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ABSTRACT

Effective knowledge of ecological connectivity at sea and at the land—sea interface is key to supporting global policy goals
to conserve and restore ocean biodiversity and function. However, a persistent lack of commonality in terminology and
understanding around the concept of connectivity in marine ecological studies hampers its integration across disciplines,
and its application in spatial planning and policy. Building on an extensive literature review, we clarify definitions and
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subcategories of marine connectivity, and propose a unified conceptual framework for Marine Functional Connectivity
(MFC) research to support the integration of multidisciplinary scientific knowledge into management and policy. We
identify key challenges and future directions for advancing this emerging field, bringing together most strands of marine
science to understand changes in biodiversity and functional interdependencies between habitats and regions. Embed-
ding this new integrated MFC research at the core of marine environmental science promises to improve significantly
predictions of environmental and socio-economic change and the sustainable use of ecosystems and resources at sea

and at the land-sea interface.

Key words: marine biodiversity, marine resources, functional ecology, marine spatial planning, ecosystem services,

environmental conservation.
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I. INTRODUCTION

Marine ecosystems are under growing and unprecedented
threat from diverse anthropogenic pressures acting at local,
regional, and global scales (Halpern e al., 2019; Jouffray
et al., 2020; IPCC, 2022). Yet, they deliver multiple services
that are essential to our societies and the global health and
functioning of the biosphere (IPBES, 2019; Selig
et al., 2019; FAO, 2020). Sustainable management of marine
ecosystem resources 1s vital to halt ongoing global biodiver-
sity loss (IPBES, 2019), mitigate climate change impacts
(IPCC, 2022), and meet UN Sustainable Development Goals
for 2030 (OECD, 2022). To shift the global trajectory away
from further degradation of marine biodiversity and ecosys-
tem services (Mace ¢t al., 2018; IPBES, 2019; IPCC, 2022),
ambitious conservation targets have been set (Hilty
etal., 2020; Williams ez al., 2021). However, marine conserva-
tion and sustainable management efforts to date have often
prioritized the most straightforward measures, typically
focussing on highly visible single issues or iconic species
(e.g. identifying biodiversity hotspots, mapping the distribu-
tion of target species, or reducing plastic pollution and
bycatch). This focus overlooks the fundamental underlying
ecological processes that link ecosystems and ultimately
enable resilience to environmental stressors. In the current

era of environmental crises, urgent action is required to shift
course and address this critical gap (Folke et al., 2021;
Halpern et al., 2023).

In ecology, the concept of ‘connectivity’ refers to the
extent to which spatially distinct populations, communities,
habitats, or ecosystems are linked by the exchange of genes,
organisms, nutrients, materials and energy (Balbar &
Metaxas, 2019; Hilty et al, 2020; Cannizzo, Lausche &
Wenzel, 2021). Connectivity sustains life on Earth by mediat-
ing the complex interactions between species or communities
and the functioning of the ecosystems they inhabit (Hillman,
Lundquist & Thrush, 2018; Cannizzo et al., 2021). There-
fore, preserving connectivity is crucial for conserving the
ocean and its resources (Beger et al., 2010; Wood et al.,
2022), especially given the sensitivity of marine systems to
global change (Magris et al., 2014; Andrello e al., 2015;
Lima et al., 2021). The importance of connectivity is begin-
ning to emerge in global governance, as illustrated by the
global target to protect 30% of terrestrial and marine realms
‘through ecologically representative, well-connected and
equitably governed systems of protected areas and other
effective area-based conservation measures’ (CBD, 2022,
p- 9). A growing number of publications also advocate the
integration of connectivity data into marine spatial planning
(e.g. Carr et al., 2017; Balbar & Metaxas, 2019; Beger
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et al., 2022) and policy frameworks (e.g. Hilty et al., 2020;
Cannizzo et al., 2021; Johansen et al., 2021) at varied scales.
However, translating connectivity knowledge to spatial plan-
ning is currently hindered by the diversity and complexity of
existing connectivity data and management boundaries
(Bryan-Brown ¢t al., 2017; Balbar & Metaxas, 2019; Keeley
et al., 2022), but also by ambiguous terminology (Lowe &
Allendorf, 2010; Olds et al., 2016). Definitions of the many
types of ‘connectivity’ considered in marine ecological stud-
les are not consistently applied, and the methods and terms
used to quantify each type of connectivity vary (Grober-
Dunsmore et al., 2009; LaPoint et al., 2015; Cramer ¢t al.,
2023). As a result, communication issues often arise, as well
as debates about the types of connectivity information most
needed for ecosystem and resource management (Balbar &
Metaxas, 2019).

Historically, ecological connectivity has been divided con-
ceptually into two intertwined components, one ‘structural’
and one ‘functional’ (Auffret, Plue & Cousins, 2015). Struc-
tural connectivity is considered a general feature of the land-
scape, linked to its geological and physicochemical
characteristics, where heterogeneity and structuring are
measured independently of any attributes of living organisms
(Collinge & Forman, 1998; Taylor, Fahrig & With, 2006).
Functional connectivity, on the other hand, describes the
response of living organisms to this environmental variation,
encompassing all their movements and exchanges across
habitat patches and ecosystems (Tischendorf & Fahrig,
2000). Functional connectivity can be caused, facilitated or
hampered by structural connectivity, e.g. through transport
by marine currents or physical barriers linked to habitat frag-
mentation (Lough, Broughton & Kristiansen, 2017). How-
ever, the influence of species biology and behaviour often
decouples functional connectivity from structural connectiv-
ity, resulting in different or even opposite directional link-
ages, and in rates of exchange that would not occur
through passive abiotic fluxes alone (Mclnturf et al., 2019).
Thus, while human activities affect both structural and func-
tional connectivity, it is functional connectivity that ulti-
mately determines the demographic, ecological and
evolutionary interdependency of populations and communi-
ties, and most of the flow of energy and biomass among eco-
systems and habitats (Cowen & Sponaugle, 2009; Lamberti,
Chaloner & Hershey, 2010). By either mitigating or amplify-
ing the ecological effects of structural connectivity and envi-
ronmental change, functional connectivity shapes the fate
of species, ecosystems, and their services (Marcos
et al., 2021). Understanding functional connectivity is there-
fore crucial, both for predicting the responses of marine eco-
systems to environmental change and for designing effective
conservation and management strategies for the ocean.

The adoption of the concept of ‘functional connectivity’ is a
relatively recent development in marine ecology (Darnaude
etal., 2022), asillustrated by the limited published work to date
(Iess than 100 papers by the end of 2024) specifically referring
to ‘Marine Functional Connectivity” (MFC), mostly after 2020
(Fig. 1; see online Supporting Information, Appendix S1, for

search strings and methods used). Therefore, our understand-
ing of the general patterns, drivers and consequences of func-
tional connectivity is largely derived from studies in the
continental realm (e.g. Keeley ¢t al., 2018; Wood et al., 2022),
with little comparable information about marine systems
(Saunders ¢t al., 2016; Virtanen, Moilanen & Viitasalo, 2020;
Cannizzo e al., 2021). However, a wealth of accumulated
knowledge about the distribution and movements of marine
organisms exists (>18,700 papers, Fig. 1). Over the past cen-
tury, an impressive amount of connectivity data has been gath-
ered throughout the world’s oceans, using a variety of
approaches from various research fields (e.g. genetics, tagging
and tracking, natural tags, biophysical modelling). These
methods have supported significant advances in MFC knowl-
edge, with connectivity estimates now available for a broad
range of aquatic organisms and across all marine ecoregions
(Bryan-Brown et al., 2017). However, the various methods
and disciplines differ in their underlying hypotheses and
assumptions, in the geographical or temporal scales at which
they address connectivity (Bryan-Brown ¢ al., 2017), and in
the type of connectivity metrics they generate (Balbar &
Metaxas, 2019). Obtaining a holistic picture of MFC therefore
requires effective aggregation and integration of interdisciplin-
ary data sets, using standardized techniques to meet the infor-
mation needs of ecological forecasting and decision-making
(Darnaude et al., 2022).

The challenge of unifying the field of MFC research goes
beyond data integration though, as the word ‘connectivity’
has historically been used and interpreted differently across
disciplines, with the same terms having similar yet divergent
definitions (LaPoint ¢t al., 2015). In order to move forward,
MFC science requires clarification of its concepts, definitions
and contours. There is also a need for an integrated, multidis-
ciplinary framework for the field, effective both in advancing
knowledge of the structure and functioning of marine ecosys-
tems and in integrating these data into environmental man-
agement and policy. Towards this goal, we first identify the
main challenges for advancing global MFC knowledge and
using MFC data for decision-making in management
and policy. Building on existing definitions and terminology
used in marine ecology, we then propose a unified and prac-
tical definition of MFC, coupled with an overall conceptual
and methodological framework, positioning MFC science
at the heart of marine environmental research and manage-
ment. As illustrated by a few examples, the emergence of this
new, multidisciplinary research field is pivotal to push marine
research towards greater integration for improved manage-
ment and conservation of the seas.

II. CHALLENGES FOR CURRENT AND FUTURE
RESEARCH ON MARINE FUNCTIONAL
CONNECTIVITY

As biodiversity and ecosystem functioning are intrinsically
linked (Dahlin et al., 2021), a comprehensive insight into
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Fig. 1. Number of papers in the Marine Ecology literature published annually since 1894 that either specifically refer to Marine
Functional Connectivity (light blue, right axis) or investigate it indirectly (dark blue, left axis). Searches using ISI Web of Science and
Scopus were completed on April 22nd, 2024. For more information regarding the production of this figure, see Appendix S1.

functional connectivity is essential to understand how key
ecological functions are maintained across multiple scales
and biological realms (Cumming, Magris & Maciejewski,
2022). However, while functional connectivity in continental
systems is now sufficiently well described to identify its key
drivers and consequences (Martensen, Saura & Fortin,
2017; Hartfelder ez al., 2020; Wood ¢t al., 2022), MFC knowl-
edge remains limited and fragmented (Pittman et al., 2021;
Cumming et al., 2022). As a result, insights gained from ter-
restrial ecology still dominate our understanding of how
functional connectivity shapes marine ecosystems and the
resulting implications for conservation and sustainable
resource management (Cannizzo et al., 2021). This poses a
significant challenge, as the marked differences between ter-
restrial and marine systems can result in inappropriate
marine management and conservation strategies.

While in theory the same basic principles (e.g. structural
and functional connectivity) apply in both realms, the pro-
cesses that govern connectivity in the ocean are substantially
different from those that apply on land (Saunders et al., 2016;
Cannizzo e al, 2021). The fluid nature and three-
dimensionality of the ocean and its high heterogeneity,
shaped by currents, eddies, and other oceanographic and
geomorphological — processes, make marine species’

movement and dispersal far more dynamic and complex
(Cannizzo et al., 2021). Life-history strategies and dispersal
modes also vary substantially between marine and terrestrial
organisms (Robinson et al., 2011; Capdevila ¢ al., 2020). In
particular, marine species generally undergo an extensive dis-
persal phase during their life, most often during their smallest
stages, 1.e. as eggs and larvae (Burgess ¢t al., 2016; Capdevila
et al., 2020). Since, when drifting in the water, even small organ-
isms can be transported over long distances and bypass poten-
tial barriers such as habitat discontinuities or bottom
topography (Cowen & Sponaugle, 2009), body size is not a
predictor of the dispersal potential of organisms at sea
(Pineda, Hare & Sponaugle, 2007; Burgess et al., 2016;
Villarino ¢t al., 2018). Nonetheless, the general positive rela-
tionship between geographic distance and genetic isolation,
largely assumed to apply at sea (Palumbi, 2003), 1s not consis-
tently observed (Gonzdlez-Wangiiemert e al., 2004).
Behavioural mechanisms often retain larvae near their
spawning origin (Selkoe et al., 2016), making self-recruitment
in marine populations more common than previously
believed (Green et al., 2015). Therefore, inferences about
general patterns of functional connectivity at sea are particu-
larly challenging. In addition, the life cycles of many marine
organisms involve complex movements, including successive
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phases of juvenile and adult active migration spanning tens to
thousands of kilometres across oceanic provinces, depth
zones, and even sometimes realms. These movements can
result in significant transboundary transfers of matter, the
magnitude of which is only beginning to be appreciated
(e.g. Benkwitt et al., 2022; Burd, 2024). Importantly, individual
variation in migratory strategies is likely to be more common
and complex than previously understood in marine species
(Bradbury et al., 2008), but has been poorly studied so far.
Beyond impacting on local population dynamics, this intraspe-
cific diversity likely affects species’ eco-evolutionary trajecto-
ries and community ecology by acting on biodiversity and
connectivity at local and global scales (e.g. Durant
et al., 2019; Ellingsen et al., 2020).

Identifying the specific mechanisms that drive MFC pat-
terns and their changes will therefore allow a better under-
standing of how marine species and ecosystems persist due to
the flows of individuals, energy, and matter through the sea-
scape. However, barriers to generating and applying this
knowledge are multifold. We have categorized them into the
three main challenges described in the following subsections.

(1) Integrating research and data across disciplines

Obtaining a global overview of MFC presents several specific
difficulties. As vast, open, three-dimensional spaces, marine
environments are inherently difficult to access. The small size
and high mortality rates of the dispersive stages of most
marine species make direct tracking very difficult. General-
izations across taxa are challenging given the wide variation
in biological traits such as pelagic larval duration, swimming
ability, inter-generation time, and life cycle complexity
(e.g. Pineda et al., 2007; Cowen & Sponaugle, 2009; Swearer,
Treml & Shima, 2019). Furthermore, some marine species or
life stages inhabit or cross several realms, oceanic provinces
and/or depth zones, for which observation and sampling
tools differ significantly (Benway et al., 2019).

This complexity has led to the development of a vast array
of methods to estimate or predict the distribution and move-
ments of marine organisms (Bryan-Brown ¢ al., 2017; Stur-
rock et al., in press), from microscopic diatoms and bacteria
(e.g. Mestre et al., 2018; Supraha e al., 2022) to large top
predators (e.g. Block et al., 2011; Nathan e al., 2022). Most
MFC estimates so far have been obtained v genetics
(e.g. Legrand et al., 2022), natural tags like otolith chemical
composition (Reis-Santos et al., 2023), conventional, acoustic
or archival tags (e.g. Matley et al., 2022; Welch et al., 2025),
and biophysical modelling (e.g. Swearer ¢t al., 2019). Each
technique differs in the habitats, life stages and taxa to which
it can be applied and has a suite of underlying assumptions,
strengths, and weaknesses, which determine the type, spatio-
temporal scale, and accuracy of resulting MFC estimates
(Bryan-Brown ¢t al., 2017; Keeley et al., 2022). Describing
the combined lifetime migrations and cross-generational
movements of all marine taxa requires integration of these
data and a truly multidisciplinary approach (Darnaude
et al., 2022; Tanner e al., 2025).

Data integration among methods has been rare thus far
(e.g. Padrén et al., 2018; Pérez-Ruzafa et al., 2019), and
largely restricted to combinations between genetics, natural
tags and biophysical modelling (Bryan-Brown et al., 2017,
ICES, 2023). Attempts to estimate and compare connectivity
across multiple species (e.g. Green et al., 2015; Legrand
et al., 2022) or to use MFC data to infer higher-level ecologi-
cal processes, such as biogeochemical fluxes or ecosystem ser-
vices (Jahnke & Jonsson, 2022), remain scarce. Currently, the
main challenge to integrating MFC data across methods is to
derive outputs that are both statistically rigorous and biologi-
cally meaningful, despite profound differences in units of mea-
surement, spatiotemporal scales, resolutions, error structures,
and underlying assumptions (Darnaude et al., 2022; Tanner
et al., 2025). Advancing statistical tools for cross-disciplinary
data integration (e.g. Gaggiotti, 2017; Chen et al., 2018) will
be essential to produce comprehensive estimates of lifetime
and transgenerational MFC at the scales of populations, spe-
cies and communities. The transdisciplinary approach
required to tackle MIFC comprehensively also poses challenges
at the human level, as MFC researchers need to engage with
and integrate advances across diverse research fields
(Abaunza et al. 2008; Tanner ¢ al., 2025). Unifying MFC ter-
minology and definitions (see Section III) and building
research capacity across often-siloed research fields is a first
step towards achieving truly transdisciplinary MFC science.

(2) Reaching an in-depth understanding of MFC
drivers and consequences

While main ocean threats are now starting to be monitored
worldwide (Halpern et al., 2019; Jouffray et al., 2020), the
mechanisms through which they impact marine systems
remain largely unknown (Gissi et al., 2021). As the unprece-
dented loss in marine biodiversity and resulting ecosystem
disruptions (Jones et al., 2018; IPBES, 2019) threaten the
global ocean health (Bindoff et al., 2019; IPCC, 2022), a mul-
tidimensional understanding of the underlying ecological
processes  involved  from  pressure  exposure  to
ecological response is urgently needed. In this regard, flows
within and among ecosystems, whether at sea or at the
land—sea interface, largely support the functioning and
global productivity of the ocean (Ward et al., 2020; Beger
et al., 2022). They include abiotic horizontal and vertical
flows of nutrients, materials and detritus, which drive marine
food-web productivity (Chavez & Messié, 2009; Chassot
etal.,2010; Hagen et al., 2012), but also the many spatial flows
of compounds, matter and energy associated with the move-
ments of marine organisms. These latter shape local ecosys-
tem dynamics and productivity (Massol et al, 2017,
Cannizzo et al., 2021) by controlling food-web structure
(Gravel et al., 2011) and modulating ecosystem functioning
and resilience through changes in community composition
(Guzman ¢ al., 2019; Gladstone-Gallagher et al., 2019) and
biodiversity (Fontoura et al., 2022). Although ecosystem func-
tioning results from the combined influence of structural and
functional connectivity, recent studies showing a positive link
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between the stability of several marine ecosystems’ functions
and local biodiversity (e.g. Brandl ¢t al., 2019; Gonzalez
et al., 2020) confirmed that the global Biodiversity—Ecosystem
Function (BEF) relationship (Naeem et al., 1994; Gonzalez
et al., 2020) also applies at sea. As biologically mediated func-
tions in marine ecosystems largely control biogeochemical
cycling (Martinelli & Augusto, 2022), changes in marine spe-
cies distribution and movements also regulate nutrient
cycling and sequestration, with implications for overall plan-
etary functioning (Doughty et al., 2016). These findings call
for rapid identification of general trends in MFC and their
drivers better to anticipate biodiversity and ecosystem
responses to global change and predict the future evolution
of connectivity in the ocean and at the land-sea interface.
This is a challenging task because MFC operates both within
ecosystems (e.g. among habitat patches or depths) and across
them, through exchanges among metapopulation, metacom-
munity, and meta-ecosystem networks. Moreover, connec-
tivity is neither constant nor static: it varies across regions
and systems (Martensen e al., 2017) and changes over time
in complex ways, as modifications in biodiversity structure
affect the contribution of connectivity to ecosystem function-
ing, and vice versa (Gonzalez et al., 2020). The rapid pace of
current environmental changes further complicates the situa-
tion (Cannizzo et al., 2021). For example, climate change
alters ocean temperature, hydrodynamics, and water chemis-
try (Caesar et al., 2021), but also the distribution, physiology,
biology, ethology, and ecology of marine organisms (Lenoir
et al., 2020). These changes directly affect connectivity, alter-
ing migrations, larval dispersal, and other life-cycle pro-
cesses, leading to unexpected community shifts that can
jeopardize ecosystem functioning (Gerber ¢ al., 2014; Can-
nizzo et al., 2021; Worm & Lotze, 2021).

Achieving a comprehensive understanding of the role of
MFC in biosphere functioning and evolution therefore
necessitates integrating multiple knowledge and value sys-
tems, transdisciplinary research spanning local to global
scales, and supporting data and analytical tools. A critical
first step is to standardize terminologies and concepts of con-
nectivity across marine environmental research disciplines so
that their work on MFC patterns, drivers and evolutionary,
ecological, and socio-cconomic consequences can be better
integrated (see Section III). For example, many important
ecosystem processes, like dispersal, nutrient subsidies, gene
flow, species invasions, and disease spread, are commonly
described under the banner of connectivity research, but
the available data and ecological understanding are often
inadequate for multiscale quantification and conservation
planning (Cumming et al., 2022). New MFC knowledge is
also required to address unanswered connectivity questions
(Darnaude et al., 2022; Tanner ef al., 2025). Research priori-
ties in this regard include a holistic, transboundary assess-
ment of MFC along an inshore—coastal-offshore gradient,
from continental rivers to the deep seas, to quantify interde-
pendencies between coastal and pelagic systems and across
the land-sea interface. In this regard, targeted efforts are
urgently required to assess the extent and relative importance
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of human-driven dispersal of marine species and its impacts
on community composition and ecosystem functioning
(Bullock et al., 2018; Donelan et al., 2022). Similarly, defining
shared ecoscapes in all oceans and seas to facilitate the move-
ment of obligate range-shifting species is critical to mitigate the
negative impacts of global change (Keeley, Beier &
Jenness, 2021). Lastly, more research is urgently needed to link
MTFC directly to ecosystem processes, and upscale connectivity
research from species to function (Wood ¢t al., 2022). For this,
new integrative estimates of lifetime and transgenerational
connectivity are required at the guild and community level.
Different connectivity subcategories that have thus far been
largely studied separately (e.g. ‘genetic’, ‘ontogenetic’, and
‘trophic’ connectivity) must also be integrated to upscale
MFC studies from species or population levels to biologically
mediated ecosystem functions and services. Multiplying trans-
disciplinary interactions to improve MFC data integration into
spatial ecological modelling — for example, in metapopulation,
metacommunity and meta-ecosystems models — shows great
promise (Warmuth et al., 2025). Recent methodological devel-
opments in functional ecology linking individual movements
and trait expression to ecosystem properties and processes
(e.g. Martensen ¢t al., 2017; Villarino et al., 2018; Fontoura
et al., 2022; Wood et al., 2022) also pave the way for such inte-
gration. Further momentum in this area will be key to ade-
quately quantifying past and future changes in MFC
patterns and inferring their ecological and evolutionary
consequences.

(3) Providing relevant MFC data and decision-
making tools

Marine resources represent some of the world’s largest eco-
nomic assets, and their value is projected to double by 2030
(Sumaila et al., 2021). Nevertheless, given the spatio-temporal
heterogeneity across marine habitats, and increasing human
impacts (Halpern et al., 2019; Jouflray et al., 2020), the devel-
opment of a sustainable ocean economy requires informed
decisions on where, when, and how to exploit, conserve or
restore marine species and ecosystems (Darnaude ef al.,
2022). For this, leveraging MFC knowledge and understand-
ing is key. By facilitating range shifts of native species and
supporting species and ecosystem adaptations in the face of
environmental change (Berumen et al., 2012; Bernhardt &
Leslie, 2013), establishing well-connected and ecologically
coherent protected area networks and other effective area-
based conservation measures (OECMs) can provide scalable
solutions to many environmental, social and economic chal-
lenges (Hilty et al., 2020). Therefore, applying MFC knowl-
edge can greatly improve global, regional, and national
plans for biodiversity conservation, climate change adapta-
tion, and environmental sustainability (Hilty et al., 2020,
Hartfelder et al., 2020). Yet, despite recent efforts to incorpo-
rate ecological connectivity into the design of MPA networks
(e.g. Arafeh-Dalmau et al., 2017; Lett et al., 2024; Blouet
et al., 2025), this goal remains largely unmet, as conservation,
planning and legislation have thus far overlooked the
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ecological processes that underpin the long-term viability of
species assemblages (Magris ¢ al, 2014; Gardner
et al., 2024). Ocean governance has long focused on conserv-
ing ecologically important areas, but connectivity among
these often-isolated pockets has often been neglected. Only
a handful of recent marine conservation planning applica-
tions have included connectivity as an ecological priority,
and consideration at the community or ecosystem level is just
starting to be implemented (Barnes et al., 2018; Balbar &
Metaxas, 2019).

A push towards the co-development of science-based deci-
sions through recognizing the multifaceted value of MFC is
needed to drive forward environmental obligations and com-
mitments for marine conservation within and beyond national
boundaries (Muller-Karger et al., 2024). However, implement-
ing the protection, maintenance, and restoration of ecological
connectivity across different scales requires unprecedented
transdisciplinary collaboration among scientists, policymakers,
managers, and stakeholders. Developing adequate MFC-
informed policies and management strategies demands a
shared understanding of local and global knowledge needs,
goals, and possible actions, particularly with respect to the evo-
lutionary and ecological consequences of connectivity. Again,
a major obstacle is the lack of consistency between working
definitions and quantification methods in connectivity science
(LaPoint et al, 2015). This complicates communication
between scientists and stakeholders, hinders awareness among
decision-makers of the inherent value of integrating connectiv-
ity data (Bryan-Brown et al., 2017; Balbar & Metaxas, 2019),
and complicates bridging gaps in understanding connectivity
processes that are critical for sustainable marine management,
such as self-recruitment and life-cycle diversity in marine
populations (Bradbury ez al., 2008; Jones et al., 2009; Riginos
et al., 2014). However, the application of MFC knowledge in
marine policy and management is also hampered by a marked
lack of appropriate decision-making tools and governance or
management frameworks. Given the cross-jurisdictional
nature of marine ecosystems and the diversity of transbound-
ary processes shaping connectivity, significant advances in
international cooperation are required to overcome complica-
tions from sovereignty, political status, and international law
issues (Mackelworth ez al., 2019; Teff-Seker et al., 2020). More-
over, MFC is not a static attribute of ecosystems or species, but
rather one that evolves constantly in line with environmental
changes, which are currently prone to accelerate (Halpern
et al., 2019; Jouffray et al., 2020). To be effective, therefore,
MFC-informed management and policy will have to be adap-
tive and based on complex and specific connectivity metrics or
models which are only in their infancy (Darnaude ez al., 2024).

III. A GLOBAL CONCEPTUAL FRAMEWORK TO
UNIFY MFC RESEARCH

Addressing the challenges outlined above requires progress
towards a more coherent global approach to monitoring

and conserving ecological connectivity, integrating MFC-
focused research fields and the different data they provide
and facilitating global MFC knowledge uptake by scientists
and decision-makers. A critical first step is to remove the con-
fusion surrounding the MFC concept and the forms of
connectivity it encompasses. This will catalyse data sharing
and research integration between the complementary scien-
tific disciplines that measure or predict the distribution and
movements of marine organisms, but also across the disci-
plines that infer the drivers and predict the consequences of
MFC or apply this knowledge in management and conserva-
tion settings.

(1) Refining connectivity definitions and
subcategories

In ecology, ‘connectivity’ was initially used to describe food-
web configuration (Kercher & Shugart, 1975) and was only
first applied in the mid-1980s to describe spatial connections
and their ecological consequences (Merriam, 1984; Fahrig &
Merriam, 1985). Since then, many researchers have tried to
clarify the ecological meaning of the term and the variety of
fluxes it encompasses (e.g. Hillman e al., 2018; Hilty
et al., 2020; Beger et al., 2022). Until the early 2000s, general
definitions of connectivity in marine ecology centred on
among-population exchanges of eggs, larvae, juveniles or
adults, with a focus on gene flow (e.g. Palumbi, 2003; Cowen,
Paris & Srinivasan, 2006). The concept has since progres-
sively included other elements of ecosystem functioning, such
as nutrients, organic and inorganic materials (e.g. Cowen &
Sponaugle, 2009; Auffret e¢f al., 2015), and finally energy,
processes and disturbance (e.g. Carr e al., 2017; Hillman
etal., 2018; Beger et al., 2022). Recent papers (Table 1) often
propose very broad definitions for ‘(ecological spatial) con-
nectivity’, referring to all the unimpeded flows of organisms,
non-living material, and natural processes (including energy
and disturbance effects) that occur between ecosystems and
are essential for the persistence of wild populations and com-
munities (e.g. Hilty et al., 2020; Cannizzo et al., 2021; Hilliam,
Floerl & Treml, 2024). However, considerable variation
between definitions in recent marine literature still persists
(Table 1). While the broad concept of ecological connectivity
is sometimes referred to as ‘ecosystem connectivity’
(e.g. Carr et al., 2017) or ‘ecosystem process connectivity’
(e.g. Hillman et al., 2018), to reflect its comprehensive nature,
other studies still use ecological connectivity to refer uniquely
to species’ movements (e.g. Hartfelder et al., 2020; Wood
et al., 2022). In both cases, the definitions focus either on
the nature of the exchanges (e.g. Olds et al., 2016; Hilty
et al., 2020; Berkstrom, Wennerstréom & Bergstrom, 2022),
often interchangeably referred to as ‘movements’, ‘links’,
‘flows’ or ‘fluxes’, or on the role of the landscape or seascape
in limiting or facilitating such exchanges (e.g. Bishop
et al., 2017; Wood et al., 2022). Finally, while some authors
consider marine connectivity as a general property of the sea-
scape (e.g. Bishop et al, 2017; Balbar & Metaxas, 2019),
others frame it as the ecological process connecting discrete
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Shaping Marine Functional Connectivity Research

habitat patches or communities (e.g. Carr et al., 2017; Beger
et al., 2022).

Although most recent studies in marine science advocate
for a division between ‘structural’ and ‘functional’ connec-
tivity (e.g. Carr et al., 2017; Balbar & Metaxas, 2019; Hilty
et al., 2020; Beger e al., 2022), the nature of MFC and its
boundaries remains obscure across the literature. Even when
functional connectivity at sea is used to refer only to the
movement of organisms (sce Table 1), it is facilitated
(or hampered) by either ‘structural’ connectivity alone
(e.g. Balbar & Metaxas, 2019; Hilty et al., 2020), or by a com-
bination of the effects of the ‘structural’ connectivity of the
land/seascape (i.e. its geomorphological heterogeneity) and
a complementary type of connectivity corresponding to the
advection and diffusion of water, referred to as ‘(passive)
oceanographic’ or ‘hydrological’ connectivity (e.g. Saunders
et al., 2016; Keeley et al., 2021). Further debate considers
whether structural and functional connectivity together con-
stitute the ‘actual’ or ‘realized’ ecological connectivity
between marine systems, or if ‘realized’ ecological connec-
tivity is simply an attribute of MFC, once the various
aspects of species biology and ethology (e.g. swimming
behaviour, survival) have been considered (Table 1). This

biophysigal model propaguledispersal

vertical-distribution
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lack of consistency confuses attempts to identify knowledge
gaps or to apply management measures, especially as eco-
logical connectivity terminology and subcategories vary by
scientific discipline and research intent (Table 1, Fig. 2; see
Appendix S2).

For instance, the 4093 articles that specifically address
‘connectivity’ within the published literature on marine spe-
cies movement and distribution fall into three distinct seman-
tic groups (see the colour-defined clusters in Fig. 2), each
describing spatial flows or interconnections differently. Nota-
bly, while most articles use the term ‘dispersal’, it is most
common in studies that applied connectivity modelling, par-
ticularly for early life stages (green cluster). To date, authors
in this area (green cluster) mostly paired ‘dispersal” with the
terms ‘self-recruitment’ and ‘transport’, while papers from
the field of genetics (red cluster) favoured terms such as ‘gene
flow’ and ‘population/genetic structure’ and articles that
applied natural or artificial tagging methods (blue cluster)
more frequently employed terms like ‘migration’, ‘move-
ments’ and ‘colonization’. Interestingly, this interdisciplin-
ary difference in terminology — particularly pronounced for
papers dealing with genetics — 1s also observed in the small
subset of these articles that specifically focused on ‘functional
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Fig. 2. Co-occurrence network map (VOSViewer co-occurrence network analysis; Van Eck & Waltman, 2010) for the main
methodological and connectivity terms shared (co-occurrence >50) by the 4093 scientific articles from the literature search for
Fig. 1 that specifically included the term ‘connectivity’. On the graph, colours (red, green and blue) represent the three distinct
terminology clusters identified by the analysis. Node size for each term illustrates its total number of co-occurrences (50-829),

reflecting its relative importance within the network. The boldness of the link between two term nodes indicates the strength of

their co-occurrence. For more information regarding the production of this figure, see Appendix S2.
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Shaping Marine Functional Connectivity Research

connectivity’ (Fig. 3, see Appendix S3), which form four dis-
tinct semantic groups (see the colour-defined clusters in
Fig. 3A). All make extensive use of the term ‘connectivity’
(Fig. 3B), but while references to ‘functional connectivity’
are common in articles on resource management and on con-
servation/spatial planning (green and blue clusters), they
have yet to become widely adopted by both the genetics
(red cluster) and physiology (yellow cluster) research fields
(Fig. 3C). Furthermore, when MFC is subcategorized, for
example by distinguishing between ‘active’ versus ‘passive’
connectivity, or between ‘genetic’, ‘ontogenetic’ and ‘tro-
phic’ connectivity, the definitions and boundaries of subcate-
gories vary among disciplines and research goals (Table 1),
together with the specific terminology used to describe spatial
exchanges (e.g. ‘movement’, ‘dispersal’, ‘transfer’, ‘flow’,
‘shift’, ‘exchanges’, ‘spread’ or ‘spillover’) and interconnec-
tions (e.g. ‘networks’, ‘mixing’, ‘connections’, ‘linkages’ or
‘corridors’).

This variability augments the lack of common understand-
ing of the concepts and processes involved in MFC. How-
ever, confusion around the definition of ‘functional
connectivity’ also stems from the ambiguity still inherent in
the word ‘function’ in ecology, which alternatively denotes
ecological processes, the roles or services of species or habi-
tats, and/or the functioning of entire systems (Jax, 2005;
Morrow, 2023). This confusion has been fuelled by recent
developments in ‘functional ecology’ aiming to link move-
ment and trait expression In marine species to ecosystem
structure and functioning (Brandl ef al., 2019; Anderson &
Fahimipour, 2021; Fontoura et al., 2022). As a result, while
most current definitions of MFC focus purely on the move-
ment of living organisms, some marine scientists also include
the effects of these movements on ecosystem processes
(e.g. nutrient cycling, wave attenuation) and/or the abiotic
transport of non-living matter (e.g. inorganic nutrients, detri-
tus), which are also integral for ecosystem functioning
(Table 1). We argue against these additions, which only
increase conceptual confusion by leading towards redun-
dancy with the current definitions of ‘ecological connectiv-
ity’. Even if the main approaches and tools describing the
abiotic transport of inorganic matter (in oceanography,
hydrology, sedimentology, or geomorphology) help to infer
the dispersal patterns of marine organisms, accurate predic-
tion of the distribution and movements of marine life
requires vital complementary information on the behaviour,
biology, and physiology of species. As environmental patchi-
ness incorporates the distribution of inorganic matter and
detritus, we advocate that the abiotic transfer of non-living
matter (e.g. by currents or gravity) is considered a driver
rather than an intrinsic component of MFC.

Similarly, because studying the multiple effects of biodi-
versity on the functioning of ecosystems is particularly com-
plex and has given rise to an entire field of research, BEF
(Thompson et al., 2012; Gonzalez et al., 2020), we believe it
is more practical to consider MFC as a separate ecological
process, which only defines the qualitative and quantitative
compositions of ecosystems (including  biodiversity),

25

regardless of the impact these may or may not subsequently
have on ecosystem functioning through BEF interactions.

Building on past definitions, the current diversity of
approaches, and uses of ecological connectivity, we propose
the following, hopefully more practical, overarching defini-
tion, contours, and structuring for MFC science. We advo-
cate for MFC to specifically refer to the functional links
between distinct areas, ecosystems or habitat patches, at sea and at
the land—sea interface, that result from all the flows (of individuals,
gametes, propagules, matter, compounds and energy) caused by the
combined lifetime and transgenerational displacements of marine
organisms (Table 2). As such, MFC encompasses both the
progressive dispersal of marine species (from bacteria to
top predators) across generations and the lifetime trophic
and ontogenetic movements (as eggs, larvae, propagules,
juveniles, subadults and/or adults) of the many living
organisms that use the marine space (Fig. 4). These varied
displacements all result in spatial flows of biomass, geno-
types, phenotypes (functional traits), energy and informa-
tion, but also in indirect transfers of organic matter and
nutrients via waste excretion. Through this definition,
MTYC can be seen as a dynamic global ecological process,
distinct but integral to overall ecological connectivity
(Fig. 4), with its own unique contours, evaluation methods
and evolutionary patterns. It also becomes truly ‘func-
tional’, as the dynamic spatial interactions between
marine (sub)populations, species assemblages or commu-
nities drive most of the functional links (within and
between ecological systems) that sustain ecological pro-
cesses and services. Defined in this way, MFC governs
the flows of biomass, genotypes, and phenotypes (func-
tional traits) across marine habitats, depths, ecosystems,
areas and regions, but also a vast part of the flows of
organic matter, compounds, nutrients, energy and distur-
bance between them (Table 2, Fig. 4). This also applies
at the land-sea interface, via the complex life cycles of
many species that migrate across realms.

In parallel, we argue that, while encompassing both a geo-
morphological component (‘land/seascape structural con-
nectivity’) and a hydrological component (‘hydrological
structural connectivity’) (Table 2), structural connectivity
(SC) in aquatic environments should focus uniquely on the
physical spatial relationships among land/seascape elements.
This perspective underlines the specificity of spatial abiotic
fluxes (e.g. the transfer of non-living matter by currents or
gravity) and their role in ecosystem functioning. It also allows
highlighting the importance of the spatial arrangement of
land/seascape elements for ecological connectivity, including
how the physical configurations of ecological networks either
facilitate or constrain MFC, through factors such as physical
or chemical barriers (e.g. water stratification), hydrological
pathways (e.g. currents, internal waves, tidal bores), and
migration corridors (Table 2). Crucially, although MFC
can be caused, facilitated, or impeded by both hydrological
and land/seascape structural connectivity, it is ultimately
driven by the specific biology and ecology of marine species
(e.g. morphology, physiological niche, life-history traits,
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Table 2. Suggested refined subcategories in marine ecological connectivity Science and their proposed definitions.

Subcategories

Proposed definitions

Supporting references

Structural connectivity (SC)

Land/Sea-Scape SC

Hydrological SC

The physicochemical heterogeneity and structuring in the
abiotic environment and the physical links between
distinct areas, ecosystems, depths or habitat patches, at
sea and at the land-sea interface. I/ can be inferred between discrete
habitat patches, depths, ecosystems, areas or regions.

The degree to which physicochemical heterogeneity and
structuring in the landscape/seascape facilitate or impede
movement and flows among distinct areas, ecosystems,
depths or habitat patches, at sea and at the land-sea
interface. It can be inferred between discrete habitat patches, depths,
ecosystems, areas or 1egions.

The degree to which the advection and diffusion of water
facilitate or impede movement and flows among distinct
areas, ecosystems, depths or habitat patches, at sea and at
the land-sea interface. I can be inferred between discrete between discrete
habitat patches, depths, ecosystems, areas or regions.

Tischendorf & Fahrig (2000);
Auftret et al. (2015); Hilty et al.
(2020); Beger et al. (2022)

Grober-Dunsmore et al. (2007);
Caldwell & Gergel (2013); Olds
et al. (2016); Beger et al. (2022)

Freeman et al. (2007); Saunders
et al. (2016); Keeley et al. (2022)

Marine Functional
Connectivity (MFC)

Passive MFC

Oceanographic MFC

Vector-Driven MFC

Active (migratory) MFC

The functional links between distinct areas, ecosystems or
habitat patches, at sea and at the land-sea interface, that
result from all the flows (of individuals, gametes,
propagules, matter, compounds and energy) caused by the
combined lifetime and transgenerational displacements of
marine organisms. It can be inferred at the population, species, taxa,
assemblage or community scale and s facilitated or hampered by both structural
connectivity and marine organisms’ biology and behaviour.

The functional links between distinct areas, ecosystems or
habitat patches that result from all the flows (of
individuals, gametes, propagules, matter, compounds and
energy) caused by the passive indirect transport of marine
organisms (dead or alive), either by oceanographic
processes or via the active movements of other species. I/ is
Jacilitated or hampered by both structural connectivity and organisms’ biology,
morphology and behaviour, in variable proportions depending on the
mean of transport (oceanographic or vector-driven).

The functional links between distinct areas, ecosystems or
habitat patches that result from all the flows (of
individuals, gametes, propagules, matter, compounds and
energy) caused by the passive transport of marine
organisms (dead or alive) through physical or hydrological
processes such as currents, sinking or upwelling. /¢ is mainly
driven by hydrological connectivity, although landscape/ seascape structural
connectivity and marine organisms’ biology and behaviour also facilitate or hamper
u.

The functional links between distinct areas, ecosystems or
habitat patches that result from all the flows (of
individuals, gametes, propagules, matter, compounds and
energy) caused by the passive transport of some marine
organisms (dead or alive) through the active movements of
other species. It includes both the host-driven dispersal of
parasites, symbionts, viruses or bacteria and the human-
mediated indirect transport of marine species. [/ is mainly
driven by the biology and behaviour of species, as it is mainly achieved through the
active movements of vector species (including humans).

The functional links between distinct areas, ecosystems or
habitat patches that result from all the flows (of
individuals, matter, compounds and energy) caused by the
purposeful, self-directed active movements of living
marine organisms. [/ is mainly driven by species biology and behaviour,
although local structural connectivity can_facilitate or hamper it.

Tischendorf & Fahrig (2000);
Kindlmann & Burel (2008);
Grober-Dunsmore et al. (2009);
Olds et al. (2016); Darnaude
el al. (2024)

Hidalgo et al. (2017); Villarino
el al. (2018); Cannizzo el al.
(2021); Johansen et al. (2021)

Hidalgo et al. (2017); Villarino
et al. (2018); Cannizzo et al.
(2021); Johansen et al. (2021)

Carlton & Ruiz (2015); Vlok,
Lang & Suttle (2019); Dittami
el al. (2021); Mony et al. (2022)

McMahon et al. (2013); Cannizzo
et al. (2021); Johansen et al.
(2021)

(Continues on next page)
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Table 2. (Cont.)

27

Subcategories Proposed definitions

Supporting references

The functional links between distinct areas, ecosystems or
habitat patches that result from all the flows (of
individuals, matter, compounds and energy) caused by the
transgenerational shifts in distribution of marine
populations, through the combined dispersal, survival and
reproductive success of their individuals. /¢ results in what people
commonly refer to as ‘genetic’ or ‘demographic’ connectivity (Table 1), but not
excluswely, and is driven by a variable mix of passive and active (migratory) FC,
depending on species biology, behaviour and local structural connectivity.

The functional links between distinct areas, ecosystems or
habitat patches that result from the spatio-temporal
exchanges (of individuals, gametes, propagules, matter
and energy) caused by the combined displacements of
marine organisms over their lifespan. It includes what people
commonly call “ontogenetic’ connectivity (Lable 1) and is mainly driven by species
biology and behaviour, although hydrological and land/ sea-scape connectivity also
Jactlitate or hamper 1t.

Evolutionary
(Transgenerational) MFC

Lifetime (Experiential) MFC

Leis et al. (2011); Cramer et al.
(2023)

Clark et al. (2009); Quevedo,
Svanbick & Eklov (2009);
Bergamino et al. (2014); Beger
et al. (2022)

Qualitative MFC The differential spatial flows (of genotypes, phenotypes,
species traits, specific compounds or information) caused
by the combined lifetime and transgenerational
displacements of marine organisms that modulate the
qualitative composition of populations, communities and
ecosystems, impacting their structure, evolution and
resilience through changes in genetic, taxonomic and
functional biodiversity. /¢ includes (but is not restricted to) what people
commonly call ‘genetic’ connectivity (Table 1), and occurs at varied timescales,
driven by a variable mix of passive and active (migratory) MFC, depending on
spectes biology and behaviour and on local structural connectivity.

The directional spatial fluxes (of matter, chemical elements
or energy) caused by the combined lifetime and
transgenerational displacements of marine organisms
that shape the quantitative composition of ecosystems,
impacting their productivity and functioning through
changes in material cycling and flows within food webs. /¢
includes (but is not restricted to) what people commonly call “trophic’ connectivity
(Table 1), and occurs at varied time scales, driven by a variable mix of passive
and active (migratory) MEC depending on species biology and behaviour and on
local structural connectivity.

Quantitative MFC

ethology, behaviour) interacting with local environmental
settings, including nutrient concentrations and abiotic mate-
rial fluxes that are themselves partly shaped by structural
connectivity.

Thus, although ‘potential’ MFC can arise from both struc-
tural connectivity and species biology, the ‘realized” MFC
represents the manifestation of the two components com-
bined. This distinction is important, as it allows us to quantify
the role that marine species (and biodiversity more broadly)
play in governing the functioning of the global ocean and
of our planet through realized ecological connectivity, within
ecosystems (‘ecosystem connectivity’) and across them (‘ecos-
cape connectivity’ or ‘land/seascape connectivity’) (Table 1).
This conceptual scheme for marine ecological connectivity
science, along with the delineation of the boundaries of
MFC research that it provides, will ensure that future

research is gathered under a coherent and practical frame-
work, facilitating broad uptake across research fields and
end users, and improved transferability to guide sustainable
blue growth and marine conservation.

However, reduction in the redundancies, overlaps and ter-
minological confusion among existing MFC subcategories is
also required, while highlighting the complex, dynamic inter-
play between its various facets. In this context, we propose
unifying previous terminology and definitions (Table 1) into
the following eight MFC subcategories, based on what is
exchanged at sea and at the land-sea interface, and how
(Fig. 4, Table 2). To reflect the main modes of movement
of marine organisms, we propose a first distinction between
‘active (migratory)’ versus ‘passive’ MFC (Table 2), the latter
resulting either from the passive drift of marine species in the
water column through oceanic processes like currents or
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STRU CTU RAL CUN N ECTIVITY [SC] Between habitats, depths, areas
HYDROLOGICAL
SC

LAND/SEA-SCAPE
SC

(e.g. bottom type, depth, (e.g. currents, chemical compositio
physical barriers) 0 T, 03, salinity)

Water column heterogeneity,
patchiness and connectedness

Seafloor heterogeneity,
patchiness and connectedness

MARINE FUNCTIONAL CONNECTIVITY (MFC)

At the population, species, assemblage, taxon
or community scale

PASSIVE MFC

(e.g. by currents, gravity) 1

(e.g. by host organisms,
human activities)

2

Passive transport of non-mobile organisms.
or life stages (dead or alive)

ACTIVE
(MIGRATORY) MFC

(e.g. through seasonal
or diurnal migrations)

3

Active movement of mobile organisms
or life stages (alive)

Transgenerational shifts in
distribution (only living organisms)

(EXPERIENTIAL) MFC

(including ontogenetic and

Displacements within generations,
temporary or not (living or dead organisms)

Audrey M. Darnaude and others

EVOLUTIONARY
(TRANSGENERATIONAL) MFC

(including genetic, demographic 6
and population connectivity)

QUALITATIVE MFC

4

Transfers of genotypes, phenotypes &
ecological traits (temporary & definitive movements,
passive or active, of living organisms)

L
IFETIME QUANTITATIVE MFC

trophic connectivity)
5 Fluxes of matter, elements, energy &

waste (temporary & definitive movements,
passive or active, of organisms, dead or alive)

Fig. 4. Proposed boundaries and subcategories for Marine Functional Connectivity (MFC) within the multifaceted concept of

marine ecological connectivity. T°, temperature.

gravity (‘oceanographic MFC’) or, for some taxa, from the
active directed movements of other species, including
humans (‘vector-driven MFC”). This first distinction is justi-
fied by the methodological differences used to describe these
three displacement modes, all of which have different drivers
(Table 2). Indeed, although partly influenced by organisms’
behavioural responses (e.g. larval reactions to environmental
cues), oceanographic MFC is primarily driven by currents
and water column stratification. Therefore, it is mainly
described using biophysical modelling, while active (migra-
tory) MFC, resulting from animal migration, is usually
assessed using telemetry or natural tags (Sturrock et al., in
press). Because vector-driven MFC is a complex outcome
of the biology and ethology of both the transported and
transporting species, its description requires the integration
of approaches from a diverse set of disciplines, especially
when trying to infer human-mediated dispersal (Mony
et al., 2022; Agiadi et al., 2024). The second distinction we
propose is intended to contrast the two main types of dis-
placement of living organisms along the time continuum,
either progressive and occurring across generations (‘evolu-
tionary (transgenerational) MFC’; Table 2) or transient and
restricted to within the lifetime of the individual (‘lifetime
(experiential) MFC’). Again, the approaches, technologies

and tools applied to describe these movements, and the
spatial and temporal scales at which they occur, differ sub-
stantially (Cramer et al., 2023). While evolutionary (transge-
nerational) MFC is wusually inferred over extended
timescales (decades to millennia) using genetics, lifetime
(experiential) MFC estimation usually combines the use of
natural or applied tags with distribution or biophysical
modelling to infer movements on timescales usually ranging
from days to decades (Sturrock et al., in press). The final dis-
tinction relates to the intrinsic traits and composition of
organisms, as well as the nature of the diverse properties
and entities they transfer through movement, in relation to
the two functional dimensions of biodiversity: qualitative
and quantitative (Fig. 4, Table 2). For instance, individuals
from rare species, locally adapted populations, or species
migrating across contrasting habitats or realms may be
unique in their qualitative composition (e.g. through distinc-
tive fatty acid profiles, rare alleles, or uncommon functional
traits), yet redundant with many others in terms of biomass
or carbon content. Conversely, some organisms, such as
whales, contribute unparalleled quantities of biomass and
chemical elements when they move, generating distinctive
quantitative fluxes of matter and energy. We therefore pro-
pose to distinguish between ‘qualitative MFC’ (the
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differential transfer zia organism movements of specific geno-
types, phenotypes, compounds, and functional traits, which
alter the qualitative composition of interconnected popula-
tions, communities and ecosystems) and ‘quantitative
MFC’ (the directional transfer of individuals, matter, energy
and chemical elements that change their quantitative con-
tent) (Fig. 4, Table 2). Although these two facets of MFC
are complementary and often intertwined, distinguishing
between them makes MFC more explicitly ‘functional” and
more readily applicable across research fields, by addressing
both what is exchanged between areas and how the exchange
affects the composition, structure, and functioning of popu-
lations, communities, and ecosystems. This distinction
should also facilitate the integration of MFC data into most
complementary research disciplines in marine environmen-
tal science (Fig. 5), which focus either on species or ecosys-
tem health and resilience (mainly linked to qualitative
MFC) or on ecosystem productivity and functioning (mainly
linked to quantitative MFC). Importantly, these two MFC
subcategories require different observation tools and
modelling approaches, as the fluxes they involve differ sub-
stantially (Table 2). Quantifying them both demands
unprecedented interdisciplinary integration of data, but is
essential for sustaining a healthy, resilient, productive, and
functioning ocean.

29

(2) A new conceptual framework placing MFC at the
core of marine ecology research

The multidisciplinary field of MFC research, as defined
above, promises to stand at the very core of marine environ-
mental science by providing the conceptual and methodolog-
ical foundation for establishing a uniquely integrative link
among disciplines assessing the responses of the ocean and
its species to global change and disciplines involved in model-
ling ecosystem dynamics and services (Fig. 5).

The refined subcategories of marine ecological connectiv-
ity (Table 2) capture the multifaceted nature of MFC and
help coordinate the diverse research approaches applied
in this field. This will facilitate the investigation of spatial,
temporal and taxonomic variability in MFC, and its drivers
and consequences. Building on the complementary infor-
mation gathered through genetics, natural tags and
telemetry — but also through the modelling of species dis-
persal and distribution — will enable us to describe the past,
present and future spatial fluxes of individuals, genes, bio-
mass, and energy that largely drive the quantitative and
qualitative compositions of marine ecosystems. Investigat-
ing the mid- and long-term dynamics of MFC, largely
ignored until now, will also allow a significantly advanced
understanding of the diversity, stability, functioning and

distribu_tion natural tags
GLOBAL uetlling MARINE LIFE
CHANGCE ” . & RESOURCES
mi;‘gslrlis:g telamety
? PREDICT Changes in
ENVIRONMENT CUISERENEES
( ) biodiversity
Changes in IDENTIFY Predicted L1NTRAMIAON Dbserved BIOGEOGRAPHY | & resilience
DRIVERS )
habitat FUNCTIONAL food-web
patches, SEASCAPE ECOLOGY ECOLOGY Structure &
barriers, p . functioning
/ OCEANOGRAPHY SOCIAL ECOLOGICAL
S:epp'"g SYSTEM SCIENCE acosystai
stones T -
corts PHYSIOLOGY DESCRIBE DISTRIBUTION services &
for all & EXCHANGES OF MARINE resources
species ETHOLOGY MARINE ORGANISMS SPATIAL PLANNING
+ their historical evolution/changes \ )
biochemical
ECOLOGICAL cycles
Linking environmental change to STOICHIOMETRY
ecological response for improved
management & policy

Fig. 5. Conceptual framework for the structuring and positioning of the emerging field of marine functional connectivity (MFC)

research within marine environmental science.

Biological Reviews (2026) 000-000 © 2026 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

85UB017 SUOWWIOD BAFe8ID) 8|qedldde au Aq peusenob ke sspiie YO ‘SN o s8|nJ 10} Ariq1T8UIIUO A8]IM UO (SUORIPUOD-PUe-SWB}/LI0 A8 M AeIq | Ul UO//SdNY) SUORIPUOD PUe SWB | 84} 88S *[9202/T0/S0] U0 AriqiT 8uljuo A|IM ILBACIS 8URIYO0D Ad 0ZT0L"AG/Z00T OT/10p/W00" A8 1M Aelq1jeul|uoy/sduy Wwoiy papeojumoq ‘0 ‘XS8TE9YT



30

potential resilience of marine socio-ecological systems
(Darnaude et al., 2022, 2024).

A holistic perspective on MFC is the missing component
for a truly multidimensional understanding of ecological pro-
cesses In marine systems, clarifying the mechanisms involved
from pressure effects (e.g. changes in habitat patches and spe-
cies dispersal pathways) to ecological responses (e.g. changes
in biodiversity, ecosystem productivity and resilience, or in
biogeochemical cycles) (Fig. 5). Because the unified research
field of MFC science will necessarily interact with comple-
mentary disciplines that study MFC drivers and constraints
(e.g. seascape ecology, oceanography, physiology, and ethol-
ogy), and MFC consequences (e.g. biogeography, functional
ecology, socio-ecological system science and ecological stoi-
chiometry), MFC science will be pivotal for bridging research
on the current status and vulnerability of marine habitats and
species with predictions of the future of the ocean and its ser-
vices (Fig. 5). Ultimately, this will be transformative for fore-
casting how environmental and anthropogenic factors may
alter marine ecosystem services and productivity, and for
developing adequate strategies to mitigate these effects.

The framework proposed here lays the foundation for dee-
per insights into the complex interdependencies between
environmental conditions and biological communities across
habitats, depths, ecosystems and regions. It also facilitates
cross-realm investigations of ecological connectivity and its
consequences, since the restructured terminology proposed
here can readily be extended beyond the marine realm and
adapted to continental environments (aquatic or terrestrial).
Such integration is essential for addressing pervasive gaps
in our understanding of marine biodiversity and ecosystem
change, and for establishing the scientific framework needed
to guide sustainable development in the face of global change
(Muller-Karger et al., 2024).

IV. FUTURE AVENUES FOR MFC SCIENCE

Achieving the necessary level of monitoring, understanding
and application of MFC in the near term requires rapid,
multi- and transdisciplinary progress. Recent advances in
methodology and tools are already driving research and
management in this direction. Building on these, we high-
light the most promising avenues for future developments
in relation to the three main challenges outlined in
Section II.

(1) Moving towards fully integrated MFC research

Protecting the oceans and their services under increasing
human pressures and climate change requires MFC patterns
to be mapped, and their drivers and consequences unra-
velled. Success here necessitates an interdisciplinary
approach, encompassing biodiversity and socio-ecological
systems. Growing links between previously unconnected dis-
ciplines point towards movement in this direction. For
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instance, integrating genetics, modelling, and geohistorical
time series of species abundances offers unique insights into
shifts in MFC patterns over time and the response of marine
ecosystems to increasing human pressures (Agiadi
et al., 2024). Likewise, combining natural tags with telemetry
can yield otherwise unavailable insights into the spatial and
temporal movements of migratory species and their lifetime
functional roles, which are crucial for guiding sustainable
marine resource management (Darnaude & Hunter, 2018;
Daban et al., 2024; Hiissy et al., 2024). Transdisciplinary
knowledge integration is also essential to understand the
basics of many cryptic aspects of MFC, for which data are
severely lacking. This includes the many spatial flows
between discrete habitats that result from the transport of
parasites, diseases or symbionts by their hosts, or from
human-mediated dispersal (e.g. translocation via shipping
activities, hatcheries or aquaculture escapees, species intro-
ductions). The significance of these flows is only just begin-
ning to be assessed (e.g. Sinclair ¢ al., 2020; Einfeldt,
Jesson & Addison, 2020; Hendrick ez al., 2024), as their quan-
tification demands the integration of data from diverse natu-
ral and social science disciplines (Carlton & Ruiz, 2015;
Mony et al., 2022; Agiadi et al., 2024). However, addressing
this knowledge gap is an urgent priority, particularly regard-
ing the human-mediated dispersal of marine species, as our
activities represent the ultimate long-distance transport vec-
tor for numerous marine organisms. Clarifying the role of
plasticity in life-history strategies and partial migration in
MFC fluctuations is also in its infancy (e.g. Toledo
et al., 2020; Saboret et al., 2021) but is key to the accurate pre-
diction of meta-ecosystem dynamics and the capacity of
marine species to adapt to changing environmental condi-
tions (Peller, Guichard & Altermatt, 2023). Lastly, under-
standing MFC dynamics for rare species or those with
unusual biological or functional traits, which often fulfil vul-
nerable yet significant inter-habitat ecological functions
(Mouillot et al., 2013), will be necessary to conserve marine
socio-ecological  systems effectively. Transdisciplinary
approaches at the frontier between MFC science and func-
tional ecology, which examines the roles of organisms and
their interactions within ecosystems, pave the way for this
(Chase et al., 2020).

Building on this innovative transdisciplinary work will
advance previous efforts to integrate approaches to MFC
(see Sturrock et al., in press), underpinning the compilation
of comprehensive and multifaceted MFC data sets across
all spatial, temporal, and organizational scales. The frame-
work proposed here will allow re-evaluating existing MFC
approaches and tools to help identify appropriate contexts
for their combination and guide their integration from sam-
pling and study design through to the production of inte-
grated connectivity indices. Adoption of standardized
global methodologies and publication of data in accessible
and standardized formats, such as open data repositories,
will further ensure data sharing across disciplines. Data
platforms specifically designed for mapping marine biodi-
versity distribution and movement, such as those of the
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Ocean Biodiversity Information System (OBIS) or the
Migratory Connectivity in the Ocean website (https://
mico.eco), can play a crucial role here. Ultimately, the suc-
cessful implementation of MFC hinges on cultivating a new
generation of genuinely interdisciplinary marine scientists.
Encouraging cross-disciplinary training and education
amongst early-career researchers can overcome disciplin-
ary boundaries, improve knowledge and data sharing, and
foster a more comprehensive understanding of MFC. With-
out this shift, we risk poor decision-making and maladapta-
tion in the face of future marine change.

(2) Improving our understanding of MFC drivers
and consequences

Advancing our understanding of changes in ocean biodiver-
sity and functioning in the face of global change requires
improved estimates and indices of MFC, and their integra-
tion into models that predict patterns and trends in spatial
networks. From individual species to metacommunities and
ecosystems, all organizational levels must be addressed.
Again, this requires transdisciplinary integration. Linking
MFC with species biogeography, physiology, ethology
and/or with ecosystem resilience and functioning holds great
promise, especially through approaches like conservation
physiology (e.g. Cooke et al., 2022), conservation behaviour
(Cooke et al., 2023), BEF science (e.g. Correia & Lopes,
2023) or ecological stoichiometry (e.g. Welti e al., 2017).
Indeed, knowledge of species’ traits, including physiological
niches, swimming abilities, life strategies, and sensory sys-
tems, helps to explain the capacity of species to disperse, sur-
vive, and connect habitats. Therefore, insights from
physiology and ethology provide a valuable knowledge base
of species’ movement mechanisms and their ecological
consequences. Integrating MFC and biogeographical
research can further reveal how connectivity influences spe-
cies distribution and community composition and structure
(e.g. Azovsky et al., 2020). Lastly, the study of species interac-
tions, such as predation, symbiosis and parasitism, can help
pinpoint synergies in species distribution and dispersal (Coll
et al., 2020). Emerging predictive models for complex species
movement are already advancing this work (e.g. Malishev &
Kramer-Schadt, 2021; Friesen et al., 2021). Building on such
models, future research should explore how species traits
mediate connectivity at the multi-species level.
Multi-species connectivity modelling approaches are
emerging in terrestrial ecology [see Wood ¢t al. (2022) for a
review| but have yet to be adapted to marine contexts. Nev-
ertheless, promising conceptual models have been developed
at the intersection between BEF and Food Web Theory
(FWT) to predict biodiversity’s impact on ecosystem func-
tioning and services (Hines e al., 2015; Wood et al., 2022).
These models pave the way to incorporate multiple species
interactions into MFC assessment, thereby offering a more
accurate representation of how interspecific interactions
influence habitat use, movement, and the long-term persis-
tence of metacommunities (Thompson ef al.,, 2018; Chase
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et al., 2020). Applying these models will enable a shift in con-
nectivity conservation from merely ‘stacking’ habitat net-
works or metapopulations to developing multiplex
ecological networks across ecoscapes (Strydom et al., 2021).
Furthermore, incorporating MFC into trait-based BEF
approaches will enhance our understanding of how connec-
tivity influences key ecological processes such as nutrient
cycling and energy flow. This will highlight the role of
MFC in maintaining ecosystem stability, productivity, and
resilience (Coux e al, 2016; Schleuning, Garcia &
Tobias, 2023). Specifically, synthesis of these data can iden-
tify ‘keystone MFC species’, integral to the functionality of
the global marine network. The mapping of current and
future hotspots of MFC across regions, depths, and realms,
at sea and at the land—sea interface, is also a fundamental tool
to boost management for sustainable ecosystems and
resources. As the movement of organisms affects nutrient
transport and cycling, linking MFC to ecological stoichiome-
try will further aid mapping of global element distribution
and flows (Welti ¢t al., 2017). Finally, building on recent
modelling advances that integrate MFC research with
socio-ecological system science on land (e.g. Pashanejad
et al., 2024) will allow exploration of how connectivity affects
and is affected by human activities and marine resource
sustainability. This will support better-informed decision-
making and the development of effective conservation strate-
gles that account for marine ecological connectivity. To
understand fully the impact of MFC on ocean functioning,
interdisciplinary research should focus on: (1) exploring the
significance of both horizontal and vertical connectivity
across different ocean provinces and scales; (2) identifying
the optimal levels of connectivity between marine ecosystems
and communities to sustain ecosystem services, including
resilience and productivity; and (3) evaluating whether main-
taining MFC at these levels can enhance the resilience of
marine ecosystems to future environmental pressures.

(3) Removing barriers to provide relevant MFC data
and decision-making tools

With the growing recognition that spatial interactions across
habitat patches must be considered in environmental or
resource-management plans (Hillman et al., 2018), frame-
works enabling reproducible, pragmatic connectivity mea-
sures are being actively pursued. Solutions are also
emerging that will overcome barriers to incorporating
MFC knowledge into environmental policy and manage-
ment at all levels. A variety of applied connectivity metrics
are already available, derived from genetics, network analy-
sis, parentage analysis, biophysical models, and biomass or
morphometric gradients (Buchholz-Serensen & Vella,
2016; Williamson et al., 2016; Keeley et al., 2021). Metrics
such as local retention, betweenness centrality, and outflow
are particularly useful for Marine Protected Area (MPA)
design (Magris ¢t al., 2018; Muenzel et al., 2023). However,
there remains a need for the development of new spatial
planning and decision-making support tools integrating and
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prioritizing connectivity criteria and metrics (Depellegrin
et al., 2021). Improved software, such as Marxan and Zona-
tion, combined with new tools like ‘Marxan Connect’
(Daigle et al., 2020; https://marxanconnect.ca/), and other
free tools that integrate novel connectivity-related algorithms
(e.g. BlueBioSites https://gis.sea.ee/bluebiosites/), can help
guide effective spatial prioritization in conservation plan-
ning. Building on these tools will support informed
decision-making by stakeholders at multiple spatial, tempo-
ral, and organizational scales (Balbar & Metaxas, 2019; Dai-
gle et al., 2020; Andrello e al., 2022; Beger et al., 2022).

While metrics quantifying seascape patterns across multi-
ple scales can be more easily communicated than full simula-
tion models (Cumming et al., 2022), the complexity and
uncertainties of many MFC patterns and their impact on
ocean ecosystems make it difficult to convey MFC metrics
fully to decision-makers (Beger et al., 2022). Web-based deci-
sion support tools that run full models using preferred sce-
nario simulations and data-driven management actions can
help translate connectivity issues without oversimplifying
the analyses. However, the tailoring of such tools to the needs
of decision-makers and practitioners is necessary to integrate
complex connectivity considerations effectively into biodiver-
sity management. Notably, the incorporation of MFC data in
the now-established Ecosystem-Based Management (EBM)
approach is still in its infancy, as it requires the development
of appropriate models to predict patterns and changes in
MFC at community and ecosystem scales (Schill
et al., 2015; Williamson et al., 2016). Recent methodological
developments incorporating connectivity into models to
guide Ecosystem-Based Marine Spatial Planning (EBMSP)
and Ecosystem-Based Fisheries Management (EBFM) pro-
vide a good example of the way forward (Petza et al., 2023).
Multilayer spatial networks modelling is also particularly
promising, as it enables integration of complex data on abi-
otic environmental drivers, interactions between individuals
or species, but also co-dependency of human activities and
ecosystem services (Madeira e al, 2024; Pashanejad
et al., 2024). Although new to spatial management, this
approach offers valuable guidance for marine interventions
by identifying key components for the functioning of socio-
ecological systems and uncovering their interactions and con-
flicts. A next step will be the definition and development of
connectivity guilds, based on species movement and life-
history traits, and their integration into the models applied.
Advancing these new avenues will undoubtedly enhance
effective incorporation of complex connectivity consider-
ations into the decision-support tools that run full models
for EBMSP and EBFM. This will allow governance and
place-based management challenges to be addressed across
a wide range of scales, from local coastal communities to full
marine ecosystems (Painting et «al, 2020; Cannizzo
et al., 2021).

Ultimately, adopting effective, adaptive management
strategies based on MFC will require integrated ocean and
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land-sea regulation, incorporating standardized, harmo-
nized frameworks for management and policy across varying
spatial scales and timeframes (Cannizzo et al., 2021; Muller-
Karger et al., 2024). Close collaboration with local manage-
ment institutions and global governance bodies and
increased transboundary collaboration will be necessary.
Ensuring that existing MFC databases, knowledge, and tools
are coherent, accessible, and used in real time by decision-
makers, managers, and planners will also be key (Painting
et al., 2020; Beger et al., 2022). Guidance to incorporate con-
nectivity conservation issues into marine spatial planning is
emerging, as illustrated by the Marine Connectivity Conser-
vation ‘Rules of Thumb’ for MPA and MPA Network
Design (Beger et al., 2022). The projected impacts of climate
change on connectivity must also be considered to generate
innovative climate-smart management strategies, flexible
both in time and space, to safeguard regional biodiversity.
Four main categories of planning-based solutions are recog-
nized in the IUCN Gudelines for conserving connectivity through eco-
logical networks and corridors aimed at maintaining and
enhancing connectivity: ecological corridors, protected
areas, OECMs, and ecological networks (Hilty et al., 2020).
The challenge now is to bring these MFC components into
everyday use.

V. CONCLUSIONS

(1) Marine environmental science is at a turning point. As
with the concept of functional ecology in the early 2000s,
the emerging concept of marine functional connectivity can
take science, management, and policy a step further, by sig-
nificantly improving our understanding of the functioning
of our seas and oceans, and our ability to predict the
responses of marine life to environmental change and
the consequences for services to the people and the
biosphere.

(2) Integrating the various disciplines that study the distribu-
tion and movement of marine species and their impacts into
the unified and operational interdisciplinary marine environ-
mental science framework proposed here holds the promise
to achieve a more precise, comprehensive, and applied
understanding of spatial interconnections at sea and at the
land—sea interface, paving the way towards truly integrated
environmental management at the global scale.

(3) The subcategories of marine connectivity introduced
here not only streamline data integration with complemen-
tary research fields, facilitating linkage between hitherto
poorly connected marine environmental science disciplines,
but could also be readily extended beyond the marine realm,
thereby fostering cross-realm integration in ecological con-
nectivity assessments.

(4) The new conceptual and methodological framework
proposed here places MFC research at the heart of
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interdisciplinary collaboration for improved marine gover-
nance, sustainable resource management, and biodiversity
conservation in the face of climate change and human
impact.
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IX. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Appendix S1. Mecthods and key results for Fig. 1.
Appendix S2. Mecthods and key results for Fig. 2.
Appendix S3. Mecthods and key results for Fig. 3.
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