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This study investigates the microstructural and phase characteristics of Stellite 6,
Stellite 12, and Stellite 21 alloys produced by horizontal continuous casting. The
alloys were synthesized from pure metallic elements and ferroalloy (FeW) under
an argon atmosphere and solidified in a water-cooled copper mould
(@3.3 mm-Stellite 6 and Stellite 21, and ©6.1 mm-Stellite 12), resulting in
extremely high cooling rates and fine-grained  microstructures.
Thermodynamic calculations were performed to predict equilibrium
solidification, which was compared with experimental microstructural
observations. Optical and scanning electron microscopy (SEM-EDS) analyses
revealed Co-rich dendritic grains surrounded by eutectic regions containing
carbides of the M;Cs;, M,3zCq, and MgC types. X-ray diffraction (XRD)
confirmed the presence of an FCC Co matrix without HCP phase formation,
attributed to rapid solidification. The volume fraction of carbides increased with
carbon content, influencing hardness. Vickers hardness measurements showed
that Stellite 6 exhibited the highest hardness (508 HV10), followed by Stellite 12
(470 HV10) and Stellite 21 (345 HV10). The finer grain size and higher carbide
fraction in alloys with greater carbon content contributed to enhanced hardness
and structural uniformity. These findings demonstrate that horizontal continuous
casting enables the production of fine-grained Stellite rods with a homogeneous
composition. The cast rods show excellent structural integrity and are well-suited
for subsequent hard-facing applications in wear-resistant environments.
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1 Introduction

Stellite alloys belong to the group of cobalt-based superalloys, known for their excellent
oxidation and wear resistance (Davis, 2000). These properties, combined with good
biocompatibility, make Stellite suitable for medical applications, such as implants (e.g.,
hip, knee, and dental replacements) (Saldivar-Garcia and Lopez, 2005; Kurosu et al., 2010
Hu et al., 2014; Narushima and Ueda, 2015; Lu et al., 2016; Nova et al., 2017; Tunthawiroon
and Chiba, 2019; Li et al., 2025). Stellite is commonly welded onto mechanical components
to enhance their performance and extend their service life. These alloys are widely used in
the energy, oil, wood, automotive, and aerospace industries. Thin deposited layers on
component surfaces provide outstanding wear, oxidation, and corrosion resistance, even at
elevated temperatures (Frenk and Kurz, 1994; Davis, 2000; Aoh and Chen, 2001; Radu et al.,
2004; Radu and Li, 2005; Kapoor et al., 2012; Liu et al., 2015; Roy et al., 2021; Smolina and
Kobiela, 2021).

In addition to cobalt, Stellites contain a substantial amount of chromium (typically
25-33 wt%), which imparts exceptional oxidation resistance both at room and elevated
temperatures. The chromium content is sufficiently high to form a compact Cr,0O; oxide
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film on the surface, which prevents further oxidation and
degradation of the material (Phalnikar et al., 1956; Kofstad and
Hed, 1969a; Kofstad and Hed, 1969b; Codaro et al., 2000; Davis,
2000; Kapoor et al, 2012; Li et al, 2013; Hu et al., 2014;
Tunthawiroon et al, 2020). Apart from this protective effect,
chromium also contributes to the solid solution strengthening of
the matrix (Shin et al., 2003; Pala et al., 2017). Other key elements
that enhance solid solution strengthening include tungsten (W) and
molybdenum (Mo), which are typically added separately to the alloy.
Stellites are generally categorised into Co-Cr-W alloys, which offer
superior wear resistance, and Co-Cr-Mo alloys, which provide better
corrosion resistance (Kuzucu et al.,, 1997; Davis, 2000; Shin et al.,
2003; Huang et al, 2007; Kapoor et al, 2012; Hu et al, 2014;
Motallebzadeh et al., 2015; Narushima and Ueda, 2015; Liu
et al., 2015).

Despite solid solution strengthening, the matrix of Stellite alloys
remains relatively soft and not inherently wear-resistant. Their wear
resistance is primarily provided by the presence of carbides, which
are crucial in these alloys (Shin et al., 2003; Huang et al., 2007;
Kapoor et al., 2012; Novd et al., 2017; Ravi Kumar et al., 2020;
Ahmed, De Villiers Lovelock and Davies, 2021; Chen et al., 2024;
Khan et al,, 2025). The carbon content typically ranges from 0.2 to
3.5 wt%, directly influencing the alloy’s wear resistance (Krell et al.,
2020). Stellites with lower carbon content are used in more corrosive
environments—for instance, Stellite 21, which, in addition to good
corrosion resistance, also offers excellent creep resistance (Davis,
2000; Huang et al., 2007; Liu et al., 2015; Zhao et al., 2024). Alloys
with higher carbon content, such as Stellite 12 and Stellite 6, contain
a larger volume fraction of carbides and are thus preferred for wear-
resistant applications (Kuzucu et al., 1997; Shin et al., 2003; Hou
et al.,, 2005; Kapoor et al., 2012; Motallebzadeh et al., 2015; Liu et al.,
2015; Smolina and Kobiela, 2021; Karthik et al., 2022; Chen
et al., 2024).

Carbides in Stellites form during the final stages of
solidification, resulting in a eutectic structure with the Co-
FCC phase. The proportion of eutectic and therefore carbides
is relatively high, and the carbide network within the
interdendritic regions contributes significantly to the wear
resistance of these alloys. The most common carbides are
chromium-rich M,C; and M,;Cq types (where M = Cr, Co).
M, C; carbides form during eutectic solidification and are likely
present at room temperature in Stellite 6 and Stellite 12. These
M,C; carbides are metastable and may transform into M,;Cs
carbides during cooling (Kuzucu et al., 1997; Davis, 2000;
Kapoor et al., 2012; Wang et al., 2021; Xiong et al., 2023; Yao
et al., 2023; Ahmed et al., 2024; Chen et al., 2024). The addition
of Mo to Stellite 6 and 12 suppresses the formation of M,Cs
carbides, thereby favouring the formation of M,;Cs eutectic
carbides. (Kuzucu et al., 1997; Shin et al., 2003). The addition
of W and Mo promotes the formation of M¢C-type carbides
(where M = W, Mo, Co), which are harder and enhance the wear

Abbreviations: FCC, face-centred cubic; HCP, hexagonal close-packed; HCC,
horizontal continuous casting; XRD, X-ray diffraction; SEM, scanning electron
microscopy; EDS, energy-dispersive X-ray spectroscopy; HV, Vickers
hardness; HV10, Vickers hardness at 10 kgf; HV0.02, Vickers microhardness
at 0.02 kgf; RT, room temperature.
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resistance of the alloy (Shin et al., 2003; Chen et al., 2020; Karthik
et al., 2022).

In certain alloys, such as Stellite 21, intermetallic phases, most
commonly Laves phases, also form and contribute to improved wear
resistance and creep performance at elevated temperatures.
Examples of intermetallic phases identified in Stellite 21 include
Cos;Mo, Co3;Mo,(Cr,Si), and Co,MoCr (Radu et al., 2004; Huang
et al., 2007; R. Liu et al,, 2015; Liu et al., 2015; Li et al., 2025).

At high temperatures, cobalt atoms adopt a face-centred
cubic (FCC) crystal structure, which transforms to a hexagonal
close-packed (HCP) structure below 427 °C under equilibrium
conditions(Davis, 2000). The addition of alloying elements alters
the transformation temperature between the FCC and HCP
phases, while significantly reducing the transformation
kinetics (Kuzucu et al., 1997; Davis, 2000; Kapoor et al., 2012;
Narushima and Ueda, 2015; Chen et al., 2024; Li et al., 2025).
Due to the sluggish transformation kinetics, both metastable
FCC and HCP phases coexist in the cast microstructure at room
temperature. Since the HCP phase has fewer slip systems, it is
less deformable; therefore, Stellites with a higher fraction of
HCP phase exhibit higher hardness and improved wear
resistance. The FCC — HCP transformation in Stellites is
martensitic and can occur during rapid cooling from the
temperature range where the FCC phase is stable (athermal
martensitic transformation). It can also occur upon annealing
at elevated temperatures within the HCP stability region. Owing
to the low stacking fault energy, strain-induced transformation
to the HCP phase is also possible (Frenk and Kurz, 1994; Radu
et al., 2004; Radu and Li, 2005; Saldivar-Garcia and Lopez, 2005;
Huang et al., 2007; Narushima and Ueda, 2015; Chen et al,,
2024). The mechanical properties of the matrix are strongly
influenced by the ratio between the FCC and HCP phases, a
factor particularly significant in Stellites with low carbide or
intermetallic content, such as Stellite 21.

In this research, a characterisation of key representatives of the
Stellite alloys was carried out. The alloys were produced using a
horizontal continuous casting process, during which solidification of
the melt occurs rapidly due to intensive heat transfer. The cast
microstructure of Stellite rods exhibits grain sizes comparable to
those found in hard-faced layers, as typically used for Stellites. This
study focused on the characterisation of the fine-grained cast
microstructure of cast rods. A detailed characterisation was
performed on Stellite 6, 12, and 21 alloys.

2 Materials and methods

The alloys with compositions specified in Table 1 were
produced using an induction furnace. Metallurgically pure
elements and ferro-alloy (Co, Cr, C, Si, Mn, Mo, Ni, W, and
FeW) were used to prepare each alloy. The melting of the
materials was carried out under a protective Ar atmosphere.
Once fully molten, the alloy was cast into rods using a horizontal
continuous casting process. Stellite 6 and Stellite 21 were cast
into rods with a diameter ®¥3.3 mm, while Stellite 12 was cast
into rods with a diameter of @6.1 mm. Figure 1 shows an
induction furnace with a horizontal continuous caster for
metallic materials. A water-cooled copper mould (crystalliser)
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TABLE 1 Chemical composition of cast Stellite alloys, values in wt%.

10.3389/fmech.2025.1735111

Alloy Name C Si Mn Cr Ni Mo W Fe Co

Stellite 6 S6 1.06 0.90 0.10 30.7 2.3 0.27 5.6 1.6 Bal.

Stellite 12 S12 133 0.90 0.15 295 2.7 0.12 8.8 26 Bal.

Stellite 21 s21 026 0.81 0.75 27.7 2.7 5.00 - - Bal.
A-A

FIGURE 1
Induction furnace with horizontal continuous caster.

is positioned inside the induction furnace. Before melting, the
opening of the copper mould is sealed with a cold starter bar.
When the melt is ready for casting, an electric motor periodically
pulls the starter bar (approx. 3.5 Hz frequency) in 15 mm
speed
52.5 mm/s. The molten metal fills the copper mould, where it

increments, which makes the effective cooling
rapidly cools and solidifies. This rapid cooling ensures
directional solidification. Each newly solidified segment is
welded to the preceding section of the rod. The chemical
composition of the samples was determined from a section of
the rod taken approximately midway through the casting
process. The carbon content was determined using an ELTRA
SC-800 combustion mass spectrometer (ELTRA), and the
content of other elements was determined by XRF Thermo
Scientific Niton XL3t GOLDD+ (Thermo Fisher Scientific,
Waltham, MA, United States).

Thermodynamic of the
composition were performed using the JMatPro9.0 software
package (Sente Software Ltd., Guildford, United Kingdom). The

chemical compositions used for the thermodynamic calculations are

calculations equilibrium  phase

listed in Table 1. The program was employed to calculate the
formation of phases during equilibrium solidification and cooling
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edge

Casting direction

centre

FIGURE 2
Schematic representation of the sampling procedure from the
cast rods.
within the temperature range from 1500 °C to room

temperature (RT).

In horizontal continuous casting, the solidification rate is
relatively high, with cooling rates ranging between 200 and
2000 K/s. As a result, the crystal grains are extremely fine, and
the phases form far from equilibrium conditions.

Samples for microstructural characterisation were sectioned
transversely from the cast rods with respect to the casting
direction. The specimens, taken from the edge and the centre as
shown in Figure 2, were mounted in a bakelite resin and subsequently
ground and polished. Samples were sequentially ground under water
lubrication using SiC papers from 120 to 4000 grit to remove
sectioning damage and achieve a uniform surface. This was
followed by polishing with 6 um, 3 um, and 1 um diamond
suspensions on cloths, and a final chemical-mechanical polish
using 0.05 pm colloidal silica to obtain a deformation-free finish.
After polishing, specimens were rinsed, ultrasonically cleaned, and
dried. The microstructure of the Stellite alloys was examined on ion-
etched samples (10 keV, 3804, 5 min). The metallographic analysis
was performed using an Axio Imager Z2 m optical microscope (Carl
Zeiss AG, Oberkochen, Germany). Additional microstructural
characterization was carried out using a Thermo Fisher Scientific
Apreo 2§ scanning electron microscope (SEM) equipped with EDS
detectors (Thermo Fisher Scientific, Waltham, MA, United States).
The working parameters were 15 kV accelerating voltage, 8-15 mm
working distance.

The crystalline phases present in the cast microstructures were
analysed by X-ray diffraction (XRD) using a Panalytical XPert Pro
PW3040/60 diffractometer (Malvern, United Kingdom). The
diffraction patterns were collected from ground and polished
bulk specimens over a 20 range of 30°-90°, with a step size of
0.002° and a time per step of 60 s. The XRD spectra were recorded
using a Cu anode operated at 45 kV and 40 mA, providing K,;
radiation (A = 1.5406 A) and K, radiation (A = 1.54443 A) with a
Ka1/Kq, intensity ratio of 0.5.
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FIGURE 3
Equilibrium phase composition of S6.
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FIGURE 4
Equilibrium phase composition of S12.

Vickers hardness and microhardness of individual samples were
measured using a FALCON 800G2/A03 (INNOVATEST,
Maastricht, Netherlands), in accordance with HV10 and
HV0.02 standards. All three sample had at least five indentations
made for HV10 and at least fifteen measurements for HV0.02. The
measurements were performed in an accredited laboratory for
Vickers testing SIST EN ISO 6507-1.

Frontiers in Mechanical Engineering

3 Results and discussion
3.1 Thermodynamic calculations
Figures 3-5 present the equilibrium phase diagrams for the

investigated Stellite alloys. Equilibrium solidification of the
S6 sample begins at a temperature of 1338 °C with the formation
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FIGURE 5
Equilibrium phase composition of S21.

of primary FCC grains of the FCC phase (GAMMA). This is
followed by the eutectic solidification of a cobalt-rich phase and
carbides (GAMMA + M,C3) at 1278 °C. The solidification concludes
at 1269 °C. During cooling, a transformation of M,C; carbides into
M,;C¢ occurs. At room temperature, the carbide content amounts to
approximately 15 wt%. At 820 °C, atomic redistribution within the
matrix leads to the formation of the HCP phase, named (COBALT_
HCP). Under equilibrium conditions, this phase is stable within a
narrow temperature range, after which the atoms preferentially
rearrange into the fcc crystal structure. Further cooling results in
matrix saturation, which promotes the formation of MC-type
carbides, rich in tungsten. Under equilibrium cooling, the
intermetallic phases p (MU) (Co,W,(NiCr),) and G_phase
(Ni,Siy(CrMn),) are formed. At lower temperatures, matrix
HCP (COBALT_HCP) decomposition occurs, leading to the
formation of Co-rich FCC and Cr-rich (SIGMA) phases (Karaali
et al., 2005).

The microstructural phases observed in the S12 alloy are similar
to those identified in S6. Equilibrium solidification begins at a
slightly lower temperature of 1308 °C, which can be attributed to the
higher concentrations of alloying elements such as carbon and
tungsten. Eutectic solidification starts at approximately 1270 °C,
leading to the formation of a eutectic structure consisting of y
(GAMMA) + M,C; carbides, which continues until about 1254 °C.
Solidification is completed at this temperature. Upon cooling, M,Cs
carbides transform into M,3Cs at room temperature, their
proportion slightly exceeds 20 wt%. At 1050 °C, MC carbides
rich in tungsten begin to precipitate. At 750 °C, the HCP phase
(COBALT_HCP) forms. However, due to the high content of Fe,
Ni, and C, the stability of the HCP phase is limited. At lower
temperatures, the matrix decomposes, and atoms are again
FCC structure. In this alloy,

arranged in the crystal

Frontiers in Mechanical Engineering

intermetallic phases and matrix decomposition at lower
temperatures also occur.
The S21 alloy contains a low carbon content, which

contributes to a higher initial solidification temperature.

Formation of the FCC phase begins at 1383 °C,
predominantly resulting in FCC grains. At the end of
solidification, at 1287 °C, a small amount of eutectic

(GAMMA + M,3Cq) is formed. The content of M,;Cq
carbides at room temperature is approximately 5 wt%. The
HCP (COBALT_HCP) phase is
temperature range, with equilibrium transformation occurring
at around 920 °C. Below 400 °C, the FCC and o phases form as a
consequence of matrix decomposition. Upon cooling below
830 °C, the intermetallic u phase (CoyMoy(CrSi),) begins to
form; at room temperature, its proportion exceeds that of the
M,;Cg carbides.

stable over a broader

3.2 Metallography

Figures 6-8 show the microstructures of the cast Stellite
samples produced by horizontal continuous casting. The
figures present cross-sections taken perpendicular to the
casting direction. Microstructural observations were performed
both at the centre and at the outer edge of the rods. All samples
exhibit shrinkage porosity in the centre of the cast rods, which
results from the rapid cooling and solidification during horizontal
continuous casting. Due to the high solidification rates in the
water-cooled copper mould, solidification occurs separately in
each stroke. The crystal grains are fine and the phases are
uniformly distributed throughout the material, which is also a
consequence of the extremely high cooling rates. The grains near

frontiersin.org
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Optical microscopy of cast sample S6
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Optical microscopy of cast sample S12.
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FIGURE 8
Optical microscopy of cast sample S21.

the edges are finer compared to those in the central region of the
rods. Sample S12 exhibits slightly larger grains due to the larger
diameter of the cast rods (6.1 mm) compared to samples S6 and

S21 (@3.3 mm). In all samples, solidification began with the
formation of Co-rich dendrites (Co matrix FCC), followed by
the solidification of a eutectic in the interdendritic regions. The
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TABLE 2 SDAS of the S6, S12 and S21 samples.

Sample  SDAS (um) Calculated cooling speed (K/s)

10.3389/fmech.2025.1735111

TABLE 3 Hardness of the S6, S12 and S21 samples.

Sample HCC (HV10)

S6 — edge 26+03 1.9-10° S6 508 + 5.0
S6 — centre 3.0 +0.1 1.2.10° S12 470 = 4.1
S12 - edge 29+ 0.6 1.4-10° S21 345 + 8.4
S12 - centre 57 +03 2.0-10%

S21 - edge 27 +04 1.7-10°
$21 - centre 34+02 8.0-10*

eutectic consists of a Co-rich phase and carbides (FCC +
Carbides), and its volume fraction increases with the carbon
content in the alloy.

Studies on Cu and Fe alloys show that HCC, with its rapid
cooling in water-cooled moulds, produces a transition from
This
refinement is attributed to the higher cooling rates and
solidification speeds (Bockus, 2006; Strzepek et al, 2025).
HCC is promising for cobalt-based alloys, especially for high-

coarse columnar grains to finer equiaxed grains.

performance applications such as medical implants and wear-
resistant components. Recent research highlights the process’s
ability to produce high-quality Co-based alloy rods with
desirable microstructural and mechanical properties.(Ahmed
et al., 2024).

Secondary dendrite arm spacing (SDAS) measurements were
extracted from micrographs, giving values of 2.6-3.0 um for S6,
2.9-5.7 um for S12, and 2.7-3.4 pum for S21 (as shown in Table 2).
Using empirical correlations of Equation 1.

SDAS =B-T(™ (1)

where B is 29.2-107° with n = 0.32 for Co-based alloys (Frenk and
Kurz, 1994). The corresponding cooling rates were estimated as
1200-1900 K/s (S6), 200-1400 K/s (S12), and 800-1700 K/s (S21).
These values agree well with cooling rates reported for HCC rods of
similar diameters. This supports our interpretation that suppressed
FCC to HCP transformation and limited M,Cs to M,3Cg conversion
result from rapid solidification.

3.3 Hardness and microhardness

Table 3 presents the measured hardness values of the S6, S12,
and S21 in the as-cast state. The samples exhibit high hardness
due to their finer grain size. The S21 sample shows the lowest
hardness as a result of its low carbon content and, consequently,
a lower carbide fraction. The S6 alloy was cast into rods with a
diameter of @3.3 mm, while the S12 alloy was cast into rods with
a diameter of @6.1 mm. The solidification of the S6 alloy sample
was significantly faster, resulting in smaller crystal grains and,
consequently, higher hardness compared with the S12 sample.
The hardness trend (S6 > S12 > S21) correlates strongly with
differences in carbide fraction, grain size, and solid-solution
strengthening. Under equilibrium expectations based solely on
nominal compositions, S12—with the highest carbon and
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Microhardness measurements of as-cast sample S12.

tungsten content—would be expected to exhibit the highest
hardness. However, the higher cooling rate in the smaller-
diameter S6 rods (©3.3 mm) produced significantly finer
dendritic grains than in S12 (©6.1 mm), resulting in stronger
Hall-Petch grain boundary strengthening. Moreover, SEM/EDS
analysis shows that S6 develops a highly refined eutectic
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FIGURE 11
Microhardness measurements of as-cast sample S21.

network with uniformly dispersed M;C3/M,3Cg carbides, while
S12 exhibits coarser eutectic regions due to slightly slower

solidification. The carbide morphology in S6 (fine,
continuous interdendritic network) contributes more
effectively to strengthening than the larger, more

heterogeneously distributed carbides in S12. In contrast,
S21 contains only about 5 wt% carbide and displays a
predominantly solid-solution-strengthened FCC Co matrix,
resulting in the lowest hardness. Additionally, differences in
porosity between alloys and diameters may contribute locally to

10.3389/fmech.2025.1735111

hardness scatter. Taken together, the hardness hierarchy arises
not only from carbon content but from the combined effects of
cooling rate, eutectic refinement, carbide morphology,
and grain size.

Figures 9-11 show the microstructural images of the samples.
The hardness values (HV10) are written on the upper edge of the
figures, while the microhardness values (HV0.02) are shown below
the individual phases. The measured HV0.02 values were slightly
higher than those obtained under the higher load (HV10), which is
consistent with previously reported data, where the apparent
microhardness increases with decreasing applied load (Petrik and
Palfy, 2011). With increasing amounts of dissolved carbon and other
alloying elements, the hardness of the matrix phase increases.
However, the determination of hardness for individual phases

was limited, due to the fine grain size.

3.4 XRD analysis

Figure 12 shows the XRD patterns of the analysed samples. All
samples exhibit an FCC Co matrix with carbides of the M,C; and
M,;Cs types. No HCP Co phase was detected, indicating that the
transformation to the € phase did not occur due to the homogeneous
chemical composition and the rapid cooling during solidification. In
samples S6 and S12, M,C; carbides predominate, formed during
eutectic  solidification. The their
transformation into M,3Cs carbides. Sample S21 contains only
M,;Cq carbides, with no other intermetallic phases detected. The
short cooling times hindered phase transformations in the

rapid cooling prevented

solid state.
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FIGURE 12
XRD patterns of the samples S6, S12, and S21.
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3.5 SEM microstructure characterization

Figures 13-15 show SEM images of samples S6, S12, and S21,
along with their corresponding EDS elemental mapping, EDS
point analysis results are presented in Table 4. In sample S6,
dendritic grains of the Co matrix exhibit an increased cobalt
concentration. A fine eutectic structure, consisting of the Co
matrix and carbides, is observed around the dendritic grains.
The carbides are rich in Cr and W. Regions enriched with Mo are
also detected between the dendritic grains, indicating the
formation of Mo-rich carbides. Carbide types are confirmed
using quantitative EDS point analyses (Table 4). M,C; carbides
show high Cr/Co ratios, M,3Cs remain Cr-rich with lower Cr/Co
ratios, whereas M4C carbides exhibit strong W enrichment.
Submicron-sized non-metallic inclusions of SiO, are present

Frontiers in Mechanical Engineering

in the material. These inclusions are spherical in shape,
suggesting that they formed in the melt and were pushed into
the final solidification zone, where the eutectic developed. In
sample S12, dendritic grains of the FCC Co matrix are present,
with eutectic regions containing various carbides formed in the
interdendritic areas. The eutectic grains in these regions are
coarser in sample S12 due to slower solidification. Carbides rich
in chromium (M,C;) are predominant, while W- and Co-rich
carbides of the MgC type are also observed. Sample S21 exhibits a
homogeneous microstructure in which almost all alloying
elements are dissolved in the Co matrix. Spherical non-
metallic SiO, inclusions, formed in the melt, are also present
in the microstructure. SiO, inclusions likely originate from the
ferroalloy and minor oxidation in the melt. Their spherical
morphology suggests formation in the liquid melt. Their size
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(<1 pm) and distribution do not significantly affect hardness or
eutectic uniformity.

Although equilibrium thermodynamic calculations predict the
formation of the HCP phase, o, i, and MsC carbides, these phases
were not detected in any of the examined rods. This can be
attributed the
characteristic of horizontal continuous casting, where the actual
cooling rates are significantly higher than those assumed under

to non-equilibrium  cooling  conditions

equilibrium conditions. The FCC to HCP transformation in Co-
based alloys is known to be kinetically sluggish, requiring long-range
diffusion and sufficiently slow cooling (Kuzucu et al., 1997; Davis,
2000; Kapoor et al., 2012; Narushima and Ueda, 2015; Chen et al.,
2024; Li et al., 2025). Because the HCP phase is thermodynamically
stable only within a narrow temperature window, the rapid
extraction of heat suppresses atomic rearrangement and stabilizes
the high-temperature FCC Co down to

phase room
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temperature.While  equilibrium thermodynamic calculations
predict the formation of M¢C, o, and p phases, none of these
were detected by XRD. This discrepancy is expected due to the
extremely fast cooling in HCC, which suppresses solid-state
diffusion required for their nucleation. The absence of ¢ and
phases in XRD is therefore consistent with diffusion-limited
transformation kinetics. This supports our conclusion that
rapidly solidified HCC rods capture a metastable solidification
microstructure.

Similarly, the precipitation of o and p intermetallic phases and
late-stage M¢C carbides depend on extensive solid-state diffusion of
Cr, Mo, and W, which is strongly limited at lower temperatures. The
fine dendritic structure and short diffusion distances produced by
rapid solidification prevent the chemical partitioning required for
these phases to nucleate and grow (Bockus, 2006; Strzepek
et al., 2025).
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TABLE 4 EDS microchemical composition of cast Stellite alloys, values in
wt%.

Label Si Mn Cr N Mo W Fe Co
Spot 1 11 02 | 259 24 02 43 17 | 642
Spot 2 1.1 - 411 16 05 7.9 13 | 465
Spot 3 12 0.1 241 30 02 67 37 | 610
Spot 4 - - 714 03 02 8.8 15 | 178
Spot 5 1.0 - 227 12 06 | 361 21 363
Spot 6 0.9 07 | 286 25 53 - - 62.0

4 Conclusion

Based on the detailed microstructural characterisation of Stellite
6, 12, and 21 alloys produced by horizontal continuous casting
(HCC), the following conclusions are established:

All alloys solidified into a primary FCC Co dendritic matrix with
interdendritic carbides, and fine grains across the rod cross-sections,
due to high cooling rates of 200-500 K/s.

There are no solid-state transformations as confirmed by the
X-ray Diffraction (XRD) analysis. More specifically, the suppression
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of solid-state phase transformations of both the matrix FCC to HCP
and carbide M;C; to M,3C¢, nor intermetallic phase formation
despite thermodynamic predictions.

The results show that fine grains and homogeneous carbide
distribution are key to high hardness, as alloys with slightly lower
carbon achieved higher hardness values, due to finer microstructure.
However, when the carbide content is too low, hardness decreases
significantly. Solid solution strengthening of the Co matrix is of
secondary meaning when aiming at high hardness values. The
refining of the eutectic carbide network with high solidification
and cooling rates is an effective way to increase hardness.

The fine and homogeneous microstructures make the HCC rods
well suited for hard-facing feedstock, where chemical uniformity is
especially beneficial for forming wear-resistant layers.

The present study does not include wear testing or high-
which
microstructure to functional performance. Future work should
also evaluate scale-up effects for larger diameters.

temperature evaluations, are essential for linking
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