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 A B S T R A C T

Recently a point was made in this journal, that the well-known relation — the Fuoss–Kirkwood formula — 
between impedance of a causal, linear device and the pertaining distribution of relaxation times is futile. We 
point-out the incorrect use of relation and provide evidence that the formula is applicable when used correctly.
1. Introduction

Deconvolution of data gained from electrochemical impedance spec-
troscopy (EIS) can be performed via the distribution of relaxation times 
(DRT) after the non-relaxing processes have been accounted for. This 
allows for an intuitive interpretation of the relaxation processes that 
govern the behavior of the device. To ensure that the interpretation is 
valid resulting DRT is often compared to DRTs obtained from equiv-
alent circuit models (ECMs), that are perceived as providing a good 
fit to the data. Since ECMs are provided in closed-form, they can be 
transformed to DRT in a straightforward manner [1].

Unfortunately, due to the sometimes vague notation otherwise sim-
ple transformation can yield erroneous results. This is what we believe 
happened in [2], where a claim is made that the transformation is 
futile. In this paper we seek to correct the record and provide a clear 
demonstration that the transformation works if used correctly.

Paper is constructed as follows. First we provide a short mathemat-
ical introduction to DRT. Then we illuminate the transformation issue 
and provide a concrete example of a valid transformation.

2. Discussion

DRT, denoted as 𝑔(log 𝜏), is given by [3] 

𝑍̂(j𝜔) = ∫

∞

−∞

𝑔(log 𝜏)
j𝜔𝜏 + 1

d log 𝜏 = ∫

∞

−∞

𝑔(𝑥)
j𝜔 exp[𝑥] + 1

d𝑥, (1)

where 𝑍̂(j𝜔) is the impedance of investigated system, 𝜔 is the circular 
frequency, log 𝜏 is the natural logarithm of relaxation time, also denoted 
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as 𝑥 and j =
√

−1. 𝑍̂(j𝜔) and 𝑔(log 𝜏) carry the same amount of 
information on the investigated device, but DRT is considered easier 
to interpret, since it describes the system in simple terms of resistors 
and capacitors.

Without knowing the impedance in closed-form, i.e., only having ac-
cess to (noisy) measurements, finding DRT is an ill-posed problem. This 
means specialized procedures are required to obtain a valid solution 
to (1) [3].

In order to proceed with obtaining DRTs for closed-form 𝑍̂(j𝜔), we 
make a change of variables 
𝑍(𝑥) = 𝑍̂(j𝜔), (2)

where 𝑥 = log(1∕𝜔), meaning 𝑍(𝑥) = 𝑍̂
(

j 1
exp(𝑥)

)

. Next, we decompose 
the impedance into real and imaginary parts 
𝑍(𝑥) = ℜ{𝑍(𝑥)}(𝑥) − jℑ{𝑍(𝑥)}(𝑥) = 𝐽 (𝑥) − j𝐻(𝑥), (3)

where ℜ and ℑ denote real and imaginary part, respectively. Note that 
we perform the decomposition with 𝑥 ∈ R in mind, but we will put 
complex values in it later.

2.1. Erroneous transformation to DRT

First we investigate an erroneous procedure for obtaining DRT given 
in [2]

𝑔(𝑥) = − 1
𝜋
ℑ
{

𝑍
(

𝑥 + j𝜋
2

)

+𝑍
(

𝑥 − j𝜋
2

)}

(4)

= − 1
𝜋
ℑ
{

𝑍
(

𝑥 + j𝜋
2

)

+𝑍
((

𝑥 + j𝜋
2

)∗)}
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error
= − 1

𝜋
ℑ
{

𝑍
(

𝑥 + j𝜋
2

)

+𝑍∗
(

𝑥 + j𝜋
2

)}

= − 1
𝜋
ℑ
{

2ℜ𝑍
(

𝑥 + j𝜋
2

)}

= 0,

where ∗ denotes complex conjugation, i.e. 𝑦∗ = (𝑎 + j𝑏)∗ = 𝑎− j𝑏, 𝑎, 𝑏 ∈
R. We see that 𝑔(𝑥) has a fixed value of zero, bringing us to the same 
conclusion as in [2] — that this formula is not useful at all.

The problem is assuming that 𝑍(𝑥∗) = 𝑍∗(𝑥), see lines with ‘‘error’’ 
above the pertaining equality sign in (4). This is in fact not correct, 
but 𝑍̂((j𝜔)∗) = 𝑍̂∗(j𝜔) is (see Appendix  A). This is what has probably 
caused the confusion.

2.2. Fuoss–Kirkwood’s definition

Just like (4) Fuoss–Kirkwood version of the inversion formula is 
defined via the imaginary part 𝐻(𝑥) [1]

𝑔(𝑥) = − 1
𝜋
ℑ
{

𝑍
(

𝑥 + j𝜋
2

)

+𝑍
(

𝑥 − j𝜋
2

)}

(5)

= 1
𝜋

(

𝐻
(

𝑥 + j𝜋
2

)

+𝐻
(

𝑥 − j𝜋
2

))

,

and it does not introduce any simplifications.

2.3. Showcasing Fuoss–Kirkwood’s relation

Let us show the transformation on Cole-Cole (RQ) ECM element, 
given by [4] 

𝑍RQ(𝜔) =
𝑅

(

j𝜔𝜏0
)𝛼 + 1

, (6)

where 𝑅 is the resistance, 𝜏 is the characteristic relaxation time and 𝛼
is a scalar indicating deviation from the ideal RC circuit. RQ element 
is commonly used to model batteries [5], fuel cells [6], dielectric 
properties of biological tissues [7], for corrosion analysis [8], etc. We 
can decompose this impedance into a real and an imaginary part

𝑍RQ(𝜔) = 𝑅

(

𝜔𝜏0
)𝛼 (cos(𝜃) − j sin(𝜃)) + 1

(

𝜔𝜏0
)2𝛼 + 2

(

𝜔𝜏0
)𝛼 cos(𝜃) + 1

(7)

= 𝑅

(

𝜔𝜏0
)𝛼 cos(𝜃) + 1

(

𝜔𝜏0
)2𝛼 + 2

(

𝜔𝜏0
)𝛼 cos(𝜃) + 1

− j𝑅
(

𝜔𝜏0
)𝛼 sin(𝜃)

(

𝜔𝜏0
)2𝛼 + 2

(

𝜔𝜏0
)𝛼 cos(𝜃) + 1

,

where 𝜃 = 𝛼𝜋
2 .

This gives us the imaginary part, given by 

𝐻RQ(𝑥) = 𝑅
exp[𝛼(log 𝜏0 − 𝑥)] sin(𝜃)

exp[2𝛼(log 𝜏0 − 𝑥)] + 2 exp[𝛼(log 𝜏0 − 𝑥)] cos(𝜃) + 1
. (8)

Since 

exp
[

𝛼
(

log 𝜏0 − 𝑥 ± j𝜋
2

)]

= exp[𝛼(log 𝜏0 − 𝑥)] exp
[

±j𝜃
]

, (9)

and denoting 𝐴 = exp[𝛼(log 𝜏0 − 𝑥)], we can write

𝜋𝑔(𝑥)
𝑅𝐴 sin(𝜃)

=
exp

[

−j𝜃
]

𝐴2 exp
[

−2j𝜃
]

+ 2𝐴 exp
[

−j𝜃
]

cos(𝜃) + 1
(10)

+
exp

[

j𝜃
]

𝐴2 exp
[

2j𝜃
]

+ 2𝐴 exp
[

j𝜃
]

cos(𝜃) + 1

=
2 cos(𝜃)

𝐴2 + 2𝐴 cos(2𝜃) + 1
.

This gives then

𝑔RQ(𝑥) =
1
𝜋

𝑅𝐴 sin(2𝜃)
𝐴2 + 2𝐴 cos(2𝜃) + 1

(11)

= 1
𝜋

𝑅 exp[𝛼(log 𝜏0 − 𝑥)] sin(𝛼𝜋)
exp[2𝛼(log 𝜏0 − 𝑥)] + 2 exp[𝛼(log 𝜏0 − 𝑥)] cos(𝛼𝜋) + 1

,

which is in line with other results for 𝑔 (𝑥) [9].
RQ

2 
2.4. Proving transformation via simulation

Fig.  1 shows that if we take computer and simulate an RQ element 
(where 𝑅 = 0.5, 𝛼 = 0.8 and 𝜏0 = 1; the units are dimensionless), 
transform its impedance into DRT using (5) and back via (1), everything 
is consistent, as we reproduce the original impedance.

2.5. Other ECM elements

Direct inversion formula (5) can be applied to obtain not just 
DRT of an RQ element, but also of Havriliak-Negami and Gerischer 
elements [9].

Interestingly enough, direct inversion of the simple RC element, 
whose impedance is given by (6) with 𝛼 = 1, fails. This is due to the 
actual solution of (1) for 𝑍RC being a Dirac delta function, which is 
actually not a function at all [10] and cannot be described by (5). For 
additional insight, see Appendix  B.

Similarly, finite-length Warburg (FLW) cannot be directly inverted 
by the Fuoss–Kirkwood’s equation. Since FLW can be rewritten as a sum 
of RC elements [11], it suffers from the same problem with inversion.

Still, with additional care DRTs of both RC and FLW can be ap-
proximated as functions using Fuoss–Kirkwood inversion, see [9] for 
discussion.

3. Conclusion

We have provided evidence that Fuoss–Kirkwood relation is valid 
and have clarified the cause of the issue reported in [2]. We suggest that 
the work undertaken to address this now-resolved issue be reframed in 
a different context.
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Appendix A. Proof 𝒁̂((j𝝎)∗) = 𝒁̂∗(j𝝎)

To obtain impedance from time-domain impulse response 𝑧(𝑡) of 
a casual, time-invariant linear system, we just take its Laplace trans-
form [12, Chapter 13, p. 564, Property 4]. Furthermore, if we complex-
conjugate it, we obtain 

𝑍̂∗(𝑠) =
(

∫

∞

0
𝑧(𝑡) exp(−𝑠𝑡) d𝑡

)∗
= ∫

∞

0
𝑧(𝑡) exp(−𝑠∗𝑡) d𝑡 = 𝑍̂(𝑠∗). (A.1)

where 𝑠 = 𝜎 + j𝜔, 𝜎, 𝜔 ∈ R.
On the other hand, with 𝑍(𝑥) = 𝑍̂(j𝜔) and 𝑥 = log(1∕𝜔), we have

𝑍(𝑥∗) = 𝑍̂
(

j 1
)

= 𝑍̂
(

j
(

1
)∗)

(A.2)

exp(𝑥∗) exp(𝑥)
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Fig. 1. Workflow for the validation of (5). (a) Impedance of a simulated RQ element (𝑅 = 0.5, 𝛼 = 0.8 and 𝜏0 = 1) is converted to (b) the corresponding DRT 
directly (5) and using closed-form (11). (c) The DRT is then integrated to reconstruct the original impedance. Impedance is denoted by 𝑍, where ℜ(𝑍) is its real 
and ℑ(𝑍) its imaginary part. All units are dimensionless.
= 𝑍̂
((

−j 1
exp(𝑥)

)∗)

= 𝑍̂∗
(

−j 1
exp(𝑥)

)

≠ 𝑍̂∗
(

j 1
exp(𝑥)

)

= 𝑍∗(𝑥).

We see that a transformation of variables can introduce different prop-
erties to what we perceive as impedance.

Appendix B. DRT of RC element

Since RC is a special case of an RQ element with 𝛼 = 1, we can 
carefully (using a limit) start from (11)

𝑔RC(𝑥) = lim
𝛼→1−

1
𝜋

𝑅 exp[𝛼(log 𝜏0 − 𝑥)] sin(𝛼𝜋)
exp[2𝛼(log 𝜏0 − 𝑥)] + 2 exp[𝛼(log 𝜏0 − 𝑥)] cos(𝛼𝜋) + 1

.

(B.1)

The limit was taken from the left as 𝛼 ∈ (0, 1]. Since lim𝛼→1− sin(𝛼𝜋) = 0, 
𝑔RC(𝑥) is equal to zero expect perhaps for zeros in the denominator. 
Denoting 𝐴 = 𝛼(log 𝜏0 − 𝑥), we find zeros in the denominator as 

exp[2𝐴] − 2 exp[𝐴] + 1 = (exp[𝐴] − 1)2 = 0. (B.2)

Since 𝐴 ∈ R, there is only one solution, 𝐴 = 0, which in turn gives 
𝑥 = log 𝜏. For the special case of zero in the denominator (B.1) results 
in 
𝑔RC(𝑥 = log 𝜏0) = lim

𝛼→1−
𝑅
2𝜋

sin(𝛼𝜋)
1 + cos(𝛼𝜋)

= lim
𝛼→1−

𝑅
2𝜋

tan
(𝛼𝜋

2

)

= ∞, (B.3)

which defines the DRT as 

𝑔RC(𝑥) =

{

0, if 𝑥 = log 𝜏0,
∞, else . (B.4)

Together with the fact that lim𝛼→1− ∫ ∞
−∞ 𝑔RQ(𝑥) 𝑑𝑥 = lim𝛼→1− 𝑅 = 𝑅, 

𝑔RC(𝑥) is a member of heuristically defined Dirac delta functions [10].
So, naively putting numbers into (5) in case of a RC circuit does 

not produce a viable result. One must take a more subtle approach to 
recognize a Dirac delta function and use that as the result.
3 
Appendix C. Acronyms

DRT distribution of relaxation times.
ECM equivalent circuit model.
EIS electrochemical impedance spectroscopy.
FLW finite-length Warburg.

Data availability

The data was generated artificially. The code is available at https:
//repo.ijs.si/zigag/fuoss-kirkwood-transform.
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