to the teams managing the MLOps or AI systems. Therefore,
the performance in production degrades and adjustments are
reactive rather than proactive [9]. A recent study across several
hundreds of eNodeBs and three categories of wireless KPIs
such as resource utilization has also confirmed the existence
of drifts in cellular networks [10] while [11] identified the
challenges surrounding the implementation of drift detection
and mitigation schemes in resource-constrained networks.

To detect and signal distribution changes that may degrade
the performance of AI in production, libraries able to detect
feature drifts while integrating with existing MLOps tools
have been developed [12]. These libraries incorporate several
drift detectors, defined as methods that observe a stream of
data over time and determine for every new data point if the
current distribution of the data has changed compared to a
reference data set [13]. Several drift detection techniques as
part of three such libraries have been recently benchmarked on
two use-cases: occupancy detection and prediction of energy
consumption [14]. To date, the only investigations of the drift
phenomenon on wireless data are available in [10] including a
Kolmogorov-Smirnov based detection technique and [11] that
considered Isolation Forests and threshold to detect drifts in
an illustrative example.

Aiming to provide a better insight into the suitability of
existing drift detection techniques on wireless data as well as
improve the existing state of the art for detection in wireless
networks, we propose a new feature drift detection method
(named ALERT), and benchmark it against ten standard meth-
ods on two use cases: wireless fingerprinting and link fault or
anomaly detection. The contributions of this paper are:

• ALERT, a new feature drift detection method consisting
of three components: representation learning, statistical

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

testing and utility assessment.
• Validation on two wireless Use Cases that utilize real-

world data. We show that the ALERT method outper-
forms all the baseline models, achieving an overall F1-
score of 0.9 in the fingerprinting use case and 0.88 in the
links use case.

• Analysis (i) identifying feature drift; (ii) assessing their
impact on the model; (iii) attempting to answer ”when”
to retrain the model with the new data.

This paper is organized as follows. Section II summarizes
related work, Section III provides background related to drift
detection, Section IV provides the problem statement while
Section V introduces the proposed ALERT method. Section VI
details the evaluation methodology Section VII while Section
VIII concludes the paper.

II. RELATED WORK

Data and concept drift are sometimes interchangeably used
in the literature while in some cases one is considered as a
superset of the other. In this paper we follow the definition
from [15] where feature drifts are categorized into four pri-
mary types: covariate drift also referred to a feature drift in
this paper, prior probability drift, concept drift, and dataset
shift. We group related works in three categories: works that
develop new or analyze existing drift techniques, works that
develop drift detection tools and systems and works that focus
on studying specific use-cases.

A. Drift Detection Techniques

Most of the drift, or change, detection techniques can
classified as follows based on the type of performed analysis:
1) sequential analysis, 2) control charts, 3) difference between
distributions and 4) contextual as discussed in [16] with
[17] providing a different grouping. One of the foundational
sequential analysis test is the Sequential Probability Ratio
Test (SPRT) that detects at a point p a change from a
distribution to another. Other tests such as Cumulative Sum
(CUMSUM) use principles from SPRT. The Page-Hinkley
(PH) test is a sequential adaptation of the detection of an
abrupt change in the average of a Gaussian signal [16]. The
methods from the second category are based on based on
statistical process control represented by standard statistical
techniques to monitor and control the quality of a product
during a continuous manufacturing. One such example is the
exponentially weighted moving average (EWMA) [16].

The methods from the third group, that monitor distri-
butions on two different time-windows, compare the two
distributions computed over the two windows using statistical
tests and signal a drift when the distributions are not equal.
The Kullback-Leibler (KL) divergence test, the Population
Stability Index (PSI), a variation of the KL [18], as well as
ADaptive WINdowing (ADWIN) all fall under this category
[16]. Some other statistical tests as follow probably also fall
in this group. The Energy Distance (ED) [19] that computes a
statistical distance between two probability distributions, the
Earth Mover’s Distance (EMD) [20] that computes the mini-
mal cost that must be paid to transform one distribution into

the other, the Kolmogorov-Smirnov test (KS) the quantifies
the distance between the empirical distribution function of
the sample and the cumulative distribution function of the
reference distribution, or between the empirical distribution
functions of two samples, the Kuiper test that is closely related
to KS, etc [21].

Finally, the contextual detectors rely on learning, with
examples such as the Splice that is a meta- learning technique
that implements a context sensitive batch learning approach
and the Incremental Fuzzy Classification System algorithm.

B. Drift Detection Tools and Systems

The authors in [14] proposed D3Bench, a benchmarking
tool that enables the functional and non-functional evaluation
of drift detection tools. In their analysis they benchmark three
open source tools for drift detection and found that Evidently
AI stands out for its general feature drift detection, whereas
NannyML excels at pinpointing the precise timing of shifts and
evaluating their consequent effects on predictive accuracy. The
authors of [22] start from the observation that observe that not
all feature drifts lead to degradation in prediction accuracy and
propose a new strategy which, using decision trees, is able to
precisely pinpoint low-accuracy zones within ML models. The
work triggers model improvement through active learning only
in cases of harmful drifts that detrimentally affect model per-
formance. Rather than triggering model retraining when drift
is noticed, [23] proposed Matchmaker, a tool that dynamically
identifies the batch of training data that is most similar to each
test sample, and uses the ML model trained on that data for
inference.

C. Drift Detection Use Cases

The authors in [14] benchmarked three drift detection tools
on univariate data falling under two use-cases: occupancy
detection where CO2 and room temperature were used as
features while occupancy was the target variable and energy
consumption prediction where energy consumption was the
feature. The authors of [24] study the impact of industrial
delays when mitigating distribution drifts on a financial use-
case. Focusing on cellular wireless data, [10] introduce a
methodology for concept drift mitigation that explains the
features and time intervals that contribute the most to drift; and
mitigates it using forgetting and over-sampling. An illustrative
demand prediction use case for multimedia service in a 5G
network was briefly considered in [11]. Isolation Forests and
threshold were used to conceptually illustrate drifts detection.

III. DRIFT DEFINITION

As briefly mentioned in Section II, the terminology related
to data, concept and model drift varies across works. The
formal mathematical definitions are generally similar in [17],
[25] and [24], however, in the remainder of the paper we will
align with the terminology from [15]. Assume a model Mi

is trained to fit a dataset Di = {d0, d2, d3, ..., dj}, where
dj = {Xk, yk}. In this sense, {d0, d2, d3, ..., dj} represent the
data points of the dataset Di, Xk represents the feature vector

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

and yk represents the label for the corresponding data point
dj . Evidently, since Di can be described under a distribution
F0,j(X, y), Mi learns to identify this distribution through
the model training process. Drift can occur when new data
points are inserted in Di, namely dj+1, dj+2, dj+3,, dj+n,
if F0,j(X, y) ̸= Fj+1,∞(X, y). For this inequality to hold
true, there should be a j that satisfies the following inequality:
Pj(X, y) ̸= Pj+1(X, y). Since Pj(X, y) = Pj(X)×Pj(y|X),
we can rewrite the drift equation as follows:

∃j : Pj(X)× Pj(y|X) ̸= Pj+1(X)× Pj+1(y|X) (1)

Following Eq. 1, and in line with [15], the four types of
drifts are as following:

1) The covariate shift [15] or drift [24], also referred
to as source 1 concept drift in [17], feature drift in
[26], is observed when Pj(X) ̸= Pj+1(X), while
Pj(y|X) = Pj+1(y|X). In such cases, the feature
distribution changes, when new data {dj+1} are entered
into the Di dataset, thus the reason we refer to covariate
drift also as feature drift in this paper.

2) The prior probability shift [15] or drift [24] phenomenon
can be identified when Pj(x|Y) = Pj+1(X|y), while
Pj(X) ̸= Pj+1(X). In this case, the label distribution
changes, while in the case of the covariate drift, the
distribution of the features changed.

3) The concept shift [15], drift [24] or source 2 con-
cept drift [17] phenomenon can be identified when
Pj(y|X) ̸= Pj+1(y|X), while Pj(X) = Pj+1(X). In
this case, the relationship between the labels and features
changes. In [15], it is additionally also defined as when
Pj(X|y) ̸= Pj+1(X|y), while Pj(y) = Pj+1(y).

4) Dataset shift [15] or source 3 concept drift [17] is com-
bination of covariate drift and concept drift and occurs
when Pj(y|X) ̸= Pj+1(y|X) and Pj(X) ̸= Pj+1(X).
This phenomenon requires both the data distribution and
the feature-data mapping to change.

IV. PROBLEM STATEMENT

In this paper, we focus on feature drift as defined in Section
III and assume a model M0 is trained on a dataset D0, which
we call the original training dataset. Given a new dataset
D1, our goal is to: (i) asses the existence of the feature
drift phenomenon; (ii) estimate its effects on the M0 model
performance and (iii) decide whether the M0 model should be
re-trained with the D1 dataset in order to increase its quality.

For M0, we consider two different datasets that correspond
to the two distinct validation scenarios we employ in this work.
Both validation scenarios leverage supervised classification
tasks, one performed on a multivariate dataset (named finger-
printing) collected from the LOG-a-TEC testbed [27] and one
implemented over a univariate wireless dataset (named links)
collected from the Rutgers WinLab testbed with synthetically
injected anomalies/faults [3].

The labels of the fingerprinting dataset consist of discrete
measurement positions in a grid and represent the location of
the BLE transmitter. The dataset was collected using the LOG-
a-TEC testbed in two different seasons: winter and spring. It

110 100 90 80
RSS [dBm]

0.0

0.2

0.4

0.6

0.8

1.0

#
 s

am
pl

es

Position #12; Node #53

winter
spring

Fig. 1. An example of feature drift between winter and spring data in the
fingerprinting dataset.

−90 −80 −70 −60

RSS [dBm]

0.0

0.2

0.4

0.6

0.8

1.0

%
 s

am
p
le

s

Anomalous vs Normal wireless links

Anomalous

Normal

Fig. 2. An example of feature drift between Normal and Anomalous wireless
links in the links dataset.

comprises of Received Signal Strenght (RSS) data from 25
BLE nodes deployed outdoors in a campus park, with nodes
mounted on light poles and building walls at varied heights. In
the experiment, a BLE transmitter broadcasted signals every
100 ms across a localization grid with each grid point sampled
for about one minute. The data was gathered in a realistic
environment with natural ambient interference. Figure 1 repre-
sents the distribution of collected RSS measurements at node
#53 in localization position #12 for both winter (blue bars)
and spring (green bars) data. Although the two histograms
partially overlap, it can be seen that the winter data range is
between -102 and -78 dBm, while the range for the spring
data is between -108 and -82 dBm. This shift, or feature
drift, illustrates how environmental factors can alter signal
propagation between seasons even when measurements are
taken at the same location and from the same transceiver pair.
In this example, the testbed area is abundant with trees, bushes,
and other vegetation that is fully leafed in the spring and
mostly bare in the winter. The difference in foliage between
seasons leads to variations in signal propagation, as the dense
vegetation in spring can cause additional attenuation of the
signals compared to the winter, while the absence of leaves
results in less signal interference.

The links dataset is a univariate wireless dataset with syn-
thetically injected anomalies. As presented by authors in [3],

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

there are 4 common types of anomalies that can be observed in
wireless link layer monitoring. As mentioned by the authors,
these anomalies are rare events that can indicate different
causes, such as a broken wireless nodes, software issues, or a
slowly dying nodes. Figure 2 depicts the distribution of RSS
values for Anomalous (blue bars) and Normal (green bars)
wireless links. As it can be seen from the figure, there is a
significant overlap between both type of links, with really
subtle difference between the two. The Anomalous values
range between -95 to -60 dBm, while Normal values range
between -92 and -58 dBm.

We consider that the M0 model is trained on the D0 dataset
(which can be either fingerprinting or links), and then it is
deployed in a production environment where new data points
(D1) correspond to the location or type of anomaly respec-
tively. As feature drift appears, through D1, the M0 responses
decrease in quality. As we run a controlled experiment in
which we also have labels for D1, we can measure the actual
decrease in performance. However, in a real production set-up,
D1 is a dataset which is yet to be labeled, therefore we have
to develop a way to detect the feature drift in a reliable way
without relying on labels.

As no labels for D1 are available in production setting, de-
tecting changes between D0 and D1 using techniques such as
discussed in Section II-A to measure distribution changes (i.e.,
perform statistical tests) seems the most suitable approach.
Then, we can verify which technique is the most suitable for
the considered use cases.

V. FEATURE DRIFT DETECTION USING THE ALERT
METHOD

In this work we propose ALERT, a new feature drift
detection method that rather than monitoring the distribution
shift of the raw data or traditionally engineered features, it
monitors the shift of a learnt representation (or embedding).
The intuition behind ALERT is that the learnt representations
tend to be lower dimensional and contain less noise making the
subsequent distribution change computation faster and more
accurate. ALERT includes three components: representation
learning, statistical testing and utility assessment. Figure 3 de-
picts the proposed method detailing the representation learning
component.

A. Design of the Representation Learning Component

We employ a supervised approach to learn the representation
of D0 through a lightweight Multi-Layer Perceptron (MLP)
rather than relying on more complex and computationally
expensive and data-hungry Convolutional Neural Network
(CNN) or transformer-based architectures.

Supervised representation learning: The representation is
learnt by training an MLP on D0, the original dataset including
the labels as depicted on the top left of Figure 3. Essentially
the MLP is a network of feed-forward layers where each layer
consists of a number of neurons. The output yi of the i-th
neuron can described by the following equation:

yi = ϕi

(∑(
WiXi

)
+Bi

)
(2)

Original
Dataset

New
Dataset

Layer clipping

MLP training

Original
Labels

Statistical tests

Expected utility

Feature extraction Feature extraction

Fig. 3. The proposed ALERT methodology for assessing the feature drift
given 2 datasets D0 and D1.

which is a linear combination of its inputs Xi, weights Wi

and biases Bi where ϕi is the activation function of the neuron.
Then each layer concatenates the outputs of all its neurons yi
into a vector Y = y1, y2, ..., yn, which is forwarded to the
next layer.

Extracting the feature representation: For this process,
we utilize the trained MLP and we clip its lower layers as
depicted in the mid area of Figure 3. We opt to discard
the lower layers of the MLP, since the upper layers tend to
capture higher-level features [28] and thus, they can provide
useful information related with the input data distribution.
In the sequel, we perform two forward passes using the
clipped MLP model: one using the D0 and one using the
D1 dataset. These forward passes do not update the weights
of the model and they extract two sets of features: the R0

feature set which is extracted from the D0, and the R1 feature
set which is extracted from the D1 dataset. The extracted
feature representations contain useful information that can be
leveraged by the utility function designed in the next module.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

B. Design of the Statistical Testing Component

For the statistical testing depicted in the blue box on the
lower side of Figure 3, we opt to use 2 well-established
methods (KS [29], [30] and PSI) [18], instead of relying
on a single one. This decision aims to: (i) reduce the input
parameters of ALERT, as much as possible; (ii) cancel out the
weakness of KS and PSI by aggregating their outcomes; (iii)
reinforce ALERT with the capacity of detecting both small and
medium distribution drifts; (iv) introduce sampling symmetry
to ALERT; and (v) stabilize and simplify ALERT’s outputs so
that to be easily usable and interpretable by decision-making
mechanisms.

Rather than relying on pre-set input parameters or
prior knowledge regarding the (Probability Density Function
(PDF)s), KS is able to internally estimate the distribution
characteristics of the input data. As a result, KS swiftly
detects small distribution changes (even in large datasets)
and produces a p-value that can be easily interpreted by
external systems [31]. However, KS is prone to false positives
and is asymmetric thus, if the user swaps the baseline and
sample distributions it will produce different outcomes. Also,
it requires a large number of samples to accurately function
and may struggle with non-normal distributions [32]. PSI, on
the other hand, can perform well, even if a lower amount
of data is used [33] and is considered a stable and robust
measure to assess drifts even when non-normal distributions
are considered. Also, PSI produces interpretable outputs, is
very good at identifying moderate or larger drifts, and is
fully symmetric. On the flip side, it requires the data binning
parameter to be set externally, which separates the input data
into predefined intervals. The combination of KS and PSI
provides a unified framework that cancels out the weaknesses
of each method and increases the robustness of ALERT.
The importance of both KS and PSI is further discussed in
Section VII-E, in which we perform an ablation study and we
showcase the individual contributions of KS and PSI to the
overall ALERT’s utility score. There, it is evident that if the KS
or the PSI component is removed, the performance of ALERT
drops by a large margin. To accomplish the unification of KS
and PSI, ALERT computes the following statistical tests:

• The KS(D0,D1) that represents the KS between the
dataset D0 and the dataset D1.

• The KS(R0,R1) that represents the KS between the ex-
tracted features R0 and the extracted features R1.

• The PSI(D0,D1) that calculates the PSI between the
dataset D0 and the dataset D1.

• The PSI(R0,R1) that calculates the PSI between the
extracted features R0 and the extracted features Y R1.

KS Statistical Test: The KS is invoked to check if two
sets of samples belong to the same distribution. To assess this,
the test utilizes a p-value which designates that the samples
belong to different distributions if p < 0.05. We calculate this
p-value similarly with [29], as follows:

px,y = 2

z∑
i=1

(
(−1)i−1 · e−2c2(a)·i2) (3)

where z is the total number of samples, x and y are the
corresponding sets that are being checked, and the c(a) can
be calculated through the following formula:

c(a) = Dx,y

√
nx ·my

nx +my
(4)

where nx and my is the number of samples of the x and y
datasets correspondingly. Dx,y is calculated via the following
equation:

Dx,y = sup
t

|Fx(t)− Fy(t)| (5)

Where Fx(t) and Fy(t) are the empirical distributions of
the data belonging in the x and y sets.

PSI Statistical Test: The PSI is used to measure the rela-
tive entropy between two distributions. This can be interpreted
as the measurement of divergence between two different sets of
samples. PSI values that are lower than 0.1 indicate that there
is no significant difference between two data distributions. We
calculate PSI as suggested by previous work in [18]:

PSIx,y =

z∑
i=1

(
P (xi)− P (yi) · ln

(
P (xi)

P (yi)

))
(6)

where z is the number of samples of the x and y data sets,
while P (xi) and P (yi) represent the frequencies of samples
i in the x and y datasets.

C. Design of the Utility Assessment Component

Since our ultimate goal is to provide a decision-making
mechanism for when to retrain the M0 model, we formulate
a utility function, depicted in the orange box at the bottom
of Figure 3, that combines a KS utility with a PSI utility as
follows:

U =
UKS + UPSI

2
(7)

U ∈ (0, 1) encapsulates the final utility we obtain if the
model retraining action is selected, given the datasets D0 and
D1. The expected utility U considers the outputs of KS and
KL tests to evaluate the statistical difference of the data D0

and D1 and the extracted features R0 and R1.
Eq. 7 combines Eqs. 8 and 9 defined as follows into a unified

utility function. The KS-based utility for retraining the M0

model is:

UKS =
1−KS(D0,D1) + 1−KS(R0,R1)

2
(8)

Since KS ∈ (0, 1), UKS is also a bounded function (UKS ∈
(0, 1)). This function uses the information derived from the
datasets D0 and D1 and averages it with the information
extracted from the features R0 and R1 to assess the KS drift.
Evidently, when UKS → 1 the drift phenomenon is more
prominent, while when UKS → 0 no drift is detected.

We also devise a function to calculate the PSI-based utility
for retraining the M0 model:

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

TABLE I
THE DETAILS OF THE DRIFTED AND NON-DRIFTED DATASETS WHICH ARE

CREATED BASED ON THE fingerprinting AND links.

fingerprinting links
Data types BLE measurements Time series

Total samples 505.000 8.493× 302
Classes 25 5

M0 training D0 D0

D3, D6, D9, D12, D4, D5, D6,
Drifted data D15, D18, D21, D24, D7, D8

D27, D30

D1, D2, D4, D5,
D7, D8, D10, D11,

Non-drifted data D13, D14, D16, D17, D1, D2, D3

D19, D20, D22, D23,
D25, D26, D28, D29

Cause of drift Spring data is New anomalies are
mixed with winter data added to the data

UPSI = σ
(PSI(D0,D1) + PSI(R0,R1)

2

)
(9)

The UPSI averages the PSI(D0,D1) and the PSI(R0,R1)

and uses the sigmoid function σ to bound the result so that
UPSI ∈ (0, 1). Similarly to Eq. 8, the expected utility of the
model retrain operation is higher when UPSI → 1 and lower
when UPSI → 0.

VI. EVALUATION METHODOLOGY

A. Dataset Description

For our experiments we focus on two use cases with two
datasets: fingerprinting dataset summarized in Figure 1, and
the links dataset summarized in Figure 2.

The fingerprinting dataset [27] contains received signal
strength (RSS) measurements made with Bluetooth Low En-
ergy (BLE) technology, measured in dBm. The dataset consists
of 505.000 data points, organised over 25 classes that represent
2D coordinates, which are collected during the spring and
during the winter, as described in Section IV. It can be used for
outdoor fingerprint-based localization applications, similarly
to [27]. We organise the data into 31 smaller datasets each
containing 16.290 samples, as follows: The first dataset D0,
which contains samples collected during the winter season
only, is used to train a random forest classifier, as our M0

model. For this reason, we refer to the D0 as the original
dataset, as depicted in Figure 3. Then we edit the rest of the
datasets D1 - D30 so that each third dataset contains samples
stemming from spring measurements, which are drifted (i.e.,
D3, D4, D6, D7, D9 etc.). The rest of the datasets (i.e., D2,
D5, D8, D11, D14 etc.) contain samples that are collected
during winter and belong to the same distribution with D0.
Through this process, we can simulate various scenarios of
feature drifts which are encountered in different time frames
i.e., in different versions of datasets collected in the field. Table
I summarizes the drift creation details for the fingerprinting
dataset.

In the sequel, we test the M0 model’s Macro Precision,
Macro Recall and Macro F1-score with each created dataset
(D1−D30). As illustrated in Figure 4, the performance of the

O
ri
g

in
a

l
(D

0
)

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1

0
D

1
1

D
1

2
D

1
3

D
1

4
D

1
5

D
1

6
D

1
7

D
1

8
D

1
9

D
2

0
D

2
1

D
2

2
D

2
3

D
2

4
D

2
5

D
2

6
D

2
7

D
2

8
D

2
9

D
3

0

Fingerprinting Dataset

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
c
o
re

Macro Precision

Macro Recall

Macro F1 score

Fig. 4. The performance of the M0 model with different fingerprinting
datasets. The performance drops when the feature drift phenomenon is present,
since the M0 is trained with the D0 dataset.

Orig
inal (D

0) D1 D2 D3 D4 D5 D6 D7 D8

Links Dataset

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

S
c
o
re

Macro Precision

Macro Recall

Macro F1 score

Fig. 5. The performance of the M0 model with different links datasets. The
model performance deteriorates when the M0 is tested with datasets that
contain feature drifts.

M0 drops significantly when it is tested with a dataset that
contains drifted samples. This experimental set-up shows the
existence of the drift and enables its detection through ALERT
and selected baselines.

The links dataset contains data from 8492 timeseries, each
one of which having 302 data samples. The dataset is labeled
and is organized into 5 anomaly classes. We split the data
into 9 smaller datasets each one containing 943 timeseries, as
follows: the first dataset D0 is used to train a random forest
classifier, as our M0 model. Similarly to our approach when
using the fingerprinting case, the D0 is again the original
dataset, which is illustrated in Figure 3. Then we split the
rest of the datasets D1 - D8 so that the D1, D2 and D3 to
contain samples from the same distribution as D0, while the
D4, D5, D6, D7 and D8 to contain drifted samples, from new
anomaly types. Table I summarizes the details of this process.
We then test the M0 model’s Macro Precision, Macro Recall
and Macro F1-score with each created dataset and we present
our findings in Figure 5. We observe that the performance of
the M0 drops when used with drifted samples, similarly to the
fingerprinting model.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

B. Parameter Search for the Representation Learning Com-
ponents

In order to design an efficient model for representation
learning, we should consider tuning the MLP’s layers, number
of neurons contained in each layer and the number of training
epochs. It is our objective to avoid complicated models for
the representation learning process, due to the computational
and training requirements they would impose during the MLP
training operation. For this reason, we try to minimize as
much as possible the number of layers, the amount of neurons
and the training epochs of the model. On the contrary, we
are aware that we risk underfitting if we design the model
to be very simple since, in that case it would be unable to
capture the representations of the input data. To solve this
issue, we perform a 3-dimensional parameter search regarding
the number of layers, neurons and training epochs.

C. Baseline Selection

We compare the ALERT technique with state-of-the art
methods that exist in the literature. We choose three broader
types of methods for comparison, namely statistics-based
methods, distance-based methods and ML-based methods.
Statistical methods leverage statistical indexes (such as mean
values, sampling variations and variance) to predict feature
drifts. In this work, we formulate a baseline using the follow-
ing statistical methods: (i) Kuiper test [34]; (ii) Cramer-Von
Mises (CVM) [35]; (iii) Welch Test (WelchT) [36]; (iv) Chi
Square test [37]; (v) Mann-Whitney U test (Mann Whitney)
[38]; (vi) Andreson Darling Test [39]; and (vii) Kolmogorov-
Smirnov (KS) test [40]. On the contrary, distance-based
methods focus on estimating the distance between two data
distributions by measuring the dissimilarity between them
through distance functions. In this work we use as a baseline
the following distance-based methods: (i) Population Stability
Index (PSI) [41]; (ii) Energy Distance [42]; and (iii) Earth
Mover’s Distance (EMD) [43]. ML-based methods utilize
Deep Learning or Machine Learning models to either form
an intermediate representation of the data under investigation,
or to estimate the features of data distributions. In this paper
we use the following ML-based methods as baselines: (i)
Adversarial Detection (ML-AD) [44]; (ii) Embedding-based
domain classification (ML-EDC) [45]; and (iii) Data-driven
deep Density Estimation (ML-DDE) [46].

D. Training and Evaluation

We use the D1 - D30 stemming from the fingerprinting and
the D1 - D8 stemming from the links datasets to evaluate
ALERT and to assess whether it is able to identify the
feature drift phenomenon accurately. For the implementation
of ALERT, we use the python programming language; whereas
the code base for the Baseline methods is provided by [44],
[45], [46] and [47]. For each validation Use Case, we train
the ALERT method’s MLP for 3 epochs using the D0 dataset
and then, we utilize the trained model to assess the existence
of the feature drift phenomenon.

Since the distance-based and statistics-based methods are
provided in a ready-to-use form in GitHub repositories [47],

their evaluation is trivial. On the other hand, ML-based meth-
ods require some adaptations in order to properly work with
our datasets. For this reason, we have performed the following
adaptations:

For the ML-AD method: we use the open source code
provided by the author [44] and we opt to train a ResNet-28-
10 model from scratch to fit the D0 dataset. Then, we fine-
tune the model using the provided Bayesian ensemble method,
which utilizes one optimizer (SGD) and one regularizer (Prior
Regularizor) in parallel. In the sequel, we save the trained
model and test its performance with each new dataset (D1 -
D30 for the fingerprinting data, or D1 - D8 for the links data).
This approach essentially performs adversarial detection for
each new dataset. The outcomes of each test determine if the
drift phenomenon is detected. Thus, when the model detects
adversarial samples, we assess that the drift phenomenon is
present.

For the ML-EDC method: we use an unsupervised rep-
resentation learning approach for drift detection. More specif-
ically, we train the DriftLens model [45] with our D0 dataset
in order for the model to learn the distribution properties of
the input data. Then, we utilise the D1 dataset to estimate the
threshold distance values that discriminate between drift and
no-drift conditions, as suggested by the authors. Afterwards,
we utilise the rest of the datasets to perform inference of the
trained model.

For the ML-DDE method: we first train a new model to
recognize the Probability Density Function (PDF) characteris-
tics of our D0 dataset. For the fingerprinting dataset we use
a 2-Dimensional data structure (X and Y coordinates), while
for the links dataset we use a 5-Dimensional data structure (1
dimension for each class). In the sequel we conduct inference
using the trained model and the rest of the datasets. In order
to assess the presence of drift phenomena, we use the KL-
divergence metric, as suggested by the authors [46], to measure
the distance between the estimated PDF of the D0 and the
estimated PDF of the dataset under investigation.

E. Performance Metrics

Since ALERT uses a utility function that designates whether
the M0 model should be retrained or not, it is difficult to
compare it with existing solutions. This happens because
each state-of-the-art method uses a different prediction con-
fidence threshold that is uniquely tailored according to its
requirements. To resolve this, we define the following scoring
function that can be commonly used among several methods
to compare their efficiency:

Score =


F1gain, if decision is true positive.
Ts, if decision is true negative.
F1gain − Ts, if decision is false positive.
−F1gain, if decision is false negative.

(10)
The function is designed to increase the score for correct

feature drift predictions and to decrease for incorrect ones.
The larger the feature drift, the bigger score is allocated

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

for correct assessments, and the bigger the penalty is given
for incorrect predictions. We assume that each method under
examination outputs a prediction on whether the M0 should
be retrained. We distinguish 4 different possible scenarios for
this assessment:

• A method’s assessment is true positive and correctly
identifies the existence of feature drift. There, the score
equals to the macro F1-score that the model will gain if
retrained (F1gain). The larger the feature drift, the higher
the (F1gain), and thus, larger scores are allocated for
correct assessments.

• A method’s assessment is true negative and correctly
identifies the absence of feature drift. In such scenarios
the score equals to the Ts constant, that is set by the user.
In our experiments, we set the Ts to 0.1.

• A method’s assessment is false positive and incorrectly
identifies the existence of feature drift. In this case the
model M0 is retrained, and the method is penalized by
an amount of F1gain−Ts where F1gain is F1-score the
model gains after retraining. We expect a small F1gain,
due to the absence of feature drift and as a result, the
score will be negative.

• A method’s assessment is false negative and incorrectly
identifies the absence of feature drift. The penalty of this
error is −F1gain, which is the F1-score that the model
would gain if it was retrained with the new data.

In our experiments, we apply this formula for each method
under examination and for each tested dataset. At the end
of each experiment, we sum each method’s scores which are
collected after assessing the aforementioned datasets and we
calculate the final value.

F. Utility Component Contribution

We perform an analysis of the contribution of each of the
following components to the total utility score of the ALERT
method: (i) KS(D0,D1); (ii) KS(R0,R1); (iii) PSI(D0,D1); and
(iv) PSI(R0,R1). The aim of this analysis is to validate our
initial hypothesis that both the KS and the PSI tests are
essential for the calculation of the utility score. Through
this, we also aim to analyze the impact of the representation
learning technique to the overall utility score of the ALERT.
To achieve this, we perform an ablation study by measuring
the contributions of each component separately, in terms of
percentages (%) for each Use Case, and we present the results
we obtain in section .

VII. RESULTS

In this section we analyze the performance of the ALERT
method proposed in Section V and evaluated according to the
methodology elaborated in Section VI to solve the problem
identified in Section IV.

A. Parameter Search for the Representation Learning Com-
ponents

Figure 6 illustrates the results of the 3-dimensional param-
eter exploration, which is conducted for the MLP. We experi-
ment with two datasets in which the feature drift phenomenon

0

6

10

10

20

N
e

u
ro

n
s
 p

e
r

la
y
e

r

4

30

MLP layers Training epochs

40

52
3210

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

S
c
o

re

Fig. 6. The contributions of different MLP parameters and training epochs
to the obtained utility score.

TABLE II
THE MLP PARAMETERS USED FOR THE IMPLEMENTATION OF ALERT.

MLP parameters Values
Layers 3 (Dense, Dense, Dense)

Neurons 20, 20, Number of Classes
Activations Sigmoid, Sigmoid, Softmax

Training epochs 3
Batch size 20
Optimizer Adam

Loss Categorical Cross-Entropy

is prominent, in order to calibrate the MLP parameters. We
should note that the utility function should be represented
by a high value, to clearly predict the existence of feature
drifts. Results indicate that the increase of model complexity is
directly correlated with higher utility scores. This is expected,
since more complex models manage to properly capture input
data representations and thus, to produce better assessments.
Nonetheless, there is an optimal parameter space, over which
larger and more complex MLPs do not provide significant
contributions to the utility score. Empirically, an MLP with 3
layers, 20 neurons per layer, and a training period of 3 epochs
achieves a utility score of 0.85, which we deem adequate to
assess the presence of feature drifts. On the contrary, an MLP
with 5 layers, 40 neurons per layer, and a training period of
10 epochs achieves a utility score of 0.92 which, despite being
higher than 0.85, does not provide us with better information
than the previous configuration. This is true especially if
we consider that the training requirements of more complex
MLP are significantly larger compared to models that leverage
simpler designs.

Table II lists the MLP parameters used for the ALERT
method. As discussed in the paragraph above, we opted for
a small model with 3 layers, each one of which containing
20 neurons. Since ALERT is a supervised method, the last
layer contains a number of neurons equal to the amount of
data classes. We utilise the Sigmoid activation function for
the first two layers and the Softmax function for the last layer
correspondingly. We train the model for 3 epochs, using a
batch size of 20, selecting Adam as the optimiser and the
Categorical cross-entropy as loss. Due to the small size of the
MLP we do not employ any regularization methods, and since

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

Utility
(KS)

Utility
(PSI)

Utility
(KS)

Utility
(PSI)

Utility
(KS)

Utility
(PSI)

0.001

0.001

0.002

0.4

0.6

0.02

No
drift

No
drift

Drift

No
drift

No
drift

Drift

0.001

2.001

0.31

No drift

Drift

Drift

Combined
Utility

Combined
Utility

Combined
Utility

Input samples
Feature

embeddings
Utility calculation

N
o

 d
ri

ft
G

ra
d

u
al

 d
ri

ft
A

b
ru

p
t

d
ri

ft

Fig. 7. The behavior of PSI and KS in different drift scenarios (no drift, gradual drift and abrupt drift). PSI excels in identifying abrupt drifts, while KS is
good at detecting gradual drifts. The combination of both detectors, along with the proposed representation learning technique give ALERT better coverage
for multiple drift scenarios.

the training is conducted for 3 epochs only, we do not use any
early-stopping techniques. In order to avoid temporal leakage,
we use the D0 dataset for training, and the rest of the datasets
for inference. This way, future data points are not accounted
for, during the model training.

B. Performance under different feature drift scenarios

Figure 7 illustrates the performance of ALERT under dif-
ferent different drift scenarios. To properly assess the effects
of KS and PSI in the design of the utility function in Eq.
7 we opt to visualise their outputs for 3 scenarios, using
the fingerprinting dataset, which is illustrated in Figure 1:
(i) when no drift exists in the data; (ii) when a gradual drift
occurs; and (iii) when an abrupt drift appears. Evidently, for
each scenario, ALERT produces different feature embeddings
which are then interpreted by the utility calculation module. As
discussed in Section V-C, this module utilises both KS and PSI
to assess if a drift phenomenon exists. The results confirm the
complementarity of KS and PSI incorporated in Eq. 7. More
specifically, the feature analysis conducted by KS achieves
good results when gradual drifts are under examination, while
in such cases PSI underperforms and thus, it cannot properly
identify their presence. The opposite observation for abrupt
drifts holds true. There, PSI excels in drift detection, whereas
KS often fails to identify abrupt drifts. To solve this, ALERT
combines the outputs of both estimators and manages to
capture both abrupt and gradual drifts. ALERT, KS and PSI
behave similarly when dealing with the Links dataset as well,
which is illustrated in Figure 2.

C. Performance with the ”Fingerprinting” Dataset

Figure 8 depicts the performance, in terms of the score
function established by the Eq. 10, for the proposed ALERT
method and the baseline techniques described in Section VI-C.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Cumulative Utility Score

ML-AD

ML-EDC

ML-DDE

KS

Anderson Darling

Mann Whitney

Chi Square

WelchT

CVM

Kuiper

EMD

Energy Distance

PSI

ALERT

Fig. 8. Performance comparison between the ALERT and the baseline tests,
using the fingerprinting dataset.

The maximum achievable score for this Use Case is 4.5, which
is achieved if all the predictions are correct, and the lowest is
−4.5 which is obtained if all the predictions are incorrect. We
observe that the proposed ALERT method achieves the best
score (4.28), followed by the ML-AD (3.24), ML-EDC (2.8),
ML-DDE (2.6), CVM (2.0) and Anderson Darling (1.3) tests.
The rest of the methods underperform by a large margin and
they obtain negative scores. The superiority of ALERT is due
to the learnt representation that keeps only the relevant signals
related to drift, and to the design of the utility function in Eq.
7 that provides balanced sensitivity, as discussed in Section
V-C. This also contributes to ALERT’s robustness, reducing
false positives and false negatives in drift detection.

Table III depicts the detailed prediction statistics for the
four best performing methods on the ”fingerprinting” dataset.
The first column of the table represents the methods un-
der examination, while the rest of the columns depict each
method’s performance in terms of true positive, true negative,

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

TABLE III
PERFORMANCE IN TERMS OF PRECISION, FRD, RECALL AND F1 OF DIFFERENT DRIFT DETECTION METHODS OVER THE fingerprinting DATASET. THE

PROPOSED ALERT METHOD OUTPERFORMS ALL THE BASELINE MODELS, ACHIEVING AN OVERALL F1-SCORE OF 0.9. IN TERMS OF F1-SCORES,
ML-AD FOLLOWS WITH 0.66, ML-DDE WITH 0.64 AND ML-EDC WITH 0.0.64

Methods True positives True negatives False positives False negatives Precision FDR Recall F1
ALERT 9/10 19/20 1/20 1/10 0.9 0.1 0.9 0.9
CVM 8/10 10/20 10/20 2/10 0.44 0.56 0.8 0.56

Anderson Darling 5/10 11/20 9/20 5/10 0.35 0.65 0.5 0.41
PSI 2/10 2/20 18/20 8/10 0.1 0.9 0.2 0.13

ML-AD 9/10 12/20 8/20 1/10 0.53 0.47 0.9 0.66
ML-EDC 8/10 15/20 5/20 2/10 0.61 0.39 0.8 0.62
ML-DDE 8/10 13/20 7/20 2/10 0.53 0.47 0.8 0.64

TABLE IV
PERFORMANCE IN TERMS OF PRECISION, FRD, RECALL AND F1, OF DIFFERENT DRIFT DETECTION METHODS OVER THE Links DATASET. ALERT

ACHIEVES THE BEST F1-SCORE, NAMELY 0.88. ML-DDE ACHIEVES 0.75, ML-AD 0.72, CVM AND PSI 0.6

Methods True positives True negatives False positives False negatives Precision FDR Recall F1
ALERT 4/5 3/3 0/3 1/5 1.0 0 0.8 0.88
CVM 3/5 1/3 2/3 2/5 0.6 0.4 0.6 0.6

Anderson Darling 2/5 2/3 1/3 3/5 0.66 0.34 0.4 0.49
PSI 3/5 1/3 2/3 2/5 0.6 0.4 0.6 0.6

ML-AD 4/5 1/3 2/3 1/5 0.66 0.34 0.8 0.72
ML-EDC 2/5 3/3 0/3 3/5 1.0 0 0.4 0.57
ML-DDE 3/5 2/3 0/3 2/5 1.0 0 0.6 0.75

0 0.1 0.2 0.3 0.4 0.5

Cumulative Utility Score

ML-AD

ML-EDC

ML-DDE

KS

Anderson Darling

Mann Whitney

Chi Square

WelchT

CVM

Kuiper

EMD

Energy Distance

PSI

ALERT

Fig. 9. Performance comparison of the ALERT method, with baseline
techniques, using the links dataset.

false positive and false negative predictions, as described in
Section VI-E. We have also included 4 additional columns that
present the precision, false discovery rates (FDR), recall and
F1-score of each method. The ALERT method outperforms the
baseline techniques since it achieves the best F1-score, namely
0.9. ML-based methods follow with ML-AD (0.66), ML-DDE
(0.64) and ML-EDC (0.62). The rest of the methods perform
poorly, as the CVM achieves 0.56 F1, the Anderson Darling
0.41 and the PSI 0.13. Evidently, ALERT manages not only
to accurately detect the existence of drift phenomena (9/10
true positive score), but also to correctly assess the absence of
feature drift (19/20 true negative score), thus saving the M0

model of unnecessary re-training operations. Also, ALERT
minimizes the rate under which it falsely identifies drifts,
achieving a low FDR score (0.1). ML-AD, which is the
best performing baseline method, achieves the same true

positive prediction score (9/10), but a lower true negative
score (12/20). Further, ML-AD has a higher FDR score (0.47)
which would result in unnecessarily re-training operations of
the M0 model. The same observation also holds true for both
the rest of the baseline methods.

D. Performance with the ”Links” Dataset
Figure 9 illustrates the comparison of the ALERT technique

with existing works over the links dataset. The maximum
score for each method is 0.48. The ALERT achieves a score
of 0.47 and outperforms the rest of the baseline techniques.
Distance-based and statistics-based methods acquire an equal
score of 0.26, with the exception of Chi-Square that severely
under-performs (0.16 score). On the other hand, ML-based
techniques perform well, with ML-DDE leading with 0.35
followed by ML-AD (0.32) and ML-EDC (0.22). ALERT
manages to successfully capture the data distribution properties
of the links dataset, containing both gradual and abrupt drifts,
and to assess with high accuracy the existence of feature drift.

Table IV showcases the performance of top-scoring meth-
ods, considering their predictions. Similarly to Table III, the
first column depicts the methods under examination which
are the ALERT, CVM, Anderson Darling, PSI, ML-AD, ML-
EDC and ML-DDE. The rest of the table columns contain
information regarding the true positive, true negative, false
positive, false negative, precision, FDR, recall and F1 scores of
each method. The ALERT and the ML-AD technique achieve
the best true positive score (4/5), followed by ML-DDE,
CVM and PSI (3/5). In terms of true negatives, ALERT and
ML-EDC come first with 3/3 correct assessments, Anderson
Darling and ML-DDE second with 2/3 and the rest follow
with 1/3. This has a direct impact to each method’s F1, with
ALERT scoring 0.88, closely followed by ML-DDE (0.75)
and ML-AD (0.72), while CVM and PSI score 0.6. We also

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

Fingerprinting dataset Links dataset
0

0.2

0.4

0.6

0.8

1

U
ti
lit

y
 s

c
o

re
 c

o
n

tr
ib

u
ti
o

n

KS
(D

0
, D

1
)

KS
(R

0
, R

1
)

PSI
(D

0
, D

1
)

PSI
(R

0
, R

1
)

Fig. 10. The contribution of KS(D0,D1), KS(R0,R1), PSI(D0,D1) and
PSI(R0,R1) to the expected utility score.

observe that all ML-EDC, ML-DDE and ALERT achieve 0
FDR scores and thus, they minimize the unnecessary model re-
training operations. Apart from the FDR, the rest of results are
in line with the results we observed under the fingerprinting
dataset. The ALERT method not only identifies the existence
of drift phenomena, but also it properly assesses their absence
as well.

E. Ablation Study for the Utility Assessment Component

Figure 10 depicts the outcomes of the ablation study, which
we conducted in order to evaluate the contributions of the
proposed representation learning technique along with the KS
and PSI tests described in Section V-B to the utility score
of ALERT. As discussed in Section VI-F, we perform the
study using the fingerprinting and the links datasets to confirm
our hypothesis that all of the aforementioned methods play
a major role to the overall utility score. Results indicate
that the contributions of each statistical test (KS(D0,D1),
KS(R0,R1), PSI(D0,D1) and PSI(R0,R1)) are indeed signif-
icant. Evidently, all four methods have quantifiable impact to
the expected utility, ranging from 7% to 45% depending on the
dataset. Therefore, the exclusion of any of these tests would
reduce the effectiveness of the utility function for the ALERT
method.

F. Execution time requirements

In Table V we present the execution time requirements of
each method under examination, in seconds. The first column
of the table refers to the method name, while the next two
columns present the time requirements of each technique to
perform a feature drift assessment, using the fingerprinting
and the links datasets correspondingly. Generally, the distance-
based and statistics-based methods that exist in the literature
are very fast, since they complete their assessments within 0.02
to 0.4 seconds. On the other hand, ALERT has larger execution
times, ranging from 17.2 - 3.5 seconds, depending on the use
case. This is expected, since ALERT partially trains an MLP
model, which severely affects its execution time. Similarly,
ML-based methods are slower compared to the others, since

TABLE V
THE EXECUTION TIME REQUIREMENTS OF THE METHODS UNDER

EXAMINATION FOR BOTH THE fingerprinting AND links DATASETS. THE
EXECUTION TIME IS MEASURED IN SECONDS AND IS CALCULATED FOR

EACH METHOD INDEPENDENTLY.

Methods fingerprinting dataset links dataset
ALERT 17.2s 3.5s

PSI 0.04s 0.4s
Energy Distance 0.04s 0.3s

EMD 0.04s 0.3s
Kuiper 0.07s 0.3s
CVM 0.03s 0.19s

WelchT 0.02s 0.02s
Chi Square 0.06s 0.4s

Mann Whitney 0.03s 0.1s
Anderson Darling 0.03s 0.3s

KS 0.06s 0.2s
ML-AD 22s 4s

ML-EDC 25s 5.2s
ML-DDE 28s 7s

0 10 20 30 40 50

Number of parallel datasets

2

4

6

8

10

12

14

16

18

20

22

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Fingerprinting dataset

Links dataset

Fig. 11. The execution time requirements of the ALERT methods when
conducting several drift assessment tasks in parallel.

during the inference process they utilize a fully trained ML
model. We should note that the execution times depicted in
Table V correspond to the inference process of the ML-based
methods, and they do not account for the model training time
requirements. We conclude that, in terms of absolute numbers,
the execution time requirements of ALERT are affordable for
real-world applications, even when large data volumes are
involved.

Further, gradual drifts usually occur in longer periods of
time, from several hours, as noted by [48], or several months,
as seen in our fingerprinting dataset. Considering this, our
method’s higher execution time can still be regarded as rel-
atively fast, especially in the context of adapting to such
evolving conditions. ALERT’s capacity to scale is illustrated in
Figure 11, where we evaluate its performance when executing
multiple drift assessments in parallel, simulating large-scale
monitoring of diverse data sources. Each dataset contains
16,290 samples and is processed on a single machine with
an NVIDIA GeForce GTX 1660 Ti (6 GB GPU) and an Intel
i7-10750H (2.6 GHz CPU). The x-axis shows the number of
datasets assessed in parallel, while the y-axis indicates the av-
erage execution time (in seconds) per assessment. The results
show that ALERT scales efficiently, as the difference between

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

TABLE VI
THE DETAILS, ADVANTAGES AND DISADVANTAGES OF THE DRIFT DETECTORS UNDER EXAMINATION.

Statistical-based methods Distance-based methods ML-based methods ALERT
Method type Unsupervised Supervised Unsupervised Supervised
Parameters p-value threshold Probability bins, cut-off thresholds ML hyperparameters MLP hyperparameters, Ts

Drift assessment Over data Over data Over features Over features
Low parameter sensitivity % % " "

Fast training " " % "

Fast inference " " % %

Resistant to noise % % " "

Do not require regular re-training % % % "

High accuracy with small datasets % % % "

1 and 50 datasets is ≈2 seconds of execution overhead.

G. Qualitative evaluation of drift detectors

In this section, we discuss the drift detectors which are
evaluated throughout this paper. We focus on breaking down
their main advantages and disadvantages, and we present their
input parameters. Our goal is to analyze the requirements of
each technique and to assess their functionality in different
scenarios. Under this premise, we also perform an analysis
on how ALERT departs from the standard drift detection
paradigm and what innovations it brings to the current dis-
course. Table VI depicts several characteristics of the method
groups under examination i.e., statistical-based, distance-based
and ML-based.

Both statistical-based and distance-based methods conduct
their drift assessments over the input data, are fast to train
and support lightweight inference. On the other hand, they
require frequent re-training in order to maintain high accuracy,
they are not resistant to noise and they underperform when
the training dataset is small. Further, they are very sensitive
to input parameters which include the p-value threshold (for
statistical techniques) and the number of probability bins, as
well as the cut-off threshold, over which a drift is detected (for
distance-based methods). A key difference between statistical-
based and distance-based detectors is that the former are
mostly unsupervised methods, while the latter usually fall into
the category of supervised methods.

The ML-based techniques, including ALERT, utilise fea-
tures (instead of raw data) to assess drifts, they have high
resistance to noise and they are not very sensitive to their
input parameters. On the flip side, their inference process is
slower compared to statistical and distance based methods.
The ML-based methods that exist in the literature require a
significant amount of training time (ranging from minutes to
hours), they can work with both labeled and unlabeled data,
they need regular re-training to maintain high quality models,
and their performance drops when the training dataset size is
small. On the contrary, ALERT is a supervised method that
does not require frequent re-training operations and works well
with both large and smaller datasets.

VIII. CONCLUSION

In this paper we have introduced ALERT—a novel feature
drift detection method that comprises representation learn-
ing, statistical testing, and utility assessment components.

We demonstrated ALERT’s superior performance on two
real-world wireless use cases, fingerprinting and link anomaly
detection, where it outperformed ten established methods by
ensuring that the AI models keep high F1-scores, namely
of 0.90 and 0.88 even in the presence of feature drift
when it is suitably detected and re-training triggered. Beyond
raw detection accuracy, our work provides a comprehensive
analysis workflow that not only pinpoints when and where
feature drift occurs but also quantifies its impact on model
performance and informs optimal retraining decisions. By
rigorously benchmarking ALERT against standard and state-
of-the-art approaches, we advance the state of the art in feature
drift detection for wireless networks and offer practitioners a
robust, end-to-end solution for maintaining reliable AI models
in dynamic radio environments.

Although ALERT was evaluated on wireless network data,
its architecture is domain-agnostic. Because it operates on
learned feature representations rather than on specific radio-
signal characteristics, the method can generalize to a wide
range of time-series or tabular data domains. This includes
applications such as financial transaction monitoring, health-
care sensor analysis, and industrial IoT systems, where data
distributions evolve over time. Future work will explore
adapting ALERT to these contexts, investigating how rep-
resentation learning can capture domain-specific dynamics
while maintaining robust drift detection across heterogeneous
data sources. Additionally, a study of using such detection
systems in large scale systems where feature dimensionality
or incoming data volumes vary would also be relevant.

ACKNOWLEDGMENTS

This work was funded by the Slovenian Research and
Innovation Agency (grant P2-0016) and by the European
Union’s Horizon Europe Framework Program SNS-JU (grant
agreement No. 101096456, NANCY). Instead of traditional
spell-checking and language correction tools, some manually
written paragraphs in the introduction and related work were
refined using AI to improve flow and language quality.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6g: Ai empowered wireless networks,” IEEE Communica-
tions Magazine, vol. 57, no. 8, pp. 84–90, 2019.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

[2] S. E. Trevlakis, A.-A. A. Boulogeorgos, D. Pliatsios, J. Querol, K. Nton-
tin, P. Sarigiannidis, S. Chatzinotas, and M. Di Renzo, “Localization as
a key enabler of 6g wireless systems: A comprehensive survey and an
outlook,” IEEE Open Journal of the Communications Society, vol. 4,
pp. 2733–2801, 2023.

[3] B. Bertalanič, M. Meža, and C. Fortuna, “Resource-aware time series
imaging classification for wireless link layer anomalies,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 34, no. 10, pp.
8031–8043, 2023.

[4] J. Hoydis, F. A. Aoudia, A. Valcarce, and H. Viswanathan, “Toward a 6g
ai-native air interface,” IEEE Communications Magazine, vol. 59, no. 5,
pp. 76–81, 2021.

[5] W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. S. Shen, and
W. Zhuang, “Ai-native network slicing for 6g networks,” IEEE Wireless
Communications, vol. 29, no. 1, pp. 96–103, 2022.

[6] Á. A. Cabrera, M. Tulio Ribeiro, B. Lee, R. Deline, A. Perer, and S. M.
Drucker, “What did my ai learn? how data scientists make sense of
model behavior,” ACM Transactions on Computer-Human Interaction,
vol. 30, no. 1, pp. 1–27, 2023.

[7] O.-R. Alliance, “O-ran working group 2 ai/ml workflow description and
requirements,” ORAN-WG2. AIML. v01.03, July 2021.

[8] A. Čop, B. Bertalanič, and C. Fortuna, “An overview and solution for
democratizing ai workflows at the network edge,” Journal of Network
and Computer Applications, p. 104180, 2025.

[9] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, 2015.

[10] S. Liu, F. Bronzino, P. Schmitt, A. N. Bhagoji, N. Feamster, H. G.
Crespo, T. Coyle, and B. Ward, “Leaf: Navigating concept drift in
cellular networks,” Proceedings of the ACM on Networking, vol. 1, no.
CoNEXT2, pp. 1–24, 2023.

[11] D. M. Manias, A. Chouman, and A. Shami, “Model drift in dynamic
networks,” IEEE Communications Magazine, vol. 61, no. 10, pp. 78–84,
2023.

[12] Y. Swathi and M. Challa, “From deployment to drift: A comprehensive
approach to ml model monitoring with evidently ai,” in International
Conference on VLSI, Signal Processing, Power Electronics, IoT, Com-
munication and Embedded Systems. Springer, 2023, pp. 307–320.

[13] T. Simonetto, M. Cordy, S. Ghamizi, Y. L. Traon, C. Lefebvre, A. Boys-
tov, and A. Goujon, “On the impact of industrial delays when mitigating
distribution drifts: An empirical study on real-world financial systems,”
in International Workshop on Discovering Drift Phenomena in Evolving
Landscapes. Springer, 2024, pp. 57–73.

[14] R. Müller, M. Abdelaal, and D. Stjelja, “Open-source drift detection
tools in action: Insights from two use cases,” in International Conference
on Big Data Analytics and Knowledge Discovery. Springer, 2024, pp.
346–352.

[15] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla, and
F. Herrera, “A unifying view on dataset shift in classification,” Pattern
recognition, vol. 45, no. 1, pp. 521–530, 2012.

[16] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys (CSUR),
vol. 46, no. 4, pp. 1–37, 2014.

[17] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
concept drift: A review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 12, pp. 2346–2363, 2019.

[18] J. F. Kurian and M. Allali, “Detecting drifts in data streams
using kullback-leibler (kl) divergence measure for data engineering
applications,” Journal of Data, Information and Management, vol. 6,
no. 3, pp. 207–216, September 2024. [Online]. Available: https:
//doi.org/10.1007/s42488-024-00119-y

[19] C. Harald, “On the composition of elementary errors,” Scandinavian
Actuarial Journal, vol. 1, pp. 141–80, 1928.

[20] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as
a metric for image retrieval,” International journal of computer vision,
vol. 40, pp. 99–121, 2000.

[21] M. Z. A. Mayaki and M. Riveill, “Autoregressive based drift detection
method,” in 2022 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2022, pp. 1–8.

[22] S. Dong, Q. Wang, S. Sahri, T. Palpanas, and D. Srivastava, “Efficiently
mitigating the impact of data drift on machine learning pipelines,”
Proceedings of the VLDB Endowment, vol. 17, no. 11, pp. 3072–3081,
2024.

[23] A. Mallick, K. Hsieh, B. Arzani, and G. Joshi, “Matchmaker: Data drift
mitigation in machine learning for large-scale systems,” Proceedings of
Machine Learning and Systems, vol. 4, pp. 77–94, 2022.

[24] T. Simonetto, M. Cordy, S. Ghamizi, Y. Le Traon, C. Lefebvre, A. Boys-
tov, and A. Goujon, “On the impact of industrial delays when mitigating
distribution drifts: an empirical study on real-world financial systems,”
KDD Workshop, 2024.

[25] S. Amos, “23when training and test sets are different: Characterizing
learning transfer,” in Dataset Shift in Machine Learning. The MIT
Press, 12 2008. [Online]. Available: https://doi.org/10.7551/mitpress/
9780262170055.003.0001

[26] S. Ackerman, E. Farchi, O. Raz, M. Zalmanovici, and P. Dube,
“Detection of data drift and outliers affecting machine learning
model performance over time,” 2022. [Online]. Available: https:
//arxiv.org/abs/2012.09258

[27] B. Bertalanič, G. Morano, and G. Cerar, “Log-a-tec testbed outdoor
localization using ble beacons,” in 2022 International Balkan Conference
on Communications and Networking (BalkanCom), 2022, pp. 115–119.

[28] M. Bello, G. Nápoles, R. Sánchez, R. Bello, and K. Vanhoof, “Deep
neural network to extract high-level features and labels in multi-label
classification problems,” Neurocomputing, vol. 413, pp. 259–270, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231220311115

[29] P. Porwik and B. M. Dadzie, “Detection of data drift in a two-
dimensional stream using the kolmogorov-smirnov test,” Procedia
Computer Science, vol. 207, pp. 168–175, 2022, knowledge-Based
and Intelligent Information and Engineering Systems: Proceedings
of the 26th International Conference KES2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S187705092200922X

[30] Z. Wang and W. Wang, “Concept drift detection based on kolmogorov–
smirnov test,” in Artificial Intelligence in China, Q. Liang, W. Wang,
J. Mu, X. Liu, Z. Na, and B. Chen, Eds. Singapore: Springer Singapore,
2020, pp. 273–280.

[31] C. Whitnall, E. Oswald, and L. Mather, “An exploration of the
kolmogorov-smirnov test as a competitor to mutual information
analysis,” in Proceedings of the 10th IFIP WG 8.8/11.2 International
Conference on Smart Card Research and Advanced Applications, ser.
CARDIS’11. Berlin, Heidelberg: Springer-Verlag, 2011, p. 234–251.
[Online]. Available: https://doi.org/10.1007/978-3-642-27257-8 15

[32] D. Steinskog and N. Kvamstø, “A cautionary note on the use of the
kolmogorov–smirnov test for normality,” Monthly Weather Review -
MON WEATHER REV, vol. 135, pp. 1151–1157, 03 2007.

[33] S. A. Alex, U. Ghosh, and N. Mohammad, “Weather prediction from
imbalanced data stream using 1d-convolutional neural network,” in
2022 10th International Conference on Emerging Trends in Engineering
and Technology - Signal and Information Processing (ICETET-SIP-22),
2022, pp. 1–6.

[34] N. H. Kuiper, “Tests concerning random points on a circle,”
Indagationes Mathematicae (Proceedings), vol. 63, pp. 38–47, 1960.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1385725860500060

[35] H. C. and, “On the composition of elementary errors,” Scandinavian
Actuarial Journal, vol. 1928, no. 1, pp. 13–74, 1928. [Online].
Available: https://doi.org/10.1080/03461238.1928.10416862

[36] B. L. Welch, “The generalization of ‘student’s’ problem when
several different population variances are involved,” Biometrika,
vol. 34, no. 1/2, pp. 28–35, 1947. [Online]. Available: http:
//www.jstor.org/stable/2332510

[37] K. P. and, “X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that
it can be reasonably supposed to have arisen from random sampling,”
The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 50, no. 302, pp. 157–175, 1900. [Online].
Available: https://doi.org/10.1080/14786440009463897

[38] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50 – 60, 1947. [Online].
Available: https://doi.org/10.1214/aoms/1177730491

[39] F. W. Scholz and M. A. Stephens, “K-sample anderson-darling tests,”
Journal of the American Statistical Association, vol. 82, no. 399, pp.
918–924, 1987. [Online]. Available: http://www.jstor.org/stable/2288805

[40] F. J. M. J. and, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American Statistical Association, vol. 46, no. 253, pp.
68–78, 1951. [Online]. Available: https://www.tandfonline.com/doi/abs/
10.1080/01621459.1951.10500769

[41] D. Wu and D. L. O. and, “Enterprise risk management: coping with
model risk in a large bank,” Journal of the Operational Research
Society, vol. 61, no. 2, pp. 179–190, 2010. [Online]. Available:
https://doi.org/10.1057/jors.2008.144

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s42488-024-00119-y
https://doi.org/10.1007/s42488-024-00119-y
https://doi.org/10.7551/mitpress/9780262170055.003.0001
https://doi.org/10.7551/mitpress/9780262170055.003.0001
https://arxiv.org/abs/2012.09258
https://arxiv.org/abs/2012.09258
https://www.sciencedirect.com/science/article/pii/S0925231220311115
https://www.sciencedirect.com/science/article/pii/S0925231220311115
https://www.sciencedirect.com/science/article/pii/S187705092200922X
https://doi.org/10.1007/978-3-642-27257-8_15
https://www.sciencedirect.com/science/article/pii/S1385725860500060
https://www.sciencedirect.com/science/article/pii/S1385725860500060
https://doi.org/10.1080/03461238.1928.10416862
http://www.jstor.org/stable/2332510
http://www.jstor.org/stable/2332510
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1214/aoms/1177730491
http://www.jstor.org/stable/2288805
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769
https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769
https://doi.org/10.1057/jors.2008.144

14

[42] G. J. Székely and M. L. Rizzo, “Energy statistics: A class of
statistics based on distances,” Journal of Statistical Planning and
Inference, vol. 143, no. 8, pp. 1249–1272, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378375813000633

[43] Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance
as a metric for image retrieval,” International Journal of Computer
Vision, vol. 40, no. 2, pp. 99–121, Nov. 2000. [Online]. Available:
https://doi.org/10.1023/A:1026543900054

[44] Z. Deng, X. Yang, S. Xu, H. Su, and J. Zhu, “Libre: A practical bayesian
approach to adversarial detection,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 972–982.

[45] S. Greco, B. Vacchetti, D. Apiletti, and T. Cerquitelli, “Unsupervised
concept drift detection from deep learning representations in real-time,”
IEEE Transactions on Knowledge and Data Engineering, vol. 37, no. 10,
pp. 6232–6245, 2025.

[46] P. Puchert, P. Hermosilla, T. Ritschel, and T. Ropinski, “Data-
driven deep density estimation,” Neural Comput. Appl., vol. 33,
no. 23, p. 16773–16807, Dec. 2021. [Online]. Available: https:
//doi.org/10.1007/s00521-021-06281-3

[47] J. Céspedes Sisniega and Álvaro López Garcı́a, “Frouros: An
open-source python library for drift detection in machine learning
systems,” SoftwareX, vol. 26, p. 101733, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352711024001043

[48] A. Costa, R. Giusti, and E. M. dos Santos, “Analysis of descriptors of
concept drift and their impacts,” in Informatics, vol. 12, no. 1. MDPI,
2025, p. 13.

BIOGRAPHIES

Athanasios Tziouvaras received his B.Sc. and
M.Sc. degrees in electrical engineering, and his
Ph.D. in computer architecture and data-intensive
applications from University of Thessaly in Greece.
He joined Business and IoT integrated solutions Ltd.
(BI2S) SME in 2021 and he is actively involved in
research and innovation activities. His research in-
terests include hardware acceleration, edge comput-
ing, machine learning, resource-aware computational
methodologies and distributed computing. He has
participated in more than 10 European and National

research projects and has co-authored several publications in the domain of
computer science.

Blaž Bertalanič received his Ph.D. degree with
highest distinction at the Faculty of Electrical en-
gineering, University of Ljubljana. He is currently
working as a researcher at Sensorlab, Jožef Stefan
Institute. His main research interests are connected
to advancement of machine learning and AI al-
gorithms, especially in the context of time series
analysis and smart infrastructures. Blaz is an IEEE
member and with several leadership positions in the
Slovenian chapter with over 15 IEEE publications.

George Floros is an Assistant Professor in the
Department of Electronic & Electrical Engineering
at Trinity College Dublin. Previously, he was a
Postdoctoral Researcher and Lecturer at the De-
partment of Electrical and Computer Engineering
at the University of Thessaly, Greece. He received
his Diploma in Engineering, MSc, and PhD degrees
from the same department in 2013, 2015, and 2019,
respectively. His research interests primarily focus
on the fields of electronic design automation (EDA),
semiconductor device modeling, circuit simulation,

model order reduction, thermal analysis of ICs, as well as VLSI design
techniques and embedded systems. Throughout his academic career, he has
authored over 10 journal articles, 30 conference papers, 3 posters, and
abstracts.

Kostas Kolomvatsos received his B.Sc. in Informat-
ics from the Department of Informatics at the Athens
University of Economics and Business, his M.Sc.
and his Ph.D. in Computer Science from the De-
partment of Informatics and Telecommunications at
the National and Kapodistrian University of Athens.
Currently, he serves as an Assistant Professor in the
Department of Informatics and Telecommunications,
University of Thessaly. He was a Marie Skłodowska
Curie Fellow (Individual Fellowship) at the School
of Computing Science, University of Glasgow. His

research interests are in the definition of Intelligent Systems adopting Machine
Learning, Computational Intelligence and Soft Computing for Pervasive
Computing, Distributed Systems, Internet of Things, Edge Computing and the
management of Large-Scale Data. He is the author of over 130 publications
in the aforementioned areas.

Panagiotis Sarigiannidis received the B.Sc. and
Ph.D. degrees in computer science from the Aristotle
University of Thessaloniki, Greece, in 2001 and
2007, respectively. He is currently the Director of
the ITHACA Laboratory, the Co-Founder of the 1st
spin-off of the University of Western Macedonia,
MetaMind Innovations, and a Full Professor with the
Department of Electrical and Computer Engineering,
University of Western Macedonia, in Greece. He
has published more than 360 papers in international
journals, conferences, and book chapters, including

IEEE COMST, IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
INTERNET OF THINGS, IEEE TRANSACTIONS ON BROADCASTING,
IEEE SYSTEMS JOURNAL, IEEE ACCESS, and Computer Networks. He
has been involved in several national, European, and international projects,
including H2020 and Horizon Europe. His research interests include telecom-
munication networks, IoT, and network security. He received six best paper
awards and the IEEE SMC TCHS Research and Innovation Award 2023.

Carolina Fortuna is a research associate professor
with the Jožef Stefan Institute where she leads
Sensorlab. She was a Post-Doctoral Researcher with
Ghent University, Ghent, Belgium. She was a Visit-
ing researcher in Infolab with Stanford University,
Stanford, CA, USA. She has led and contributed
EU funded projects such as H2020 NRG5, eWINE,
WISHFUL, FP7 CREW, Planetdata, ACTIVE, under
various positions. She has advised/coadvised more
than six M.Sc. and Ph.D. students. She has consulted
public and private institutions. She has coauthored

over 100 papers including in IEEE COMST, IEEE WICOM Magazine, IEEE
OJCOMS and Access. Her research interest includes developing the next
generation smart infrastructures that surround us and improve the quality
of our life. Dr. Fortuna contributed to community work as a TPC member,
the track chair, and a TPC member at several IEEE conferences including
Globecom and ICC.

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2025.3644604

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.sciencedirect.com/science/article/pii/S0378375813000633
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1007/s00521-021-06281-3
https://doi.org/10.1007/s00521-021-06281-3
https://www.sciencedirect.com/science/article/pii/S2352711024001043

	Introduction
	Related work
	Drift Detection Techniques
	Drift Detection Tools and Systems
	Drift Detection Use Cases

	Drift Definition
	Problem Statement
	Feature drift detection using the ALERT method
	Design of the Representation Learning Component
	Design of the Statistical Testing Component
	Design of the Utility Assessment Component

	Evaluation Methodology
	Dataset Description
	Parameter Search for the Representation Learning Components
	Baseline Selection
	Training and Evaluation
	Performance Metrics
	Utility Component Contribution

	Results
	Parameter Search for the Representation Learning Components
	Performance under different feature drift scenarios
	Performance with the "Fingerprinting" Dataset
	Performance with the "Links" Dataset
	Ablation Study for the Utility Assessment Component
	Execution time requirements
	Qualitative evaluation of drift detectors

	Conclusion
	References
	Biographies
	Athanasios Tziouvaras
	Blaž Bertalanič
	George Floros
	Kostas Kolomvatsos
	Panagiotis Sarigiannidis
	Carolina Fortuna

