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ABSTRACT: The limit of detection (LOD) is a ubiquitous figure W

e epr e (LOD )
of merit for characterizing the performance of instrumental v‘,’:L‘""W il ‘“_‘u‘# ANy -

methods in analytical chemistry, with the well-known formula T " g
“three times the standard deviation of the blank” serving as a b ’,2’:1‘;;2221';.3,9,“
common heuristic for assessing signal detection. However, in two- S
dimensional (2D) data settings from elemental imaging and

mapping techniques, signals below the LOD often remain visuall Wl
disfe%ni%)le. Ins;?ired bf the theory of psychophysics, we proposz S W‘"“""”WWLWMWW
the Just-Noticeable Difference (JND) as a novel figure of merit for s ” Vil pception
chemical data analysis in 2D contexts. The JND refers to the ¥ @ ' ,:::\Ssi.wewwa,d
smallest perceptible difference between two stimuli by the human — Fevant data
senses. By utilizing the JND as a guiding principle in targeting low-

contrast signals, we offer an alternative approach to understanding detection limits in 2D data sets, with enhanced sensitivity for a
large variety of sizes of spatially resolved signal and noise levels. The potential of this approach, which is presented in two different
mapping techniques, LA-ICP-MS and LIBS, is compared to the standard LOD metric, which hints at the possibility for more
accurate assessments of elemental concentrations and better utilization of contrast variations and spatial information inherent in
mapping techniques.
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B INTRODUCTION (homoscedasticity) and accounts for the $% probability of
both Type I error (i.e., making the decision “analyte detected”
when there is no analyte in the sample) and Type II error
(failing to detect an analyte that is present in the sample). The
choice of 5% is, in principle, arbitrary, as is the assumption of

In analytical chemistry, the Limit of Detection (LOD) is a
widely accepted metric for evaluating a given chemical
measurement process. Informally, the LOD is the lowest
analyte concentration at which the presence of the analyte can

be confirmed with a reasonably high level of confidence. The normality, and both constraints can be changed in certain
precise working equation for LOD, which depends on the scenarios, depending on the number of samples and the
desired confidence level for determining the threshold between differences in practical costs of the two types of errors. In this
analyte “detected” and “not detected,” is based on a set of sense, the prefactor 3.29 can be understood as a trade-off that
statistical assumptions that are not universally settled among is acceptable for most analytical methods. If s, is estimated
different research institutions and regulatory bodies worldwide. from a limited set of measurements, then IUPAC recommends
According to a well-established conventional formula by the use of Student’s t distribution in determining the correct
IUPAC," the LOD is defined as the value of the signal that prefactor given the desired confidence level,' as usual for small
is equal to the mean (X,) plus 3.29 times the standard samples. Apart from IUPAC, other guidelines exist, such as the
deviation of the blank measurements (sy), European Commission” or the Food and Drug Administration

guideline,* which employ slightly different statistical criteria for
calculating the LOD. In any case, LOD is a generally applicable
metric, regardless of the analyte of interest, and the
instrumental method used in the chemical measurement

or the corresponding concentration (in pg/g, ng/g, etc.) which
produces that signal. In practice, particularly when the blanks
are not readily available, the LOD concentration value is often
estimated from (univariate) calibration data as Received: April 21, 2025
CLop = 3.29 * s </ k, where Sy/x 18 the residual standard Revised: ~ September 4, 2025
Accepted: September S, 2025
Published: September 15, 2025

deviation of the calibration, and k is the slope of the calibration
curve.” The choice of the prefactor 3.29 in the above definition
rests on the assumption of normally distributed measurements
with constant variances in the entire concentration range
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process. Apart from the aforementioned calibration approach,
which can be formally described as a collection of zero-
dimensional (0D) concentration-signal data points, LOD can
also be determined directly from experimental measurements
on real samples, which is particularly common in methods that
report the data as time series or one-dimensional (1D) plots,
such as chromatographic, electrochemical, and spectroscopic
methods.” In these scenarios, LOD is frequently determined
from the signal-to-noise ratio (SNR or S/N), which is the ratio
of the height of the peak (signal) of a measured sample
compared to the standard deviation of the baseline (noise). A
widely adopted heuristic criterion for reporting the LOD is to
calculate the concentration at which S/N = 3. By analogy, in
two-dimensional imaging data, one may determine the LOD
by comparing the maximum or mean signal value of a region of
interest (ROI) to the noise of its surroundings (background).
One commonly used metric for signal assessment in images is
the contrast-to-noise ratio (CNR).”® According to one of the
definitions, which can be directly related to LOD, the CNR
metric is calculated as the difference in mean numerical signal
values between the ROI (Xpo;) and the background (%,),
divided by the standard deviation of the background (s,),

[Xror — ibgl
sbg (2)

In line with eq 1, LOD is exceeded whenever CNR > 3.29. A
number of other metrics have been designed specifically for
image analysis, such as the local signal-to-background ratio
(LSBR),"”"" which is defined as the sum of squared differences
from the mean, divided by the standard deviation in a
rectangular ROI of width W and height H

w H —
Zi:o ijo (‘xij - xROI)Z
2

SRol (3)

CNR =

LSBR = IOIc)g10

or the recently proposed pixel-wise signal-to-noise ratio
(pwSNR),"” which calculates the average absolute deviation
(Eror) of signal intensities between the ROI and the mean
background value, divided by the background standard
deviation

Eor(lx; — %yl)
Sbg 4)

One strong advantage of metrics such as CNR, LSBR, and
pwSNR is that they are easily interpretable functions of the
means and standard deviations of the image regions under
consideration. However, the LSBR and pwSNR do not lend
themselves to a definitive criterion in terms of a simple
threshold for signal detection, and furthermore, none of these
metrics consider the crucial difference between the visual
presentations of imaging data and lower-dimensional (i.e., 0D
and 1D) data. In usual scientific images, which are digitally
stored as arrays of numbers, different numerical values directly
correspond to different color values of a predetermined color
scheme, which is intended to guide the observer to focus the
attention on visually relevant parts of the image and away from
contentless surroundings. In this respect, two properties of
human visual system, which are not considered by summary
statistics alone, namely, the sensitivity of the human visual
system to small color differences and the information on spatial
correlations of features in two-dimensional data, are both key

pwSNR =

to detecting objects in 2D that are otherwise virtually
impossible to notice in 1D settings with comparable noise
levels. Concerning spatial correlations in particular, it is well
known from psychophysics that the human visual system is
highly adept at amplifying signals by integrating redundant
information, like regions of similar brightness, when identifying
meaningful structures in an image.'”* Since the potential for
spatial redundancy in 2D is much higher than in 1D data
representations, it is reasonable to assume that objects of
comparable size and signal intensity are more easily detectable
in 2D than in 1D.

A striking example is illustrated in Figure la, which is an
artificially constructed digital image, consisting of five circular
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Figure 1. Comparison of the visibility of signals in a generic grayscale
image (a) versus one-dimensional data from the horizontal line at y =
100 (b). The signal intensities of the circles and background in (a),
which are displayed in 8-bit gray-level units, are drawn from a normal
distribution with a variance of S. The mean intensity value of the
background is equal to 100, while the means of the five circles
increase in steps from 100 to 100 + 3.29s, (IUPAC LOD threshold),
with the intensity differences displayed in red at the bottom of (b).

features on a background with Gaussian noise of constant
mean brightness and standard deviation (100 and §,
respectively, in 8-bit gray-level units). Figure 1b represents
the profile of signal intensity at the hundredth line of Figure 1a.
The circular spots in Figure 1a were obtained by increasing the
mean of the background noise while keeping the standard
deviation constant. While in the image (Figure la), even the
leftmost spot is dimly observable in most environments, in the
corresponding horizontal midline (Figure 1b), the sections in
the graph with increased mean values are challenging to
visually isolate (apart from the rightmost one with 3.29 sigma)
without the guidance of the top image and red demarcations.
This observation is in line with the guidance for signal
recognition in 1D data, which is actually in Figure 1b actually
is. Given that even such a simple image presents a challenge
when it comes to the applicability of the LOD as an analytical
figure of merit, it is not unreasonable to speculate that
evaluating digital images of real data would be even more
challenging. In light of this problem, we propose an alternative
metric for application in 2D imaging data: an analogous
concept from psychophysics, the so-called “Just-Noticeable
Difference” (JND),'” which is the smallest difference in
magnitude between two stimuli that can be observed by
human senses like vision and hearing. Given an absolute
intensity (brightness) of a target ROI I;, and a reference
region (usually the surroundings of a given ROI), I, the just-
noticeable difference is computed as JND = I, — I,,. Several
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laws have been proposed to mathematically model the JND,
with limited applicability in different settings. For instance,
Weber’s law'® states that the JND is linearly proportional to
the intensity of the reference, i.e., JND = kI, where k is an
empirical constant. Weber’s law implies that visual stimuli are
perceived logarithmically across the dynamic range of light
intensities, which is a reasonable approximation at moderate
brightness levels. In dark images or low-brightness settings, the
incident photons from the observed object arriving at the eye
are usually assumed to obey the Poisson counting statistics,
which is embodied in the Rose model,'”"® which states that
JND =k \/K Generally speaking though, visual perception
has a highly nonlinear relationship to the intensity of a given
stimulus, and a JND function that accurately reflects reality
should also depend on local image properties like edge
contrasts and textures, thus precluding objective description of
the process by a single unified model. In general, JND is
determined statistically from experiments, usually as a
difference that is noticed on 50% of trials.'” For grayscale
images, where each pixel is represented by a single number, a
JND function is determined in an experimental setting by
recording the subjective reports of just visible gray values of an
ROI of fixed shape against reference background gray levels
and fitting the reported data to a predetermined function. In
the literature on computer vision and image/video coding,
several approximate JND-estimation models have been
proposed,”’ "> with different functional forms, most of them
consisting of a U-shaped convex function that emphasizes high
sensitivity to middle gray levels, and lowered sensitivity to
black and white limits.” In this paper, we adopt the model of
Chou and Li*’, which is a simple piecewise JND function of
background intensity (with a square root dependence for
darker regions and a linear dependence for brighter regions).
This model has been used in many recent studies”* >’ in
digital image processing, and we have found it to be the most
suitable model for describing the sensitivity to grayscale
differences when viewing images on a typical desktop
computer.

In this work, we present an application of the proposed JND
metric on elemental mapping data, i.e., spatially resolved maps
from two cutting-edge instrumental chemical analysis
techniques: the Laser-Induced Breakdown Spectroscopy
(LIBS)*® and Laser Ablation Inductively-Coupled Plasma
Mass Spectrometry (LA-ICP-MS).* A detailed comparison is
made with the LOD in terms of the calculated thresholds. We
demonstrate by theoretical investigations that the combination
of a simple image preprocessing scheme and the evaluation of
JND based on automatically calculated image background
regions can lead to a sensitive approach for clearly discerning
visually detectable low-contrast signals in elemental maps that
the conventional LOD metric can either struggle to pinpoint or
miss signals altogether, while also reporting concentration
detection limits closer to actual elemental concentrations in
samples. In maps with clearer signals, we show that the JND
performs just as well as the LOD in signal detection. In
addition, a set of calculations of JND for different beam sizes is
carried out on LA-ICP-MS data, and a summary discussion is
provided on determining the optimal beam size for detecting a
given object size. For the sake of simplicity, we work with 8-bit
grayscale images, where a single pixel is described by a scalar
variable representing brightness or luminance. In 8-bit
grayscale images, the brightness level is represented by integers

Rose

ranging from 0 (black) to 255 (white), with intermediate
values representing different shades of gray. Other compelling
reasons for choosing this bit depth include the fact that the
majority of applications for viewing digital images are limited
to 8-bit data, and experimental studies provide strong evidence
that the human eye can discern at most about 700—900 shades
of gray in higher bit-depth medical displays.'” Although not
discussed here, the analysis of this work can be extended to
grayscale images with larger bit depths by simple rescaling of
the JND function, and in principle, even to colored images
with full three-dimensional color spaces such as RGB,
CIELAB, or YCbCr, where each pixel is represented by a
vector of three color channels.”’™’ We also stress that the
developments presented here are completely general and
applicable to other powerful techniques amenable to imagin
or mapping, such as X-ray fluorescence (XRF) microscopy,‘4’3‘
secondary ion mass spectrometry (SIMS),‘?’6 matrix-assisted
laser desorption/ionization imaging mass spectrometry
(MALDI-IMS),””*® electron energy loss spectroscopy
(EELS),** Raman spectroscopy*”"> and atomic force
microscopy (AFM)*** to name a few.

B EXPERIMENTAL SECTION

Construction of Artificial Samples. Artificial samples
were prepared by using pulsed laser deposition and photo-
lithography in combination with ion etching. The approach
and instrumentation used are described in more detail by
Schraknepper.”” In short, two different samples were prepared.
For both samples, photolithography was used to create
structured thin films (circles with diameters ranging from 20
to 200 um) on a substrate material. The combinations of
substrates and thin films are A,O;/50 nm Al:STO (0.5% Al in
SrTiO;) and YSZ/100 nm Pt:LSF (1% Pt in Lay¢Sry,FeO; on
the yttria-stabilized zirconia substrate).

LIBS Experimental Conditions. LIBS measurements were
carried out using an imageGEO193 laser ablation system (ESL,
Bozeman, Montana, US) operating at a wavelength of 193 nm.
Light emitted from the generated plasma was collected using
an optical fiber, which was connected to a high-resolution
spectrometer (HRS-750-MS, Princeton Instruments) with an
ICCD camera (PI MAX4, Princeton Instruments). The
spectrometer was set to a center wavelength of 407 nm with
a grating of 600 g/mm. Data were recorded with a gate delay of
0.1 ps and a gate width of 10 us. For LIBS measurements, a
laser energy of 1.2 J/cm” and a spotsize of 5 X 5 ym® were
used. For the estimation of the LOD and JND in the
concentration domain, calibration slopes for Fe and La were
determined from average signal intensities of a small section of
the largest spot in their respective elemental maps (see
Supporting Information).

LA-ICP-MS Experimental Conditions. The LA-ICP-MS
experiments were carried out using an Analyte G2 193 nm
ArF* excimer laser ablation system (Teledyne Photon
Machines Inc., Bozeman, MT) at the National Institute of
Chemistry in Ljubljana (NIC). The LA system equipped with
a HelEx II standard two-volume ablation cell was coupled to a
Vitesse ICP-TOF-MS (Nu Instruments, Wrexham, UK) via
the Aerosol Rapid Introduction System (ARIS) from Teledyne
Photon Machines. Line scans were performed on Pt:LSF on
YZS and Al:STO on Al,O; samples provided by the TU Wien.
The mapping experiments were performed with three different
square beam sizes—S5, 10, and 20 um-—to assess spatial
resolution and elemental distribution. A two-point calibration
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was performed using NIST SRM 610 and 612 glass standards*®
to estimate concentrations. While these standards served as a
proof of concept, they may not represent an ideal calibration

match for the materials studied.

The complete set of operating

parameters for these experiments is summarized in Table 1.

Table 1. Instrumental Parameters Used for the NIC Laser
Ablation System Coupled with TOF-ICP-MS

LA (Analyte G2, ARIS)
Wavelength (nm)

Laser fluence (J cm™)
Repetition rate (Hz)
Scanning mode

Dosage (shots per pixel)
Washout time (ms)
Beam size (yum)

Mask shape

He carrier flow rate (L min™") cuplcell

ICP-MS (Vitesse)

RF power (W)

Auxiliary gas flow (L min™")
Coolant flow (L min™")
Nebulizer flow (L min™')

Reaction cell gas (mL min™")

193

1.0

100

Line scanning
10

ca. 40

S, 10, 20
Square
0.310.3

1300

2

13

1.2

6 (He)/15 (H,)

B RESULTS AND DISCUSSION

Theoretical Modeling and Studies: Toward a New
JND-Based Figure of Merit. A web-based application was
developed in the Python-based Dash framework, which allows
the user to import single 2D maps as csv files and perform
rudimentary image preprocessing, including the clipping of
outliers and normalization, a manual or automatic background
selection, and calculation of LOD and JND metrics. In
addition, visualization of LOD- and JND-based thresholding
maps is implemented in the application, which is particularly
suitable for locating features in low-contrast and/or high-noise
environments. Instructions on how to use the application, as
well as the details of the inbuilt image processing and the
thresholding algorithms, are described exhaustively in Support-
ing Information. The application is accessible online via the
following link: http://chem-imaging-apps.ki.si/lod-jnd-app.
With the in-house application, we tested hundreds of elemental
maps from LIBS and LA-ICP-MS techniques for some of the
elements present in the aforementioned sample. The sensitivity
of the two metrics in question (IUPAC LOD and the proposed
JND) is compared in the numerical results, which are shown in
Figures 2—4 and Table 2. For LOD, we used eq 1 given in the
introduction, where we replaced the mean of the blank with
the average value of the background, chosen by the
application’s algorithm (more on that in the Supporting
Information). For the JND, we propose the following formula,

a)

cps

cps
(background
highlighted)

LOD
map

IND
map

b)

La (LIBS, 10%, gain 25)
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Figure 2. (a) A qualitative comparison between the LOD and JND metrics in terms of their ability to discern features from noise in LIBS elemental
maps of the Pt:LSF system (left column, Fe; right column, La). Top: Elemental maps of absolute background-corrected signal intensities, where
lighter-shade gray pixels represent high values and darker-shade gray pixels represent low values. Second from top: Elemental cps map, with
background areas highlighted (as determined by the algorithm). Second to bottom: LOD map — labels all pixels with cps higher than the LOD of
the background. Bottom: JND map — labels all pixels with cps higher than the JND of the background. (b) Corresponding histograms (left: Fe,
right: La), with vertical lines at the JND and LOD thresholds.
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Figure 3. (a) An analogous comparison between the LOD and JND metrics in two examples of LA-ICP-MS elemental maps of the Pt:LSF system
(left column — Gd, right column — Ba). (b) Corresponding histograms (left: Gd, right: Ba), with vertical lines for the JND and LOD thresholds.
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Figure 4. Comparison of JND maps for the Gd elemental map from LA-ICP-MS at different beam sizes.

Table 2. A Collection of Representative Signal Intensity Values, JND, and LOD Metrics from Elemental Maps in Figures 2 and

3

Representative intensity, LOD and JND values in elemental maps from Fe (LIBS, 20%, gain  La (LIBS, 10%, gain ~ Gd (LA-ICP- Ba (LA-ICP-
Figures 2 and 3 25) 25) MS) MS)
Range (min — max) 6.67—80.3 3.95-31.81 0-100.09 0-83.05
Background average 35.08 11.79 0.9186 3.529
Background standard deviation 12.15 3.511 3213 6.492
LOD 75.06 23.35 11.49 24.88
JND 44.34 14.60 7.85 11.92
LOD concentration 929.7 mg/g 623.3 mg/g 34.23 ug/g 35.25 ug/g
JND concentration 215.2 mg/g 151.4 mg/g 33.37 uglg 34.96 ug/g
JND = xp,095 + LA(ngo.%) (5) 17(1 _ /i) +3 if0<x<127
LAGx) = 127

where Xiag,o.95 is the gray level of the 95th percentile of the

background intensity distribution of a modified image
I' = I % M obtained via convolution of I with a 3 X 3 median
filter M, and LA is the so-called luminance adaptation function
from the model of Chou and Li, which reads as

i(x - 127) +3 if127 < x < 255.
128

(6)

With the background automatically selected by the
application, the above function is applied to the median-
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filtered version of the image under study. Subsequently, all
pixels that fulfill the criterion I'>JND are labeled as exceeding
the just-noticeable difference. In the case of LOD, raw
unfiltered data is used, so that pixels fulfilling the condition I
> LOD are labeled as exceeding the conventional limit of
detection. We chose the median as a measure of centrality for
locally filtering pixels in images since it is a ubiquitous
operation in image processing, which is more robust to outliers
than the mean value, and is particularly efficient at removing
the well-known “salt-and-pepper” noise*” arising from outlier
pixels with significantly higher or lower intensities from their
local surroundings. The size of the filter (3 X 3) was found to
produce reasonably gentle denoising without overly smoothing
local edges.

LOD vs JND: Examples from LIBS and LA-ICP-MS. The
results of theoretical investigations into the feasibility of using
the standard IUPAC LOD versus our proposed JND-based
metric for detection limits on four illustrative examples of
elemental maps from the two instrumental methods (beam size
S um) are presented in Figures 2, 3 and Table 2. For the final
theoretical analysis, elemental maps from the Pt:LSF system
were chosen since they contained visually well-resolved
features for major elements such as Fe and La (see Figure
2) as well as some other, unintended constituent elements, like
Gd and Ba shown in Figure 3. All LOD and JND values are
reported in intensity units corresponding to the total integrated
counts for LIBS and counts per second (cps) for LA-ICP-MS.
Transformation of the respective metrics to the concentration
domain was carried out in different ways, depending on the
instrumental method. For LA-ICP-MS maps, concentration
values for LOD and JND were obtained by the aforementioned
two-point calibration with NIST glass standards, while
concentrations for LIBS maps were estimated from the average
signal intensity of the largest spot in the sample (see
Supporting Information). Since a major objective of modern
instrumental methods is pushing toward detection of ever
lower-intensity signals and reliable determination of trace
element concentrations, we also scrutinized both LOD and
JND in terms of their ability to discern salient features in
elemental maps as potential signal candidates. Across the four
different examples presented in Figures 2 and 3, the two
metrics vary considerably in their value and hence in their
abilities to detect different concentrations of elements and
elucidate the sample’s circular spot features in a way that stand
out from the background. Figure 2A shows two example maps
from LIBS measurements with the Fe map obtained at 10%
laser energy and 25 gain and the La map at 20% energy and 25
gain. In both maps, the calculated JND is substantially lower
(in the order of several 10%) than LOD in both maps. In the
Fe map, which contains very dimly visible low-contrast
features, LOD is clearly high, positioned relatively close to
the maximum intensity due to a very high-noise background
with complex gray patterns (background standard deviation is
about 15% of the maximum intensity). As a result, the LOD is
unable to effectively distinguish any salient circular features on
the image. On the contrary, the JND value is much lower,
about half the maximum intensity, rendering a much larger
proportion of pixels on the map than LOD and uncovering a
few large connected regions, but also a high number of smaller
regions that can be qualitatively determined as false positives.
Since Fe intensity distribution is unimodal (see Figure 2B), a
large number of potential false positive signals are expected,
and a single value JND threshold may not be the most

informative metric in such cases. Computing the JND metric at
different background percentile levels (eq S) and visually
inspecting the resulting JND could serve as an aid in
determining the optimal threshold. Nevertheless, for consistent
results, we keep in our calculations the 95th percentile of the
background as in eq S. In the La map, the LOD and JND are
slightly closer to each other, with the JND still being lower by
about 20% of the full signal intensity range. In this case, LOD
is low enough to be able to outline the circular spots slightly
better than in the Fe map, except for the smallest two circles,
which are much more clearly shown in the JND map. This is
because the intensity distribution in the La map is more
skewed toward lower values, around a 25% maximum intensity.
Still, JND still shows much more pronounced clusters of pixels
than LOD. Considering the two metrics in concentration units,
it is instructive to compare them to actual concentrations of
mapped elements in the thin films of the sample material
(Lag6Sro4FeO5), which are equal to 215.99 mg/g for Fe and
375.02 mg/g for La. From Table 2, we see that the LOD is
higher by hundreds of mg/g for both elements (929.7 mg/g for
Fe and 623.3 mg/g for La, respectively), while the JND is
lower but comparable to the elemental concentration for Fe
(215.2 mg/g), and substantially lower for La (151.4 mg/g).
These results suggest that JND can reliably detect elemental
signals in low-contrast and noisy elemental maps, which LOD
struggles to capture.

In LA-ICP-MS maps, which are shown in Figure 3, the
background noise levels are comparatively lower than the noise
from LIBS maps (according to Table 2, background standard
deviations are on the order of a few % of the maximum
intensity). The JND value for the two LA-ICP-MS maps is also
lower than the LIBS JNDs, and about 8% of the maximum cps
values, which is close to the JND value of the lowest intensity
(which maps to the black color, according to the model by
Chou and Li*° used in this work, JND(0) = 20 ~ 7.84% of
255) since the background intensities are very low and mostly
get mapped to dark colors. The use of median filtering also
contributes to equalizing the JND since it almost completely
removes single-pixel and other small isolated clusters of
outliers with high intensities. On the contrary, the LOD
value for Ba is noticeably higher than Gd LOD, since the
average background intensity is about four times higher and
the standard deviation is twice as high (Table 2) in the Ba map
compared to the Gd map, which results in a considerably
higher LOD value for Ba. As a result, there is a window of
signal intensities, with a width of about 17% maximum
intensity, in which the JND can discern potential features that
the LOD cannot (see Figure 3b, Ba histogram). Concerning
the distinguishability of circular features actually present in the
sample, both LOD and JND yield comparable outcomes, with
the exception of Ba LOD map, where the smallest two circles
are difficult to visually discern from the environment. LOD
essentially fails to capture the smallest two circles. Never-
theless, both LOD and JND perform comparably well since the
background is relatively flat and the signals of circular spots are
high with clearly delineated edges, which is not the case in the
presented LIBS maps in Figure 2. The corresponding
concentration values for JND are lower than LOD, but their
difference is very small (less than 1 ug/g for both elements,
which is below the calibration errors—NIST SRM standards
have errors in 10° ug/g for Gd and Ba). This is simply a
consequence of large values for the calibration slopes and the
intercepts, which suppress any differences in the intensity
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domain. Hence, taking into consideration the comparison
between calculated metrics in concentration units, the use of
JND does not lead to a substantial benefit in these maps. A
more accurate assessment would require comparison with
actual concentrations of Gd and Ba in the thin films of the
sample, which are unknown.

A Discussion on the Appropriate Beam Size on the
Resolution of Different-Sized Features. We also analyzed
the effect of laser beam size (in LA-ICP-MS only) on the
recorded elemental maps, with three different beam diameters:
S, 10, and 20 pm and investigated the ability of JND and LOD
to detect signals. To make the maps with larger beams the
same size and shape as the 5 pm maps discussed in the
previous section, the aspect ratio was kept constant at 4:1. To
further simplify the comparison, the Gd map from LA-ICP-MS
measurements was chosen because it has a low-noise
background and the most similar JND and LOD values. In
Figure 4 we can observe that increasing the beam size
drastically reduces the frequency of single-pixel outliers in the
background (to negligible levels at 20 ym) but simultaneously
blurs the boundaries of features, and the smaller circles lose
their distinctive shape. Moreover, the smallest two circles in
the 20 ym map are represented by clusters of three to four dark
gray-level pixels, which are dropped out by the application of
the 3 X 3 median filter since the surroundings are black pixels
of low intensity from the background. Hence, the JND fails to
detect them properly. In addition, the next two larger circles in
size on the 20 ym map are detected by JND as a single
unresolved feature. LOD, which is actually lower than JND
(1% vs 8% of the maximum intensity, respectively) in the 20
um map, also fails to properly discern the circles, with all but
the largest one lumped together. This problem raises a
question that has hitherto not been considered, namely, “What
is the largest appropriate beam size that can still clearly
distinguish a feature of a certain size in a given elemental
map?” Assuming that the background is a simple region of a
single intensity level, or a narrow distribution of similar
intensities, and that features have an average intensity high
enough to exceed the JND, one criterion that could be
employed in the attempt to address the beam-size concern is
the well-known Nyquist—Shannon Sampling theorem**** from
digital signal processing theory. The theorem states that the
sample rate of a continuous bandlimited signal should be at
minimum twice its highest frequency component, ie, fs >
2. in order to completely reconstruct the original signal.
Sampling below this criterion is known to result in a loss of
details and lead to artifacts such as aliasing, which can
significantly distort the original signal content. When applied
to 2D signals in imaging, the theorem translates into a simple
rule that dictates the sampling of “at least two pixels per
smallest feature”. Some related guidelines exist in other well-
established imaging methodologies, for instance, in confocal
microscopy,”’ the factor 2 is increased to vary between 2.3 and
4 to stay on the safe side of clearly determining the smallest
objects. We suggest a simple rule of thumb to adjust the beam
size to at least 1/3 the area-equivalent diameter of the smallest
expected feature size, which implies a minimum factor of 3 in
the Nyquist—Shannon theorem. This way, at least two pixels
will be fully contained inside the feature (assuming a circular
shape). We do have to keep in mind that images from real
samples often have a moderate level of noise, which increases
the minimum detectable feature size.’’ The latter should
therefore be estimated before the chemical measurement

process, with a reasonable educated guess, based on domain
knowledge, for example.

B CONCLUSION

In the present work, we utilized the concept of JND from
psychophysics in a novel area of application, defining an easily
calculated and interpretable metric for determining detection
limits of measured analytes in imaging and mapping
techniques. We have used LIBS and LA-ICP-MS elemental
mappings for proof of principle, but the developments
presented here can be used for any imaging technique. While
the conventional LOD by IUPAC is very well-established in
zero-dimensional contexts like simple univariate calibration
methods using the regression line or methods employing
signal-to-noise ratio calculations in one-dimensional data, we
have shown in our work that LOD is sometimes not sensitive
enough for discerning salient signals in two-dimensional data
settings like imaging and mapping data. Since numerical values
of signals in images are visually presented as different color
shades, which is an additional layer of information not present
in OD and 1D settings, we have opted for an alternative metric,
the JND, for determining detection limits. Contrary to LOD,
JND incorporates more explicitly the nonlinear sensitivity of
the human visual system to different color shades (gray levels
in the present work), which allows for a finer detection of
notable spatial features in images and lower absolute values of
measured signals. We have shown that a simple combination of
median filtering and JND map calculation can discern signals
far below the LOD value in complex images of moderate noise
from LIBS measurements. Although not explored in this work,
detecting low-intensity signals in high noise is of particular
importance in determining minor and trace elements in any
mapping technique and in analysis of maps obtained with small
laser beam sizes in methods like LIBS and LA-ICP-MS. In low-
noise images like LA-ICP-MS maps presented here, the use of
JND did not lead to substantial advantage over LOD in terms
of lowering detection limits in concentration levels, but feature
recognition was still comparably strong by both metrics. We
emphasize that there are a number of potential improvements
that could be considered in order to make the JND metric a
more generally applicable figure of merit. Currently, the only
independent variable explicitly taken into account is the
absolute gray level of a selected background of an image under
consideration, represented by the 95th percentile of the
median-filtered background gray levels. However, there are
other variables that influence the signal detectability
irrespective of gray levels, namely, the expected size of an
observable spatially resolved feature which is also correlated to
the maximum acceptable beam size and the appearance of
noise and structural patterns in the background. It is well-
known that in higher noise levels, smaller features are more
readily obscured than larger ones,” so the feature size and
background noise should ideally be treated independently of
the gray levels. A more generalized JND metric could then
report the lowest perceptible signal intensity given the
measured background noise and expected feature size, possibly
including additional variables such as local gradients in the
background and correlations between the independent
variables, making signal detection a multivariate problem.
Additional complications may arise if the noise increases with
signal (heteroscedasticity), as is a common occurrence in
chemical measurements. While this will certainly increase the
LOD value," the effect on JND is difficult to predict in advance

https://doi.org/10.1021/acs.analchem.5c02398
Anal. Chem. 2025, 97, 20108—-20116


pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c02398?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Analytical Chemistry

pubs.acs.org/ac

and would probably depend on existing background patterns.
As mentioned in the introduction, the theoretical approach
applied in this work only to grayscale images could be
extended to colored images with different colormaps in an
arbitrary three-component color space. In an ideal perceptually
uniform colormap, the JND is a fixed value, and any two colors
would be considered visually distinguishable if the Euclidean
distance between their coordinates is greater than the JND.*">*
In practice, many commonly used scientific colormaps are
perceptually nonuniform, and some are unreadable for
individuals with color-vision deficiencies.”> The use of such
colormaps can introduce many additional complications, such
as the appearance of false edges and visual artifacts.” For these
reasons, the discussion of color-related nuances was considered
beyond the scope of this work. Given the importance and
complexity of visual signal perception in the analysis and
interpretation of imaging data, it is clear that additional
theoretical developments are necessary, and work is in progress
to find precise and practically interpretable extensions of the
suggested imaging metric.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.5c02398.

Calibration measurement data, details of the computa-
tional algorithm, application instructions (PDF)

B AUTHOR INFORMATION

Corresponding Author
Martin Sala — Department of Analytical Chemistry, National
Institute of Chemistry, Ljubljana SI-1000, Slovenia;
orcid.org/0000-0001-7845-860X; Email: martin.sala@
ki.si

Authors
Filip Cernatic — Department of Analytical Chemistry,
National Institute of Chemistry, Ljubljana SI-1000, Slovenia
Lukas Brunnbauer — TU Wien, Institute of Chemical
Technologies and Analytics, Vienna AT-1060, Austria;
orcid.org/0000-0001-7423-4668
Kristina Mervi¢ — National Institute of Chemistry,
Department of Catalysis and Chemical Reaction Engineering,
Ljubljana SI-1000, Slovenia; ® orcid.org/0009-0006-5000-
3201
Jakob Willner — TU Wien, Institute of Chemical Technologies
and Analytics, Vienna AT-1060, Austria; © orcid.org/0009-
0000-6428-1970
Andreas Limbeck — TU Wien, Institute of Chemical
Technologies and Analytics, Vienna AT-1060, Austria;
orcid.org/0000-0001-5042-2445

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.5c02398

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors acknowledge the financial support from the
Slovenian Research and Innovation Agency (ARIS) research
core fundings nos. P1-0034 and P2-0152. The financial support
provided by the Austrian Federal Ministry of Labour and

Economy, the National Foundation for Research, Technology
and Development, and the Christian Doppler Research
Association is gratefully acknowledged (Christian Doppler
Laboratory “Multiscale Chemical Analysis of Materials in
Industrial Processing and Use”). This work was partially
cofunded by the Slovenian Research and Innovation Agency
(ARIS J1—4415), the Czech Science Foundation (GACR 23—
13617L), and the Austrian Science Fund (FWF 1-6262-N)
under the PLASTsensing project.

B REFERENCES

(1) Currie, L. A. Pure Appl. Chem. 1995, 67 (10), 1699—1723.

(2) Miller, J. N,; Miller, J. C.. Statistics and Chemometrics for
Analytical Chemistry; 7th ed.; Pearson Education: London, England,
2018; p 312.

(3) Wenzl, T.; Haedrich, J.; Schaechtele, A.; Piotr, R.; Stroka, J.;
Eppe, G.; Scholl, G. Guidance document on the estimation of LOD and
LOQ for measurements in the field of contaminants in feed and food;
Institute for Reference Materials and Measurements (IRMM): Geel,
Belgium, 2016.

(4) U.S. Food And Drug Administration Elemental Analysis Manual
for Food and Related Products, Section 3.2, Version 3.0; U.S. Food And
Drug Administration, 2021. 4—6

(5) Brunetti, B.; Desimoni, E. Pharm. Anal. Acta 2015, 6 (3), 1—4.

(6) Shrivastava, A.; Gupta, V. Chron. Young Sci. 2011, 2 (1), 21.

(7) Welvaert, M.; Rosseel, Y. PLoS One 2013, 8 (11), No. e77089.

(8) Jiang, H.; Lu, N.; Yao, L. Remote Sens. 2016, 8 (10), 844.

(9) Usamentiaga, R.; Ibarra-Castanedo, C.; Maldague, X. J.
Nondestruct. Eval. 2018, 37 (2), 25.

(10) Soni, T.; Zeidler, J. R;; Ku, W. H. IEEE Trans. Image Process
1993, 2 (3), 327—340.

(11) Bai, X.; Zhou, F. Pattern Recognit. 2010, 43 (6), 2145—2156.

(12) Tung, S; Ilgin, H. A. Trait. Du Signal. 2023, 40 (1), 207-215.

(13) Attneave, F. Psychol. Rev. 1954, 61 (3), 183—193.

(14) Kinchla, R. A. Percept. Psychophys. 1977, 22 (1), 19-30.

(15) Wy, J.; Shi, G.; Lin, W. Front. Comput. Sci. 2019, 13 (1), 4—18.

(16) Shen, J. Phys. D Nonlinear Phenom 2003, 175 (3), 241-251.

(17) Rose, A. J. Opt. Soc. Am. 1948, 38 (2), 196—208.

(18) Burgess, A. E. J. Opt. Soc. Am. A 1999, 16 (3), 633—646.

(19) Kimpe, T.; Tuytschaever, T. J. Digit. Imaging 2007, 20 (4),
422—432.

(20) Chou, C. H.; Li, Y.C. IEEE Trans. Circuits Syst. Video Technol.
1995, 5 (6), 467—476.

(21) Zhang, X; Lin, W.; Xue, P. J. Vis. Commun. Image Represent
2008, 19 (1), 30—41.

(22) Wei, Z.; Ngan, K. N. IEEE Trans. Circuits Syst. Video Technol.
2009, 19 (3), 337—346.

(23) Hill, P.; Al-Mualla, M. E.; Bull, D. IEEE Trans. Image Process
2017, 26 (3), 1076—1088.

(24) Wu, J.; Shi, G.; Lin, W.; Liu, A.; Qi, F. IEEE Trans. Multimedia
2013, 15 (7), 1705—1710.

(25) Wu, J; Lin, W,; Shi, G, Structural uncertainty based just
noticeable difference estimation. In 2014 19th International Conference
on Digital Signal Processing; IEEE: Hong Kong,china, 768—771. .

(26) Yu, L; Su, H;; Jung, C. IEEE Access 2018, 6, 36132—36142.

(27) Lang, Y.-Z.; Wang, Y.-L.; Qian, Y.-S.; Kong, X.-Y.; Cao, Y. Opt.
Express 2023, 31 (9), 14008—14026.

(28) Fortes, F. J.; Moros, J.; Lucena, P.; Cabalin, L. M.; Laserna, J. J.
Anal. Chem. 2013, 85 (2), 640—669.

(29) Koch, J; Giinther, D. Appl. Spectrosc. 2011, 65 (5), 155A—
162A.

(30) Yang, X. K; Ling, W. S;; Lu, Z. K;; Ong, E. P.; Yao, S. S. Signal
Process., Image Commun. 2005, 20 (7), 662—680.

(31) Chou, C. H;; Liu, K. C. IEEE Trans. Image Process 2010, 19
(11), 2966—2982.

(32) Zhang, Z; Shang, X,; Li, G; Wang, G. Sensors 2023, 23 (S),
2634.

https://doi.org/10.1021/acs.analchem.5c02398
Anal. Chem. 2025, 97, 20108—-20116


https://pubs.acs.org/doi/10.1021/acs.analchem.5c02398?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5c02398/suppl_file/ac5c02398_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Martin+S%CC%8Cala"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7845-860X
https://orcid.org/0000-0001-7845-860X
mailto:martin.sala@ki.si
mailto:martin.sala@ki.si
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Filip+Cernatic%CC%8C"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lukas+Brunnbauer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7423-4668
https://orcid.org/0000-0001-7423-4668
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kristina+Mervic%CC%8C"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0006-5000-3201
https://orcid.org/0009-0006-5000-3201
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jakob+Willner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0000-6428-1970
https://orcid.org/0009-0000-6428-1970
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andreas+Limbeck"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5042-2445
https://orcid.org/0000-0001-5042-2445
https://pubs.acs.org/doi/10.1021/acs.analchem.5c02398?ref=pdf
https://doi.org/10.1351/pac199567101699
https://doi.org/10.4172/2153-2435.1000355
https://doi.org/10.4103/2229-5186.79345
https://doi.org/10.1371/journal.pone.0077089
https://doi.org/10.3390/rs8100844
https://doi.org/10.1007/s10921-018-0479-z
https://doi.org/10.1007/s10921-018-0479-z
https://doi.org/10.1109/83.236534
https://doi.org/10.1109/83.236534
https://doi.org/10.1016/j.patcog.2009.12.023
https://doi.org/10.18280/ts.400119
https://doi.org/10.1037/h0054663
https://doi.org/10.3758/BF03206076
https://doi.org/10.1007/s11704-016-6213-z
https://doi.org/10.1016/S0167-2789(02)00734-0
https://doi.org/10.1364/JOSA.38.000196
https://doi.org/10.1364/JOSAA.16.000633
https://doi.org/10.1007/s10278-006-1052-3
https://doi.org/10.1007/s10278-006-1052-3
https://doi.org/10.1109/76.475889
https://doi.org/10.1109/76.475889
https://doi.org/10.1016/j.jvcir.2007.06.001
https://doi.org/10.1016/j.jvcir.2007.06.001
https://doi.org/10.1109/TCSVT.2009.2013518
https://doi.org/10.1109/TCSVT.2009.2013518
https://doi.org/10.1109/TIP.2016.2633863
https://doi.org/10.1109/TIP.2016.2633863
https://doi.org/10.1109/TMM.2013.2268053
https://doi.org/10.1109/TMM.2013.2268053
https://doi.org/10.1109/ICDSP.2014.6900768
https://doi.org/10.1109/ICDSP.2014.6900768
https://doi.org/10.1109/ACCESS.2018.2848671
https://doi.org/10.1364/OE.485672
https://doi.org/10.1364/OE.485672
https://doi.org/10.1021/ac303220r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1366/11-06255
https://doi.org/10.1366/11-06255
https://doi.org/10.1016/j.image.2005.04.001
https://doi.org/10.1016/j.image.2005.04.001
https://doi.org/10.1109/TIP.2010.2052261
https://doi.org/10.1109/TIP.2010.2052261
https://doi.org/10.3390/s23052634
https://doi.org/10.3390/s23052634
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c02398?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Analytical Chemistry

pubs.acs.org/ac

(33) Sharma, G.; Trussell, H. J. IEEE Trans. Image Process 1997, 6
(7), 901-932.

(34) Pushie, M. J.; Pickering, L. J.; Korbas, M,; Hackett, M. J;
George, G. N. Chem. Rev. 2014, 114 (17), 8499—8541.

(35) Pushie, M.J.; Messmer, M.; Sylvain, N.J.; Heppner, J.; Newton,
J.M.; Hou, H,; Hackett, MJ.; Kelly, M.E.; Peeling, L. Metallomics
2022, 14 (6), mfac032.

(36) Green, F. M,; Castellani, M. E.; Jia, Y.; Eyres, A;; Smith, N;
Thompson, S.; Blenkinsopp, P.; Burt, M.; Vallance, C.; Bunch, J;
Takats, Z.; Brouard, M. J. Am. Soc. Mass Spectrom. 2023, 34 (7),
1272—-1282.

(37) Esselman, A. B; Ward, M. S.; Marshall, C. R; Pingry, E. L;
Dufresne, M.; Farrow, M. A.; Schrag, M.; Spraggins, J. M. J. Am. Soc.
Mass Spectrom. 2024, 35 (12), 2795—2800.

(38) Javorek, M.; Hendrych, M.; Ondrikov4, K. Preisler, J.;
Bednatik, A. Anal. Chem. 2025, 97 (3), 2828—2836.

(39) Hunt, J. A,; Williams, D. B. Ultramicroscopy 1991, 38 (1), 47—
73.

(40) Colliex, C.; Kociak, M.; Stéphan, O. Ultramicroscopy 2016, 162,
Al—-A24.

(41) Dodo, K.; Fujita, K.; Sodeoka, M. J. Am. Chem. Soc. 2022, 144
(43), 19651—19667.

(42) Yamakoshi, H.; Dodo, K.; Palonpon, A.; Ando, J.; Fujita, K;
Kawata, S.; Sodeoka, M. J. Am. Chem. Soc. 2012, 134 (51), 20681—
20689.

(43) He, C.; Shi, S.; Wu, X; Russell, T. P.; Wang, D. J. Am. Chem.
Soc. 2018, 140 (22), 6793—6796.

(44) Munz, M.; Poon, J.; Frandsen, W.; Cuenya, B. R;; Kley, C. S. J.
Am. Chem. Soc. 2023, 145 (9), 5242—5251.

(4S) Schraknepper, H.; Biumer, C.; Dittmann, R;; De Souza, R. A.
Phys. Chem. Chem. Phys. 2018, 17 (2), 1060—1069.

(46) Jochum, K. P.; Weis, U,; Stoll, B,; Kuzmin, D.; Yang, Q;
Raczek, I; Jacob, D. E.; Stracke, A.,; Birbaum, K, Frick, D. A;
Giinther, D.; Enzweiler, J. Geostand. Geoanalytical Res. 2011, 35S (4),
397—429.

(47) Jiang, Y.; Wang, H; Cai, Y.; Fu, B. Front. Appl. Math. Stat.
2022, 8, 918357.

(48) Nyquist, H. Trans. Am. Inst. Electr. Eng. 1928, 47 (2), 617—644.

(49) Shannon, C. E. Proc. IRE 1949, 37 (1), 10-21.

(50) Handbook of biological confocal microscopy; 3rd ed.; Springer:
New York, NY, 2006; p 1009.

(51) Anam, C.; Naufal, A.; Fujibuchi, T.; Matsubara, K.; Dougherty,
G. J. Appl. Clin. Med. Phys. 2022, 23 (9), No. e13719.

(52) Crameri, F.; Shephard, G. E.; Heron, P. J. Nat. Commun. 2020,
11 (1), 5444.

(53) Race, A. M,; Bunch, J. Anal. Bioanal. Chem. 2015, 407 (8),
2047-2054.

20116

CAS INSIGHTS™

EXPLORE THE INNOVATIONS
SHAPING TOMORROW

Discover the latest scientific research and trends with CAS Insights.
Subscribe for email updates on new articles, reports, and webinars
at the intersection of science and innovation.

Subscribe today

https://doi.org/10.1021/acs.analchem.5c02398
Anal. Chem. 2025, 97, 20108—-20116


https://doi.org/10.1109/83.597268
https://doi.org/10.1109/83.597268
https://doi.org/10.1021/cr4007297?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/mtomcs/mfac007
https://doi.org/10.1093/mtomcs/mfac007
https://doi.org/10.1021/jasms.2c00371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jasms.2c00371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jasms.4c00365?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jasms.4c00365?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.4c05244?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0304-3991(91)90108-I
https://doi.org/10.1016/0304-3991(91)90108-I
https://doi.org/10.1016/j.ultramic.2015.11.012
https://doi.org/10.1016/j.ultramic.2015.11.012
https://doi.org/10.1021/jacs.2c05359?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c05359?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja308529n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja308529n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b03771?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b03771?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c12617?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c12617?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C4CP03632H
https://doi.org/10.1111/j.1751-908X.2011.00120.x
https://doi.org/10.1111/j.1751-908X.2011.00120.x
https://doi.org/10.3389/fams.2022.918357
https://doi.org/10.3389/fams.2022.918357
https://doi.org/10.1109/T-AIEE.1928.5055024
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1002/acm2.13719
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1007/s00216-014-8404-5
https://doi.org/10.1007/s00216-014-8404-5
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c02398?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://solutions.cas.org/CASInsights_Subscribe?utm_campaign=GLO_GEN_ANY_CIS_AWS&utm_medium=DSP_CAS_ORG&utm_source=Publication_CEN&utm_content=pdf_footer 

