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ABSTRACT Optimization of wireless network parameters relies on the awareness of a dynamically
changing radio environment, which depends on the presence of active devices characterized by various
radio access technologies (RATs), modulation schemes, and overall spectrum usage patterns, and can be
determined by advanced radio signal recognition methods. While various supervised machine learning
(ML) models have been explored for signal recognition, their actual deployment has been limited so far
due to challenges in acquiring labeled datasets. The emergence of Open Radio Access Network (O-RAN)
architectures and open experimental testbed setups has enabled access to large-scale, unlabeled data through
standardized interfaces, paving the way for unsupervised deep learning methods. These methods, unlike
supervised approaches, require minimal labeled data and have shown promising results in domains such
as computer vision and time-series processing. However, their application in wireless communications
remains relatively unexplored. This survey aims to provide a comprehensive overview of unsupervised
deep learning techniques for addressing key challenges for signal recognition in wireless communications,
including automatic modulation classification (AMC), signal sensing, specific emitter identification (SEI),
and anomaly detection. Specifically, we examine state-of-the-art approaches such as deep clustering,
contrastive learning, autoencoder-based reconstruction, and generative models. Additionally, we discuss
available open datasets and identify research opportunities to advance this field, leveraging the substantial
successes of self-supervised learning in computer vision and natural language processing. By organizing the
survey into two key complementary perspectives—wireless communication challenges and unsupervised
deep learning solutions—this work provides a roadmap for researchers and practitioners seeking to develop
innovative, data-efficient models for the next generation of AI-native wireless networks.

INDEX TERMS AMC, anomaly detection, radio signal recognition, SEI, signal sensing, spectrum sensing,
unsupervised deep learning, wireless communications.

I. INTRODUCTION
Radio signal recognition concerns recognizing the presence,
type, and characteristics of signals transmitted over the radio
frequency (RF) spectrum. It is an essential task in wireless
communications and spectrum management, supporting a
variety of challenges. In this survey, we focus on four closely
related and sometimes overlapping subdomains: modulation
classification [1], signal sensing [2], specific emitter iden-
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tification (SEI) [3], and anomaly detection [4]. These areas
have been widely explored by the research community over
the past decade, with a significant emphasis on deep learning
approaches in the last five years. The awareness of the radio
environment is important for optimizing various network
parameters, such as selecting appropriate frequency channels,
adjusting transmission power, choosing modulation types,
and determining suitable radio access technologies. Timely
information on the overall spectrum usage and activity from
different aspects, such as the number of active devices,
used radio access technologies (RATs), modulations, and

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 217769

https://orcid.org/0000-0003-1087-3502
https://orcid.org/0000-0001-9944-0732
https://orcid.org/0000-0003-0547-3520
https://orcid.org/0000-0001-6379-3966
https://orcid.org/0000-0002-1899-2808


L. Milosheski et al.: Radio Signals Recognition With Unsupervised Deep Learning: A Survey

anomalous signals, could enable more efficient and effective
management of wireless networks, ensuring their stable
performance and minimizing mutual interference.

Sensing capabilities offer significant benefits for both
licensed and unlicensed spectrum networks, as direct feed-
back from the environment, for the purpose of network
parameter control. In unlicensed spectrum, technologies like
WiFi, LoRa, and Bluetooth use sensing to inform channel
occupancy [5] to guide the selection of less congested
channels, and detect interfering transmissions, which is
increasingly common with the proliferation of wireless
devices in everyday life.

Licensed wireless networks could benefit significantly
from such environmental awareness, achieved through the
different signal recognition capabilities. These proved the
potential to further increase the efficiency of the spectrum
usage, following the successfull applications in the past, such
as the License Assisted Access (LAA) [6] at 2.4 GHz and
5 GHz providing coexistance of LTE with WiFi, as well as
the 4G/5G sharing the 3.5 GHz Citizens Broadband Radio
Service (CBRS) band with military radar [7]. This is highly
relevant for the developments related to next-generation
wireless networks such as 6G, considering that Integrated
Sensing and Communication (ISAC) is envisioned as one of
their key capabilities [8], [9]. Furthermore, signal recognition
outcomes could be used for network parameters control
and optimization, for objectives like interference detection
(via spectrum sensing), improved security (through SEI),
and traffic steering (based on RAT recognition). This
is particularly the case in private network deployments
of 5G networks, such as office buildings, and factories
where the operator has no control of transmissions in
similar neighbouring deployments. The utilization of such
functionalities is enabled byOpen Radio Access Network (O-
RAN) [10], considering that they could easily be deployed as
software applications within the non-real-time and near-real-
time controllers (xApps and rApps) [11], leveraging open and
standard interfaces [12] for data collection.
In addition to direct network parameter control, historical

network monitoring data obtained through signal recognition
functionalities can be used to build detailed environmental
maps of network performance. They can form the basis for
multimodal Digital Twins [13], i.e., virtual replicas of the
network with its components and metrics such as latency
and uplink/downlink speeds. These go beyond the existing
concepts that provide only signal coverage [14], which
is highly important for network planning and monitoring,
by including multiple planes of data, such as mapping
the uplink and downlink speed to the physical environ-
ment, thus paving the way for the emerging throughput
intensive and low-latency [15] Extended Reality (XR)
technologies [16].

All four subdomain tasks rely on processing radio signals,
either in their raw format consisting of an in-phase and
a quadrature (I/Q) component, usually utilized for SEI
and AMC, or in transformed forms such as spectrograms
based on FFT or wavelet transforms. These provide a

FIGURE 1. Overview of the survey structure, illustrating with color code
the relationships between sections and the mapping of the surveyed
works based on their employed approaches and addressed challenges.

pictorial format particularly suitable for existing image
processing algorithms, thereby facilitating sensing capabili-
ties. ML models are particularly suitable for these tasks [17]
due to their capability to capture high-level correlations
between temporal patterns, which in such use-cases of
radio data are difficult or even impossible to detect with
standard energy detection [18], [19] or cyclo-stationary
momentum-based detectors [20], [21]. However, this comes
at a price of increased computational complexity and lower
explainability.
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While the use of machine learning (ML), including Deep
Learning (DL), for signal recognition-related tasks is not
new, actual deployment in real-world systems is still in
its early stages. Supervised learning approaches have been
extensively validated, and offer promising results [22],
however, they face several limitations. Application is limited
by the need for large labeled datasets, which are costly
and time-consuming to obtain [19]. Furthermore, they face
generalization problems due to the constraints of the labelled
dataset sizes. Unsupervised deep learning, which includes
several approaches that learn based on pretext tasks derived
from the data itself, emerges as a promising alternative.
It addresses the generalization and labeling problem by
achieving comparable results to supervised methods while
requiring only a fraction of the labeled data. This is due
to the capability of automatic learning by processing large
amounts of unlabeled data. These are now widely accessible,
either generated from many available testbeds operating
in the unlicensed bands or through the standardized O-
RAN interfaces. As a result, unsupervised learning serves
as a practical solution for initial model development, with
supervised learning reserved for targeted fine-tuning in
specific deployment scenarios [23].

A. CONTRIBUTIONS
The unsupervised deep learning approaches have matured in
fields such as machine vision [24], [25], and general time
series processing [26]. However, it is still gaining traction in
the wireless communications domain, with limited existing
research, given that its adoption is not straightforward, both in
its raw and transformed formats. It requires communications-
specific alterations, such as special data augmentation
functions or feature extraction kernels, e.g., convolutional
neural networks (CNNs), with particular capabilities, which
are tailored for the specific semantics contained in the radio
signals.

To the best of our knowledge, no existing survey
summarizes recent advances in unsupervised deep learning
for wireless communications while systematically catego-
rizing learning approaches and their relation to key signal
recognition challenges. This work addresses that gap by
providing a comprehensive overview of deep unsupervised
learning approaches applied to wireless communications,
along with open datasets to support and inspire further
research. Given the remarkable progress in computer vision
and natural language processing through self-supervised
models, exploring their potential in this domain is both
timely and promising. In the most general sense, our
work focuses on a review of the existing work from two
perspectives:

1) Review of core wireless signal recognition-related
challenges addressed with unsupervised deep learn-
ing: These challenges include AMC, signal detection,
SEI, and anomaly detection. Considering that these
challenges are well-known and established research
fields in the domain, each backed by a large corpus

of publications, we adopt the existing categorization
published in [28].

2) Review of unsupervised deep learning solutions
in communications: Such approaches include deep
clustering, contrastive learning, autoencoder-based
reconstruction, and generative models in relation to the
key signal recognition tasks within wireless communi-
cations. Specifically, we further build on the existing
segmentation provided in [26]. For each specific
research challenge, we examine which unsupervised
learning approaches have been applied to improve
performance.

These two analytical review perspectives ultimately
lead to the final and most important contribution of
our work as a survey, i.e., the identification of open
research problems and future directions regarding the
application of unsupervised deep learning to the wire-
less communications domain. More specifically, in addi-
tion to surveying current challenges and approaches,
our work highlights existing gaps and unresolved issues
where unsupervised learning methods could offer innovative
solutions.

B. STRUCTURE OF THE PAPER
In Figure I, we summarize the structure of the entire survey,
indicating the main parts and their relations, which will
be followed through the discussions in the text. Section II
reviews existing surveys and related work, highlighting their
contributions and limitations while positioning our study
within this research landscape. Section III introduces the
fundamental unsupervised deep learning approaches applied
in wireless communications, including deep clustering,
contrastive learning, reconstruction-based methods, genera-
tive models, and predictive learning. Section IV describes
the commonly used types of learning modules for those
approaches. Sections V-VIII review the most recent works,
report on open datasets, and discuss potential future work
regarding signal recognition and classification for AMC,
signal sensing, SEI, and anomaly detection. Section IX
highlights the observed challenges and potential future work
directions, while Section X presents the conclusions of this
study.

II. RELATED WORK
Several surveys have addressed ML applications in radio
signal recognition, focusing on various aspects. However,
a closer look shows that the unsupervised deep learning
is treated only marginally, either as a subcategory of
deep learning, [27], [28], [30], [31], [32], or completely
omitted due to the focus on particular application domains
such as dynamic spectrum access [29], and attacks mod-
eling [33]. This leaves a notable gap in the coverage of
unsupervised deep learning methods for radio frequency
signals, which in recent years have become increasingly
relevant, considering their potential for automatic signal
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representation learning, as well as the availability of large
open datasets.

A. GENERAL ML IN COMMUNICATIONS
Among the most comprehensive surveys in the field, [30]
provides an extensive overview of deep learning algorithms
applied to mobile and wireless networking, along with
the enabling technologies supporting their deployment. The
authors systematically review state-of-the-art models and
offer a fine-grained categorization linking specific algorithms
to the problems they address, thereby serving as a valuable
reference for researchers and practitioners.

While slightly dated, [31] remains an influential and
insightful contribution, offering a broad overview of deep
learning applications in wireless networks from an applica-
tion perspective. The survey organizes prior work according
to the layers of the communication network stack, sys-
tematically analyzing how deep learning techniques have
been applied to the physical, data link, network, and
higher layers. This layered categorization provides a useful
framework for understanding the scope and diversity of
deep learning use cases in wireless systems. A related
effort by [32] adopts a similar structure but focuses on
applications within the Internet of Things (IoT) domain,
addressing comparable challenges from a connectivity and
device-integration standpoint. While both surveys introduce
the main algorithmic paradigms, including supervised and
unsupervised learning, their treatment of unsupervised deep
learning remains high-level and mostly conceptual.

In [28], the authors provide a clear categorization of
the existing challenges that are being addressed in the
domain and a comprehensive overview of existing works
from the perspective of the used dataset. They also provide
insightful recommendations on the creation of future radio
datasets. We take into consideration this categorization
and complement it by reviewing the approaches that are
used to address the discussed challenges, focusing on the
unsupervised learning approaches, which we believe are
highly relevant.

B. RADIO SIGNAL RECOGNITION
In the recent work [27], the authors provide a broad overview
of machine learning (ML) approaches for spectrum sensing,
focusing on supervised learning techniques, while paying
limited attention to unsupervised deep learning, restricted to
a brief mention of autoencoders. Such coverage overlooks
other major unsupervised paradigms, such as contrastive
learning and deep clustering, which have recently demon-
strated strong potential for representation learning without
labeled data [36], [37]. Furthermore, authors highlight the
importance of large-scale radio frequency (RF) datasets for
developing pre-trainedmodels and enabling transfer learning;
however, the discussion remains general and lacks concrete
dataset references. As summarized in Figure I, we analyze
these aspects in depth throughout the sections of this survey.

In [29], the authors provide a concise overview of
the sensing-related challenges in the radio frequency (RF)

domain addressed through machine learning (ML), focusing
on cognitive radio functions such as spectrum sensing and
dynamic spectrum access. The review includes supervised
and reinforcement learning approaches, and, unlike our work,
they offer no examination of unsupervised deep learning
approaches from the perspective of their relevance for the
pretraining phase of supervised approaches. This aspect is
covered in our work in Sections V and VII.

In a similar manner, [35] provides systematic coverage
of AI-based methods for the tasks of automatic modulation
classification (AMC), signal detection, channel estimation,
and MIMO beamforming. The work systematically reviews
AI-based methods and highlights their potential for enabling
intelligent and adaptive physical-layer processing. However,
it gives limited attention to unsupervised deep learning
approaches, which we systematically analyze in Section III
and review in Sections V to VIII of this work as depicted in
Figure I.
The most closely related work to ours is [34], which

provides one of the first comprehensive surveys dedicated
to unsupervised ML techniques in networking. Although
dated (2019), it remains a valuable reference, as it captures
fundamental challenges and methodological directions that
are still relevant to current research. However, given the rapid
evolution of deep learning in recent years, the survey is gradu-
ally becoming outdated, considering the recent emergence of
transformer-based architectures and the contrastive learning
paradigm, both of which have driven significant progress
in self-supervised representation learning for radio signal
processing.

C. OUR WORK
Considering the existing categorization of the domain-related
challenges in prior reviews, the classification of unsupervised
deep learning methods from closely related fields [24], [33],
[38], and the identified gap in reviewing the recent advances
in their use in radio signal recognition, we are focusing on
these approaches from the perspective of wireless networks
communications.

Summary of the related works, considering their key
contents and shortcomings, as well as how we complement
them in our work, is given in Table 1.

D. CLASSICAL UNSUPERVISED METHODS
While recent research in unsupervised learning increasingly
emphasizes deep learning techniques due to their superior
performance in feature extraction, classical unsupervised
methods such as Energy Detector (ED), K-means clustering
and its variants, and Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) remain highly rele-
vant. These traditional approaches are frequently used as
benchmarking baselines [5], [36] or as components within
more advanced frameworks, such as deep clustering [17],
where they are combined with neural network-based feature
extractors. The following section provides a concise overview
of recent works that deploy non-deep learning unsupervised
methods.
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TABLE 1. Summary of related works concerning unsupervised learning for wireless communication.

The EnergyDetector is one of the simplest andmost widely
used methods for signal detection, especially in spectrum
sensing. It operates by measuring the energy of a received
signal over a predefined observation interval and comparing it
to a threshold. If the measured energy exceeds this threshold,
the presence of a signal is assumed; otherwise, the channel
is considered idle. Its performance is highly sensitive to
noise uncertainty and can degrade significantly in low Signal-
to-Noise Ratio (SNR) conditions. In recent works, it is
usually deployed as a baseline approach for benchmarking
purposes [39], [40].

K-means clustering is a partition-based clustering
algorithm that aims to divide a dataset intoK non-overlapping
clusters. It is simple to use and requires only the number
of clusters as a single parameter for initialization, which
is independent of the feature space. Thus, it is the most
frequently used non-deep learning approach, either as part of
more complex deep-learning architectures [5], [17] such as
deep clustering, or as a benchmarking baseline in its original
form [5], [36], [41], [42]. Other clustering algorithms, for
instance DBSCAN [41], [42], GMM [43], Agglomerative
and Spectral clustering [36], are typically used as baselines
due to their higher complexity initialization parameters that
require feature-space specifics, such as distance between
samples.

In Figure 2, we show the performance of the most
commonly used classical unsupervised methods given as
relative performance to the deep learning-based counterparts,

proposed in the corresponding works. On the x-axis are
the reference numbers of related works. On the y-axis is
the relative performance given as percentages of the top-
performing deep-learning counterpart (marked on top of
each bar) evaluated in similar conditions, considering the
reported metrics (also marked on top of each bar) in the
corresponding works, for each of the three reviewed radio
signal recognition tasks. No such data was available for
the reviewed works in the Anomalies Detection task; thus,
we consider only the AMC, SS, and SEI tasks. As can be
seen from the plot, the classical approaches consistently show
lower performance compared to the deep learning-based
approaches across all three tasks and a variety of metrics.
Only two cases ( [39] and [43]) reach a significant 80% of
the performance of the deep learning counterpart proposed
in the corresponding work. However, such performance is
observed only in the binary classification problems (note that
the metric is Pd or PdAUC ), while for the more complex
tasks with multiple classes, the performance is significantly
worse.

III. UNSUPERVISED DEEP LEARNING TECHNIQUES IN
WIRELESS COMMUNICATIONS
Clear categorization of the Unsupervised Deep learning
algorithms is still an open discussion, depending on the
perspective from which the approaches are being observed.
For example, in [44], authors make a distinction based on the
way the pseudo-labels are generated, while in [26], authors
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FIGURE 2. Relative performance of classical unsupervised algorithms
compared to the deep learning approaches in the surveyed works as
reported in the literature. Labels on bar charts: Method, Metric. Methods:
KM=K-means, GMM=Gaussian Mixture Model, ED=Energy Detector,
DBSCAN=Density-Based Spatial Clustering of Applications with Noise.
Metrics: Pd=Probability of Detection, NMI=Normalized Mutual
Information, ACC=Clustering Accuracy, Purity=Clustering
Purity.

consider the final training phase only. Considering these
two publications and the pool of relevant surveyed works,
we distinguish five different unsupervised deep learning
approaches utilized in signal recognition in the wireless com-
munications domain: deep clustering, reconstruction-based,
generative, contrastive, and predictive. In the following,
we briefly introduce each of them, without going into fine-
grained details, for which some of the early original works
are referenced.

A. DEEP CLUSTERING METHODS
Deep clustering methods [45], illustrated in Figure 3,
integrate deep learning with clustering techniques to
extract semantically meaningful representations from
high-dimensional RF data and to group similar signal
patterns in an unsupervised fashion. In this context, neural
networks are trained to map raw or preprocessed RF
inputs, such as I/Q samples, spectrograms, or just averaged
FFT amplitudes, into a latent space where clustering
algorithms (e.g., K-means or Gaussian Mixture Models)
can distinguish between signal classes [17]. The training
process jointly optimizes two objectives: (1) representation
learning, which structures the latent space to capture key
features of RF signal variability (e.g., hardware impairments
in the I/Q components for emitter identity, or amplitudes
patterns at different frequencies for signal sensing), and (2)
unsupervised clustering, which promotes the separation and
compactness of signal clusters in the learned embedding
space [17].

B. CONTRASTIVE METHODS
Self-supervised contrastive learning [46], [47] is a powerful
representation learning paradigm that enables the extraction
of discriminative features from unlabeled data (including RF
data) by contrasting positive and negative signal instances.
The core idea is to maximize the similarity between positive
pairs, which are derived from the same RF signal sample
through domain-specific augmentations (e.g., zero-masking,

time-shifts, noise injection [48]), while minimizing similarity
with negative pairs, which correspond to embeddings of
different RF signals. Both augmented views of the same
signal are passed through a shared neural encoder to generate
feature embeddings, followed by a projection head that maps
these into a latent space where a contrastive loss function
(e.g., InfoNCE [49]) is applied, as depicted in Figure 4.
This contrastive objective encourages embeddings of similar
RF patterns (e.g., same emitter or modulation scheme) to
cluster together while pushing dissimilar signals apart [42],
thereby enabling robust, generalizable representations useful
for downstream tasks such as AMC and SEI.

C. RECONSTRUCTION-BASED METHODS
Reconstruction-based methods [50] are unsupervised learn-
ing techniques particularly well-suited for RF signal pro-
cessing. The goal is to learn compact and informative
representations by reconstructing input RF signal data from
compressed or latent representations. The basic model
is the autoencoder (AE), a symmetric encoder-decoder
architecture, visualized with violet in Figure 5a. An encoder
transforms raw RF signals, such as raw I/Q samples or
spectrograms, into a lower-dimensional latent space, and
a decoder attempts to reconstruct the original signal from
this compressed representation. The objective is to minimize
the reconstruction error, ensuring the learned representations
capture the most salient features of the RF data, such as
modulation, temporal pattern, or energy burst shapes across
the frequency domain. These approaches are widely used
for signal recognition tasks, such as RAT classification [51],
primary user (PU) recognition [43], and denoising [40].
By optimizing the reconstruction, these baseline autoen-
coders provide a robust framework for learning compact and
informative representations suitable for downstream tasks,
such as SEI [52], after further tuning of the encoder in a
supervised manner.

However, relying solely on reconstruction loss, the
autoencoder may not necessarily produce a compact and
interpretable feature space of the input RF signals. This
lack of structure can make it difficult to analyze or utilize
the encoded representations in a completely unsupervised

FIGURE 3. General structure of Deep clustering methods.

FIGURE 4. General structure of Contrastive learning methods.
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FIGURE 5. General structure of Reconstruction-based learning methods.

setup [5], [19], where fine-tuning is not an option. To address
this, introducing a clustering loss in the feature space f ,
as in [36], can guide the encoding process toward a more
cluster-friendly distribution of samples. This adjustment
makes the learned representations more suitable for fur-
ther analysis, especially when labels are entirely absent.
Such modifications in the learning process give rise to
reconstruction-based deep clustering methods that are used
for self-supervised RF signal feature learning as pretraining,
for downstream tasks such as clustering for novel (unseen in
training) device detection [41], [53]. Its functional structure
is highlighted in orange in Figure 5b.

An important extension of the reconstruction-based
approach for RF signal representation is the Variational
Autoencoder (VAE), depicted in red in Figure 5c. Unlike
standard autoencoders, which map each input RF signal to
a fixed point in latent space, VAEs model the latent space
as a multidimensional probability distribution, typically
Gaussian. For each input, such as an I/Q sample stream [39]
or spectrograms [54], [55], the encoder outputs parameters
of a distribution (mean and variance) rather than a single
deterministic code. The decoder then reconstructs the signal
by sampling from this learned distribution. This probabilistic
framework provides a continuous and structured latent space,
which enables smooth interpolation between different RF
signal samples and supports generative capabilities such as
the synthesis of novel RF-like samples.

D. GENERATIVE METHODS
Generative methods [56] are a class of machine learning
techniques designed to model the underlying data (including
RF data) distribution and generate new, realistic samples
that resemble the original dataset. These methods are widely
used for tasks like image synthesis, data augmentation,
and representation learning. Among the most prominent

generative approaches besides VAEs discussed in the previ-
ous subsection are GenerativeAdversarial Networks (GANs).
GANs generally consist of a generator that produces synthetic
data and a discriminator that evaluates their authenticity,
training them in an adversarial manner to improve the quality
of generated samples as depicted in Figure 6.

FIGURE 6. General structure of Conditional Generative Adversarial
Networks.

The GAN architecture has seen wide application in the
physical layer of wireless communications [57], [58], usually
in its conditional variant, cGAN, illustrated in Figure 6.
In cGAN, instead of with random input, the generator is
provided with sparse points of the actual input data. The
use of GANs mainly focuses on pre-processing of radio
signals, such as enhancing [59] and generating new data
samples [60] for data-constrained use-cases. Such approaches
could contribute to improving signal recognition [61]; how-
ever, many such solutions require labeled data for training,
such as modified spectrograms in [54], thus positioning them
as edge cases with regard to the scope of this survey.

E. PREDICTIVE METHODS
Self-supervised predictive learning is a representation learn-
ing method that leverages unlabeled data by training models
to predict certain aspects or features of the data itself.
As illustrated in Figure 7, they typically consist of a
representation learning module followed by a classifier and
a classification loss module.

FIGURE 7. General structure Predictive methods.

In the RF domain, predictive self-supervised tasks are
designed to exploit the temporal, spectral, and structural con-
tinuity inherent in RF signals. These tasks involve learning to
predict transformations or future states of the signal, encour-
aging the model to internalize meaningful representations
without labeled data. Typical examples include: predicting
artificially applied transformations such as rotation classi-
fication [62]; forecasting the next I/Q symbol in a time
series to model fine-grained temporal dependencies [63]; and
predicting the next spectrogram frame to detect anomalies
as deviations from expected spectral behavior learned during
training [64]. These pretext tasks promote the learning
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of statistical regularities—such as modulation structure,
spectral patterns, and temporal correlations in I/Q data—
making the resulting representations highly informative for
downstream applications like anomaly detection, AMC,
or SEI.

F. OVERVIEW
We summarize the discussed unsupervised deep learning
methods in Figure 8 using a Venn diagram to illustrate the
relationship between them and to map the corresponding
works in the wireless communications domain that will be
surveyed through Sections V-VIII.

FIGURE 8. Unsupervised deep learning approaches. Color coding
corresponds to Fig. I.

Each approach includes specific types of architectures,
yet there are overlapping cases, particularly with autoen-
coders, which can be categorized differently depending on
how their loss functions are modified. Standard autoen-
coders, as a reconstruction-based approach, consist of an
encoder-decoder structure optimized using reconstruction
loss. This provides a straightforwardway to feature extraction
in an unsupervised manner, capturing essential data repre-
sentations in a low-dimensional latent space. Modifications
to their loss functions improve different aspects of their
functioning, thus placing them into different categories,
even though they retain their fundamental structure and
functionality of encoding input data into a lower-dimensional
representation and reconstructing it at the output. Introducing
a clustering loss in the latent space, in addition to the standard
reconstruction loss (such as a distance-based loss), leads
to the formation of more cluster-friendly feature spaces.
This adaptation aligns autoencoders more closely with deep
clustering methods. Alternatively, replacing the latent space
loss with a statistical loss, while incorporating reparame-
terization to ensure gradient flow during backpropagation,
transforms the model into a generative framework. This
modification enables the generation of new samples by

sampling from a smooth, continuous latent distribution,
making it a VAE-based generative model.

As shown in Figure 8, contrastive and predictive learning
approaches remain distinct categories that do not yet overlap
with reconstruction-based, deep clustering, or generative
models.

IV. NEURAL ARCHITECTURES FOR THE REPRESENTATION
LEARNING MODULES
In this section, we shortly outline commonly used types of
learning modules as part of previously described techniques
in Section III.

A. MULTILAYER PERCEPTRON (MLP)
Multilayer Perceptrons are the most fundamental form of
neural networks, consisting of fully connected layers where
each neuron in one layer connects to all neurons in the next
layer. They are composed of an input layer, one or more
hidden layers, and an output layer, as visualized in Figure 9.
Each layer performs a linear transformation followed by a
nonlinear activation:

y = σ (Wx + b), (1)

FIGURE 9. Multilayer Perceptron illustration.

where x is the input, W the weight matrix, b the bias, and
σ (·) is the activation function (e.g., ReLU, Sigmoid).
In the wireless communications domain, MLPs are rarely

used for direct processing of raw data, and usually only
for low-density inputs, such as Received Signal Strength
Indicator (RSSI) measurements. This is mainly because
MLPs exhibit a high parameter count that increases rapidly
with input dimensionality, resulting in substantial computa-
tional and memory demands. Furthermore, they are weak at
capturing local dependencies, since they give equal weight to
each input. However, they still offer decent performance [65],
[66] if appropriate inputs, such as statistical moments, are
provided. In recent works [5], [51], [67], theMLPs are mostly
used as building blocks of more complex architectures,
such as classification layers for the CNN-provided feature
spaces, as will be discussed later in this section and
visualized in Figure 13. Regarding the setup requirements,
the MLPs are fairly easy to utilize since they require
specification of a relatively small number of parameters.
Besides the standard parameters which are common for most
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of the backpropagation-based learning architectures, such as
optimizer, learning rate, batch size, etc., these include the
activation function and the number of layers and neurons per
layer.

FIGURE 10. Single layer of 1D Convolutional Neural Network illustration.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNNs are designed to process grid-like data, such as images
or time series, by applying convolution operations to extract
local features. A convolution layer applies filters (also
referred to as kernels) that slide over the input, capturing
spatial hierarchies. In the following, we formulate a one-
dimensional (1D) CNN, also depicted in Figure 10, which
is suitable for sequence processing. The extension to 2D,
which is also commonly used when a sequence to image
transformation is applied on the input data, is straightforward.
Given an input sequence x and a filter (kernel) w of length
k , the 1D convolution operation at position i is calculated
as:

y(i) =

k−1∑
j=0

w(j) · x(i+ j), (2)

where y(i) is the output feature map at position i, x(i + j)
is the input value at position i + j in the sequence and
w(j) is the weight of the kernel at position j. This operation
is repeated across the entire sequence to form a complete
output y.

CNNs are the most widely used learning modules in the
wireless communications domain, potentially as part of any
of the discussed unsupervised deep learning approaches in
Section III, due to their ability to capture and distill spatial
correlations. Their hierarchical feature extraction provides
strong generalization for structured inputs. However, their
performance depends on more parameters, which have to
be defined and are application dependent, such as filter
sizes, stride, padding, and pooling strategy, which makes
them more complex to set up compared to the MLPs.
On the other side, they can be directly used on the raw
data, avoiding manual feature engineering as it is usually
needed with MLPs, which makes them more flexible and
applicable.

There is a variety of existing implementations of
CNN, which include different filter configurations and

interconnection of layers (Visual Geometry Group (VGG),
Residual Network (ResNet), GoogLeNet, etc.), enabling
solutions of various complexity. While they exhibit great
performance for time series or pictorial data processing and
extraction of spatial correlations, they lack the ability to cap-
ture long-term dependencies, which are specific to I/Q signal
components in wireless communications data. One way to
address this is by increasing the receptive field by introducing
dilated convolutions [68], or simply increasing the filter
sizes.

C. COMMONLY USED TYPES OF RECURRENT NEURAL
NETWORKS (RNN)
RNNs, depicted in Figure 11a are tailored for sequential
data processing with variable length, where each neuron’s
output depends not only on the current input but also on the
previous hidden state. Theoretically, they could be used in
any of the unsupervised deep learning approaches discussed
in Section III; however, there are no works adopting them
in the Deep Clustering approach (Section III-A). There
are works with contrastive (Section III-B) [23], generative
(Section III-D) [69], predictive (Section III-E) [63] and
reconstruction-based (Section III-C) [40] approaches. Their
formal definition is given as:

ht = σ (Whht−1 +Wxxt + b) , (3)

where Wh is the weight matrix for the previous hidden
state, Wx is the weight matrix for the current input, b is
the bias vector and σ is an activation function. The output
yt is the same as the hidden state ht . While they can
capture temporal dependencies, their performance suffers
from vanishing gradients, leading to forgetting longer-term
dependencies. For the sake of simplicity, the bias vectors
which are existing for each weight matrix are not visualized
in Figure 11.

1) LONG SHORT-TERM MEMORY NETWORKS (LSTMS)
LSTMs, depicted in Figure 11b, address the limitations
of standard RNNs by introducing gating mechanisms that
control the flow of information through a cell state. The gates
include input (it ), forget (ft ), and output (ot ) gates.

The forget gate ft controls which part of the information is
discarded from the previous cell state ct−1, modeled as:

ft = σ
(
Wfhht−1 +Wfxxt + bf

)
, (4)

where σ is the sigmoid activation function, Wfh and Wfx are
weight matrices for the hidden state and the input, and bf is
the bias term.

The input gate it controls which values will be updated in
the cell state, i.e.

it = σ (Wihht−1 +Wixxt + bi) . (5)

The candidate cell state c̃t generates the candidate values
that can be added to the cell state, according to:

c′t = tanh (Wchht−1 +Wcxxt + bc) . (6)
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FIGURE 11. Types of recurrent neural networks.

FIGURE 12. Illustration inspired by [71].

FIGURE 13. Venn diagram of the surveyed works with regard to the
corresponding deep learning module used. Color coding corresponds to
Fig. I.

The new cell state ct is a combination of the old cell state
and the candidate values:

ct = ft · ct−1 + it · c̃t . (7)

The output gate ot determines which parts of the cell state
contribute to the hidden state:

ot = σ (Wohht−1 +Woxxt + bo) . (8)

And finally, the hidden State ht is the actual output from
the LSTM cell:

ht = ot · tanh (ct) . (9)

The introduction of the three gates enables LSTMs to
capture and model longer-term temporal dependencies. Thus,
these models are suitable for time-series processing in
general, including wireless communications signals. This
approach is also one of the most common approaches for
addressing classification problems in wireless communica-
tions. However, they are computationally more expensive to
train compared to the basic RNNs.

2) GATED RECURRENT UNITS (GRUS)
GRUs, depicted in Figure 11c, are a simplified variant of
LSTMs that combine the forget and input gates into a single
update gate and use a reset gate.

The reset gate rt determines how much of the past
information to forget, according to:

rt = σ (Wrhht−1 +Wrxxt + br ) , (10)

where σ is a sigmoid activation function, Wrh, Wrx are the
weight matrices for the previous hidden state and the current
input, respectively, and br is the bias term for the reset gate.

The update gate zt controls how much of the previous
hidden state ht−1 is retained versus updated, according to:

zt = σ (Wzhht−1 +Wzxxt + bz) . (11)

The candidate hidden state h̃t incorporates the reset gate
to decide which part of the past information to forget before
applying a non-linear transformation, following:

h′
t = tanh (Whh (rt · ht−1) +Whxxt + bz) . (12)

The final hidden state ht is a combination of the previous
hidden state and the candidate hidden state, controlled by the
update gate, calculated as:

ht = (1 − zt ) · ht−1 + zt · h′
t . (13)

GRUs are computationally more efficient than LSTMs
while achieving comparable performance. Besides the basic
training parameters, such as learning rate and activation
function, these types of networks also require specifying
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the number of layers, the number of hidden units per layer,
and the sequence length, which are the main drivers of the
final model’s complexity. Due to recurrent dependencies,
the setup requirements are typically more complex but
still comparable to those of CNNs. Furthermore, they are
more time-consuming to train because they process data
sequentially, which limits parallelization.

D. TRANSFORMERS (ATTENTION MECHANISMS)
The transformer architecture, originally designed for natural
language processing, has proven highly effective for time
series modeling due to its ability to capture both short- and
long-term dependencies. While this learning module could
be used in any of the approaches discussed in Section III,
the existing works are only concerned with the contrastive
(Section III-B) [70] and reconstruction-based (Section III-C)
[40] learning approaches. The relatively low number of
works utilizing transformers is due to the freshness of such
architectures in the wireless communications domain, thus
being still in the early adoption stage.

Transformers rely entirely on attention mechanisms rather
than recurrence or convolutions. The self-attention mecha-
nism computes the importance of different parts of a sequence
relative to each other, given as:

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V . (14)

As illustrated in Figure 12a, the core component is the
scaled dot-product attention, where query (Q), key (K ), and
value (V ) matrices are processed through a series of linear
transformations and attention mechanisms. The attention
scores are computed by taking the dot product of Q and K ,
scaled by the square root of the key dimension dk , and passed
through a softmax function to produce attention weights.
These weights are applied to V to obtain the context-aware
output.

To enhance the model’s capacity, multi-head attention,
illustrated in Figure 12b, runs several attention layers
in parallel, allowing the model to focus on different
representation subspaces simultaneously. This parallelism
and flexibility make transformers particularly suitable
for capturing complex temporal patterns in time series
data without relying on recurrence. The main parameters
defining the configuration of an attention mechanism are
the embedding dimension, number of attention heads,
number of layers, and feed-forward network size. Self-
attention models are generally more complex than both
LSTMs and CNNs, particularly in terms of computational
and memory costs, due to a quadratic increase in com-
plexity with sequence length. Unlike LSTMs, attention
mechanisms are highly parallelizable, which makes them
faster to train on GPUs despite their higher theoretical
complexity.

E. MIXED LEARNING MODULES
Besides the standalone usage of the learning modules in
the approaches discussed in Section III, their combinations

proposed in multiple works [40], [62], [72] prove to be
even more suitable for unsupervised deep learning. The use
of different types of neural networks as learning modules
in combination allows for capturing different types of
dependencies that could exist in the input signals. For
instance, consecutive CNN and LSTM [73] can be utilized
for capturing fine-grain as well as temporal dependencies,
while in a combination of CNN and a transformer [74], CNN
provides the temporal dependencies encoded as input vectors
for the transformer.

F. OVERVIEW
In Figure 13, we present a Venn diagram visualization of
the surveyed works based on the learning models employed.
As expected, the vast majority utilize CNNs, likely due to
their widespread adoption in related fields, straightforward
implementation, and competitive performance. The second
most commonly used models are Multi-Layer Perceptrons
(MLPs); however, they typically appear as components
within more complex architectures that primarily rely on
CNNs. This preference is largely driven by the high data
density of radio signals (e.g., I/Q samples or spectrograms),
which poses processing challenges for standard neural
networks. Interestingly, only a small number of works employ
Recurrent Neural Networks (RNNs), despite their suitability
for sequential data. This may be attributed to their higher
complexity and comparable performance to CNNs. Cur-
rently, transformer-based models (e.g., multi-head attention
mechanisms) are the least frequently adopted. Although they
demonstrate superior performance, their limited use may be
due to their recent introduction to wireless communication
signal processing and the associated computational complex-
ity constraints. As it is clearly depicted, many works utilize
multiple models to combine their individual benefits.

V. AUTOMATIC MODULATION CLASSIFICATION
AMC is a technique in wireless communications that
enables automatic identification of a signal’s modulation
format without prior knowledge of the transmitted signal.
Standard modulation formats, such as PSK, QAM, and
OFDM, encode information onto carrier signals. AMC
facilitates their recognition by leveraging signal processing
methods, recently based on machine learning (ML), both
supervised [77], [78], [79], [80], [81] and unsupervised [82],
[83], [84]. Fast and accurate AMC on the receiver side could
allow for adaptiveness on the transmitter side of the terminal,
changing the modulation schemas based on the perceived
channel conditions. This enables better spectrum efficiency
and throughput, similar to traditional adaptive coding and
modulation techniques.

A. OVERALL AMC COMPARATIVE OVERVIEW
In Table 2, we summarize the unsupervised AMC works.
As can be seen from the second column and also highlighted
with different colors, most of them rely on contrastive learn-
ing approaches (Section III-B), two rely on reconstruction
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methods (Section III-C), while one employs deep clustering
(Section III-A). This distribution shows the growing dom-
inance of contrastive paradigms for feature extraction and
representation learning in AMC tasks.
Representation learning module: As per the third column,

it is evident that the CNN-based (see Section IV-B) backbones
are the most frequently adopted, appearing in eight studies.
These are often combined with additional components, such
as attention mechanisms (see Section IV-D), which are
apparent in four references, including one standalone. The
LSTM and MLP (see Section IV-C and IV-A) modules
are integrated less frequently and appear only once in
combination with CNN. The fourth column of the table
reveals that all works rely on I/Q data, meaning the different
modulations are more distinguishable in the raw data than
in the derivations, such as spectrograms or higher-order
statistics. As a consequence, CNNs remain the main tool for
capturing spatial correlations in I/Q signal representations,
due to their capability of processing raw data as well as
application flexibility (see Section IV-B). Recurrent and
attention layers are typically used to enhance temporal or
contextual feature modeling as part of the hybrid approaches.
Experimental setup: The small-sample analysis column

shows a consistent focus on label efficiency, with most
approaches reporting results under extremely limited super-
vision, ranging from 0.5% to 10% labeled data or as few as
1–2 samples per class. Finally, the results and SNR/channel
conditions columns reveal that evaluations are primarily
conducted under Additive White Gaussian Noise (AWGN)
conditions, with several studies also testing robustness under
Rayleigh and Rician fading.

1) REPORTED PERFORMANCE ANALYSIS
Reported accuracies in AMCworks vary from around 35% to
80% depending on the proportion of labeled data and the net-
work configuration, illustrating the performance–supervision
trade-off typical in semi- and unsupervised AMC. Although
difficult to compare, due to the different evaluation setups,
considering different numbers of classes, labeled samples,
and channel conditions, in Figure 14 we show approxi-
mate plots of accuracy-complexity and accuracy-number of
labeled samples.

Figure 14a, which shows the dependency of accuracy
on model size, indicates no clear monotonic relationship
between the number of parameters and classification perfor-
mance. Notably, [75] achieves the highest accuracy ( 80%)
with a relatively compact CNN+MLP model; however,
it uses the largest number of labeled samples. The work
in [37] with a small architecture attains an accuracy of around
70% using only 440 samples. In contrast, larger models such
as [74] (Attention+CNN with ≈50M parameters) and [76]
(Attention-based AEwith≈35M parameters) reachmoderate
accuracies near 55-60%.

Figure 14b, which shows the dependency of accuracy
on the number of labeled samples given in logarithmic
scale, highlights the performance sensitivity to labeling
effort. Here, [75] again leads with ≈80% accuracy using

FIGURE 14. Reported performance in the reviewed works considering
models’ sizes and the number of labeled samples.

only 1% of labeled data (1440 samples), underscoring the
effectiveness of its contrastive formulation in leveraging
unlabeled data. In contrast, [37] and [74] maintain reasonable
accuracies (≈62–70%) with substantially fewer labels (220–
440 samples), reflecting strong data efficiency under minimal
supervision. At the opposite end, [76] achieves lower
accuracy (≈55%) despite employing the largest number
of labeled samples (≈11,000), which may be attributed to
the reconstruction-based learning objective and usage of
GAF-transformed data being less discriminative.

Overall, these results reinforce that contrastive learning
architectures, particularly those integrating CNNs with
auxiliary modules (e.g., MLPs or attention layers), tend to
outperform reconstruction-based or clustering counterparts
on the AMC task, even with fewer labels and smaller model
sizes.

Furthermore, we compare the performance of the surveyed
models under low SNR conditions, specifically at –6dB,
which represents the most common low-SNR evaluation
point among the reviewed works. This comparison aims
to highlight the robustness of the models in challenging
noise environments. A direct and comprehensive comparison
across all studies is difficult due to varying validation
conditions, including the use of custom datasets, different
modulation sets, and varying proportions of labeled samples.
Therefore, we limit our analysis to works that report results
on the common RML2018.01A dataset [85], and we compare
their classification accuracy, as illustrated in Figure 15.

It is important to note that the evaluation protocols
differ even within this subset of studies. Some works [23],
[37], [70], [76] employ fully supervised training using
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TABLE 2. Summary of unsupervised deep learning approaches and achievements in AMC.

FIGURE 15. Reported accuracy of the surveyed models in low SNR
conditions.

100% of the labeled data, whereas others [48], [74] use
only 50% of the labels. Nevertheless, this comparison
still provides meaningful insight into relatively low-SNR
performance. Among the evaluated models, [74] demon-
strates the best label-efficiency, achieving a classification
accuracy of 0.53 fine-tuned on 50% labeled data. This strong
performance is likely due to the model’s large capacity, which
allows it to effectively capture signal-specific features during
pretraining. The top performing models at−6dB are reported
in [23] and [76] while using 100% of the data labeled in
the evaluation. Notably, all three of these leading models
incorporate sequence-processing architectures, LSTM [23]
and attention-based networks [74], [76], which suggests that
such temporal or contextual modeling mechanisms exhibit
superior robustness under low-SNR conditions.

B. OVERVIEW PER APPROACH TO AMC
1) DEEP CLUSTERING
In [36], the only study with a deep clustering approach in
this section, the authors developed a custom clustering loss
function for favoring better separation in the feature space

provided by the encoding (middle) layer of the autoencoder.
They combined it with the standard Mean Squared Error
(MSE) reconstruction loss for training the models, thus
enabling simultaneous feature learning and clusterability
improvement in the feature space. The general constraint
of such approaches is the combined loss function tuning.
The separate components do not necessarily contribute to
the general goal, considering that lowering the reconstruction
loss does not always mean improving the clusterability.
This could lead to complex shapes of clusters [17],
which are impractical for post-processing and knowledge
extraction.

2) CONTRASTIVE LEARNING
For the task of AMC, most of the recent works that rely
on deep unsupervised learning [23], [37], [48], [70], [74]
use contrastive learning architectures (see Section III-B),
which are utilized in completely unsupervised setup or in
semi-supervised [23] setup where the contrastive learning is
only part of the pretraining phase. In [48], authors use the
contrastive learning paradigm in one of its original setups,
known as MoCo-v3 [86], using the ResNet50 CNN module
(see Section IV-B), with special data augmentations relevant
for the I/Q samples of radio data. They show that such a
model is consistently better compared to other out-of-the-box
contrastive learning frameworks, such as SimCLR [87].

In [37], the authors propose a weighted sum of three
losses for the training architecture of three parts: reconstruc-
tion, contrastive, and classification, using weak and strong
augmentations instead of the original signal and a single
augmentation. They achieve 70.54% averaged accuracy over
11 classes and 55.84% averaged accuracy over 20 classes,
trained with only 2 labelled samples per class, without
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unlabeled samples, under AWGN noise in the range between
−6 and 20dB. Further work could consider performance
validation with unsupervised pre-training so that the full
potential of such an approach is explored.

The authors in [23] introduce contrastive learning to
AMC by utilizing SimCLR [87] to train a feature extrac-
tor (encoder) in the pre-training phase and subsequent
fine-tuning on labeled data. They show that pretraining of the
encoder leads to better performance on the downstream task
compared to a supervised model using the same amount of
data.

In [75], contrastive learning is part of a more complex
architecture that enables the model to learn robust and
generalized representations of radar signals during the semi-
supervised pre-training stage. They explore the effect on the
overall performance of a small subset of iterative labeled
data injection in the fine-tuning procedure, and achieve better
performance compared to the baseline MoCo [88] approach.
A similar approach is considered in [70], where the learning
module is realized with a transformer (see Section IV-D)
instead of a CNN. They also provide extensive evaluation
regarding the influence of each augmentation technique, the
feature embedding power of the self-attention module, and
the influence of the number of labeled samples in the fine-
tuning stage.

Considering that data augmentations take a central role
in the performance of contrastive learning, authors in [74]
propose more domain-specific, semantics-preserving aug-
mentations that mimic the environmental influence that
affects the signal’s shape, including Time Warping, Carrier
Frequency Offset, and Phase Offset. Additionally, they use
strong and weak augmentations of the input signal instead
of the signal itself and one augmentation for the contrastive
setup, marked as a′ and a′′ in Figure 4. For the learning
task, they employ a Temporal Convolutional Network (TCN)
[89] with masking for capturing the short-term features in
the raw signal and a consequent transformer for capturing
the long-term features. Together, they build the learning
module of the contrastive learning setup. While the basic
contrastive setup, as depicted in Figure 4, rates equally all
of the negative samples, it introduces a weighting function in
the loss calculation. This function takes into consideration the
distances between the encodings of the samples by favouring
closer negatives in the feature space, which leads to improved
performance on a downstream classification task. They eval-
uate the proposed architecture against multiple approaches,
including supervised CNN and LSTM (Sections IV-B
and IV-C), and prove that it outperforms the competing
approaches.

3) RECONSTRUCTION
Autoencoders (see Section III-C) are yet another unsuper-
vised deep learning approach utilized for AMC. Compared
to the Contrastive Learning works (see Section III-B), the
AE seems less capable, but they have the advantages of being
simpler and do not require data-specific augmentations. The
different AE solutions vary regarding the learning module

that is used for the encoder and decoder functionalities [40]
and modifications in the loss functions. In [40], authors
combine GRU, self-attention, and residual CNN blocks
in the encoder and decoder modules to capture fine-
grained (CNN) and time-dependent (GRU) features with
a low-dimensionality representation (self-attention). The
resulting architecture provides a higher score than the regular
off-the-shelf CNN-based autoencoders, such as ResNet-
based, on the task of low-signal detection with various
modulations (RadioML data) across different low levels of
signal-to-noise ratio (SNR).

Another AE-based, innovative approach is proposed
in [76], where I and Q data streams are transformed to
Gramian Angular Field (GAF) images, and an autoencoder
is trained to reconstruct the fused image (combination of
both I and Q components) based on the masked input image.
The encoder and decoder are realized with a transformer
architecture. While the baseline concept is the same, the
usage of image-like data instead of raw I/Q time series makes
the approach more flexible regarding the selected encoder-
decoder module, considering there are many proven image
processing architectures in open-source libraries such as [90].

C. DATASETS
All of the reviewed works consider the well-known RadioML
dataset with its three variations RADIOML 2016.04C [85],
RADIOML 2018.01A [91], and RADIOML 2016.10A,
summarized in Table 3, as an evaluation baseline.

TABLE 3. Summary of RadioML datasets and their characteristics.

Both RADIOML 2016.10A and RADIOML 2016.04C
data consist of synthetic I/Q signal samples across 11 mod-
ulation types, including three analog and eight digital
schemes in varying SNR conditions. RADIOML 2016.04C
has additional variation among the samples with labeled SNR
increments, allowing for a more detailed analysis of the
benchmarked models.

The RADIOML 2018.01A dataset is the most compre-
hensive one, containing synthetic I/Q signal samples from
24 digital and analog modulation types. Each sample consists
of 1,024 I/Q data points across 26 SNR levels ranging
from −20dB to +30dB, simulating realistic wireless channel
conditions with additive white Gaussian noise (AWGN) and
Rayleigh fading.

217782 VOLUME 13, 2025



L. Milosheski et al.: Radio Signals Recognition With Unsupervised Deep Learning: A Survey

All of the related papers perform evaluations based on
these three datasets. While these three datasets are a good
base for direct model-to-model comparisons of the different
approaches for AMC, real-world evaluation is lacking. The
creation of real-world measurement datasets could provide
great insights about the actual deployment capabilities of the
developed models. As such, they could contribute to building
models for actual existing challenges instead of models for
the available data.

D. FINDINGS
Based on the reviewed literature in this domain (Table 2),
contrastive learning appears as the most promising approach,
given that more than half of the recent research works
propose it as the superior solution for AMC. Thus, future
efforts should explore more domain-specific data augmen-
tations, such as those mimicking environmental influences,
to improve model robustness in diverse operating scenarios.
The combination of multiple methods in sequential or
parallel learning phases may help train more capable mod-
els regarding their generalization to unseen environmental
conditions.

1) EVALUATION PRACTICES
Nearly all surveyed studies rely on simulated datasets,
with the RadioML corpus and its variants being the most
frequently used benchmarks. While these datasets facilitate
controlled experimentation, they often fail to capture the full
complexity of real-world environments. Thus, an important
direction for future work is the development and open
dissemination of real-world RF benchmark datasets. These
would reveal challenges beyond the signal-to-noise ratio
(SNR) variability, such as channel fading models and
environmental dependencies, which could be obtained by
spatial Radio Environment Maps (REMs) [92]. In such a
way they would support validation of the proposed models
in operational conditions that are more representative of the
actual deployment.

Moreover, there is a pressing need for a standardized eval-
uation framework, tailored to domain-specific characteristics
such as viable I/Q sample length for actual deployment,
considering the time delays of the decision-making and
the system itself, SNR levels, labeling ratios, and aug-
mentation techniques. Although many studies assess model
performance under limited labeled data conditions, there
is significant inconsistency in the selection of sample per-
centages or absolute quantities, making direct comparisons
between works problematic. Currently, comparisons often
center around performance with only one or two labeled
samples, but the diversity in evaluation setups obscures the
relative progress across methods. A consistent benchmarking
methodology, such as enforcing a fixed number of labeled
samples, using standardized activation functions in the final
fully connected layers, or defining common augmentation
pipelines, would greatly enhance transparency, reproducibil-
ity, and comparability across studies.

2) ROAD AHEAD
In standardized wireless systems where a fixed set of
modulation schemes is used, supervised learningmodels have
already demonstrated high classification accuracy [80]. How-
ever, recent advances suggest a shift towardsmachine-learned
physical layers, where deep learning models replace tra-
ditional components of the communication chain [93].
These approaches enable the design of custom modulations,
dynamically adapted to specific channel conditions. Such a
paradigm shift will demand self-adaptive, label-free learning
models capable of generalizing to new, previously unseen
signal formats and operating conditions. This challenge
points to unsupervised deep learning (see Section III) as a key
enabler, allowing models to extract general signal features
from large-scale unlabelled data and to adaptively refine
their internal representations based on deployment-specific
observations.

VI. SIGNAL SENSING
While AMC, discussed in the previous section, focuses
on the categorization of signal-related features for a given
signal, this section addresses signal sensing, which involves
detecting, analyzing, and interpreting signals within a
specific radio spectrum or environment to determine their
presence, characteristics, and properties. Signal sensing pro-
vides general awareness in the time and frequency domains
regarding the operational patterns of various technologies and
devices. It processes sensed data that may or may not contain
signals, making the problem more general and closely tied
to the physical layer of communication systems. The main
purpose of such awareness is the smart utilization of the
radio spectrum as a scarce resource by multiple devices that
rely on different RATs, thus avoiding interference. This is
especially important in the unlicensed radio spectrum bands
such as the Industry, Scientific and Medical (ISM) [94]
and 5.9 GHz Intelligent Transportation Systems (ITS) [95],
[96] in which multiple technologies share similar frequency
bands.
Signal sensing in the following is focused on the general

monitoring of radio spectrum occupancy only by analyzing
the patterns of spectral activity in the concerned frequency
bands. This involves extracting knowledge about activity
patterns in frequency and time domains with the main goal
of using the free spectrum and time resources in a dynamic
manner based on historical knowledge, complementary to
other sensing techniques, such as AMC and SEI.

A. TYPES OF SIGNAL SENSING
For clarity and consistency, we group the reviewed works
into three complementary research directions aimed at
understanding and managing spectrum usage, namely Pri-
mary User (PU) detection, Radio Access Technology (RAT)
recognition, and Jamming Signal Recognition (JSR). Each
category addresses a specific aspect of spectrum awareness.
More specifically, they identify active licensed transmissions,
characterize the operating technology and detect intentional
or unintentional interference.
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1) PRIMARY USER DETECTION (PUD)
PUD focuses on determining whether a licensed or prioritized
user is transmitting within a given frequency band. Although
related to Specific Emitter Identification (SEI), PUD operates
at a broader level, as it does not aim to identify individual
transmitters but rather to detect the presence of active users
or user groups. While direct processing of raw in-phase
and quadrature (I/Q) signal samples could achieve this
task, such methods raise security and privacy concerns with
respect to potentially revealing user-specific information.
As a result, existing approaches often rely on short I/Q
sequences, typically from the signal preamble [96], to infer
PU activity without accessing sensitive data, or some derived
data representation such as spectrograms [54] or energy
levels [66].

2) RADIO ACCESS TECHNOLOGY (RAT) RECOGNITION
RAT recognition represents a key component of signal
sensing, aimed at identifying the type of radio access
technology active in a monitored frequency band. This task
involves analyzing spectral activity patterns across time and
frequency to distinguish among different communication
standards. The extracted knowledge could enable information
for dynamic spectrum access by predicting and exploiting
unused spectrum resources based on historical activity.
RAT recognition, therefore, complements techniques such as
AMC and SEI, providing a higher-level insight into spectrum
utilization and technology coexistence.

3) JAMMING SIGNAL RECOGNITION (JSR)
We also categorize the jamming signal detection as part of
the general signal recognition since it requires distinguishing
between the wanted and unwanted signals operating in the
same portion of the radio spectrum. For this challenge, the
unsupervised deep learning models are particularly suitable
for two reasons. Firstly, there is usually a lot of sensed data
that is difficult to label since the jamming signals are typically
unknown. Secondly, the radio spectrum environment may
be very dynamic, where there could be many unknown
sources of radiation in the monitored band, especially in the
unlicensed bands.

B. OVERALL SS COMPARATIVE OVERVIEW
In Table 4, we summarize the works employing unsupervised
deep learning for signal sensing. Three types of methods are
equally used: deep clustering (Section III-A), reconstruction
(Section III-C), and generative (Section III-D), as can be seen
from the second column of the table and also highlighted
with different colors. As can be seen from the third column,
seven architectures contain CNNmodules (see Section IV-B)
at least as part of the complete solution, four contain MLPs
(see Section IV-A), while LSTM, MLP, and GRU (see
Section IV-C) appear twice each.

Regarding the data type, I/Q samples are most frequently
utilized, in six of the surveyed works, which is expected
considering that it is the highest density data and thus

provides the richest features. However, for the signal sensing
challenges, low data intensity solutions also exist, such as
energy levels of the monitored channel for PU detection [43],
[66] and FFT-derived data such as spectrograms for RAT
classification [5], [17].
PU detection is the most frequently explored task accord-

ing to the reviewed works. Most approaches rely on AE
or VAE architectures applied to I/Q data [39], [40], [43];
however, simpler energy detection solutions based on MLP
are also viable [66]. AE and VAE are the most common
approaches for the PU task, which means that reconstruction
and generative models provide robust detection capabilities
under low supervision and variable noise conditions. Inter-
estingly, the PU detection is the only task that considers the
channel model.

RAT recognition tasks are addressed in [5], [17] and [51],
mainly through deep clustering and AE-based approaches.
This confirms that clustering-based feature learning is
well-suited for RAT differentiation, as the RAT-specific
patterns are distinct and sufficiently captured through
frequency-domain representations.

Jamming recognition appears in two of the reviewed
works [67], [72], both relying on AE architectures and con-
sidering the Jamming to Signal ratio in the experimentation.
This shows that AEs, although being simple models, are
well-suited for the task of JSR.

In terms of evaluation and reproducibility, most studies
conduct unsupervised validation, with a few complementing
it by supervised fine-tuning for benchmarking. Reported class
numbers range from two to eight, depending on task specifics,
which makes potential direct comparison of the methods
difficult.

1) REPORTED PERFORMANCE ANALYSIS
Figure 16 compares the model sizes across the reviewed
signal sensing works, categorized by task type. The results
show that RAT (in blue) and jamming (in red) recognition
models tend to be the largest, with parameters ranging from
approximately 0.13 M to 11.2 M, reflecting the need for
richer spectral feature extraction in multi-signal environ-
ments. In contrast, PUD models (in green) are considerably
smaller, mostly below 1 K parameters, except for the
cGAN-based approach [54] which reaches 3 M parameters
due to its generative nature. This trend indicates that PU
detection tasks can be effectively addressed with com-
pact architectures, while more complex sensing problems,
such as RAT classification, benefit from deeper or wider
networks.

C. OVERVIEW PER APPROACH TO SS
1) DEEP CLUSTERING
a: RAT
The performance of deep clustering (see Section III-A) with
different 2D CNNs and transformer deep learning modules
is explored in [5] for wireless technology recognition in the
license-free 868 MHz frequency band by using spectrogram
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TABLE 4. Summary of works concerning unsupervised deep learning approaches and achievements in signal sensing.

FIGURE 16. Size comparison of the models in signal sensing. Blue - RAT
recognition, Red - JSR, Green - PUD.

data. Complexity-performance tradeoffs are analyzed, with
a conclusion that the utilization of large CNN and Vision
Transformer (ViT) modules for feature learning brings
only minor performance improvement while significantly
increasing the model size, thus imposing constraints on its
application potential. The reason is the low-content pictorial
data in the spectrogram images, which is captured by
lower complexity models such as ResNet11 with comparable
performance to the significantly larger models, such as
VGG16 and ViT.

b: RAT
Another work for RAT categorization based on deep
clustering is published in [17], where the target is even

further lowering the model size. 1D FFT amplitude data
is considered instead of spectrograms, thus allowing for
significantly shorter end-to-end inference time of the 1D
CNN-based models, such as depicted in Figure 10. The
increased recognition performance was validated on three
different datasets, each targeting a specific deployment
challenge. These included the environment influence, the
increased number of operating RATs, and the spectrum
monitoring data of continuous operation with many unknown
signals and noise. The proposed model was shown to be
robust and easy to set up compared to the then-state-of-the-art
AE-based models. Although the labeled validation datasets
are from real-world transmissions, the very high performance
(up to 0.99 F1 score) could be a result of using very
clean data. The evaluation with the unlabeled, live stream
spectrum data could be considered the most informative
for the actual performance, considering the three separate
evaluations.

c: JSR
In [72], AE architecture (see Section III-C) and classifier
networks are jointly used to learn feature extraction from
known (labeled) samples of jamming signal during training.
In the deployment stage, only the feature extractor is
used, combined with two-stage distance-based classification.
Firstly, the binary classification of known and unknown
signals is performed, and a more granular classification
of different patterns is performed afterwards. A joint
objective function containing center loss, cross-entropy,
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and reconstruction loss is employed with corresponding
weighting coefficients. The distance-based classification is
actually clustering signals based on Euclidean distance
while also taking into consideration the known classes. The
main advantage compared to the original implementation is
obtained when classifying three unknown classes of jamming
signals. However, the reported results appear pretty high
with the accuracy of 100% for three known classes and one
unknown class.

d: JSR
Similar to the approach in [72], and on a similar problem
of unknown Jamming signal recognition, authors of [67]
propose an AE-based architecture that can extract semantic
attribute features. The only difference is in the definition
of the clustering loss. They compare their approach to
a significantly simpler (three-layer) MLP trained in a
supervised setup and show the superior performance of the
proposed method. Additionally, they also provide an ablation
analysis of each of the losses contributing to the performance
of the method.

2) RECONSTRUCTION
a: RAT
In [51], the authors used deep AEs (see Section III-C) on
I/Q data, which contains samples from different modulations,
in an attempt to address the problem of RAT classification
between the LTE and a combination of WiFi signals (IEEE
802.11ax and IEEE 802.11ac). Interestingly, they show that
the deep AE with CNN layers outperforms the LSTM-based
and VAE architectures, although LSTM was meant for
longer-term patterns apparent in time-series data such as I/Q
sequence.

b: PUD
The PU detection task is addressed in [43] with Sparse AE
(SAE) combined with Gaussian Mixture Model (GMM).
Energy levels sensed by the SUs are used as input data.
A cooperative setup is considered where the secondary users
(SU) send their sensing data to the central coordination node,
where PUs and SUs are spatially distributed in the operating
environment. In the evaluation setup, it is considered that
SUs can appear and disappear due to their contribution
to the signal measurements of the central node. For the
considered scenario, the authors prove that their proposed
SAE-GMM model achieves performance comparable to a
supervised neural network on the task of binary classification
of active and inactive PUs in the monitored channel. The
solution is realized by introducing sparsity in the embedding
layer, by constraining the average activation rate of the
neurons of the embedding layer of the AE architecture.
The idea is that forcing only a small number of active
neurons during training will lead to learning compressed and
more meaningful representations. The sparsity is controlled
by incorporating the Kullback-Leibler divergence between

the required average activations and the actual average
activations as part of the loss function, which originally
contains only MSE loss. It is important to highlight
that the claimed performance is achieved using a very
simple, fully connected neural network with only five
layers.

3) GENERATIVE
a: PUD
In [66], the authors propose using VAE (see Section III-D),
a representative of generative methods, combined with GMM
for distinguishing PU signals given unlabeled data of PU
transmission signals and free channel signals. VAE is used
for feature extraction, and GMM for clustering in the
latent space. While the training is performed completely
unsupervised, a small labeled subset of data is required for
threshold adjustment and cluster identification. With this
approach, they achieve comparable results to the supervised
CNN counterpart, which requires significantly more labeled
data for training.

b: PUD
VAE is also used for unsupervised learning of features in [39]
for the PU detection in various single and multiple PU setups
for the Non-OrthogonalMultiple Access (NOMA) technique.
The feature learning with VAE is performed on denoised
radio data with so-called recorrupted-to-recorrupted [97]
denoising based on a proposedGRU-based (see Section IV-C)
AE architecture for radio signals. The output classification is
performed with the K-means++ algorithm. It is important to
note that in this work, the authors propose a shallow encoder
and corresponding decoder for the AE and VAE structures
adapted to the characteristics of the radio signals, such as
strong, stationary periodic properties and high frequency.
Such architecture is shown to outperform the referenced
approaches, which also contain a supervised CNN model,
proving the significant contribution of the denoising function
by the proposed GRU-based model.

c: PUD
In [54], the authors propose a two-stage solution based
on GAN and U-shaped NN (U-Net) for privacy-aware
localization of spectrum violators in the United States’
Citizen Broadband Radio Service (CBRS) [98]. In their
work, GAN architecture (Section III-D) is used for masking
PUs in spectrograms acquired with multiple sensors, and
U-NET [99] is used in an image-to-image translation setup
based on labels. Thus, instead of the standard signal
recognition setup where a given signal is classified, GAN
is used for masking the privacy-sensitive PU transmissions
in spectrograms, which implicitly requires learning their
appearance in spectrograms.While the original setup of GAN
is unsupervised, the way it is used in this work requires some
sort of labeled data, consisting of spectrograms with and
without PU transmissions.
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D. DATASETS
In Table 5, we summarize some of the open, real-world
datasets that could be used for future research in signal
sensing challenges.

TABLE 5. Summary of real-world datasets for wireless signal recognition.

A labeled real-world dataset from [65] consists of trans-
missions of three RATs, namely LTE, WiFi, and DVB-T,
which operate in the 2.4 GHz band. The complete data was
collected from 7 different locations, including 6 in the city
of Ghent, Belgium, and one in Dublin, Ireland. This dataset
allows for a detailed analysis of the environmental effects on
signal recognition models’ performance.

Another dataset [96] of real-world measurements was
collected inAntwerp, Belgium, and includes signals fromfive
RATs: LTE, 5G, WiFi, ITS-G5, and C-V2X, all operating
in the ITS 5.9 GHz band. This dataset provides an insight
into scenarios with more coexisting RATs compared to
the previous one, including technologies with significantly
different or similar spectral shapes. This makes it suitable for
exploring how the coexistence of more technologies affects
the models’ performance.

Yet another partially labeled dataset was collected from the
LOG-a-TEC testbed in Ljubljana, Slovenia [19]. It comprises
spectrum traces in the 868 MHz Short-Range Device (SRD)
band with a bandwidth of 192 kHz and a sampling frequency
of 5 Power Spectrum Density measurements per second,
using 1,024 FFT bins. At least four technologies appear in
this data: LoRa, IEEE 802.15.4, SigFox, and proprietary
technologies. This dataset is suitable for evaluating model
performance in real-world scenarios with significant variabil-
ity, artifacts, and interference.

E. FINDINGS
1) PUD
PU detection is commonly formulated as a binary classifica-
tion problem, focused on identifying the presence of a signal
of the primary users. This formulation lends itself to relatively
simple evaluation using standard metrics such as accuracy,
Receiver Operating Characteristic / Area Under the Curve
(ROC-AUC), and F1-score, which facilitates straightforward

benchmarking across studies.While such simple setups allow
for analysis on the model performance, considering also SNR
and channel state, they are overly simplistic and do not reflect
actual deployment conditions where many more users are
present in the environment. Thus, following the examples
of [40] and [43], multiple-user scenarios should be considered
in future research.

2) JSR
Similarly to the PUD task, JSR is also addressed as a
binary detection problem. Therefore, moving beyond simple
presence detection to the classification of jamming types as
in [67] is an important research direction. Such classification
would support the development of targeted mitigation strate-
gies, making this task increasingly relevant for operational
deployments. Furthermore, setting the jamming recognition
as an Open-Set problem, where the appearance of unseen
jamming patterns is expected, should be a favoured approach
in future works, following the examples in [67], [72]. Thus,
further exploration of unsupervised deep learning approaches
is highly relevant in this direction of work.

3) RAT
From a signal recognition perspective, RAT recognition
parallels the challenges of JSR, where systems must identify
and group multiple signal types without labeled data [5],
[17], while favouring even faster decision making, consid-
ering potential applications in near-real-time sensing and
network parameters’ control. RAT recognition requires the
identification of multiple signal classes or clusters without
or with a very small set of labeled samples. This makes
unsupervised evaluation often a necessity in estimating the
performance, considering clusteringmetrics such as Adjusted
Rand Index (ARI) and Normalized Mutual Information
(NMI). When clean datasets are used [96], and the signals
exhibit distinct frequency-domain features (e.g., unique
FFT shapes), unsupervised learning can show extremely
good performance [17], [40], which could be misleading.
Therefore, future works in this direction should consider
both supervised and unsupervised evaluations, and multiple
metrics due to the uncertainty in the latter.

4) ROAD AHEAD
While supervised evaluation is well-established, the unsu-
pervised, which is highly relevant in this direction of work,
requires a more unified and even standard approach that
uses a well-defined set of metrics, which could be beneficial
for future benchmarking and development. Regarding the
data, even when generated with over-the-air (OTA) capturing
methods in a controlled manner, some datasets [65], [96] fail
to fully reflect the dynamics, variability, and noise present
in real-world RF environments. This results in significant
performance differences compared to live continuously
sensed data [17]. We recommend that in future research, both
types of data, from controlled and uncontrolled environments,
should be used for providing better performance estimation,
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especially for applications intended for deployment in live,
dynamic wireless networks [19].

From a deployment perspective, signal sensing must be
extremely fast, often within a few milliseconds, to meet
the real-time requirements of modern wireless systems [96].
This constraint encourages the placement of sensing algo-
rithms close to the radio unit, typically at the edge or
within distributed units (DUs) in O-RAN architectures,
where both latency and computational resources are limited.
These limitations promote the use of lightweight models
that minimize data movement and processing overhead.
As a result, averaged FFT representations of the sig-
nal are often preferred over raw I/Q samples, leading
to computational reductions by up to three orders of
magnitude [2].

The rise of distributed applications (dApps) in edge
computing and their increasing integration into O-RAN
as standard components [100] will further support the
development of near-real-time, low-level machine learning
models for signal sensing.

VII. SPECIFIC EMITTER IDENTIFICATION
SEI relies on recognizing device-specific signal alterations
caused by hardware imperfections [104], [105]. Deep learn-
ing techniques, especially supervised models, have shown
exceptional performance [106] in distinguishing known
devices, even in networks with thousands of transmit-
ters [107], [108], [109]. However, real-world scenarios often
lack labeled data and may also contain transmissions of
unknown transmitters, which could pose security concerns.
Thus, significant attention is paid to the development of
models that can learn from data from known transmitters and
distinguish potential unknown transmitters. The challenge
could be addressed by using CNN-based feature extrac-
tors [84], [105], which are trained on known devices and aim
to group unseen emitters in the latent space via clustering
algorithms. So far, existing solutions approach the training of
the feature extractor through a classification task [53], [110].
Unsupervised deep learning fits as a promising approach for
this challenge [110], considering the ability to learn from
large amounts of unlabeled data.

A. OVERALL SEI COMPARATIVE OVERVIEW
In Table 6, we summarize the works concerning SEI. Similar
to AMC (Section V), most of them rely on contrastive learn-
ing approaches (Section III-B), two rely on deep clustering
methods (Section III-A) while one employes reconstruction
(Section III-C) and one predictive (Section III-E) approach,
as can be seen from the second column of the table and also
highlighted with different colors. As per the third column,
all architectures contain CNNs (see Section IV-B) at least
as part of the solution, and three also include MLPs (see
Section IV-A). The fourth column of the table reveals that
all works rely on I/Q data, which is expected since the goal is
to capture the hardware-induced I/Q irregularities in the radio
signal, specific to each device.

With regards to the Problem type column, SEI evaluations
are performed in a zero-shot and few-shot settings, which
directly corresponds to the unsupervised and supervised
Evaluation type, accordingly. Small-sample evaluations are
of great interest for the SEI task due to the similarity to
the actual deployment conditions. The Performance column
demonstrates consistently strong results, with detection and
clustering accuracies typically above 90%. This confirms
that unsupervised representations can effectively capture
hardware-specific signal alterations. However, each publi-
cation reports evaluation with a different dataset and with
different numbers of samples in the few-shot setup, which
constrains direct comparison. According to the Data and
Code columns, there is limited public availability of datasets
and implementations, with only a few works providing
accessible repositories. Regarding the SNR and Channel
columns, only three of the studies consider the noise
effect. Finally, regarding the channel model, only one study
evaluates with antenna replacement, which means currently
most of the focus is on the model’s design and simplistic
validations with varying numbers of seen and unseen devices.

1) REPORTED PERFORMANCE ANALYSIS
For the surveyed SEI works it is impossible to extract the
performance comparison with respect to model size due to
the large variety of evaluation conditions, such as different
dataset classes, number of samples per class, and different
technologies. Therefore, Figure 17 only compares estimated
model sizes used across the SEI studies for zero-shot (blue)
and few-shot (red) evaluation setups. Most of the proposed
models in both setups have comparable sizes of up to 1 M
parameters, with the exception of [42] and [52], reaching
11M and 4.53M parameters, respectively. Overall, the figure
shows that SEI models achieve strong generalization with
relatively lightweight architectures, and thatmodel size scales
primarily with the degree of supervision and the complexity
of the experimental setup.

B. OVERVIEW PER APPROACH TO SEI
1) DEEP CLUSTERING
The study in [41] focuses on novel device discovery with
deep clustering (see Section III-A) by extracting features

FIGURE 17. Estimated size comparison of the models in SEI. Blue -
Zero-shot (ZS) evaluation, Red - Few-shot (FS) evaluation.
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TABLE 6. Summary of unsupervised deep learning approaches and achievements for SEI.

from known devices and clustering these features. The
proposed architecture outperforms the baseline in metrics
such as clustering purity, completeness, and isolation. For
comparison, the baseline involves direct clustering of I/Q
samples, with both approaches using DBSCAN as the clus-
tering algorithm. The latent representations are taken from
an intermediate (late but not final) network layer to avoid
class-specific information. The clustering is performed on
2D data obtained via Uniform Manifold Approximation and
Projection (UMAP) from 100-dimensional vectors provided
by the MLP output layer.

Zero-shot learning is also performed in [53], where
the proposed approach assumes adding clustering loss on
the feature vectors extracted by the same architecture as
used in supervised classification [111], with an additionally
defined feature representation layer, thus creating a deep
clustering method (Section III-A). Clustering loss is a
complex function consisting of three separate parts, enforcing
the separability of the clusters during training. Known
and unknown transmitters are apparent in the training
set, helping the model to create clear cluster boundaries.
Single, known device detection is performed with 89.1%
accuracy.

2) CONTRASTIVE
Contrastive learning is a recently introduced method
in the SEI domain. Although some of the approaches
require labels [102], [112] for the pre-training, they
are suitable for few-shot learning, which is the most
often used approach for evaluation of the unsupervised
approaches [52], [62], [103]. Thus, we consider these

methods as borderline cases and still include them in
this review, as they rely on contrastive loss and meta-
learning strategies, i.e., concepts which are applicable in
unsupervised learning, and require a small amount of labeled
data [102].

In [101], the authors propose a lightweight CNN-based
architecture for contrastive learning (see Section III-B). They
validate it in several scenarios on the open dataset with
20 transmitters, including the open-set recognition of new
unknown transmitters [112]. Their method shows stable
performance with the accuracy above 70%, considering
various numbers of unknown transmitters (up to 5). It is
important to note that, to the best of our knowledge, this
is the only work investigating how the disappearance of
known transmitters affects the performance. One significant
constraint regarding clustering is the necessity of labeled
datasets for the initial phase of training the feature extractor.

Contrastive clustering adaptation to I/Q signals for the
SEI challenge is proposed in [42]. They use a CNN-
based (Section IV-B) feature extractor and evaluate it with
K-means on the extracted feature space. Such a model
outperforms the baseline clustering methods, existing deep
clustering, and generative approaches in novel device detec-
tion tasks. However, there is a constraining requirement of
knowing the number of classes (transmitters) in the training
phase.

Meta-contrastive learning method for SEI is proposed
in [102], where the adaptation to the new unseen devices
is approached as general domain adaptation, designing a
dedicated loss function that enforces both device-specific
features development and also general features. While the
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model shows remarkable performance, it is worth noting
that labeled data is necessary for the training phase. This
is an important direction of work, considering that there
are many image-processing and time-series [26] processing
frameworks that could be utilized with such domain adapta-
tion.

Contrastive learning as a pretraining step of a deep CNN
is also performed in [103], where, besides the common data
augmentations such as rotation and flipping of samples, addi-
tional model-driven feature-space augmentation is proposed.
Custom augmentation works by introducing offsets in the
feature space and mapping the perturbed feature back to
the original sample. Such an innovative approach allows for
custom augmentation, which introduces maximal changes to
the samples while still maintaining a stable feature space.
It outperforms the standard contrastive learning methods
with only standard augmentations by a significant margin in
scenarios with a very small amount of labeled data.

3) RECONSTRUCTION
Masked AE (MAE) (see Section III-C) architecture for SEI
is proposed in [52] for unsupervised pre-training of a feature
encoder as part of the development of an SEI classifier
in a scenario with a limited amount of training samples.
The authors evaluate the approach using multiple masking
techniques. They prove that the introduction of MAE leads
to consistently better classification performance compared
to the purely supervised models with different numbers of
training samples, evaluating both simulated and real data.

4) PREDICTIVE
In [62], the authors propose a three-part pretext task for
training an encoder on unlabeled data. Each of the three
parts, I/Q sample rotation classification (see Section III-E),
reconstructing the original sample from the rotated sample,
and contrastive learning for distinguishing noise from real
samples, has its own loss calculation, together building the
total loss. The final model is capable of achieving significant
classification accuracy above 90%on downstream tasks using
only 30 labeled samples, significantly outperforming the
purely supervised model on the same number of labeled
samples. However, this work does not provide performance
comparisons with other existing approaches, such as the pure
contrastive ones proposed in [42] and [102].

C. DATASETS
In this section, we report on some of the most relevant
datasets for exploring and addressing the SEI challenge,
also summarized in Table 7. While there are many datasets,12

available for this task, we will consider the most comprehen-
sive ones.

In [112], the authors publish a large 7TB real-world
dataset containing signals of 20 devices with similar hardware
communicating over Wi-Fi. The data are collected in three

1https://genesys-lab.org/mldatasets
2https://ece.northeastern.edu/wineslab/datasets.php

TABLE 7. Summary of datasets for SEI challenges.

setups, namely, in an anechoic chamber, in the wild, and using
a cable for transmission between the transmitter and receiver.
This is a very versatile dataset that could be used to explore
how environmental conditions affect SEI performance, such
as the multi-path and the channel effect. Considering the
amount of data, it makes a valuable starting point for the
development of large unsupervised learning models.

Over-the-air captured data of airplanes, using the ADS-B
system operating at 1,090 MHz, is described in [22]. The
authors propose an automatic data collection procedure and
demonstrate it by creating two subsets of data, with short
and long signals, with 1,713 and 1,670 categories/devices.
They also evaluate various deep learning models on the data.
Although they consider only supervised approaches, such an
evaluation could be useful in the selection of the deep learning
module, which most unsupervised approaches also contain
for the feature extraction process.

Another open and large RF fingerprinting dataset is
reported in [113], containing transmissions of 174 Wi-Fi
transmitters and 41 USRP receivers, with the captures made
over a month. The transmissions are made in the 2.4 GHz
band. The data is captured in a closed space and controlled
environment using the ORBIT4 testbed. The authors also
provide small subsets of the data that could be used for fast
experiments, tackling different challenges, such as channel
variation influence over time and the effect of utilization of
multiple receivers.

D. FINDINGS
Unsupervised deep learning shows significant potential for
tackling the SEI challenge, especially given the promising
early results achieved with architectures adapted from other
domains such as contrastive learning [101] and predictive
learning [62]. These approaches demonstrate the capacity
to extract meaningful representations from unlabeled RF
data and distinguish among signal sources with minimal
supervision.

4https://orbit-lab.org/
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1) EVALUATION PRACTICES
In general, two dominant evaluation strategies have emerged
in the literature. The first corresponds to zero-shot setups,
where models are tested on devices unseen during training,
with or without the use of labels in evaluation. The
second covers few-shot learning approaches, which involve
fine-tuning with a small number of labeled samples (e.g.,
5, 10, or 30) before evaluating classification accuracy.
While both strategies are useful for assessing generalization
and sample efficiency, there is substantial inconsistency
in dataset selection, the number of devices, and task
configurations. Many studies limit their evaluations to a
small number of transmitters, often fewer than 10 to 20.
This does not reflect the growing density and heterogeneity
of wireless deployments in real-world indoor and outdoor
environments. Although this limitation does not require a
fundamental change in evaluation methodology, scaling the
number of devices in benchmark evaluations is essential.
Future research should emphasize large-scale validation
experiments involving tens or even hundreds of devices,
which would bring current research efforts closer to realistic
deployment scenarios.

2) ROAD AHEAD
Despite the encouraging technical results, most existing
solutions remain at the proof-of-concept stage, primarily
evaluated in laboratory settings or fixed testbeds with static
channel conditions and controlled interference [113]. While
such setups are useful for dissecting the impact of specific
channel or device-level features (e.g., hardware impair-
ments), they fail to capture real-world complexities such as
devicemobility, spectrum congestion, and dynamicmultipath
environments. Consequently, the robustness of these models
to environmental variation remains underexplored. There is a
clear need to expand evaluations to real-world deployments,
such as those examined in [114], [115] and [116], and
to consider different channel models [117]. They should
include both indoor and outdoor scenarios, particularly in
use cases involving mobile devices, such as uncrewed aerial
vehicles, for which the channel variation is very significant.
Incorporating such conditions into benchmarking would
better inform both model limitations and design priorities for
real-world deployment.

A further critical issue is the lack of reproducibility. Many
studies do not release their datasets, code, or full experimental
details, impeding fair comparison across approaches and
hindering progress toward standardized evaluation. This
fragmentation not only limits scientific transparency but also
slows the development of unified benchmarks. To address
this, future research should prioritize the use and extension of
open, community-maintained datasets, such as WISIG [113]
and RF-DNA [116], and adhere to transparent evaluation
protocols. Establishing widely accepted benchmarks will
facilitate fair comparison, reproducibility, and ultimately,
progress toward deployable and robust unsupervised SEI
systems.

VIII. ANOMALY DETECTION
Anomaly detection in radio signal sensing helps identify
unusual events and irregular patterns. These anomalies may
indicate general malfunctions, equipment failures, or poten-
tial security threats that require immediate and appropriate
actions [121]. However, in real-world settings, the presence
of anomalies is sparse, so we often lack labeled data [122].
To address this challenge, unsupervised learning techniques
have gained prominence in anomaly detection for radio
signal sensing. These methods can learn normal patterns
from unlabeled data and subsequently identify deviations
that may correspond to anomalous activities [123], [124].
Moreover, the dynamic and often unpredictable nature of
radio environments adds another layer of complexity to
anomaly detection. Factors such as interference, signal
attenuation, and device heterogeneity can lead to fluctuations
that resemble anomalies but are not necessarily indicative of
security threats or system failures. In general, reconstruction
or generative methods are mostly utilized for unsupervised
anomaly detection.

A. OVERALL AD COMPARATIVE OVERVIEW
In Table 8 we summarize the unsupervised anomaly detection
works, noticing that most of them rely on generative methods
(Section III-D), while two rely on predictive methods
(Section III-E) as can be seen from the second column of the
table and also highlighted with different colors. According
to the third column, six of the architectures contain CNNs
(see Section IV-B), out of which two are in combination with
LSTM (see Section IV-C), and one is in combination with
MLP (see Section IV-A. The fourth column reveals that four
of the works rely on spectrogram data, three on I/Q data, and
one on Stockwell Transform amplitudes, which are pictorial
data.

Overall, the reviewed studies demonstrate that unsu-
pervised deep learning methods can effectively detect
radio frequency anomalies even under challenging SNR
conditions. Most of the evaluated systems achieve high
detection accuracy or strong anomaly discrimination (e.g.,
AUC above 0.9) using synthetic or limited real-world data.
However, differences in input representations, SNR ranges,
and evaluation metrics make direct quantitative comparison
difficult. The limited availability of public datasets and code
repositories, as indicated in the last two columns of Table 8,
also constrains reproducibility and benchmarking across
studies. In the subsequent sections, we further analyze the
generative and predictive approaches in terms of their under-
lying architectures, training objectives, and generalization
capabilities under variable noise and interference conditions.

B. OVERVIEW PER APPROACH TO AD
1) GENERATIVE
The reconstruction error of GANs and AEs (see
Section III-D) can also serve as a metric for anomaly
detection, allowing for pinpointing unusual behaviors
effectively. In [69], the authors propose SAIFE, an adversarial
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TABLE 8. Summary of works concerning unsupervised deep learning approaches and achievements for RF Anomaly detection.

AE-based model for wireless spectrum anomaly detection,
achieving high accuracy with interpretable feature learning.
Similarly, [55] demonstrated that VAE reconstruction can
be used to detect anomalies in unauthorized bands by
identifying the rise in the spectrogram’s noise floor after
reconstruction.

The study in [118] proposes a radio anomaly detection
algorithm using a modified GAN with an encoder (E-GAN).
It applies the Short Time Fourier Transform (STFT) to
convert RF signals into spectrograms and detects anomalies
based on reconstruction error and discriminator loss. This
method also enables anomaly localization in the time-
frequency domain. In [119], a similar result was shown
where the authors demonstrated the potential of GANs (See
Section III-D) in detecting anomalies in the spectrum and
mitigating security attacks. Additionally, [120] also applied
unsupervised approaches on spectrum anomaly detection
in mmWave radios; more specifically, they utilised the
Conditional GAN and Auxiliary Classifier, GAN, and VAE.

2) PREDICTIVE
In [63], authors proposed an unsupervised anomaly detection
method using a combination of LSTM and mixture density
networks (MDNs), i.e., LSTM-MDN, for time-series data in
digital radio transmissions. The model learned the expected
signal distributions and detected anomalies using negative
log-likelihood. On the other hand, the authors in [64] utilized
a Deep Predictive Coding Neural Network (see Section III-E)
on spectrograms of RF signals to detect anomalies such as
jamming, chirping of transmitters, spectrum hijacking, and
node failure.

C. DATASETS
In this section, we report on some of the openly available
datasets, summarized in Table 9 for exploring and addressing
the anomaly detection.

In [125], a wideband spectrum monitoring dataset is
introduced with annotated anomalous signals. This dataset

TABLE 9. Summary of open datasets for Anomaly detection.

uses licensed frequency bands and STFT spectrograms
to capture both time and frequency characteristics. Next,
[126] proposed an RSSI-based synthetic anomaly detection
dataset. The authors injected 4 different types of anomalies
into the Rutgers dataset and also provided code for their
generation. Finally, the dataset used in [127] focuses on
RF jamming scenarios. Experimentally measured spectral
scan data provides a baseline for the evaluation of jamming
detection algorithms.

D. FINDINGS
Predictive and reconstruction-based approaches each have
distinct strengths and challenges when applied to anomaly
detection in the wireless spectrum. Predictive methods,
such as LSTM-MDN and Deep Predictive Coding Neural
Networks [63], [64], are particularly effective in detecting
temporal anomalies by learning expected signal behav-
iors and identifying deviations. These methods excel in
time-series analysis and can capture anomalies that emerge
as disruptions in the expected signal evolution. However, the
predictive methods are, in general, less robust, hence the
reconstruction-based techniques appear more frequently in
the literature.

Reconstruction-based techniques, including AEs, VAEs,
and GANs [55], [69], [118], [119], [120], leverage the
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inability of generative models to accurately reconstruct
anomalous signals. These models have demonstrated robust-
ness against varying noise levels and the ability to operate
in unsupervised settings. The advantage of using GAN-based
andVAE-basedmethods lies in their ability tomodel complex
signal distributions. Additionally, these approaches do not
require any labeled data.

1) ROAD AHEAD
Despite their advantages, both approaches face challenges
in real-world deployments. Predictive models may struggle
with unseen spectrum events that do not follow expected
patterns, while reconstruction-based models are harder
to train and learn proper latent representation of non-
anomalous examples. Future research could focus on hybrid
models that integrate predictive and reconstruction-based
mechanisms to leverage the strengths of both paradigms,
improving anomaly detection reliability in dynamic spectrum
environments.

IX. CHALLENGES AND FUTURE DIRECTIONS
In this section, we concisely summarize the identified
challenges and potential future research directions, based
on the analysis in each of the four research topics tied to
signal recognition in wireless communications. Furthermore,
we also provide a visual summary highlighting the most
important aspects in Figure 18.

1) AUTOMATIC MODULATION CLASSIFICATION
In AMC, research covers a broad range of SNR levels,
channel conditions, and datasets, yet most studies still rely
on simulated benchmarks such as RadioML, which only
partially reflect real-world variability. Future work should
focus on evaluations using over-the-air (OtA) collected data

FIGURE 18. Summary of existing challenges and future research
directions for each domain of work.

that reflect realistic propagation, hardware, and interference
effects. Another important direction is small-sample analysis,
where current inconsistencies in labeled data ratios constrain
the direct comparison. Establishing standardized benchmarks
with fixed sample sizes and unified training protocols
would improve reproducibility and comparability. Among
unsupervised methods, contrastive learning stands out for
its strong performance and ability to learn discriminative
features through data-specific augmentations; thus, designing
effective, domain-relevant augmentations is another promis-
ing research direction. Finally, hybrid architectures that
include sequence-processing components such as RNNs
or attention mechanisms have shown superior accuracy
and label efficiency, warranting further exploration using
real-world datasets under practical operating conditions.

2) SPECTRUM SENSING
Spectrum sensing encompasses three complementary tasks:
PU detection, RAT recognition, and JSR, each with distinct
challenges that complicate unified evaluation. Developing
benchmark datasets and standardized evaluation frameworks
for these tasks would greatly enhance comparability across
studies. Including simple reference models, such as K-means
for unsupervised andMLP for supervised settings, along with
common metrics like the Silhouette score, could streamline
benchmarking and reduce dependence on highly application-
specific designs. Future work should also explore contrastive
learning, which has shown strong feature extraction capabil-
ity in AMC and SEI, as a promising direction for spectrum
sensing. Given the prevalence of interference and noise in
this domain, rigorous validation under congested channel
conditions with multiple PUs is essential for assessing
deployment readiness. In terms of architectures, lightweight
models are preferable for low-latency PU and RAT detection.

3) SPECIFIC EMITTER IDENTIFICATION
For the SEI task, both unsupervised and supervised eval-
uation setups are common, corresponding to zero-shot
and few-shot learning, respectively. Establishing a standard
unsupervised baseline, such as K-means, together with
consistent clustering metrics, would help define lower
performance boundaries and improve comparability across
studies. For the supervised few-shot setting, standardizing
the number of labeled samples would enhance transparency
and facilitate fair evaluation, similar to practices in AMC
research. Although most studies already use real-world data
collected from proprietary testbeds, transparency could be
improved by including validation with open datasets, such
as the ones reviewed in this work. In terms of learning
approaches, contrastive learning remains the most widely
adopted and effective paradigm, while hybrid architectures
that include sequence-processing modules such as LSTM or
self-attention show strong potential for capturing temporal
and contextual features. Future research should emphasize
real-world evaluations under dynamic conditions involving
mobile devices and changing propagation environments, and
should aim at complementing proprietary experiments with

VOLUME 13, 2025 217793



L. Milosheski et al.: Radio Signals Recognition With Unsupervised Deep Learning: A Survey

open, standardized datasets to ensure reproducibility and
comparability.

4) ANOMALIES DETECTION
TheADdomain currently exhibits the least transparency, with
limited information available regarding model architectures,
datasets, and code accessibility. This gap highlights an urgent
need for the introduction of standard benchmark datasets,
baseline algorithms, and evaluation methodologies to enable
comparability and reproducibility.

5) FINAL REMARKS
Across all four domains, a recurring challenge is the lack of
open science practices such as open-source code, open data
repositories and standardized benchmarks. This limits repro-
ducibility and slows progress, as researchers must repeatedly
replicate experimental setups that could otherwise serve
as shared baselines. Adopting standardized methodologies,
including open data, baseline algorithms, unified metrics,
and public access to implementation materials, would greatly
benefit future research. Together with the channel conditions
and the SNR analysis, they represent the key common,
domain-agnostic resources based on which a transparent and
fair comparison of different models is possible for each of
the research topics surveyed in this work. In Figure 19,
we show the degree of availability of the corresponding
resources, relative to the number of surveyed works, for
each specific topic. As can be seen, and also noticed
before, the AMC and SEI domains are the most thoroughly
analysed, and the AD domain is the least transparent
one.

It is important to recognize that all unsupervised deep
learning models depend on the intensive processing of

FIGURE 19. Web plots of the key common requirements for comparative
analysis of the published works across the four signal recognition
challenges.

large volumes of unlabeled data, which is often taken
for granted in the literature. The substantial computa-
tional and memory resources required for such training
should be carefully considered in future work, besides the
size of the models. If a supervised model can achieve
comparable performance while requiring only a fraction
of the computational cost, the unsupervised approach
may not always represent the most efficient or practical
solution.

Finally, we note that current works lack considera-
tions regarding throughput/latency trade-offs, largely due
to the focus on the model’s performance. However, such
considerations that are more related to a model operation
once it is deployed, may affect the performance of network
applications, therefore should be considered in the future,
together with energy consumption and CO2 footprint of
models.

X. CONCLUSION
This survey has provided a comprehensive overview of
the current state of unsupervised deep learning techniques
applied to wireless signal recognition, focusing on key
challenges, i.e., AMC, signal sensing, SEI, and anomaly
detection. We have systematically reviewed deep clustering,
contrastive learning, autoencoder-based reconstruction, gen-
erative models, and predictive learning, highlighting their
potential to address the limitations of supervised methods,
particularly the reliance on large labeled datasets. We have
complemented this method-oriented review with an overview
of the most representative openly available datasets that can
be utilized for further research in the area of a given wireless
signal recognition challenge.

By presenting both a challenge-driven and a method-
oriented perspective, this survey aims to inspire further
research and provide a roadmap for the development of
data-efficient, self-supervised models that can enhance the
adaptability and intelligence of future wireless networks.

Despite notable progress in recent years, the application
of unsupervised deep learning in wireless communications
remains relatively underexplored compared to some other
domains such as computer vision and natural language pro-
cessing. Significant research opportunities exist in improving
the scalability and adaptability of these models to dynamic
and complex radio environments, some of them also iden-
tified in discussions within sections corresponding to key
challenges.
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