

Article

The Pandemic and Counterurbanization: A Comparison of Sweden and Slovenia

Hans Westlund ^{1,2,*} , **Maruša Gorišek** ² , **Darka Podmenik** ² and **Maša Rebernik** ² ¹ Department of Urban Planning and Environment, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden² Institute for Developmental and Strategic Analysis, Dunajska 113, 1000 Ljubljana, Slovenia* Correspondence: hans.westlund@abe.kth.se

Abstract: Based on the concept of teleworkability, its sluggish determinants of industry structure and workplace culture, and the change in people's valuation of rural amenities that happened during the pandemic, this paper analyzes their possible influence on counterurbanization during the pandemic in Sweden and Slovenia. We found signs of open (migration) as well as "hidden" counterurbanization (unregistered rural living) in both countries, stronger in Sweden than in Slovenia, and we found indications that industrial structure and national workplace cultures contributed to differences in the strength of the counterurbanization. In both countries, we found indications that the pandemic contributed to a shift in people's relative valuation of rural vs. urban amenities. Thus, while the sluggish factors contributed to differences in teleworkability between Sweden and Slovenia, the shock implied similar reactions in the shift of the valuation of amenities. Ever since the counterurbanization of the 1970s, studies of the phenomenon have almost solely been completed within countries, and the few international comparisons that have been completed have been based on comparing the results of the national studies. This study is one of the very first ones that compares counterurbanization and its driving forces in two countries within the same analytical framework.

Keywords: counterurbanization; teleworking; teleworkability; COVID-19 pandemic; Sweden; Slovenia

Citation: Westlund, H.; Gorišek, M.; Podmenik, D.; Rebernik, M. The Pandemic and Counterurbanization: A Comparison of Sweden and Slovenia. *Sustainability* **2024**, *16*, 6904. <https://doi.org/10.3390/su16166904>

Academic Editors: Jianming Cai and Stephan Weiler

Received: 9 July 2024

Revised: 2 August 2024

Accepted: 8 August 2024

Published: 12 August 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

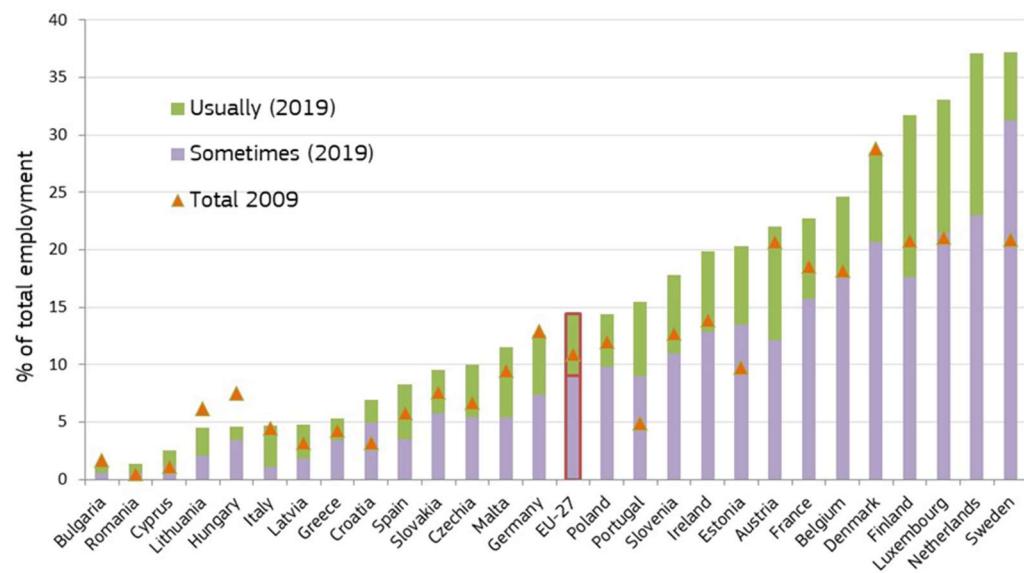
Fifty years ago, in the middle of the 1970s, American geographers noticed a "population turnaround". Many metropolitan areas stagnated or even lost population, while many smaller urban places and rural areas grew [1]. Berry [2] defined the change in migration patterns as "a process of population deconcentration; it implies a movement from a state of more concentration to a state of less concentration" (p. 17) and gave it the name "counterurbanization". Similar trends were also found in many European countries (for overviews see [3,4]). In retrospect, it can be stated that this "green wave" (as it was called in Sweden) coincided with the oil crisis and the crisis of the manufacturing industry but also with a general questioning of the Western way of life among many young people. From the 1980s and onwards followed a long period of reurbanization, probably driven by the growth of the knowledge economy and its concentration in metropolitan regions.

During the COVID-19 pandemic of 2020–2022, similar phenomena as in the 1970s were observed in many countries. At the end of 2020, a British and an Australian scholar warned that the pandemic could turn cities into doughnuts, with empty centers but vibrant suburbs. London was presented as the most obvious example. During the UK lockdown that started on 5 November 2020, retail and tourism visitor numbers fell to 90–92% below the pre-pandemic levels [5]. Regarding domestic migration, Japanese research states that "... there is evidence that the COVID-19 pandemic is driving, for the first time in years, more out-migration than in-migration in Tokyo" [6] (p. 7). For Australia, Borsellino et al. state that "The observed net migration rates broadly conform to the common narrative of gains in regional areas and corresponding losses in the largest capital cities" [7] (p. 411). In

Germany, “The pandemic was (...) associated with an upsurge in net migration losses for the largest cities” [8] (p. 1). For Spain, “Results (...) reveal unusually large net migration losses in core cities and net migration gains in rural areas” [9] (p. 1).

This article empirically observes the processes of counterurbanization through the comparative analysis of two EU member states—Sweden and Slovenia. Through the analysis of the strength of counterurbanization and by explaining the main differences between these two countries, we aim to identify some of the mechanisms that drive such “population turnaround”. We primarily focus on the role of teleworking and hypothesize that the increasing possibility of working from home is one of the drivers of counterurbanization. We frame this analysis in the context of the COVID-19 pandemic and try to answer the question of whether the pandemic had an effect as a driver of counterurbanization. The analysis is based on a comparison of two very different countries, which largely differ regarding their developmental plan, economic structure, and level of urbanization. Comparing an urbanized (Sweden) and a de-urbanized country (Slovenia) will enable us to test the model of possible factors of counterurbanization in different contexts and find other factors that can influence the process of counterurbanization that are not yet included in the model.

The analysis is based on the model of causes for counterurbanization that is presented in Section 2, together with the scientific background of the paper. Section 3 presents the methods and data used. The results are presented in Section 4 and discussed in Section 5.


2. Background

The counterurbanization of the 1970s coincided with a reaction against modern industrialized society and a wish to go “back to nature” and away from the industrial way of life and work. There are undoubtedly such features in the migration shifts of today (see the above references from several countries), but the renaissance of the countryside and small places of today is based on doing modern work with the use of modern technology and on doing this work part-time or full-time at a place that is not the regular workplace. Teleworking is a key to the current counterurbanization.

Telework could be simply defined as any work performed outside of the employer’s premises, by means of information and communication technologies (ICT). Different frequencies of teleworking are known, such as full-time teleworking, teleworking on an occasional basis (for example, during the COVID-19 pandemic seasonal activity peaks), and hybrid working. Not all jobs are teleworkable. Dingel and Neiman [10] presented a binary teleworkability index based on American data, according to which 37% of the workforce had teleworkable occupations. For the EU, Sostero et al. [11] produced a similar index.

The Eurofund developed these binary divisions into three groups [12]. The first group consists of information processing tasks, which are completely teleworkable (white collar jobs—company management, lawyers, accountants, financial and insurance jobs, consultants, and computer programmers). The second group comprises social interaction tasks that are fairly teleworkable (teachers, researchers, ...), while the last group includes physical/handling tasks, which are completely non-teleworkable (manufacturing, onsite service jobs, etc.). Thus, teleworkable jobs could be divided into completely teleworkable jobs and quite teleworkable jobs. This means that a country’s industrial structure has a decisive influence on the share of teleworkable jobs. Roughly speaking, the more developed the knowledge economy is in a country, the more teleworkable jobs there are.

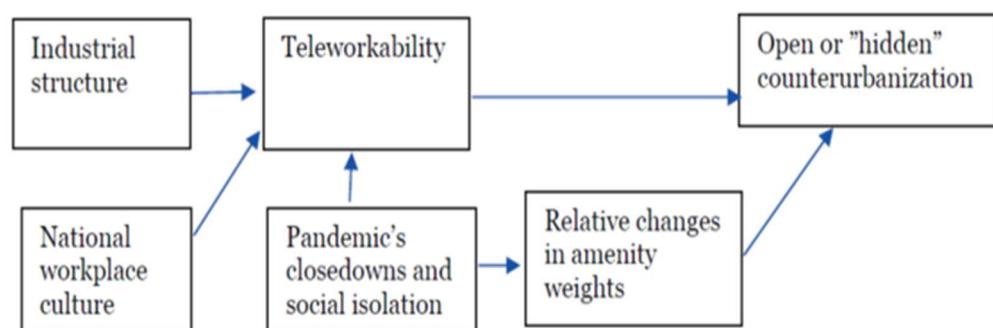
Figure 1 shows the occurrence of teleworking in the countries of the European Union in 2009 and 2019 (i.e., before the pandemic). The differences are striking. Sweden and the Netherlands were in the top with 37% of total employment teleworking usually or sometimes in 2019, while the corresponding figure for Bulgaria and Romania was 2%. As we can see, there was a considerable difference in the prevalence of teleworking between Slovenia and Sweden before the pandemic.

Figure 1. Prevalence of teleworking across EU member states in 2019 and 2009. Source: European Commission [13].

Even if there are substantial differences in industrial structure between the EU countries, it does not seem reasonable that they should explain all the differences in the share of teleworking. Cultural differences probably play an important role here since many workplaces in East and Southern Europe are set up in a more traditional way than they are in the Nordic countries.

The outburst of the pandemic and the subsequent lockdowns of workplaces and/or “recommendations” to work from home meant new incentives (and compulsions) to perform telework. However, increased teleworking per se does not necessarily need to have any connection to an “urban exodus”. Even if the current counterurbanization probably would not take place without the possibility of teleworking, teleworking can only be considered a necessary but not a sufficient prerequisite for counterurbanization.

What is of importance here is that the pandemic not only forced an increase in teleworking but that it also made urban life less attractive. The lockdowns meant, on the one hand, a forced social isolation in people’s apartments and houses; on the other hand, it meant that all the usual urban amenities ceased to exist: cafés, restaurants, theaters, sports arena arrangements, and street life in general. This loss of amenities did not happen to non-urban areas, as their amenities usually are of another kind: landscapes, nature, and possibilities for outdoor life, including many outdoor sports. The result was an equalization of attractiveness factors between country and city, which promoted counterurbanization, in particular among groups that have preferences for rural amenities.


Even if counterurbanization was (and is) vaguely defined (see above), the classic measure of counterurbanization, which was used in the 1970s, was migration from urban to rural areas. Using such a measure today is not unproblematic. The reason is that average income and wealth have increased and that a large share of the households in developed countries have second homes in the countryside, although they still are registered as city dwellers. This circumstance tends to hide the counterurbanization that is “part-time” or “hybrid” and expressed in the form that people work part-time from their second homes and part-time at their regular workplace, while still being registered as city dwellers. This means that existing migration statistics underestimate these new forms of counterurbanization today. In spite of that, internal migration should normally be a possible measure for determining whether counterurbanization takes place.

Another way to estimate possible counterurbanization could be completed by studying the real estate market. If prices of second homes (that most often are situated in rural areas)

increase more than prices of one-family houses (that most often are situated in urban areas), it can be interpreted as an expression of counterurbanization.

We base our study on the following hypothesis: For a large part of the labor market, working outside the traditional workplace has become a possibility that has been used in various places across Europe due to the industrial structure, geographical conditions, and other circumstances. The pandemic boosted this development and triggered a tendency of open (migration) or hidden (working outside the workplace, in second homes, or other rural areas) counterurbanization. The possible continuation of this trend is dependent on a number of factors, e.g., workplace culture and its changes, the change in the industrial structure, the extension of the transportation infrastructure, commuting costs, etc.

The above-described hypothesis is summarized in Figure 2. The teleworkability is on the one hand determined by the industrial structure and the national workplace culture. On the other hand, during the pandemic, the closedowns of workplaces forced people into telework. Moreover, the social isolation that was a result of the closedowns, caused a change in the relative importance of urban vs. rural amenities. These changes in the relative weights benefitted rural areas. This, and the existing teleworkability, contributed to the (open or hidden) counterurbanization during the pandemic.

Figure 2. A model of the causes of counterurbanization during the pandemic.

We analyze the industrial structure and workplace culture as determinants of teleworkability, and we present possible empirical evidence of the counterurbanization in Sweden and Slovenia. The relative changes in amenity weights, as effects of the closedowns, are measured by the relative changes in second-home prices vs. first-home prices during the pandemic.

3. Materials and Methods

This article uses the method of a comparative case study of Slovenia and Sweden based on the model described above.

Both countries are currently developed democratic members of the European Union, but they are in many aspects each other's opposites. Sweden has a long history of democracy with a strong influence of social and democratic ideas on the development of the nation during the last century. Slovenia, on the other hand, is a former socialist country that became independent and democratic as late as 1991. Sweden is located in the northernmost parts of the EU (only Finland being more northerly), while Slovenia is a Mediterranean country. Sweden is one of the largest countries in the EU, while Slovenia is one of the smallest, with an area that is only 4.4% of Sweden. However, Slovenia's population density is 4 times higher than Sweden's (which has the second lowest population density in the EU). Slovenia has the highest GDP per capita among the former socialist countries, but it is still only about half of Sweden's. These circumstances enable us to test the model in different contexts, which will bring insights into its validity.

The comparative case study is conducted with the use of the following data sources:

1. Industrial structure

This indicator uses data from Eurostat, Statistics Sweden, and the Slovenian Statistical Office (SURS) to determine the possible structural opportunities and limitations to teleworkability in both countries.

2. National workplace culture

The tradition and scope of organizational culture studies are very extensive, including models and indicators used for comparative research. In the context of this study, those that have been used for stable and dynamic organizational conditions come into consideration. Data are collected from the European Values Survey (2017–2020) and Eurobarometer (2018).

3. Pandemic management measures and teleworking during the pandemic

This section presents a comparison of the key measures adopted during the pandemic in Slovenia and Sweden that could influence teleworkability and the process of counterurbanization. We focus especially on measures dealing with workplace closures, work-from-home mandates, and social distancing. The comparison is based on earlier research and secondary data analysis. Furthermore, statistical data on teleworking before, during, and after the pandemic are used. The data are collected from Eurostat, Statistics Sweden, and Valicon (2023).

4. Indicators of counterurbanization

Indicators of counterurbanization include data about population development in urban and rural municipalities in Slovenia and Sweden (data from national databases Statistics Sweden and SURS, Slovenia) and data on the real estate markets that can serve as indicators of counterurbanization.

There are certain limitations to the conducted comparative case study analysis, especially regarding the availability and comparability of data. Some of the data available for Sweden (the second-home price development and percentage of workforce in each sector working from home during the pandemic) were not available in Slovenia. Furthermore, there are some important differences in definitions that could influence the comparison. These are discussed below.

4. Results

4.1. Industrial Structure

In recent decades, we have witnessed considerable changes in industry. Fast technological development is used to improve efficiency and productivity and address some of the most pressing challenges, such as energy efficiency and societal needs [14]. This so-called transition to industry 4.0 influenced the industrial structure. The OECD [15] shows a significant increase in polarization of employment structures, with occupations classified into low-skill, middle-skill, and high-skill categories. In Western Europe, low-skill jobs increased by 2.7%, while high-skill jobs increased by 7.6%. The Digital Revolution has led to a decrease in middle-skill jobs by 9.8%. The study suggests that digitalization is the primary factor behind this shift.

Furthermore, industry 4.0 also includes new social infrastructure in the workplace and a more human-centric approach. This includes redirecting workers from routine tasks to more creative work and flexible work organization [14]. Therefore, we expect that countries with higher levels of digitalization and use of technology in industry have better prerequisites for teleworking. The Digital Economy and Society Index (DESI) shows significant differences between Slovenia and Sweden in this regard. While the level of connectivity is similar in both countries, Sweden is performing much better in human capital and in the integration of digital technology into the economy. For example, while more than 65% of internet users in Sweden have above basic or basic digital skills, the share in Slovenia is 50%. Furthermore, more than 85% of small- and medium-sized enterprises in Sweden have at least a basic level of digital intensity, while in Slovenia, the share is around 55% [16]. Similarly, Sweden ranks 7th and Slovenia 37th in the World Digital Competitiveness Ranking [17]. Similarly, based on Eurostat data, Sweden has the second

highest share of total employment working in knowledge-intensive service sectors (57.1%), while Slovenia (37.2%) is below the EU average (41.3%).

Manufacturing was among the economic sectors most impacted by the pandemic crisis. Other strongly affected sectors were wholesale and retail trade, repair of motor vehicles and motorcycles, accommodation and food services, retail estate and business, and administrative activities. Those industries are also the ones for which working from home is the least common or possible [18]. Before the pandemic, 30.6% of Swedish and 48% of Slovenian employees worked in the most impacted sectors [13].

The industrial structure and the number of employees in different industries, therefore, represent important indicators of teleworkability. Data show some important differences between Slovenia and Sweden. Slovenia's share in manufacturing, construction, energy, water, and waste is almost twice as high as that of Sweden. The disaggregation of the figure shows that the big difference is in manufacturing; Slovenia's manufacturing share is 27%, while Sweden's is only 10%. The other notable difference is found in public and private services, where Slovenia's share is only two-thirds of Sweden's. A closer look at the figures shows that the difference mainly is explained by three subsectors. In Sweden, 9% of the workforce is employed in professional, scientific, and technical activities, while the corresponding figure for Slovenia is 5%. Education's share in Sweden is 12% and 9% in Slovenia. The subsector with the biggest difference is human health and social work activities, which in Sweden gathers 15%, but in Slovenia, it is merely 7% of the workforce.

As seen in Tables 1 and 2, manufacturing still plays a big role in the Slovenian economy. The share of the population older than 15 and who have worked in manufacturing for a long time is almost twice as big as in Sweden. Furthermore, long-term manufacturing work has been gradually decreasing in Sweden but increasing in Slovenia in the last few years.

Table 1. Share of employment (percentage) in main sectors in Slovenia and Sweden in 2019. Source: ILO.

	Slovenia	Sweden
Agriculture, forestry, fishing	3%	1%
Manufacturing, construction, energy, water, waste	35%	19%
Trade, transport, hotels, restaurants	21%	19%
Public and private services	41%	61%

Table 2. Long-term manufacturing employment in Slovenia vs. Sweden (for population over the age of 15, in percentage of total employment). Source: ILO.

Year	Sweden	Slovenia
2022	9.4%	21.9%
2021	9.8%	22.1%
2020	9.9%	25.3%
2019	10%	25.6%
2018	10.1%	24.9%
2014	10.7%	22.6%

There are big differences between countries in how many jobs can be completed from home [19]. In developed countries, the share is one in five, but in some developing countries, only one in 26 jobs can be completed from home. Data from the US show that employees from sectors such as information, finance and insurance, professional, and business services are much more likely to work from home than, for example, manufacturing, transportation, and warehousing [20]. Since manufacturing jobs are more likely to demand an in-person presence at the workplace, and knowledge-intensive service sector jobs are more likely to be able to be performed from home, this could be an indicator that the potential for teleworking is bigger in the Swedish labor market than in the Slovenian. However, other indicators need to be taken into account as well.

4.2. National Workplace Culture

Work culture, experienced practices, beliefs, rituals among employees, as well as between them and the leaders/staff, attitudes toward work, and other organizational and cultural dimensions can be changed only in the long term. According to Eurobarometer data (2017–2022), Slovenian managers (from medium and small companies) prioritize lower and more materialistic measures to address employee deficit: 27% of Slovenian managers believe that suitable working conditions and increasing wages are effective measures, whereas only 17% of Swedish managers share this perspective. Additionally, 7% of Slovenian companies (the lowest in the EU) attribute the lack of employees to the competition's inability in terms of wages, benefits, and flexibility, whereas 18% of Swedish hold this view. This is in spite of the fact that, compared to Sweden, the wages in Slovenia are significantly lower, the organizations are less flexible (see Table 4), and Slovenian companies score below average in competitiveness. In terms of innovativeness, responsibility, and profitability, Sweden ranks 3rd globally, while Slovenia ranks 39th. In terms of competitiveness, Sweden ranks 6th globally, while Slovenia ranks 35th [21].

That employers and managers have no problem introducing flexible working hours confirms 77% of employed (under 65 years of age) Slovenians and 83% of Swedes. When it comes to support provided by employers and managers for employees to make use of flexible work options, 67% of Slovenians and 84% of Swedes acknowledge their positive role, while 29% of Slovenians and 14% of Swedes indicate that managers usually discourage employees. (Tables 3 and 4).

Table 3. The prevalence of different forms of flexible work (calculated as the sum of “Very widespread” and “Fairly widespread” responses) in Slovenia and Sweden, % (adults under 65). Source: Eurobarometer 2018.

	Slovenia	Sweden
Flexitime	62%	71%
Part-time work	31%	39%
Working from home	24%	25%

Table 4. Perceived difficulty of flexible work arrangements and the impact of such arrangements on individuals' careers (percentage of respondents answering “totally agree” and “agree”, measured among adults under 65). Source: Eurobarometer 2018.

% of People Agreeing with the Statement by Country	Slovenia	Sweden	EU average
It is easy to make use of flexible work arrangements	77%	83%	76%
Flexible work arrangements have a negative impact on one's career	22%	14%	31%

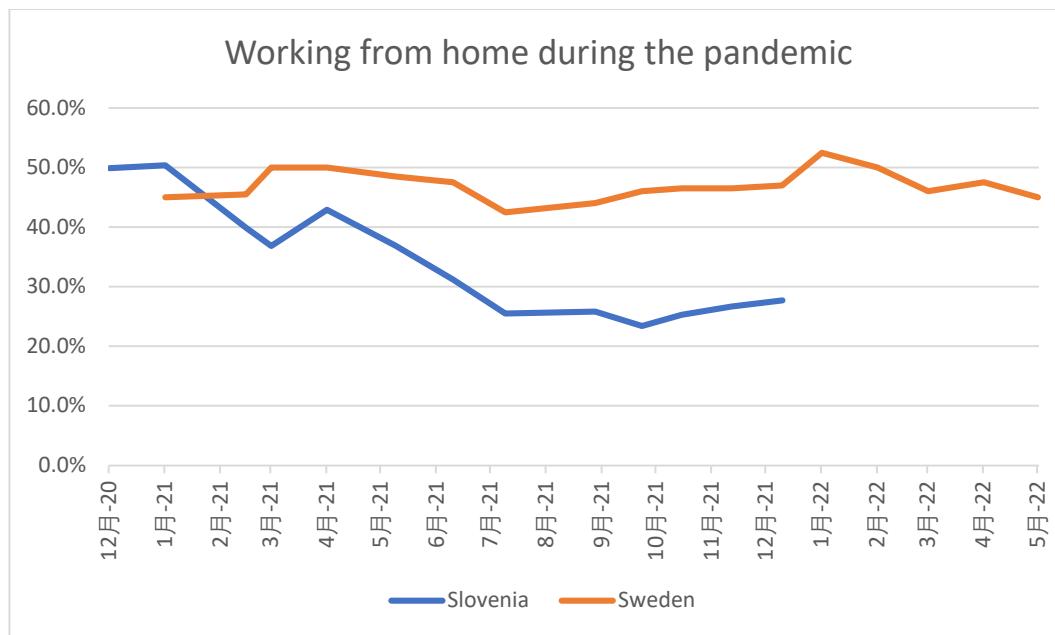
While general attitudes toward work among Swedes and Slovenians are rather similar, the differences are larger when considering the impact of work on lifestyle; 47% of Slovenians and 33% of Swedes agree that work should take precedence over free time. Moreover, there is a notable contrast in how individuals assess those who are not employed, with 80% of Slovenians believing that non-working individuals tend to become lazy, compared to only 32% of Swedes who share this view. Expectations about work in the future also differ significantly: one of the preferred future changes—less importance placed on work is considered “good” by merely 16% of Slovenians and 40% of Swedes; alternatively, 69% of Slovenians and 40% of Swedes see it as “bad”.

According to the “classic” model, which distinguishes between three types of organizational culture: traditional hierarchy; synergistic with the social system; and dynamically adaptable to the environment; the presented data indicate that Slovenia predominantly exhibits a more traditional organizational culture, while Sweden leans toward a more modern and dynamic culture. The Slovenian work culture appears to be influenced more by existential and developmental challenges.

The Slovenian tendency toward traditionalism in both work culture and work values can be partially attributed to environmental conditions but more so to the industrial traditions and work culture characteristics inherited from the previous socialist regime. Another challenge in Slovenian work culture is communication, which is hindered by exceptionally high levels of bureaucratization and constantly changing rules and norms [22]. These shortcomings certainly impede teleworkability, as partially indicated by the data presented in Table 4 above.

4.3. Pandemic Management Measures and Teleworking during the Pandemic

As shown in Figure 1, the possibility of working from home, or from some other distant place, did not emerge with the pandemic. While the share of the population teleworking was very small, since the 1960s, the prevalence of working from home has been gradually increasing in the US [20]. In the late 1990s, discussions on work–life balance became more common, and the possibility of working from home was one of its central ideas [23].


In 2020, when the pandemic hit the whole world, working from home became one of the central measures aimed at minimizing social contact in order to stop the spread of the virus. The pandemic started a global social experiment in working arrangements [20]. However, not all countries experienced the same types and severity of pandemic measures, including mandates for teleworking.

Sweden became rather famous during the pandemic for a different approach toward pandemic management. It was one of the few countries that did not enforce strict lockdown measures, and instead of restrictions (except for a ban on large gatherings), their government relied on recommendations [24]. Those included social distancing and gathering restrictions, only using public transport if urgently needed, and working/studying from home. These recommendations were based on the framework of Swedish democracy, which is based on the individual and their responsibilities [25]. Sweden, therefore, never made working from home obligatory and left the decision to employers. This means that people were recommended to work from home, but it was not an employee's right to work from home [26].

The situation in Slovenia was different, as the government imposed strict lockdown measures already in the first wave of the pandemic. This included school closures, a ban on gatherings, movement restrictions outside of one's municipality, curfews, and business closures. While the measures during the first wave were strict, timely, and followed by the majority of the population, future waves showed a different picture. Measures were often adopted late [27] and had many exceptions, which made them less effective. Although many businesses were closed in times of strict measures, which means that many people were not working at that time, working from home was never a requirement but mainly a recommendation. There were even some systematic barriers to working from home that were not addressed by the government. Nevertheless, data show that many people worked from home in times of strict pandemic measures.

Slovenia's pre-pandemic share of teleworking in Figure 1 (2019) is supported by The Valicon panel survey [28], which showed that 17% of working respondents reported working from home for at least a portion of their work time directly before the start of the pandemic in February 2020. This is comparable to the numbers from the Statistical Office of the Republic of Slovenia (SURS), which recorded 17.8% of the working population as working from home for at least some of the time in 2019. According to Figure 3, this share had increased to 50% at the end of 2020. Thereafter, the share dropped to about 25% in the middle of 2021, and with some fluctuations, it remained at that level until the end of 2022.

In summary, while remote work in Slovenia saw an initial surge at the start of the pandemic, it gradually declined toward its end. However, the number of employees doing remote work was slightly higher in 2022 compared to pre-pandemic times. This suggests a partial integration of teleworking into the labor system, although future trends have yet to be seen.

Figure 3. Prevalence of working from home at least partly during the pandemic in Slovenia and Sweden. Source: Statistics Sweden and NIJZ-PANDA survey (Slovenia) [29]. (“月” in figure means “month”).

It is important to acknowledge that the sudden shift to remote work during the pandemic in Slovenia lacked a thorough assessment of factors that would make it a sustainable form of work, as its purpose was primarily to limit the spread of COVID-19. As noted by the Labour Inspectorate, due to the rapid implementation of this form of work, the employers may not have been able to complete the otherwise required procedures (such as assessing the suitability of the employees' home environment) to determine the suitability for a remote work setup [30]. Additionally, it was possible for the employer to unilaterally assign remote work without the consent of the employee, which would not have been the case if not for the pandemic [30]. Therefore, the unique circumstances of the pandemic induced remote work situations.

4.4. Indicators of Counterurbanization

4.4.1. Population Development in Urban and Rural Municipalities

As pointed out in the introduction, official population statistics are unable to show new forms of counterurbanization, e.g., when people are teleworking from their second homes during parts of their working time but remain registered as city dwellers. In spite of that, it is still important to study the official statistics to see if they show any signs of counterurbanization during the pandemic. Population changes are a result of two components, on the one hand, natural population changes (births minus deaths) and, on the other, net migration (in-migration minus out-migration). The component of interest for determining counterurbanization is the latter. Table 5 shows sums of net migration for all the municipalities of Sweden and for the municipalities divided into four groups, by size and density. The table shows the sums of net migration for the pandemic years 2020–2022 and for the three years before, 2017–2019.

The first conclusion that can be drawn from the table is that the net migration decreased considerably during the pandemic. With all municipalities included, the total net migration during 2020–2022 was only 50% of the net migration during 2017–2019. However, the change in the net migration shows big differences between the four municipality types. While the metropolitan municipalities had a net migration decrease of 62%, the rural municipalities' decrease was only 30%, and the sparse rural municipalities increased their net migration from negative to positive. Even if the absolute numbers are very

small for the sparse rural municipalities, the change is in line with the general trend that the municipalities in the metropolitan regions experienced the greatest decrease in net migration, and the rural municipalities had the smallest decrease. It should also be added that the biggest municipality of Sweden, Stockholm, which had a positive net migration of almost +18,000 for the period 2017–2019, had a negative net migration of almost –10,000 during 2020–2022. Most of the out-migration from Stockholm went to the suburban municipalities but also to the other types.

Table 5. The sum of net migration in Sweden's municipalities, 2017–2019 and 2020–2022, in the whole country and divided into four municipality types. Source: Statistics Sweden.

	All Municipalities	Metropolitan	Regional Centers	Rural	Sparse Rural
Net migration 2017–2019	251,522	113,641	87,246	47,797	–726
Net migration 2020–2022	126,873	43,647	44,874	33,360	1505
Net migration reduction	–50%	–62%	–49%	–30%	Increase

The fact that the sparse rural municipalities as a group had a positive change in net migration and that the metropolitan ones had the greatest decrease can be interpreted as an indication of counterurbanization during the pandemic.

Due to differences in area size, population density, and municipality distribution, a direct comparison with Slovenia is not possible. The Slovenian Statistical Office (SURS) defines rural municipalities as municipalities with fewer than 150 inhabitants per square kilometer. This means there are 79 urban municipalities and 143 rural municipalities. Around 75% of the population lives in urban municipalities. However, we can use different national statistics and projections completed to assess whether we can observe similar processes in Slovenia as well.

In 2018, the project entitled “A comprehensive demographic analysis with projections for urban and rural areas” was conducted [31]. Table 6 shows the shares of rural and urban municipalities in Slovenia that have experienced either increasing or decreasing numbers of inhabitants. We can see that, among urban municipalities, there is no big difference between the number of those that are gaining and those that are losing inhabitants; however, among rural municipalities, there are more of those that are losing inhabitants.

Table 6. Migration in Slovenian municipalities in 2018. Source: Nared et al. [30].

	Urban Municipalities with an Increasing Number of Inhabitants	Urban Municipalities with a Decreasing Number of Inhabitants	Rural Municipalities with an Increasing Number of Inhabitants	Rural Municipalities with a Decreasing Number of Inhabitants
Share of municipalities	16.0%	16.5%	28.8%	38.7%

In Table 7, the difference between the number of people migrating into or out of each statistical region in Slovenia during 2017–2022 is shown. The regions shaded in green are classified as predominantly rural, while those shaded in blue are classified as intermediate regions by the Eurostat urban–rural typology. The data in this table show considerable changes in inter-regional mobility during the pandemic. During the pandemic, considerably more people moved out of Central Slovenia, where the capital Ljubljana is located. Similarly, we see a surge in the number of new inhabitants in Coastal Karst and Upper Carniola compared to other years. However, this cannot be interpreted only as a sign of counterurbanization. Each citizen of Slovenia can, administratively speaking, have one permanent and one temporary residential address. During the pandemic, strict movement restriction measures were accepted, and people, with few exceptions, were not allowed to leave the region or municipality where they lived. If stopped by the authorities, they had to present proof of either permanent or temporary residence in that municipality. This resulted in a surge in administrative applications for temporary residence. In many

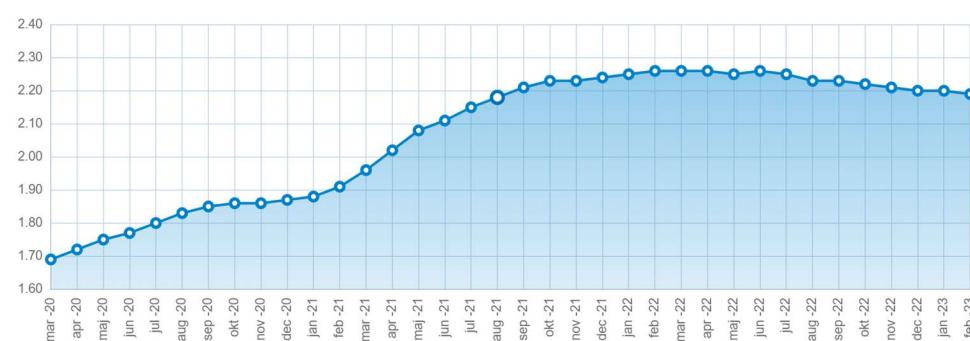

cases, they were people who already lived in that area but had never officially registered there. In other cases, it was people temporarily moving out of the cities during the time of strict measures. Those numbers can, at least partially, speak to the argument that the pandemic made life in bigger cities less appealing. However, in the case of Slovenia, we cannot speak of any long-term changes in terms of counterurbanization.

Table 7. Net migration for the statistical regions of Slovenia. Source: SURS, own calculation.

	2017	2018	2019	2020	2021	2022
Mura	−3	−112	351	354	220	254
Drava	70	539	100	669	397	519
Carinthia	−180	−358	−232	−295	−74	−64
Savinja	60	−378	−366	−571	−19	−155
Central Sava	−77	−146	−29	−201	−183	148
Lower Sava	−74	−176	−49	−18	154	80
Southeast Slovenia	−80	−168	−124	67	225	3
Central Slovenia (incl. Ljubljana)	896	1297	540	−3781	−1151	2204
Upper Carniola	−258	−411	−68	2575	283	−2426
Littoral-Inner Carniola	−181	−31	−41	56	92	23
Gorizia	−346	−320	−200	−14	−74	−212
Coastal Karst	173	264	118	1159	130	−374

4.4.2. Real Estate Markets during the Pandemic

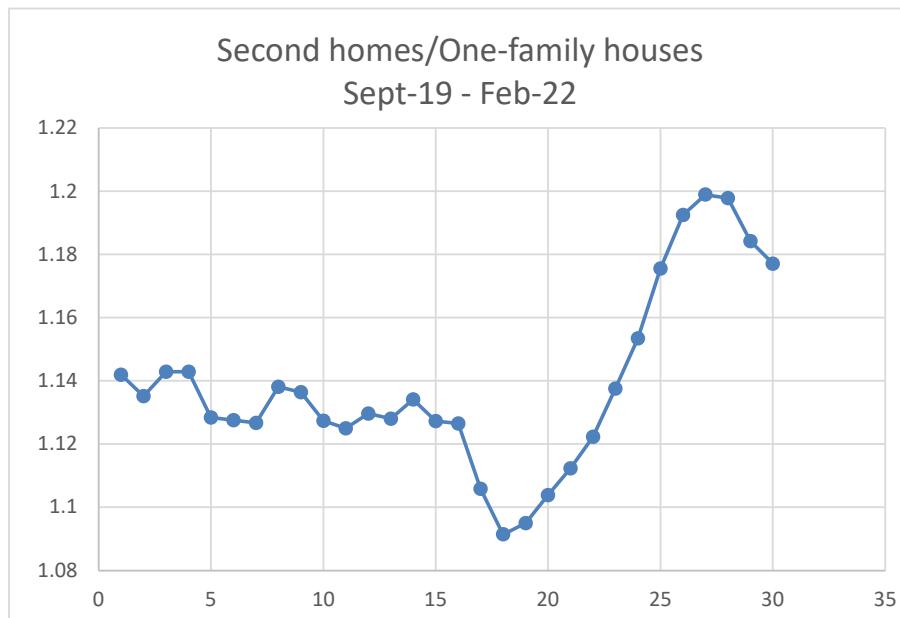
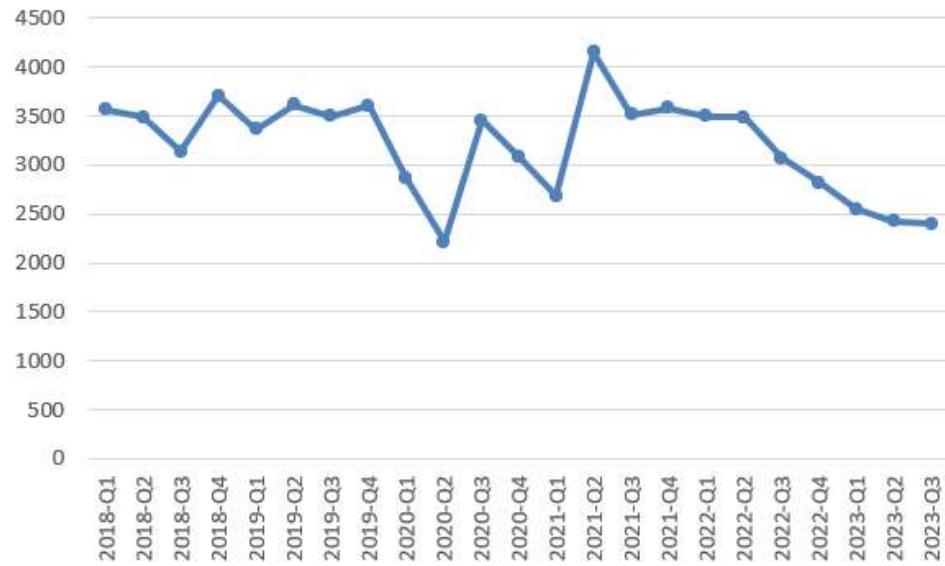

Did the pandemic cause any changes in people's relative weighting of various amenities? Did the restrictions in mobility, orders to work from home, etc. mean that nature and other rural amenities were weighted higher than before the pandemic? As a crude measure of the valuation of rural amenities, we use the price development of second homes (here estimated as the selling price divided by the taxation value) from March 2020 to February 2023. Figure 4 shows an increase in prices until October 2020 but 3–4 months of stagnation thereafter. However, from the beginning of 2021 until October of the same year, the prices rose again. Then the prices follow a period of stagnation and even a slight decrease during the second half of 2022. When the restrictions of the pandemic were over in spring 2022, the demand for second homes stagnated, but prices remained at a level considerably higher than before the pandemic.

Figure 4. Second-home price development (house price divided by taxation value) in Sweden per month, March 2020–February 2023. Source: <https://www.maklarstatistik.se/> (accessed on 22 March 2024).

Figure 5 illustrates the same process by comparing house prices (divided by taxation values) for second homes in relation to first homes (one-family houses) from September 2019 to February 2022. While the prices of second homes had very small divergences from the prices of first homes during the whole of 2020, the relative prices for second homes increased steadily during 2021. They reached a peak in December 2021 and started to decrease at the beginning of 2022. A reasonable interpretation of Figure 5 is that, during

2020, the first scant year of the pandemic, no shifts in relative amenity weights occurred but that, when the pandemic showed itself to be a long-term phenomenon, rural amenities increased in value. Then, when restrictions were abolished, prices of second and first homes converged again.

Figure 5. The relationship between house price/taxation value for second homes and first homes (one-family houses) in Sweden per month, September 2019 (1)–February 2022 (30). Source: <https://www.maklarstatistik.se/> (accessed on 22 March 2024).


The same comparison for Slovenia cannot be made directly, as there are no data regarding second-home vs. first-home ownership or the price development available. Nevertheless, in the following, we expand on some of the trends in Slovenian real estate transactions (sales) and prices in the years of the pandemic and the years preceding it. The data are based on the official registry of residential property prices and sales from SURS, as well as on the reports on the Slovenian real estate market for 2020, 2021, and 2022, prepared by the Surveying and Mapping Authority of the Republic of Slovenia [32].

The year 2020 (as shown in Figure 6) saw a significant decrease in residential transactions, especially in the second quarter of 2020, and in real estate transactions as a whole, with a 17% decrease nationwide compared to 2019. This decline was largely attributed to the measures implemented to stop the spread of the virus [31]. However, amidst this decrease, there was a notable 4% increase in purchases of building land. This surge in demand for land, particularly for the construction of family homes, at least partly reflects a trend of individuals seeking residence in the outskirts and surrounding areas of cities due to increasing apartment prices, notably in more urbanized areas such as Ljubljana.

It is worth noting that, in 2020, the growth in house prices was highest in areas more developed in tourism. Gurs [32] attributes to high demand and increasing investments in holiday homes (analogous to second homes in Sweden) in tourist areas. For instance, house prices in 2020 in the Upper Carniola region (the home of the Alpine tourist area) were as much as 49% higher compared to 2015, and the price increase was also above average in the coastal area (32% higher in the coastal town of Koper).

The year 2021 witnessed a rebound in the real estate market. Despite the economic uncertainties induced by the pandemic, there was a large surge in property prices (Figure 2) across all real estate categories. The residential real estate sector experienced a notable rise, with a 20% increase in transactions compared to 2020. This surge was driven by a heightened demand for homes located further away from urbanized areas, fueled by both escalating urban property and apartment prices and shifting buyer preferences toward

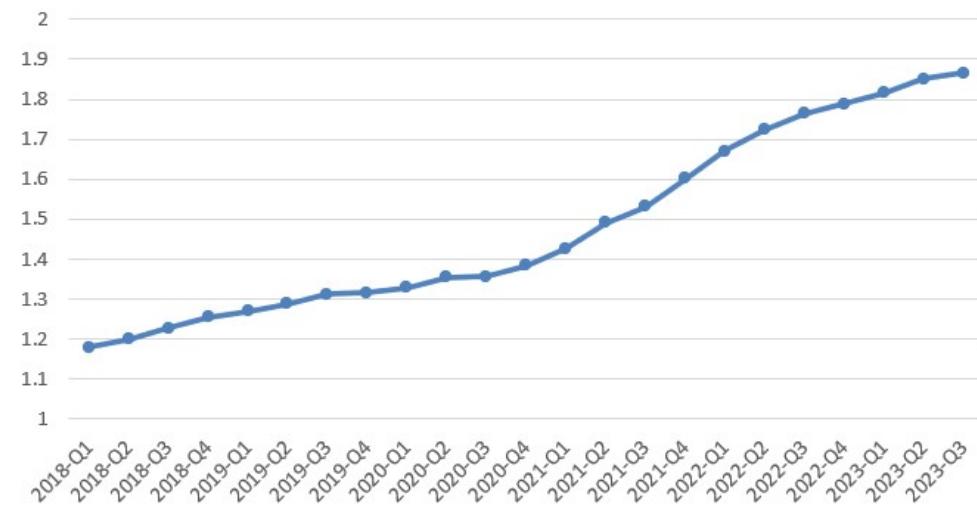

areas with more greenery or forested areas [33]. Along with the resurgence in residential property transactions, there was an increase in demand for land intended for residential construction, rising by 45% compared to 2020, marking the highest level since the pre-crisis period of 2008 [32].

Figure 6. Number of residential transactions in Slovenia per year quarters, 2018–2023. Source: SURS.

The surge witnessed in 2021 (notably in its second quarter) began to wane in 2022 (Figure 6). Transactions for land intended for construction saw a decline of approximately 15% compared to the previous year, signaling a potential cooling of the real estate market [32]. Residential property transactions, especially apartment sales, also experienced a dip, with a nearly 10% decrease compared to 2021. This trend continued into 2023.

Based on the real estate data provided for Slovenia, it appears that there are some gentle trends indicating a higher evaluation of rural amenities, which in turn, promoted (especially hidden) counterurbanization. (See Figure 7). This seems to be motivated by several factors including high apartment prices in more urbanized areas (especially Ljubljana) and changing residential preferences favoring less urbanized areas, offering increased space and access to green areas. Nevertheless, we cannot draw any concrete conclusions, as the real estate market provides only partial information with respect to the whole picture.

Figure 7. Index of residential property prices in Slovenia per year quarters, 2018–2023. (Index calculated as year quarter sales/averaged 2015 sales). Source: SURS [33].

5. Discussion and Concluding Remarks

The concept of teleworkability was set in the center of this analysis, as a function of sluggish factors such as the industrial structure and national workplace culture plus the “chock” in the form of the shutdowns and social isolation caused by the pandemic. An additional assumption was that the chock caused relative changes in amenity weights in favor of rural amenities. Together, these factors were supposed to contribute to open or “hidden” counterurbanization—a population deconcentration from a state of more concentration to a state of less concentration.

We found signs of open (migration) as well as “hidden” counterurbanization (unregistered rural living) in both countries, stronger in Sweden than in Slovenia, and we found indications that the industrial structure and national workplace cultures contributed to differences in the strength of the counterurbanization. In both countries, we found indications that the pandemic contributed to a shift in people’s relative valuation of rural vs. urban amenities. In Sweden, this was expressed in rising prices on second homes in relation to prices of “first homes”. Increased demand for housing outside the capital could also be noticed in Slovenia. Thus, while the sluggish factors contributed to differences in teleworkability between Sweden and Slovenia, the chock implied similar reactions in the shift of valuation of amenities. Even if there are no statistics on how much teleworking took place in second homes, the increased demand for second homes can be interpreted as a sign of higher evaluation of rural amenities that contributed to (primarily hidden) counterurbanization.

Going more into detail, we noticed indications of direct counterurbanization in Sweden when comparing migration patterns before and during the pandemic. Net migration saw its most significant decrease in metropolitan municipalities, with Stockholm experiencing a shift to negative net migration. Conversely, rural municipalities exhibited the lowest decrease, and in sparsely populated rural municipalities, the net migration even turned from negative to positive.

During the first year of the pandemic, 2020, the prices of second homes in Sweden increased but so did the prices of first homes as well. However, during 2021, prices of second homes rose considerably more than those of first homes. We interpret this as an expression of an increase in the value of natural amenities in relation to urban amenities. This can also be interpreted as a sign of increased demand to spend time in rural second homes when lockdowns and teleworking made it possible. Thus, even if there are no statistics on how much teleworking took place in second homes, the increased demand for second homes can be interpreted as an expression of hidden counterurbanization.

Interestingly, we could not find the same indications of counterurbanization in Slovenia. Most of the differences can be explained by the geographical and structural differences. Slovenia is a country with a much smaller area and a much larger population density compared to Sweden. This means that the definitions of urban and rural areas differ, as well as people’s habits. The capital is located in the middle of the country and the furthest municipalities are less than a two-hour drive away. Short distances enable many people to drive to work daily, which is further encouraged by the national labor laws that envision obligatory non-taxed travel expenses for each employee.

As in other countries, Slovenia is experiencing a sharp rise in real estate prices in its largest cities, which motivates people to buy houses and apartments in more rural areas. However, as our analysis shows, it is not rural areas that are experiencing a rise in number of inhabitants but suburban areas close to the capital.

Furthermore, the countries differ in some other structural indicators that limit the influence the pandemic and working from home had on people’s habits. Looking at data on the industrial and employment structure and workplace culture, we can see that the potential for teleworkability is much larger in Sweden than in Slovenia.

In addition, it is important to mention the differences in national regulations regarding teleworking. In Sweden, while telework is governed by certain laws and sectoral collective bargaining agreements, it is, as in other Nordic countries, to a large extent self-regulated

and based on mutual trust between employers and employees [19]. On the other hand, Slovenia has a more stringent regulatory framework, with teleworking integrated into statutory labor legislation [34]. Despite Slovenia's adoption of sectoral-level bargaining after the pandemic [35], the overall process, excluding the exceptions that allowed for a temporary easing of regulations during the pandemic, remains an arduous process entailing numerous steps. For example, it involves an evaluation of working conditions by the Labor Inspectorate, which must also authorize companies before they can implement teleworking. Additionally, a new employment contract must be drafted before an employee can start teleworking.

This disparity in the regulatory approach and administrative process with regard to teleworking, with Slovenia employing a more stringent compared to Sweden's more flexible approach, likely contributes to the differing post-pandemic telework adoption rates between the two countries. Sweden's readiness to embrace telework, evident in sustained post-pandemic levels, contrasts with Slovenia's adherence to strict regulatory requirements, which may have contributed to teleworking levels returning to almost pre-pandemic levels. By extension, it seems that teleworkability may not be as strong a driver for counterurbanization in Slovenia compared to Sweden.

Thus, the analysis shows that the differences between Sweden and Slovenia are not only restricted to the general socioeconomic and geographic differences mentioned in Section 3 but also consist of differences in commuting possibilities, legislation, and administrative rules that affect the process of counterurbanization and the impact of teleworking during the pandemic.

From a more general perspective, it can hardly be a fortuity that the counterurbanization of the 1970s coincided with the manufacturing and industrial crisis and that the counterurbanization of the early 2020s coincided with the crisis that the COVID-19 pandemic caused for the “urban density” paradigm. However, the latter wave of counterurbanization was also favored by innovations in information and communication technologies (ICT)—innovations that no doubt will make teleworking even easier for large groups on the labor market. During four decades, ICT contributed to the strengthening of the agglomeration and concentration of resources in the big cities, but today it is obvious that it has created counterforces to agglomeration as well. Our study indicated that industrial structure, public and private transportation, and various types of institutions influence the potential for counterurbanization. This means that not only technology development but also planning and political decisions play a decisive role in the concentration or deconcentration of human resources in the future.

Of course, a study like this has a number of obvious limitations. Counterurbanization is in itself a concept with vague definitions, and the lack of statistics on the usage of second homes makes it necessary to use indirect measures of the “hidden” forms of it (i.e., someone who is part-time living in the countryside but is registered in the city). The indirect measures that we used in this study, prices on various types of houses, differ as well between the two countries. Further, there is no common European standard for how working from home should be measured, and we have found very contradicting figures, depending on the measures being used. The comparisons completed in this study are based on the measures that we found most similar for the two countries. These and other limitations in finding similar data in the two countries make it impossible to perform more rigorous statistical analyses of the extension and driving forces of counterurbanization during the pandemic.

Ever since the counterurbanization of the 1970s, studies of the phenomenon have almost solely been completed within countries, and the few international comparisons that have been completed have been based on comparing the results of national studies. Thus, with all its limitations, this study is one of the very first ones that compares counterurbanization and its driving forces in two countries within the same analytical framework. Needless to say, there is much that can be improved in further international comparative studies—if coordinated data can be made available.

Author Contributions: Conceptualization, H.W. and D.P.; methodology, H.W.; validation, H.W. and D.P.; formal analysis, H.W.; investigation, H.W., M.G. and M.R.; resources, H.W. and D.P.; data curation, H.W., M.G. and M.R.; writing—original draft preparation, H.W.; writing—review and editing, H.W., M.G., D.P. and M.R.; visualization, H.W.; supervision, H.W. and D.P.; project administration, H.W. and M.G.; funding acquisition, H.W. and D.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Swedish Research Council Formas under Grant number FR-2021/0004. The research is part of the research program Socio-cultural and Organisational Aspects of Knowledge and Technology Transfer—P5-0342, funded by the Slovenian Research and Innovation Agency.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Official statistics for Sweden were collected from Statistics Sweden www.scb.se. Official statistics for Slovenia were collected from the Slovenian Statistical Office (SURS) <https://www.stat.si/statweb>. Labor statistics were collected from the International Labour Organization (ILO). Data on national workplace culture were collected from the European Values Survey (2017–2020) and Eurobarometer (2018). Statistics on house sales in Sweden were collected from <https://www.maklarstatistik.se/>. Statistical data on teleworking before, during, and after the pandemic were collected from Eurostat, Statistics Sweden, Valicon (2023), and the Slovenian NIJZ-PANDA survey.

Acknowledgments: The authors would like to acknowledge Anja Poglađić for her assistance with data collection and other important contributions during this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Beale, C.L. The Revival of Population Growth in Non-Metropolitan America. Publication 605; Economic Research Service, US Department of Agriculture: Washington, DC, USA, 1975.
2. Berry, B.J.L. The counterurbanization process: Urban America since 1970. In *Urban Affairs Annual Review*; Sage: Beverly Hills, CA, USA, 1976; Volume 11, pp. 17–30.
3. Champion, A.G. Studying counterurbanisation and the rural population turnaround. In *Migration into Rural Areas: Theories and Issues*; Boyle, P., Halfacree, K., Eds.; Wiley: Chichester, UK, 1998; pp. 21–40.
4. Kontuly, T. Contrasting the counterurbanisation experience in European nations. In *Migration into Rural Areas: Theories and Issues*; Boyle, P., Halfacree, K., Eds.; Wiley: Chichester, UK, 1998; pp. 61–78.
5. Maginn, P.J.; Hubbard, P. Coronavirus Could Turn Cities into Doughnuts: Empty Centres but Vibrant Suburbs. 2020. Available online: https://theconversation.com/coronavirus-could-turn-cities-into-doughnuts-empty-centres-but-vibrant-suburbs-151406?utm_medium=email&utm_campaign=Latest%20from%20The%20Conversation%20for%20December%209%202020%20-%201806517553&utm_content=Latest%20from%20The%20Conversation%20for%20December%209%202020%20-%201806517553+CID_9956330b106a8d08fec0001362b0f786&utm_source=campaign_monitor_uk&utm_term=Coronavirus%20could%20turn%20cities%20into%20doughnuts%20empty%20centres%20but%20vibrant%20suburbs (accessed on 8 July 2024).
6. Dilley, L.; Gkartzios, M.; Odagiri, T. Developing counterurbanisation: Making sense of rural mobility and governance in Japan. *Habitat Int.* **2022**, *125*, 102595. [[CrossRef](#)]
7. Borsellino, R.; Bernard, A.; Charles-Edwards, E.; Corcoran, J. A regional renaissance? The shifting geography of internal migration under COVID-19. *Aust. Geogr.* **2022**, *53*, 405–423. [[CrossRef](#)]
8. Stawarz, N.; Rosenbaum-Feldbrügge, M.; Sander, N.; Sulak, H.; Knobloch, V. The Impact of the COVID-19 Pandemic on Internal Migration in Germany: A Descriptive Analysis. *Popul. Space Place* **2022**, *28*, e2566. [[CrossRef](#)] [[PubMed](#)]
9. González-Leonardo, M.; López-Gay, A.; Newsham, N.; Recaño, J.; Rowe, F. Understanding Patterns of Internal Migration During the COVID-19 Pandemic in Spain. *Popul. Space Place* **2022**, *28*, e2578. [[CrossRef](#)] [[PubMed](#)]
10. Dingel, J.; Neiman, B. *How Many Jobs Can Be Done at Home?* Centre for Economic Policy Research: London, UK, 2020.
11. Sostero, M.; Milasi, S.; Hurley, J.; Fernandez-Macías, E.; Bisello, M. *Teleworkability and the COVID-19 Crisis: A New Digital Divide?* JRC Working Papers Series on Labour, Education and Technology 2020/05, JRC121193; European Commission: Brussels, Belgium, 2020.
12. Eurofund. *Telework and Teleworkability during COVID: An Analysis Using LFS Data*; European Foundation for the Improvement of Living and Working Conditions: Dublin, Ireland, 2022; WPEF21041.
13. European Commission. *Science for Policy Briefs: Telework in the EU before and after the COVID-19: Where We Were, Where We Head to*; European Commission: Brussels, Belgium, 2020. Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/jrc120945_policy_brief_-_covid_and_telework_final.pdf (accessed on 8 July 2024).

14. Xu, X.; Lu, Y.; Bogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. *J. Manuf. Syst.* **2021**, *61*, 530–535. [[CrossRef](#)]
15. OECD Employment Outlook 2017. 2017. Available online: https://www.oecd-ilibrary.org/employment/oecd-employment-outlook-2017/how-technology-and-globalisation-are-transforming-the-labour-market_emploi_outlook-2017-7-en (accessed on 8 July 2024).
16. Digital Economy and Society Index (DESI). 2022. Available online: <https://digital-strategy.ec.europa.eu/en/policies/desi> (accessed on 8 July 2024).
17. World Digital Competitiveness Ranking. 2023. Available online: <https://www.imd.org/centers/wcc/world-competitiveness-center/rankings/world-digital-competitiveness-ranking/> (accessed on 8 July 2024).
18. Adams-Prassi, A.; Boneva, T.; Golin, M.; Rauh, C. *Work That Can Be Done from Home: Evidence on Variation within and across Occupations and Industries*; IZA Institute of Labor economics: Discussion paper series; IZA Institute of Labor Economics: Bonn, Germany, 2020.
19. Sanchez de Miguel, P. Exploring the Contribution of Social Dialogue and Collective Bargaining in the Promotion of Decent and Productive Virtual Work. DEEP VIEW Final Report. VP/2017/004/0050. 2020. Available online: https://drive.google.com/file/d/1JrHgEDU9swF4KM5H74gOJ0-u_hptKIXK/view (accessed on 8 July 2024).
20. Barrero, J.M.; Bloom, N.; Davis, S.J. The evolution of work from home. *J. Econ. Perspect.* **2023**, *37*, 23–49. [[CrossRef](#)]
21. IMD. *World Competitiveness Center. World Competitiveness Yearbook 2020*; IMD: Berkeley, CA, USA, 2020. Available online: <https://imd.cld.bz/IMD-World-Competitiveness-Yearbook-2020> (accessed on 8 July 2024).
22. Kovač, P. Debureaucratization Limits in Administrative Procedures Codification: Lessons from Slovenia. *Adm. Sci.* **2021**, *11*, 1. [[CrossRef](#)]
23. Felstead, A.; Jewson, N.; Phizacklea, A.; Walters, S. Opportunities to work at home in the context of work-life balance. *Hum. Resour. Manag. J.* **2002**, *12*, 54–76. [[CrossRef](#)]
24. Bjorkman, A.; Gisslén, M.; Gullberg, M.; Ludvigsson, J. The Swedish COVID-19 approach: A scientific dialogue on mitigation policies. *Front. Public Health* **2023**, *11*, 1206732. [[CrossRef](#)] [[PubMed](#)]
25. Adam, F. Nekaj se Lahko Naučimo, Posnemati pa ni na Mestu. EN: We Can Learn Something, but It Is Not Wise to Copy the Model. SP Dela, 28 November 2020. Available online: <https://www.delo.si/sobotna-priloga/nekaj-se-lahko-naucimo-posnemati-pa-ni-na-mestu/> (accessed on 8 July 2024).
26. Edwards, C. What Are Your Rights around Working from Home in Sweden? The Local, 30 June 2020. Available online: <https://www.thelocal.se/20200729/what-are-your-rights-around-working-from-home-in-sweden> (accessed on 8 July 2024).
27. Ružić Gorenjec, N.; Kejžar, N.; Manevski, D.; Pohar Perme, B.; Vratanar, B.; Blagus, R. Od Zgodbe o Uspehu do Katastrofe (From the Story of Success to the Disaster). Medium, 13 January 2021. Available online: <https://medium.com/sledilnik/od-zgodbe-o-uspehu-do-katastrofe-63b77b1a23e1> (accessed on 8 July 2024).
28. Valicon. Delo od Doma Pred in Med Epidemijo. EN: Work from Home before and during the Epidemic. April 2021. Available online: <https://www.valicon.net/sl/2021/04/delo-od-doma-pred-in-med-epidemijo/> (accessed on 8 July 2024).
29. SURS. Delovno Aktivni po Pogostosti dela od Doma ter Spolu (v %), Slovenija, Letno. EN: Employed Individuals by Frequency of Remote Work and Gender (%), Slovenia, Annually. 2022. Available online: <https://pxweb.stat.si/SiStatData/pxweb/sl/Data/-/0782910S.px/table/tableViewLayout2/> (accessed on 8 July 2024).
30. STA. Inšpektorat ob Strmem Porastu dela od Doma Spremenil Sistem Beleženja. EN: The Inspectorate Changed Its Recording System Amid a Steep Rise in Remote Work. 2020. Available online: <https://www.sta.si/2744473/inspektorat-ob-strmem-porastu-dela-od-doma-spremenil-sistem-belezenja> (accessed on 8 July 2024).
31. Nared, J.; Repolusk, P.; Černič Istenič, M.; Trobec, A.; Zavodnik Lamovšek, A.; Drobne, S.; Foški, M.; Mrak, G.; Rozman, U. Celovita Demografska Analiza s Projekcijami za Podeželska in Urbana Območja (CRP V6-1731). Geografski Inštitut Antona Melika ZRC SAZU. 2018. Available online: https://rrs.zrc-sazu.si/Portals/25/14_NARED_Celovita%20demografska%20analiza%20s%20projekcijami%20za.pdf (accessed on 8 July 2024).
32. Gurs. Javni Geodetski Podatki 2020–2024 (Public Geodetic Data 2020–2024). 2024. Available online: <https://ipi.epristor.gov.si/jgp/data> (accessed on 8 July 2024).
33. Štok, K. Povpraševanje po Nepremičninah v Sloveniji je Neznosno. Ali Ustvarjamo Socialno Bombo? EN: The Demand for Real Estate in Slovenia Is Unbearable. Are We Creating a Social Bomb? 2021. Available online: <https://www.rtvslo.si/gospodarstvo/povprasevanje-po-nepremicninah-v-sloveniji-je-neznosno-ali-ustvarjamo-socialno-bombo/597260> (accessed on 8 July 2024).
34. EU-OSHA—European Agency for Safety and Health at Work. Regulating Telework in a Post-COVID-19 Europe. 2021. Available online: <https://osha.europa.eu/en/publications/regulating-telework-post-covid-19-europe> (accessed on 8 July 2024).
35. EU-OSHA—European Agency for Safety and Health at Work. Regulating Telework in a Post-COVID-19 Europe: Recent Developments. 2023. Available online: <https://osha.europa.eu/en/publications/regulating-telework-post-covid-19-europe-recent-developments> (accessed on 8 July 2024).