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Abstract:
Introduction: Resource allocation in Data Envelopment Analysis (DEA) has been extensively studied, yet
most works focus on redistributing available resources rather than allocating unavoidable fixed costs among
decision-making units (DMUs). This study addresses the important problem of fixed cost allocation, aiming
to ensure that inefficient DMUs can become efficient while keeping allocations as fair as possible, thereby
providing a practical decision-making tool in real-world contexts such as banking and manufacturing. We
propose a new linear DEA-based model that allocates fixed costs so as to transform an inefficient DMU
into an efficient one, with the objective of minimizing the deviation from fair allocation. The model is then
generalized to a fuzzy environment by incorporating triangular fuzzy numbers for inputs, outputs, and costs,
and validated using benchmark datasets from Cook and Kress and Wang et al. The results demonstrate that
the proposed models can successfully enhance the efficiency of targeted DMUs while producing allocations
close to fairness, and the fuzzy extension proves robust in handling imprecise data. The key novelties of this
research are (i) introducing a linear efficiency-improving allocation model with minimum distance to fairness,
(ii) extending the allocation problem to fuzzy DEA by considering fuzzy costs alongside fuzzy inputs and
outputs, and (iii) showing that this integrated framework has not been addressed before in the literature,
thereby offering a novel, practical, and equitable approach for fixed cost allocation in DEA.
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1. Introduction

The data envelopment analysis technique is utilized to
evaluate the relative efficiency of a set of decision-
making units. This issue was published in 1978 by Ed-
ward Rhoods in collaboration with Charnes and Cooper
in a paper called CCR. In 1984, Charnes, Cooper and

Banker developed the CCR method that led to the BCC
model [1]. However, in this model, the returns to scale
is variable. In addition to the models presented in the
CCR and BCC articles, other basic models such as addi-
tive model, multiplicative model were presented in data
envelopment analysis.

The data envelopment analysis has been studied in
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diverse fields such as sensitivity analysis in DEA. Sen-
sitivity analysis of data envelopment analysis models is
very important. The first paper on sensitivity analysis in
data envelopment analysis was proposed by Charnes et
al. in 1985 [2]. Subsequently, many articles have been
presented in this regard, but the examined issue in this
paper is a modification in the number of indexes .For ex-
ample, in many of these issues, there are fixed costs that
are imposed on decision-makers. The cost imposed on
the decision-making units can be considered as a new in-
put, which canmaintain or modify the relative efficiency
measurement of them. In any case, the allocation of a
new cost to units should be fair.

In 1999, Cook and Cross [3] introduced the two
axioms of invariance-efficiency and Pareto-minimality
and studied the input in the fixed resource allocation
problem. Themethod they presentedwas based on these
two principles and the fairness of resource allocation
was considered. Cook and Kress [3] then proposed a
method by converting the input conditions to output. Af-
ter that, the proposed method of Cook and Zhou [4] was
generalized from the CCRmodel to the BCCmodel. Lin
[5] proved that by adding certain constraints by the Cook
and Zhou method no optimal solution is obtained and
to solve this problem and achieve a possible allocation,
he added specific goals to his model. In 2003, Beasley
[6] introduced a nonlinear method that maximizes the
average performance of all DMUs. The problem with
this method was that in some cases it was not possible.
Hence, Amir Teymouri and Kordrostami [7] introduced
a new method based on DEA as well as fixed resource
allocation.

After that, Jahanshahloo et al. [8] used another
method using CSW concept and unprincipled efficiency
to allocate fixed resources. Jahanshahloo et al. [8]
showed that the Beasley method [6], which was impos-
sible by Amirteimoori and Kordrostami [7], is always
possible. After that Li et al. [9] expanded the work done
by Jahanshahloo et al. [8].

Jahanshahloo et al. [8] and L Li et al. [9] determined
a unique allocation program based on common weights
and the principles of non-change of efficiency.

Lin and Chen [10] studied a situation where the allo-
cated cost is a complement to the original inputs. After
that, a lot of research was done on allocation. Yu et al.
[11], Zhu et al. [12] and Li et al. [13] extended the fixed
cost allocation problem to network situations by consid-
ering the internal two-stage processes, all three methods
are implemented under the efficiency-maximization as-
sumption. Li et al ( [14, 15, 16]), An et al [17] and
Hosseinzadeh Lotfi et al. [18] Looked at the allocation
issue from a different perspective. They proposed a new
method in which each DMU unit first determines the
minimum and maximum amount that it can contribute
to the payment of fixed costs to its own and other units’
returns. Then a convex combination of minimum and
maximum values is considered as the amount of cost al-
located to each unit. Among the recent researches in
this field, farzipoor saeni et al. [19], Feng and Romas

[20], Gupta et al. [21] and Torres et al. [22] can be
mentioned.

Since in most real-life problems data may be impre-
cise thus, the data are considered as fuzzy. The theory
of fuzzy sets in comparisonwith Aristotle’s logic, which
requires accurate and quantitative data, was first intro-
duced in 1965 by Iranian scientist Lotfi Asgar zadeh
[23]. Since the presentation of this theory till now, it has
been expanded to a large extent and has been applied in
various fields. Using fuzzy logic, it is possible to formu-
late mathematically most of the imprecise content and
variables (see Zadeh [24] ) and provide a framework for
making decisions in uncertainty conditions. Many stud-
ies have been done in this regard. For example, refer-
ences [25, 26, 27, 28, 29]. . ..

In this paper, the performance status of decision mak-
ing units after the introduction of a new resource and
its allocation between units is examined. But the impor-
tant point in allocating the new resource is that this allo-
cation should be done in such a way that, firstly, the in-
tended unit achieves maximum efficiency and, secondly,
this allocation has a minimum distance from the fair al-
location. We then assume that the inputs and outputs
as well as the added source for allocation between units
are all fuzzy. We now generalize the proposed model for
new resource allocation in fuzzymode. In this paper, we
use the models provided by Wang et al. [29] to evaluate
the performance of units with fuzzy data. We are now
looking for an allocation of the new source that firstly
maximizes the efficiency of DMU𝑜 and secondly min-
imizes the resulting allocation distance relative to the
fair allocation. In most of the papers presented so far,
the existing inputs have been reallocated between units
to achieve the desired conditions. But in this article, a
new source has entered the problem. Also in the case of
fuzzy data, in addition to the inputs and outputs being
considered fuzzy, the new source is also assumed to be
fuzzy. The above can be the advantages of this article
over the series of articles in this field.

Research Gap and Contribution: Most studies on
cost allocation in DEA focus on redistributing existing
resources, often addressing either efficiency or fairness
in isolation. However, they do not simultaneously en-
sure that an inefficient DMU becomes efficient while
keeping the allocation close to fairness, and they rarely
consider fuzzy data environments.

This study fills the gap by proposing a linear DEA-
based model that converts a selected inefficient DMU
into an efficient one with minimum deviation from fair
allocation, and by extending the model to a fuzzy set-
ting where inputs, outputs, and costs are represented as
triangular fuzzy numbers. To our knowledge, this is the
first work to integrate efficiency improvement, fairness,
and fuzzy cost allocation in a unified framework.

This article is divided into the following sections: In
the section 2, we have an overview of the required back-
grounds (basic DEA models, DEA models in fuzzy en-
vironment, fuzzy DEA models based upon fuzzy arith-
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metic and fair allocation). In section 3, a model is pre-
sented that aims to find an allocation of a fixed cost so
that in addition to turn an inefficient unit into an efficient
one, it has a minimum distance from the fair allocation.
The proposed model is then generalized to fuzzy mode.
In Section 4, two examples of the application of themod-
els in Section 3 are presented. Finally, in Section 5, we
conclude about this paper.

2. background
2.1 Basic models of DEA
For a long time, evaluation of a DMU has been consid-
ered as a complex problem especially when it includes
multiple inputs and multiple outputs in such a way a set
of weights has to be specified to aggregate the outputs
and inputs distinctly to form a ratio as the efficiency. To
this end, DEA method is suggested, which permits ev-
ery DMU to choose their best weights whereas requiring
the resulted ratio of the aggregated outputs to the aggre-
gated inputs of all DMUs to be less than or equal to 1.
CCRmodel is a linear programming (LP) based method
proposed by Charnes et al. [30].

The evaluated entity efficiency of the CCRmodel can
be calculated by a ratio of the weighted output to the
weighted input provided that the ratio for every entity
is not bigger than 1. The mathematical description is
given below.

Maximize

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜

(1)

𝑆.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗

≤ 1 , 𝑗 = 1, ..., 𝑛

𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 , 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠

Where 𝑛 is the number of decision making units and
DMU𝑜 is the decisionmaking unit which is evaluated by
model (1). 𝑥𝑖 𝑗 for 𝑖 = 1, . . . , 𝑚 and 𝑦𝑟 𝑗 for 𝑟 = 1, . . . , 𝑠
is (𝑖)th input and (𝑟)th output of DMU 𝑗 , respectively for
𝑗 = 1, .., 𝑛. All inputs and outputs are non-negative and
at least one of the components of each of them is posi-
tive.

Using Charnes-Cooper transformations [31], model
(1) becomes the following linear model:

Maximize
𝑠∑

𝑟=1
𝑢𝑟 𝑦𝑟𝑜 (2)

𝑆.𝑡
𝑠∑

𝑟=1
𝑢𝑟 𝑦𝑟 −

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗 ≤ 0 , 𝑗 = 1, ..., 𝑛

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 = 1

𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 , 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠

It is obvious that in model (2) DMUo is efficient if and

only if
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟𝑜 = 1 else it is inefficient.

2.2 Fuzzy Theory
A fuzzy number is a set of ordered pairs as 𝐴̃(𝑥) =
{(𝑥, 𝜇 𝐴̃(𝑥))}in which 𝜇 𝐴̃(𝑥) is called membership func-
tion of this fuzzy number [7]. A Fuzzy Number 𝐴̃ is
called 𝐿-𝑅 fuzzy number if there exist functions 𝐿 (for
Left), 𝑅 (for Right), and scalars 𝛼0, 𝛽 >, such that

𝜇 𝐴̃(𝑥) =


𝐿
(𝑚 − 𝑥

𝛼

)
𝑥 ≤ 𝑚

𝑅

(
𝑥 − 𝑚

𝛽

)
𝑥 ≥ 𝑚

𝑅 and 𝐿 are non-increasing function from 𝑅+ to [0, 1]
and this fuzzy number is expressed as (𝑚, 𝛼, 𝛽). The
real number m is a mean value 𝐴̃ and 𝛼 and 𝛽 are se-
quentially its Left and Right expanse.

If 𝐿 (𝑥) = 𝑅(𝑥) =

{
1 − 𝑥 0 ≤ 𝑥 ≤ 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

then 𝐴̃ is

a triangular fuzzy number. Each triangular fuzzy num-
ber is expressed as (𝑥𝑙 , 𝑥𝑚, 𝑥𝑢) which imply 𝑥𝑚 is the
main value (𝜇 𝐴̃(𝑥𝑚) = 1) and 𝑥𝑙 is the pessimistic value
(𝜇 𝐴̃(𝑥𝑙) = 0) and (𝜇 𝐴̃(𝑥𝑢) = 0) is the optimistic value.

A fuzzy set 𝐴̃ = (𝑥𝑙 , 𝑥𝑚, 𝑥𝑢) is a generalized Left
Right Fuzzy Number (LRFN) of Dubois and Prade [32]
if its membership function satisfies the following:

𝜇 𝐴̃(𝑥) =



𝐿

(
𝑚1 − 𝑥

𝑚1 − 𝑙

)
𝑙 ≤ 𝑥 ≤ 𝑚1

1 𝑚1 ≤ 𝑥 ≤ 𝑚2

𝑅

(
𝑥 − 𝑚2

𝑢 − 𝑚2

)
𝑚2 ≤ 𝑥 ≤ 𝑢

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝐿 and 𝑅 are strictly decreasing functions defined
on [0, 1] and satisfying the conditions:

𝐿 (𝑥) = 𝑅(𝑥) = 1, 𝑥 ≤ 0
𝐿 (𝑥) = 𝑅(𝑥) = 0, 𝑥 ≤ 1

For 𝑚1 = 𝑚2, we have the classical definition of
(LRFN) of Dubois and Prade [33].Trapezoidal Fuzzy
Numbers (TrFN) are special cases of Generalized Left
Right Fuzzy Numbers(GLRFN) with 𝐿 (𝑥) = 𝑅(𝑥) =
1 − 𝑥.

2.3 DEA models in fuzzy environment
In customary data envelopment analysis, the values of
inputs and outputs with the exact values are determined
by experts. However in imprecise environments the ex-
perts’ premise of precise data is very unreal. So, the
experts decide to consider DEA and its models in fuzzy
environments [34, 35, 32, 27, 28, 36, 29]. . . . Suppose
𝑛 DMUs with 𝑚 inputs and 𝑠 outputs are evaluated.
Consider the vectors related to inputs and outputs of
DMU 𝑗 for 𝑗 = 1, . . . , 𝑛 are respectively in the form of
𝑋 𝑗 =

(
𝑥1 𝑗 , . . . , 𝑥𝑚𝑗

)
and 𝑌 𝑗 =

(
𝑦̃1 𝑗 , . . . , 𝑦̃𝑠 𝑗

)
. Further-

more suppose 𝑥𝑖 𝑗 and 𝑦̃𝑟 𝑗 are a triangular fuzzy number
as 𝑥𝑖 𝑗 = (𝑥𝑙𝑖 𝑗 , 𝑥𝑚𝑖 𝑗 , 𝑥𝑢𝑖 𝑗 ) and 𝑦̃𝑟 𝑗 = (𝑦𝑙𝑟 𝑗 , 𝑦𝑚𝑟 𝑗 , 𝑦𝑢𝑟 𝑗 ).
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If we consider model (1) with fuzzy inputs and out-
puts, we will have:

Maximize

𝑠∑
𝑟=1

𝑢𝑟 𝑦̃𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜

(3)

𝑆.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦̃𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗

≤ 1 , 𝑗 = 1, ..., 𝑛

𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 , 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠

Where 𝑣𝑖 (𝑖 = 1, . . . , 𝑚) and 𝑢𝑟 (𝑟 = 1, . . . , 𝑠) are the
weights related with input 𝑖 and output 𝑟, respectively.

So far various attributes have been presented for rank-
ing fuzzy numbers. One of them is suggested by Ramik
and Rimanek [37]for ranking the triangular fuzzy num-
bers. They suggested the Definition as follow:

Definition 2.1 Given two triangular fuzzy numbers
𝐴̃ = (𝐴𝑙 , 𝐴𝑚, 𝐴𝑢)and 𝐵̃ = (𝐵𝑙 , 𝐵𝑚, 𝐵𝑢), 𝐴̃ ≤ 𝐵̃ is de-
scribed by the following inequalities

𝐴̃ ≤ 𝐵̃ ⇔ 𝐴𝑙 ≤ 𝐵𝑙 , 𝐴𝑚 ≤ 𝐵𝑚, 𝐴𝑢 ≤ 𝐵𝑢 (4)

Definition 2.2 Addition, subtraction, triangular fuzzy
numbers are defined as follows [38].
a) 𝑥 + 𝑦̃ = (𝑥𝑙 + 𝑦𝑙 , 𝑥𝑚 + 𝑦𝑚, 𝑥𝑢 + 𝑦𝑢)
b) 𝑥 − 𝑦̃ = (𝑥𝑙 − 𝑦𝑙 , 𝑥𝑚 − 𝑦𝑚, 𝑥𝑢 − 𝑦𝑢)
Let 𝑥, 𝑦̃be two positive triangular fuzzy numbers then
multiplication, and division of them are defined as fol-
lows:
c) 𝑥 × 𝑦̃ ≈ (𝑥𝑙𝑦𝑙 , 𝑥𝑚𝑦𝑚, 𝑥𝑢𝑦𝑢)

d)
𝑥

𝑦̃
≈ ( 𝑥

𝑙

𝑦𝑢
,
𝑥

𝑦𝑚
𝑚
,
𝑥𝑢

𝑦𝑙
)

2.4 Fuzzy DEA models based upon fuzzy arith-
metic

There are several papers in which DEA models are de-
veloped based on fuzzy arithmetic logic. In this paper,
we use the models presented by Wang et al [29]. In
their paper, like the current paper, fuzzy numbers are
assumed to be triangular fuzzy numbers. Suppose there
are n DMUs to be evaluated, each with m non-negative
fuzzy inputs 𝑥𝑖 𝑗 = (𝑥𝑙𝑖 𝑗 , 𝑥𝑚𝑖 𝑗 , 𝑥𝑢𝑖 𝑗 ) for 𝑖 = 1, . . . , 𝑚;
𝑗 = 1, . . . , 𝑛 and 𝑠 non-negative fuzzy outputs 𝑦̃𝑖 𝑗 =
(𝑦𝑙𝑖 𝑗 , 𝑦𝑚𝑖 𝑗 , 𝑦𝑢𝑖 𝑗 ) for 𝑟 = 1, . . . , 𝑠; 𝑗 = 1, . . . , 𝑛. Crisp input
or output data can be seen as a special case of triangular
fuzzy input or output. In this case 𝑥𝑖 𝑗 = (𝑥𝑙𝑖 𝑗 , 𝑥𝑚𝑖 𝑗 , 𝑥𝑢𝑖 𝑗 )
such a way that 𝑥𝑙𝑖 𝑗 = 𝑥𝑚𝑖 𝑗 = 𝑥𝑢𝑖 𝑗 or 𝑦̃𝑖 𝑗 = (𝑦𝑙𝑖 𝑗 , 𝑦𝑚𝑖 𝑗 , 𝑦𝑢𝑖 𝑗 )
with 𝑦𝑙𝑖 𝑗 = 𝑦𝑚𝑖 𝑗 = 𝑦𝑢𝑖 𝑗 .

In fuzzy data mode, efficiency of DMU𝑜 can be de-
fined as follows:

𝜃𝑜 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦̃𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜

(5)

Where 𝑣𝑖 for 𝑖 = 1, . . . , 𝑚 and 𝑢𝑟 for 𝑟 = 1, . . . , 𝑠 are
sequentially the weights assigned to the inputs and out-
puts. 𝜃𝑜 is introduced as a fuzzy efficiency which is a
fuzzy number.

The fuzzy efficiency defined in Eq. (5) according to
fuzzy arithmetic can be expressed as follows:

𝜃𝑜 =

𝑠∑
𝑟=1

𝑢𝑟

(
𝑦𝑙𝑟𝑜, 𝑦

𝑚
𝑟𝑜, 𝑦

𝑢
𝑟𝑜

)
𝑚∑
𝑖=1

𝑣𝑖

(
𝑥𝑙𝑖𝑜, 𝑥

𝑚
𝑖𝑜, 𝑥

𝑢
𝑖𝑜

) (6)

=

[
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑙
𝑟𝑜,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑚
𝑟𝑜,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟𝑜

]
[∑𝑚

𝑖=1 𝑣𝑖𝑥
𝑙
𝑖𝑜,

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜,

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜

]

≃



𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜

,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑚
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜

,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑜


Therefore, the following fuzzy DEA model is made to
measure the fuzzy efficiency of DMU𝑜:

Maximize 𝜃𝑂 ≃ [𝜃𝑙𝑂, 𝜃
𝑚
𝑂 , 𝜃

𝑢
𝑂] (7)

=



𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜

,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑚
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜

,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑜


𝑠.𝑡 𝜃 𝑗 ≈ [𝜃𝑙𝑗 , 𝜃𝑚𝑗 , 𝜃𝑢𝑗 ]

=



𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖 𝑗

,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑚
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖 𝑗

,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗


≤ 1,

𝑗 = 1, . . . , 𝑛
𝑢𝑟 , 𝑣𝑖 ≥ 𝜀 , 𝑟 = 1, ..., 𝑠 , 𝑖 = 1, ..., 𝑚.

DMU𝑜 is the unit under evaluation. In model (7), as
long as 𝜃𝑢𝑗 ≤ 1 is satisfied, then 𝜃𝑙𝑗 ≤ 1 and 𝜃𝑚𝑗 ≤ 1 will
be automatically satisfied. Model (7) can therefore be
simplified as:

Maximize 𝜃𝑂 ≃ [𝜃𝑙𝑂, 𝜃
𝑚
𝑂 , 𝜃

𝑢
𝑂] (8)

=



𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜

,

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑚
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜

,
𝑉
∑𝑠

𝑟=1 𝑢𝑟 𝑦
𝑢
𝑟𝑜∑𝑚

𝑖=1 𝑣𝑖𝑥
𝑙
𝑖𝑜


𝑠.𝑡 𝜃𝑢𝑗 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗

≤ 1 𝑗 = 1, ..., 𝑛

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀, 𝑟 = 1, ..., 𝑠, 𝑖 = 1, ..., 𝑚.
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By solving the following three fractional programming
models the best possible values of 𝜃𝑙𝑗 , 𝜃

𝑚
𝑗 and 𝜃𝑢𝑗 can be

obtained:

Maximize 𝜃𝑙𝑂 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜

(9)

𝑠.𝑡 𝜃𝑢𝑗 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗

≤ 1, 𝑗 = 1, ..., 𝑛

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀 , 𝑟 = 1, ..., 𝑠 , 𝑖 = 1, ..., 𝑚.

Maximize 𝜃𝑚𝑂 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑚
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜

(10)

𝑠.𝑡 𝜃𝑢𝑗 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗

≤ 1 , 𝑗 = 1, ..., 𝑛

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀 , 𝑟 = 1, ..., 𝑠 , 𝑖 = 1, ..., 𝑚.

Maximize 𝜃𝑢𝑂 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑜

(11)

𝑠.𝑡 𝜃𝑢𝑗 =

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗

≤ 1 , 𝑗 = 1, ..., 𝑛

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀 , 𝑟 = 1, ..., 𝑠 , 𝑖 = 1, ..., 𝑚.

Due to the sameness of the feasible region of models
(9), (10) and (11), the inequality 𝜃𝑙𝑜 ≤ 𝜃𝑚𝑜 ≤ 𝜃𝑢𝑜 is clearly
established. These three models can be transformed into
three linear programming (LP) models as below:

Maximize 𝜃𝑙𝑂 =
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑙
𝑟𝑜 (12)

𝑠.𝑡
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 = 1

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀 , 𝑟 = 1, ..., 𝑠 , 𝑖 = 1, ..., 𝑚.

Maximize 𝜃𝑚𝑂 =
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑚
𝑟𝑜 (13)

𝑠.𝑡
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 ≤ 0 , 𝑗 = 1, ..., 𝑛

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜 = 1

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀 , 𝑟 = 1, ..., 𝑠 , 𝑖 = 1, ..., 𝑚.

Maximize 𝜃𝑢𝑂 =
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑢
𝑟𝑜 (14)

𝑠.𝑡
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 ≤ 0 , 𝑗 = 1, ..., 𝑛

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑜 = 1

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀 , 𝑟 = 1, ..., 𝑠 , 𝑖 = 1, ..., 𝑚.

After solving models (12), (13) and (14), it is obvious
that the efficiency of DMU𝑂 will be obtained as 𝜃𝑜 ≈
(𝜃𝑙𝑜, 𝜃𝑚𝑜 , 𝜃𝑢𝑜).

2.5 Fair allocation
Suppose 𝑛 decision making units with 𝑚 inputs and 𝑠
outputs are evaluated. Furthermore consider 𝑥𝑖 𝑗 is i’th
input of DMU 𝑗 , for 𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛. Also
consider 𝑦𝑟 𝑗 is r’th output of DMU 𝑗 , for 𝑟 = 1, . . . , 𝑠;
𝑗 = 1, . . . , 𝑛. Now a new source comes into play. Fair
allocation of the new source between units is calculated
by the following formula [39]:

𝑟 𝑗 = 𝑅 ×

𝑚∑
𝑖=1

𝑥𝑖 𝑗

𝑛∑
𝑞=1

𝑚∑
𝑖=1

𝑥𝑖𝑞

𝑗 = 1, . . . , 𝑛 (15)

Where R is available amount of the new source and 𝑟 𝑗
is DMU′

𝑗 share from the new source for 𝑗 = 1, . . . , 𝑛.
Now Suppose there are 𝑛 DMU𝑠 to be evaluated,

each with m fuzzy inputs 𝑠 𝑥𝑖 𝑗 = (𝑥𝑙𝑖 𝑗 , 𝑥𝑚𝑖 𝑗 , 𝑥𝑢𝑖 𝑗 ) for
𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛 and s fuzzy outputs 𝑦̃𝑟 𝑗 =
(𝑦𝑙𝑟 𝑗 , 𝑦𝑚𝑟 𝑗 , 𝑦𝑢𝑟 𝑗 ) for 𝑟 = 1, . . . , 𝑚 ; 𝑗 = 1, . . . , 𝑛. By ex-
tending Formula (15), we will have:

𝑟 𝑙𝑗 = 𝑅𝑙 ×

𝑚∑
𝑖=1

𝑥𝑙𝑖 𝑗

𝑛∑
𝑞=1

𝑚∑
𝑖=1

𝑥𝑙𝑖𝑞

𝑗 = 1, . . . , 𝑛 (15.1)

𝑟𝑚𝑗 = 𝑅𝑚 ×

𝑚∑
𝑖=1

𝑥𝑚𝑖 𝑗

𝑛∑
𝑞=1

𝑚∑
𝑖=1

𝑥𝑚𝑖𝑞

𝑗 = 1, . . . , 𝑛 (15.2)
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𝑟𝑢𝑗 = 𝑅𝑢 ×

𝑚∑
𝑖=1

𝑥𝑢𝑖 𝑗

𝑛∑
𝑞=1

𝑚∑
𝑖=1

𝑥𝑢𝑖𝑞

𝑗 = 1, . . . , 𝑛 (15.3)

Where 𝑅̃ = (𝑅𝑙 , 𝑅𝑚, 𝑅𝑢) is available amount of the new
fuzzy source.

3. Proposed model
Consider a bank manager with multiple branches. Sup-
pose some branches are rated as efficient and some as
inefficient with current inputs and outputs. A common
cost is now injected into all branches. The manager
of the bank in question intends to divide the fixed cost
among the branches in such a way that one of the ineffi-
cient branches becomes efficient, in addition to the fact
that the allocation made has a minimum distance from
the fair allocation.

Jahanshahloo et al. [39] proposed a formula to fair
allocation a new resource between DMUs. In the cur-
rent paper, we allocate the new resource between units
in such a way that in addition to the decision making
unit reaching its maximum efficiency, this allocation
has a minimum distance (| | | |∞) from the fair alloca-
tion. Here, the desired allocation and the fair allocation
are considered in the form of two vectors, and their dis-
tance is measured using | | | |∞. So the main idea of this
article is to add a new resource and allocate it among the
decision making units to meet the favorable conditions.
The meaning of favorable conditions is that:

1. The allocation should be done in such a way that
the considered unit achieves maximum efficiency
in the presence of the new source.

2. The allocation distance obtained from the fair allo-
cation should be minimized.

The advantage of this paper is that the presented mod-
els are linear. Another advantage of this article is that
in both crisp and fuzzy environments, it uses simultane-
ous fair allocation and maximizing the efficiency of the
desired unit. This is despite the fact that, as can be seen
in Table 1, none of the new researches in the field of re-
source allocation have focused on fuzzy data. So this
section consists of 2 parts. In the first part, we assume
that the values of inputs and outputs, as well as the new
source that we intend to allocate, are all crisp. In the
second part, we extend the models presented in the first
part to fuzzy mode.

3.1 New resource allocation method
Suppose 𝑛 decision-making units with 𝑚 inputs and 𝑠
outputs are evaluated. A new resource is now allocated
between units. It can be easily shown that since the
number of variables in fractional model (model (1)) in-
creases after the addition of a new source, the value of
the objective function, which is in fact the efficiency of
DMU𝑜, will not decrease. Therefore, it is clear that af-
ter the introduction of the new source into the model,

efficient units will remain efficient. But in the case of
inefficient units, a significant improvement in their effi-
ciency may occur with the introduction of a new source.
Now suppose DMU𝑜 is inefficient. (Model (16)) is the
fractional model for evaluation DMU𝑜 in presence of
the new source. Suppose 𝑘 is an existing value of the
new source. Also, 𝑣𝑚+1 is the related weight to this
source. 𝑎 𝑗 is also the new source share for DMU 𝑗 for
𝑗 = 1, . . . , 𝑛.

Maximize

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 + 𝑣𝑚+1𝑎𝑜

𝑆.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗 + 𝑣𝑚+1𝑎 𝑗

≤ 1, (16.1)

𝑗 = 1, ..., 𝑛
𝑛∑
𝑗=1

𝑎 𝑗 = 𝑘 (16.2)

𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 , 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠
𝑣𝑚+1 ≥ 𝜀

𝑎 𝑗 ≥ 0 , 𝑗 = 1, . . . , 𝑛

In Theorem 3.1 we prove that the optimal value of the
objective function of model 1 is equal to 1. In other
words, this proves that a new resource can be allocated
between units in such a way that an inefficient unit be-
comes efficient.

Theorem 3.1 For each inefficient unit, there is an allo-
cation of new resource that can convert it to an efficient
unit.

Proof. Suppose DMU𝑜 is evaluated as inefficient by
(model (1)) considering m inputs and s outputs. Also
assume that 𝑢∗ = (𝑢∗1, . . . , 𝑢∗𝑠), 𝑣∗ = (𝑣∗1, . . . , 𝑣∗𝑚) is
the optimal solution for model (1). Now considering
these assumptions, we construct a feasible solution with
a value of the objective function equal to 1 for Model
(16).

𝑢𝑟 =
𝑢∗𝑟

𝑠∑
𝑟=1

𝑢∗𝑟 𝑦𝑟𝑜

≥ 𝜀 , 𝑟 = 1, ..., 𝑠

𝑣𝑖 =
𝑣∗𝑖

𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

≥ 𝜀 , 𝑖 = 1, ..., 𝑚

𝑎 𝑗 =
𝑘

𝑛 − 1
≥ 𝜀 , 𝑗 = 1, ..., 𝑛; 𝑗 ≠ 𝑜

𝑎𝑜 = 0

Using the above definitions, the value of the objective
function of Model (16) is obtained 1 as follows:
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𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 + 𝑣𝑚+1𝑎𝑜

=

𝑠∑
𝑟=1

𝑢𝑟∗

𝑠∑
𝑟=1

𝑢∗𝑟 𝑦𝑟𝑜𝑦𝑟𝑜

𝑚∑
𝑖=1

𝑣∗𝑖
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜𝑥𝑖𝑜 + 𝑣𝑚+1 (0)

=

1
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟𝑜

𝑠∑
𝑟=1

𝑢∗𝑟 𝑦𝑟𝑜

1
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜 + 0
=

1
1
= 1

Constraint (16.2) is also established as follows:
𝑛∑
𝑗=1

𝑎 𝑗 =
𝑛∑

𝑗 = 1
𝑗 ≠ 𝑜

𝑎 𝑗 + 𝑎𝑜 =
𝑛∑

𝑗 = 1
𝑗 ≠ 𝑜

𝑘

𝑛 − 1
+ 0

= (𝑛 − 1)
(

𝑘

𝑛 − 1

)
= 𝑘

Now we need to get 𝑣𝑚+1 in such a way that constraint
(16.1) is established. Given that the value of the objec-
tive function is equal to 1, we conclude that the con-
straint (1.1) for 𝑗 = 𝑜 is binding. So it is sufficient to
check the constraint (16.1) for 𝑗 ≠ 𝑜.

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗 + 𝑣𝑚+1𝑎 𝑗

≤ 1 ( 𝑗 ≠ 𝑜)

so
𝑠∑

𝑟=1
𝑢𝑟 𝑦𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗 ≤ 𝑣𝑚+1𝑎 𝑗 ( 𝑗 ≠ 𝑜)

Then
𝑠∑

𝑟=1

𝑢∗𝑟
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟0

𝑦𝑟 𝑗 −
𝑚∑
𝑖=1

𝑣∗𝑖
𝑠∑

𝑖=1
𝑣∗𝑖 𝑥𝑖0

𝑥𝑖 𝑗 ≤ 𝑣𝑚+1𝑎 𝑗 ( 𝑗 ≠ 𝑜)

afterwards
𝑠∑

𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟𝑜

−
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

≤ 𝑣𝑚+1
𝑘

𝑛 − 1
( 𝑗 ≠ 𝑜)

According to that 𝑛−1
𝑘 > 0 we will have:

( 𝑛 − 1
𝑘

)
𝑠∑

𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟𝑜

−
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

≤ 𝑣𝑚+1 ( 𝑗 ≠ 𝑜)

as a result

𝑣𝑚+1 =
𝑛 − 1
𝑘

max
𝑗≠𝑜


𝑠∑

𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟𝑜

−
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜


It is necessary to explain that if
max 𝑗≠𝑜

{∑𝑠
𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗∑𝑠
𝑟=1 𝑢

∗
𝑟 𝑦𝑟𝑜

−∑𝑚
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗∑𝑚
𝑖=1 𝑣

∗
𝑖 𝑥𝑖𝑜

}
Thus

𝑠∑
𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟𝑜

𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

< 1 𝑗 ≠ 𝑜

So for every 𝑣𝑚+1 and 𝑎 𝑗 ≥ 0, the following inequality
holds:

𝑠∑
𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗
𝑠∑

𝑟=1
𝑢∗𝑟 𝑦𝑟𝑜

𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

+ 𝑣𝑚+1𝑎 𝑗

< 1 𝑗 ≠ 𝑜

As a result, constraint (16.1) is satisfied again. There-
fore, we consider 𝑣𝑚+1 as follows:

𝑣𝑚+1 = max
{
𝜀
𝑛 − 1
𝑘

max
𝑗≠𝑜

{
𝑠∑

𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗∑𝑠
𝑟=1 𝑢

∗
𝑟 𝑦𝑟𝑜

−
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗∑𝑚
𝑖=1 𝑣

∗
𝑖 𝑥𝑖𝑜

}}
> 0

Which 𝜀 is a non-Archimedean number. In this way, a
feasible solution with a value of objective function equal
to 1 for model (l6) is obtained:

𝑢𝑟 =
𝑢∗𝑟

𝑠∑
𝑟=1

𝑢∗𝑟 𝑦𝑟𝑜

≥ 𝜀 𝑟 = 1, ..., 𝑠

𝑣𝑖 =
𝑣∗𝑖

𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

≥ 𝜀 𝑖 = 1, ..., 𝑚

𝑎 𝑗 =
𝑘

𝑛 − 1
≥ 0 𝑗 = 1, ..., 𝑚

𝑎0 = 0
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𝑣𝑚+1 = max
{
𝜀
𝑛 − 1
𝑘

max
𝑗≠𝑜

{
𝑠∑

𝑟=1

𝑢∗𝑟 𝑦𝑟 𝑗∑𝑠
𝑟=1 𝑢

∗
𝑟 𝑦𝑟𝑜

−
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖 𝑗∑𝑚
𝑖=1 𝑣

∗
𝑖 𝑥𝑖𝑜

}}
> 0

Given that the value of the objective function for this fea-
sible solution is equal to 1, we conclude that this solu-
tion is actually the optimal solution ofmodel (l6). There-
fore we got an allocation of the new resource that turned
DMU𝑜 into an efficient unit. ■

Now we try to linearize model (16.2). Due to the fact
that 𝑣∗𝑚+1 > 0, we can divide the form and denominator
of the objective function as well as the constraint (16.1)
by 𝑣𝑚+1 > 0. Then, using Charnes and Cooper trans-
formation [31], model (16.2) turns in to the following
linear model:

Maximize
𝑠∑

𝑟=1
𝑢𝑟 𝑦𝑟𝑜 (17)

𝑆.𝑡.
𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 + 𝑎𝑜 = 1

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟 𝑗 −
𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗 − 𝑎 𝑗 ≤ 0 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎 𝑗 = 𝑘

𝑣𝑖 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠
𝑎 𝑗 ≥ 0, 𝑗 = 1, ..., 𝑛

The advantage of Model (17) over Model (16.1) is that
it is linear, in addition to having fewer variables. Given
the equivalence of models (16.1) and (17) and using
theorem 1, we can get the optimal value of the objec-
tive function model (17) equals to 1. Therefore, we use
Model (17) to find an allocation that turns an inefficient
unit into an efficient one, after the introduction of the
new source. However, the allocation obtained by Model
(17) may be unfair. That is, a large share of the new re-
source may be allocated to certain units, despite the fact
that these units may be small. Also a small share of
the new source may be allocated to large units. In or-
der to solve this problem, we change the model (17) in
such a way that in addition to making DMU𝑜 efficient, it
minimizes the desired allocation distance from the fair
allocation. The desired allocation distance with fair al-
location is measured by ∥ ∥∞. The following model is
presented for this purpose:

Minimize
(
Maximize

{��𝑎 𝑗 − 𝑟 𝑗
�� ; 𝑗 = 1, ..., 𝑛

})
𝑠.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟𝑜 −
𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 − 𝑎𝑜 = 0 (18)

𝑠∑
𝑟=1

𝑢𝑟 𝑦𝑟 𝑗 −
𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗 − 𝑎 𝑗 ≤ 0 , 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎 𝑗 = 𝑘

𝑣𝑖 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠
𝑎 𝑗 ≥ 0, 𝑗 = 1, ..., 𝑛

Where 𝑟 𝑗 is DMU 𝑗 share of the fair allocation derived
by Formula (15). Constraint (18) requires DMU𝑜 to be
efficient. The other constraints of this model are in fact
the same constraints of the Model (17). Therefore, con-
sidering the relationship between models (17) and (18),
clearly every optimal solution of model (17) is a feasible
solution of model (18). This is stated in Theorem 3.2.

Theorem 3.2 Model (18) is feasible.
Proof: According to Theorem 3.1, any optimal solution
of Model (17) is a feasible solution for Model (18). ■

To solve the model (18), suppose that 𝛼 =
max

{
|𝑎 𝑗 − 𝑟 𝑗 | ; 𝑗 = 1, ..., 𝑛

}
, Therefore, we will have

the following 𝑛 inequalities:

𝛼 ≥ |𝑎 𝑗 − 𝑟 𝑗 | ; 𝑗 = 1, ..., 𝑛

as a result

−𝛼 ≤ 𝑎 𝑗 − 𝑟 𝑗 ≤ 𝛼 ; 𝑗 = 1, ..., 𝑛

The above inequalities can be written as follows:

𝑎 𝑗 − 𝛼 ≤ 𝑟 𝑗 ; 𝑗 = 1, ..., 𝑛

𝑎 𝑗 + 𝛼 ≥ 𝑟 𝑗 ; 𝑗 = 1, ..., 𝑛
Therefore, considering the objective function of

model (18) as (min 𝛼) and adding the above (2𝑛) con-
straints, model (18) can be solved as a linear program-
ming problem.

3.2 New resource allocation on fuzzy data
Many real problems in this world do not have crisp data.
This prompted us to extend the model presented in the
previous section (model (18)) to fuzzy data mode. In
this section we assume that all inputs and outputs as
well as the new source added to the problem are fuzzy
triangular numbers. Suppose 𝑛 decision making units
are evaluated with 𝑚 and 𝑠 inputs and outputs, respec-
tively. In this article, we consider fuzzy numbers to
be triangular. Thus, suppose 𝑥𝑖 𝑗 = (𝑥𝑙𝑖 𝑗 , 𝑥𝑚𝑖 𝑗 , 𝑥𝑢𝑖 𝑗 ) and
𝑦̃𝑟 𝑗 = (𝑦𝑠𝑙𝑟 𝑗 , 𝑦𝑚𝑟 𝑗 , 𝑦𝑢𝑟 𝑗 ) are the ith input and the rth out-
put of DMU 𝑗 , respectively for 𝑗 = 1, . . . , 𝑛. Here, the
models presented in [29] are used to evaluate the effi-
ciency of units. Therefore, the efficiency of each unit
will be obtained as a triangular fuzzy number. Sup-
pose 𝜃∗𝑜 = [𝜃∗𝑙𝑂, 𝜃

∗𝑚
𝑂 , 𝜃∗𝑢𝑂 ] is the efficiency obtained for

DMU𝑜. But the reason for using the Wang et al model
is that the same production possibility set is used to cal-
culate 𝜃∗𝑙𝑂, 𝜃

∗𝑚
𝑂 and 𝜃∗𝑢𝑂 .

Now a new fuzzy source comes into play. The pur-
pose is to investigate the effect of adding a new resource
on efficiency of DMU𝑜. As mentioned in section 3.1, af-
ter adding a new source to the problem, the efficiency of
any of decision making units will not decrease. There-
fore, if 𝜂∗𝑜 = [𝜂∗𝑙𝑂, 𝜂

∗𝑚
𝑂 , 𝜂∗𝑢𝑂 ] is the efficiency of DMU𝑜

after adding the new source, then the following inequal-
ity will be satisfied.

𝜂∗𝑜 ≥ 𝜃∗𝑜 ⇔ [𝜂∗𝑙𝑂, 𝜂
∗𝑚
𝑂 , 𝜂∗𝑢𝑂 ] ≥ [𝜃∗𝑙𝑂, 𝜃

∗𝑚
𝑂 , 𝜃∗𝑢𝑂 ]

⇔


𝜂∗𝑙𝑂 ≥ 𝜃∗𝑙𝑂
𝜂∗𝑚𝑂 ≥ 𝜃∗𝑚𝑂
𝜂∗𝑢𝑂 ≥ 𝜃∗𝑢𝑂
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We are now looking for an allocation of the new source
that firstly maximizes the efficiency of DMU𝑜 and sec-
ondly minimizes the resulting allocation distance rela-
tive to the fair allocation. To get the maximum effi-
ciency of DMU𝑜 after adding a new source to the prob-
lem, we solve the following fractional model:

Maximize

𝑠∑
𝑟=1

𝑢𝑟 𝑦̃𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖𝑜 + 𝑣𝑚+1𝑎̃𝑜

(19)

𝑆.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦̃𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥𝑖 𝑗 + 𝑣𝑚+1𝑎̃ 𝑗

≤ 1, 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎̃ 𝑗 = 𝑘̃

𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 , 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠
𝑣𝑚+1 ≥ 𝜀

𝑎̃ 𝑗 ≥ (0, 0, 0) , 𝑗 = 1, ..., 𝑛

Where𝑘̃ = (𝑘 𝑙 , 𝑘𝑚, 𝑘𝑢) is the existing amount of the
new fuzzy source added to the problem and 𝑎̃ 𝑗 =
(𝑎𝑙𝑗 , 𝑎𝑚𝑗 , 𝑎𝑢𝑗 ) is the amount of that resource that is as-
signed to DMU 𝑗 . To solve the above fuzzy model, we
use the method of [29]. So the following three crisp
models must be solved. These models are solved for
each of the units of interest to the manager, which can
certainly be any of the decision-making units. Of course,
considering that the efficient units will remain efficient
after adding fixed cost to the system, these models are
specially considered for inefficient units

𝜂∗𝑙0 = Maximize

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 + 𝑣𝑚+1𝑎

𝑢
𝑜

(20)

𝑠.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 + 𝑣𝑚+1𝑎

𝑙
𝑗

≤ 1, 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠
𝑣𝑚+1 ≥ 𝜀

𝜂∗𝑚0 = Maximize

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑚
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜 + 𝑣𝑚+1𝑎

𝑚
𝑜

(21)

𝑠.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 + 𝑣𝑚+1𝑎

𝑙
𝑗

≤ 1 , 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠
𝑣𝑚+1 ≥ 𝜀

𝜂∗𝑢0 = Maximize

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑜 + 𝑣𝑠𝑚+1𝑎

𝑙
𝑜

(22)

𝑆.𝑡.

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 + 𝑣𝑚+1𝑎

𝑙
𝑗

≤ 1, 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠
𝑣𝑚+1 ≥ 𝜀

Theorem 3.3 a) Models (20), (21) and (22) are fea-
sible.

b) Consider 𝑛 decision making units with 𝑚 inputs
and 𝑠 outputs. Also assume 𝑥𝑖 𝑗 = (𝑥𝑙𝑖 𝑗 , 𝑥𝑚𝑖 𝑗 , 𝑥𝑢𝑖 𝑗 )
and 𝑦̃𝑟 𝑗 = (𝑦𝑙𝑟 𝑗 , 𝑦𝑚𝑟 𝑗 , 𝑦𝑢𝑟 𝑗 ) are the ith input and
the 𝑟th output of DMU 𝑗 , respectively for 𝑗 =
1, . . . , 𝑛. Suppose 𝜃∗𝑜 = [𝜃∗𝑙𝑂, 𝜃

∗𝑚
𝑂 , 𝜃∗𝑢𝑂 ] is effi-

ciency of DMU𝑜 obtained by solving models (12),
(13) and (14). A new fuzzy source now enters the
problem as 𝑘̃ = (𝑘 𝑙 , 𝑘𝑚, 𝑘𝑢), and models (20),
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(21) and (22) are solved in presence of the new
source in order to evaluation DMU𝑜. Assume that
the 𝜂∗𝑜 = [𝜂∗𝑙𝑂, 𝜂

∗𝑚
𝑂 , 𝜂∗𝑢𝑂 ] is efficiency of DMU𝑜 in

the presence of the new source obtained by solving
models (20) ,(21) and (22) then [𝜂∗𝑙𝑂, 𝜂

∗𝑚
𝑂 , 𝜂∗𝑢𝑂 ] ≥

[𝜃∗𝑙𝑂, 𝜃
∗𝑚
𝑂 , 𝜃∗𝑢𝑂 ].

c) With the same assumptions of part (b),The opti-
mal value of the objective function of model (22)
is equal to one. that’s mean 𝜂∗𝑢𝑂 = 1.

Proof. Suppose (𝑢∗, 𝑣∗) is the optimal solution ofmodel
(14). The following solution would be a feasible solu-
tion of Models (20), (21) and (22):

𝑣𝑖 =
𝑣∗𝑖

𝑚∑
𝑖=1

𝑣∗𝑖 𝑥𝑖𝑜

≥ 𝜀 , 𝑖 = 1, ..., 𝑚

𝑢𝑟 =
𝑢∗𝑟

𝑠∑
𝑟=1

𝑢∗𝑟 𝑦𝑟𝑜

≥ 𝜀 , 𝑟 = 1, ..., 𝑠

𝑎𝑙𝑗 =
𝑘 𝑙

𝑛 − 1
≥ 0 , 𝑗 = 1, ..., 𝑛 ; 𝑗 ≠ 𝑜

𝑎𝑚𝑗 =
𝑘𝑚

𝑛 − 1
≥ 0 , 𝑗 = 1, ..., 𝑛 ; 𝑗 ≠ 𝑜

𝑎𝑢𝑗 =
𝑘𝑢

𝑛 − 1
≥ 0 , 𝑗 = 1, ..., 𝑛 ; 𝑗 ≠ 𝑜

𝑎𝑙𝑜 = 𝑎𝑚𝑜 = 𝑎𝑢𝑜 = 0

𝑣𝑚+1 = max

{
𝜀,

𝑛 − 1
𝑘 𝑙

max
𝑗≠𝑜

{
𝑠∑

𝑟=1

𝑢∗𝑟 𝑦
𝑢
𝑟 𝑗∑𝑠

𝑟=1 𝑢
∗
𝑟 𝑦

𝑢
𝑟𝑜

−
𝑚∑
𝑖=1

𝑣∗𝑖 𝑥
𝑙
𝑖 𝑗∑𝑚

𝑖=1 𝑣
∗
𝑖 𝑥

𝑙
𝑖𝑜

}}
> 0

It should be noted that themethod of obtaining the above
solution is similar to Theorem 3.1. Also the value of
the objective function of the model (22) for the above
answer is equal to 1. as a result 𝜂∗𝑢𝑂 = 1. Thus, parts
(a) and (c) of the theorem were proved. Now let’s prove
part (b). According to 𝜂∗𝑢𝑂 = 1 , it is clear that 𝜂∗𝑢𝑂 ≥ 𝜃∗𝑢𝑂 .
Now suppose (𝑢∗, 𝑣∗) is the optimal solution of model
(12). The following solution is feasible for model (20):

𝑢𝑟 = 𝑢∗𝑟 ≥ 𝜀 𝑟 = 1, ..., 𝑠
𝑣𝑖 = 𝑣∗𝑖 ≥ 𝜀 𝑖 = 1, ..., 𝑚

𝑎𝑙𝑗 =
𝑘 𝑙

𝑛 − 1
≥ 0 𝑗 = 1, ..., 𝑛 ; 𝑗 ≠ 𝑜

𝑎𝑚𝑗 =
𝑘𝑚

𝑛 − 1
≥ 0 𝑗 = 1, ..., 𝑛 ; 𝑗 ≠ 𝑜

𝑎𝑢𝑗 =
𝑘𝑢

𝑛 − 1
≥ 0 𝑗 = 1, ..., 𝑛 ; 𝑗 ≠ 𝑜

𝑎𝑙𝑜 = 𝑎𝑚𝑜 = 𝑎𝑢𝑜 = 0
𝑣𝑚+1 = 𝜀 > 0

Where 𝜀 is a non-Archimedean number. The value of
the objective function of model (20) for above solution
is equal to the optimal value of the objective function of

𝜃∗𝑙𝑂. As a result 𝜂∗𝑙𝑂 ≥ 𝜃∗𝑙𝑂. The same can be said about
the relationship betweenmodels (13) and (21), therefore
𝜂∗𝑚𝑂 ≥ 𝜃∗𝑚𝑂 . Thus [𝜂∗𝑙𝑂, 𝜂

∗𝑚
𝑂 , 𝜂∗𝑢𝑂 ] ≥ [𝜃∗𝑙𝑂, 𝜃

∗𝑚
𝑂 , 𝜃∗𝑢𝑂 ]. ■

Models (20), (21) and (22) are nonlinear. To linearize
these models, we divide the face and denominator of the
objective functions and fractional constraints by 𝑣𝑚+1,
then use the Charnes-Cooper transformation. In this
way, 3 linear models are obtained as follows:

𝜂∗𝑙0 = Maximize
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑙
𝑟𝑜 (23)

𝑆.𝑡.
𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 + 𝑎𝑢𝑜 = 1

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 − 𝑎𝑙𝑗 ≤ 0 , 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠

𝜂∗𝑚0 = Maximize
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑚
𝑟𝑜 (24)

𝑆.𝑡.
𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜 + 𝑎𝑚𝑜 = 1

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 − 𝑎𝑙𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠

𝜂∗𝑢0 = Maximize
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑢
𝑟𝑜 (25)

𝑆.𝑡.
𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑜 + 𝑎𝑙𝑜 = 1

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 − 𝑎𝑙𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛
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𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀, 𝑖 = 1, ..., 𝑚, 𝑟 = 1, ..., 𝑠

Similar to that described in Section 3.1, the allocations
obtained by models (23), (24), and (25) may be far from
fair allocation. Therefore, models are presented here,
minimize the resulting allocation distance to fair allo-
cation in addition to maximizing the efficiency of the
decision making unit in question.

Minimiz
(
Maximize

{���𝑎𝑙𝑗 − 𝑟 𝑙𝑗

��� , ���𝑎𝑚𝑗 − 𝑟𝑚𝑗

��� , (26)���𝑎𝑢𝑗 − 𝑟𝑢𝑗

��� ; 𝑗 = 1, ..., 𝑛
})

𝑆.𝑡.
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑙
𝑟𝑜 − (𝜂∗𝑙0 )

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 − 𝜂∗𝑙0 𝑎

𝑢
𝑜 = 0

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 − 𝑎𝑙𝑗 ≤ 0, 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠

Model (26) can be converted into linear models similar
to themethod that explained before, formodel (18). Sup-
pose that 𝛼 = max{|𝑎𝑙𝑗 − 𝑟 𝑙𝑗 |, |𝑎𝑚𝑗 − 𝑟𝑚𝑗 |, |𝑎𝑢𝑗 − 𝑟𝑢𝑗 | ; 𝑗 =
1, ..., 𝑛}. Therefore, we will have the following 3 × 𝑛
inequalities:

𝛼 ≥ |𝑎𝑙𝑗 − 𝑟 𝑙𝑗 | ; 𝑗 = 1, ..., 𝑛
𝛼 ≥ |𝑎𝑚𝑗 − 𝑟𝑚𝑗 | ; 𝑗 = 1, ..., 𝑛
𝛼 ≥ |𝑎𝑢𝑗 − 𝑟𝑢𝑗 | ; 𝑗 = 1, ..., 𝑛

as a result

−𝛼 ≤ 𝑎𝑖𝑗 − 𝑟 𝑖𝑗 ≤ 𝛼; 𝑖 = 𝑙, 𝑚, 𝑢; 𝑗 = 1, ..., 𝑛

The above inequalities can be written as follows:

𝑎𝑖𝑗 − 𝛼 ≤ 𝑟 𝑖𝑗 ; 𝑖 = 𝑙, 𝑚, 𝑢; 𝑗 = 1, ..., 𝑛

𝑎𝑖𝑗 + 𝛼 ≥ 𝑟 𝑖𝑗 ; 𝑖 = 𝑙, 𝑚, 𝑢; 𝑗 = 1, ..., 𝑛

Therefore, considering the objective function of model
(26) as (min 𝛼) and adding the above (6*n) constraints,
model (26) can be solved as a linear programming prob-
lem. In the same way, models (27) and (28) can also be
converted into linear programming models.

The first constraint of model (26) implies: 𝜂𝑙0 = 𝜂∗𝑙0 ,
because:

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜 − (𝜂∗𝑙0 )

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 − 𝜂∗𝑙0 𝑎

𝑢
𝑜 = 0

⇔
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑙
𝑟𝑜 = (𝜂∗𝑙0 )

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 + 𝜂∗𝑙0 𝑎

𝑢
𝑜

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜 = (𝜂∗𝑙0 )(

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 + 𝑎𝑢𝑜)

⇔

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑙
𝑟𝑜

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑜 + 𝑎𝑢𝑜

= 𝜂∗𝑙0 ⇔ 𝜂𝑙0 = 𝜂∗𝑙0

The other constraints of this model (26) are the same
as the constraints of model (23). Therefore, by solving
model (26), we can find an allocation of the new source
that in addition to maximizing 𝜂𝑙0, the distance (using
∥ ∥∞.) of the allocation obtained from the fair alloca-
tion is minimized. Similarly, models (27) and (28) are
presented in order to obtain allocations with a minimum
distance from the fair allocation that lead to maximum
efficiency ( 𝜂∗𝑚0 and 𝜂∗𝑢0 = 1).

Minimize
(
Maximize

{���𝑎𝑙𝑗 − 𝑟 𝑙𝑗

��� , ���𝑎𝑚𝑗 − 𝑟𝑚𝑗

��� , (27)���𝑎𝑢𝑗 − 𝑟𝑢𝑗

��� ; 𝑗 = 1, ..., 𝑛
})

𝑆.𝑡.
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑚
𝑟𝑜 − (𝜂∗𝑚0 )

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖𝑜 − 𝜂∗𝑚0 𝑎𝑚𝑜 = 0

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 − 𝑎𝑙𝑗 ≤ 0 , 𝑗 = 1, ..., 𝑛

𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠

Minimize
(
Maximize

{���𝑎𝑙𝑗 − 𝑟 𝑙𝑗

��� , ���𝑎𝑚𝑗 − 𝑟𝑚𝑗

��� , (28)���𝑎𝑢𝑗 − 𝑟𝑢𝑗

��� ; 𝑗 = 1, ..., 𝑛
})

𝑆.𝑡.
𝑠∑

𝑟=1
𝑢𝑟 𝑦

𝑢
𝑟𝑜 − (1)

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑜 − 1𝑎𝑙𝑜 = 0

𝑠∑
𝑟=1

𝑢𝑟 𝑦
𝑢
𝑟 𝑗 −

𝑚∑
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖 𝑗 − 𝑎𝑙𝑗 ≤ 0 , 𝑗 = 1, ..., 𝑛
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𝑛∑
𝑗=1

𝑎𝑙𝑗 = 𝑘 𝑙

𝑛∑
𝑗=1

𝑎𝑚𝑗 = 𝑘𝑠𝑚

𝑛∑
𝑗=1

𝑎𝑢𝑗 = 𝑘𝑢

0 ≤ 𝑎𝑙𝑗 ≤ 𝑎𝑚𝑗 ≤ 𝑎𝑢𝑗 , 𝑗 = 1, ..., 𝑛
𝑣𝑖 , 𝑢𝑟 ≥ 𝜀 𝑖 = 1, ..., 𝑚 , 𝑟 = 1, ..., 𝑠

Similar to model (26), Models (27) and (28) can also
be converted into linear programming. Obviously, in
model (28), 1 is placed instead of 𝜂∗𝑢𝑜 .

Therefore, our main models in this article are models
(26), (27) and (28). Of course, it should be noted that to
solvemodels (26) and (27), solvingmodels (23) and (24)
is necessary to obtain the values of 𝜂∗𝑙𝑜 and 𝜂∗𝑚𝑜 . In the
next section, we will show the application of the above-
mentioned models by providing examples.

4. Illustrative Examples
In this section, by providing two examples, we show
the application of the models presented in the previous
section. In first example, 12 units with 3 inputs and 2
outputs (Table 1) are considered. This data has already
been used in [32, 3, 4, 40, 39]. The data of second exam-
ple (Table 3) are taken from [29].This data is related to a
performance assessment problem in China where eight
manufacturing enterprises (DMU𝑠) are to be evaluated
in terms of two inputs and two outputs.

Example 4.1 In this example, we evaluate the perfor-
mance of the units in Table 1 in the presence of 3 in-
puts and 2 outputs mentioned. As we can see in the last
column of Table 1, DMU4, DMU5, DMU8, DMU9 and
DMU12 are efficient.

A fixed cost is now added to the problem in the form of
a new input. Like Beasley [7], consider the fixed cost to
be 100. Fair allocation of fixed cost mentioned is shown
in Table 2 (by formula (15). We now use model (18) to
obtain the fixed cost allocation (=100). As discussed in
detail in Section 3, the resulting allocation is such that
it has the minimum possible distance from a fair alloca-
tion and can convert a particular inefficient unit into an
efficient unit. We solve model (18) for DMU𝑜=DMU1,
DMU11. The results of solving model (18) for DMU1
and DMU11 are shown in Table 2. After allocating the
fixed cost, the efficiency of all units is calculated again
and the results are given in Table 2. In the last row of
this table, the minimum distance of the obtained allo-
cations to the fair allocation (the optimal value of the
objective function of model (18)) is given. It should
be noted that the executions in this table are rounded
to 2 decimal places. From the results of this table, it
is clear that, as we expected, after the new allocation,
the intended unit has become efficient and the efficiency
of other units has not decreased. But the other result

is that the allocation distance obtained from the fair al-
location for DMU𝑜=DMU1 (1.14) is less than the ob-
tained allocation distance relative to the fair allocation
for DMU𝑜=DMU11 (3.69). This shows that in order to
make DMU1 efficient, we need to violate fairness more
than to make DMU11 efficient.

Example 4.2 The data in Table 3 are taken from [29].
This data is related to a performance assessment prob-
lem in China where eight manufacturing enterprises
(DMUs) are to be evaluated in terms of two inputs and
two outputs. Table 4 shows the efficiency of these units
obtained using Models (12), (13) and (14).

Now the new fuzzy source 𝑅̃ = (𝑅𝑙 , 𝑅𝑚, 𝑅𝑢) =
(15000, 16000, 16500) enters the problem. Now, using
models (23), (24) and (25), the new source is allocated
between units in such a way that lower bound, middle
value and upper bound of DMU′

𝑜s efficiency is maxi-
mized, respectively. The results of solving models (23),
(24) and (25) are given in Table 5. It should be noted that
the performance measures in Table 5 are cut from the
seventh decimal point onwards. Because if they were
rounded up, models (26), (27) and (28) would be infea-
sible. Looking closely at this table, we find that the ef-
ficiency measures are greater than or equal to the effi-
ciency measures in Table 4, in addition to the fact that
the upper bound of the efficiency size is 1 for all deci-
sion making units due to the allocation of new source.
But as mentioned in Section 4, the allocation obtained
to achieve maximum efficiency may be a long way from
a fair allocation. For example, allocating the new re-
source that results in maximum upper bound efficiency
for DMU H (𝜂∗𝑢8 = 1) is shown in Table 6, which is a
long way from fair allocation. The fair allocation ob-
tained from Formula (15.1), (15.2) and (15.3) is given
in the Table 7. Now we solve model 28 to obtain the
allocation with minimum distance from the fair alloca-
tion to achieve 𝜂∗𝑢8 = 1. The result is as follows: The
distance of allocation obtained in Table 8 to the fair allo-
cation is 109. Now it is time to solve models (26), (27)
and (28) for all of the DMUs. These models give us allo-
cations of the new source that, in addition to achieving
maximum efficiency, have a minimum distance from the
fair allocation. Results of solving the mentioned models
are shown in Table 9. Table 9 shows the minimum al-
location distance obtained by solving models (26), (27)
and (28) that resulted inmaximum (lower bound, middle
value or upper bound) of DMU′

𝑜𝑠 efficiency: In Table 9,
the decimal part of the numbers is omitted. The results
of Table 9 show:

The minimum allocation distance relative to the fair
allocation for unit B (related to 𝜂𝑙𝑜 = 𝜂∗𝑙𝑜 ) is zero. It
can be seen in Table 4, Unit B has the maximum lower
bound efficiency before the new resource is added.

1. The minimum allocation distance relative to the
fair allocation for unit B (related to 𝜂𝑚𝑜 = 𝜂∗𝑚𝑜 )
is zero. It can be seen in Table 4, Unit B has the
maximum middle value efficiency before the new
resource is added.
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Table 1. TABLE I Data of example1

DMU Input1 Input2 Input3 Output1 Output2 Original CCR efficiency
DMU1 350 39 9 67 751 0.7567
DMU2 298 26 8 73 611 0.9230
DMU3 422 31 7 75 584 0.7470
DMU4 281 16 9 70 665 1.0000
DMU5 301 16 6 75 445 1.0000
DMU6 360 29 17 83 1070 0.9612
DMU7 540 18 10 72 457 0.8604
DMU8 276 33 5 78 590 1.0000
DMU9 323 25 5 75 1074 1.0000
DMU10 444 64 6 74 1072 0.8318
DMU11 323 25 5 25 350 0.3333
DMU12 444 64 6 104 1199 1.0000

Table 2. Fair allocation and result of solving model (18) for DMU𝑜 =DMU1, DMU11

Solving model (18) for
DMU𝑜=DMU1

Solving model (18)
DMU𝑜=DMU11

DMU Fair allocation Efficiency after Allocation Efficiency after
allocation allocation allocation

DMU1 8.22 7.08 1.0000 8.09 1.0000
DMU2 6.86 7.61 0.9500 7.10 1.0000
DMU3 9.50 8.36 0.8800 6.93 1.0000
DMU4 6.32 7.46 1.0000 7.46 1.0000
DMU5 6.67 7.07 1.0000 5.78 1.0000
DMU6 8.39 9.07 1.0000 11.18 1.0000
DMU7 11.73 10.59 0.8600 8.04 0.8600
DMU8 6.49 7.63 1.0000 7.07 1.0000
DMU9 7.29 8.43 1.0000 10.98 1.0000
DMU10 10.62 9.48 0.8900 10.94 1.0000
DMU11 7.29 6.15 0.4500 3.60 1.0000
DMU12 10.62 11.06 1.0000 12.83 1.0000
Min distance from
fair allocation:

1.14 3.69

Table 3. Data of example 2 [36]

Enterprises Inputs Outputs
(DMU𝑠) MC NOE GOV PQ
A (2120, 2170, 2210) 1870 (14500, 14790, 14860) (3.1, 4.1, 4.9)
B (1420, 1460, 1500) 1340 (12470, 12720, 12790) (1.2, 2.1, 3.0)
C (2510, 2570, 2610) 2360 (17900, 18260, 18400) (3.3, 4.3, 5.0)
D (2300, 2350, 2400) 2020 (14970, 15270, 15400) (2.7, 3.7, 4.6)
E (1480, 1520, 1560) 1550 (13980, 14260, 14330) (1.0, 1.8, 2.7)
F (1990, 2030, 2100) 1760 (14030, 14310, 14400) (1.6, 2.6, 3.6)
G (2200, 2260, 2300) 1980 (16540, 16870, 17000) (2.4, 3.4, 4.4)
H (2400, 2460, 2520) 2250 (17600, 17960, 18100) (2.6, 3.6, 4.6)
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Table 4. Results of solving models (12), (13) and (14)

Enterprises (DMU𝑠) Lower bound Middle value Upper bound
A 0.8124 0.9033 1.0000
B 0.9750 0.9945 1.0000
C 0.7946 0.8122 0.9045
D 0.7764 0.8050 0.9070
E 0.9603 0.9872 1.0000
F 0.8352 0.8518 0.8852
G 0.8752 0.8927 0.9457
H 0.8195 0.8363 0.8864

Table 5. Results of solving models (23), (24) and (25)

DMU 𝜂∗𝑙𝑜 𝜂∗𝑚𝑜 𝜂∗𝑢𝑜
A 0.9758 0.9953 1.0000
B 0.9750 0.9945 1.0000
C 0.9728 0.9924 1.0000
D 0.9721 0.9916 1.0000
E 0.9756 0.9951 1.0000
F 0.9743 0.9937 1.0000
G 0.9729 0.9924 1.0000
H 0.9724 0.9923 1.0000

Table 6. allocating the new resource that results in maximum upper bound efficiency for 𝐷𝑀𝑈𝐻

DMU 𝑗 𝑎𝑙𝑗 𝑎𝑚𝑗 𝑎𝑢𝑗
𝐴 14999.687431 15999.687431 16499.687431
𝐵 0.114963 0.114963 0.114963
𝐶 0.000000 0.000000 0.000000
𝐷 0.000000 0.000000 0.000000
𝐸 0.175046 0.175046 0.175046
𝐹 0.000000 0.000000 0.000000
𝐺 0.022560 0.022560 0.022560
𝐻 0.000000 0.000000 0.000000

Table 7. Fair allocation by formula (15.1), (15.2) and (15.3)

DMU 𝒓𝒍𝒋 𝒓𝒎𝒋 𝒓𝒖𝒋
A 1896.988906 2023.161189 2082.276523
B 1312.202853 1402.190923 1449.427776
C 2315.372425 2468.85759 2536.498608
D 2053.882726 2188.419405 2255.799567
E 1440.570523 1537.402191 1587.225487
F 1782.884311 1897.965571 1969.996907
G 1987.321712 2123.317684 2184.348902
H 2210.776545 2358.685446 2434.42623

 https://doi.org/10.57647/mathsci.2025.1901.04

https://doi.org/10.57647/mathsci.2025.1901.04


Samanta et al., Math. Sci 19 (1) 2025 15

Table 8. Result of solving model (28) for 𝜂∗𝑢
8 = 1

DMU 𝑗 𝑎𝑙𝑗 𝑎𝑚𝑗 𝑎𝑢𝑗
𝐴 2006.672045 2006.672045 2006.672045
𝐵 1421.885992 1421.885992 1421.885992
𝐶 2217.096469 2432.213859 2601.993067
𝐷 2139.119182 2146.116428 2146.116428
𝐸 1427.297189 1647.085330 1696.908626
𝐹 1673.201172 2007.648710 2007.648710
𝐺 2013.634545 2013.634545 2294.032041
𝐻 2101.093406 2324.743091 2324.743091

Table 9. Result of solving model (26), (27) and (28) for all of the DMUs

DMU A B C D
Minimum allocation distance to fair allocation 𝜼𝒍𝒐 = 𝜼

∗𝒍
𝒐 303 0 333 411

𝜼𝒎𝒐 = 𝜼∗𝒎𝒐 259 0 271 344
𝜼𝒖𝒐 = 𝜼∗𝒖𝒐 0 0 104 102

DMU E F G H
Minimum allocation distance to fair allocation 𝜼𝒍𝒐 = 𝜼

∗𝒍
𝒐 73 260 217 271

𝜼𝒎𝒐 = 𝜼∗𝒎𝒐 48 224 189 238
𝜼𝒖𝒐 = 𝜼∗𝒖𝒐 0 117 58 109

2. The minimum allocation distance relative to the
fair allocation for units A, B and E (related to
𝜂𝑢𝑜 = 𝜂∗𝑢𝑜 ) is zero. It can be seen in Table 1, Units A,
B and E have the maximum upper bound efficiency
before the new resource is added.

5. Comparative Analysis With Existing
Approaches

Figure 1 compares the fair allocation with the alloca-
tions produced by the proposed model when targeting
(i) DMU1 and (ii) DMU11 for efficiency improvement.
The grouped bars show how the proposed allocations
deviate from fairness across all 12 DMU𝑠 . Consistent
with the results, the L1 distance from fairness is 1.14
(target=DMU1) and 3.69 (target=DMU11), while both
targeted units become efficient and other units do not
lose efficiency.

Figure 3 summarizes the minimum distance to
fair allocation achieved by the three fuzzy variants—
maximizing lower bound (Model 26), middle value
(Model 27), and upper bound (Model 28)—for DMUs
A–H. This highlights the fairness–efficiency trade-off
across targets; e.g., B attains zero distance for LB and
MV cases, reflecting that it already had high baseline
bounds. Figure 2 plots the post-allocation efficiencies
for both targeting strategies. As reported in our paper,
targeting DMU1 and DMU11 each ensures DMUo be-
comes efficient (θ=1); non-targets maintain or improve
efficiency, aligning with the linear model’s guarantee.

Table 10 (summary).

• Cook & Kress (1999) emphasize fairness via
axioms (efficiency-invariance, Pareto-minimality)
but do not guarantee making a chosen inefficient

DMU efficient.

• Cook & Zhu (2005) distribute shared costs fairly
via DEA but are not designed to force a specific
DMU to efficiency.

• Beasley (2003) maximizes average performance
but may suffer infeasibility and lacks explicit
fairness-distance control.

• Jahanshahloo et al. (2004; 2017) develop common-
weights / efficiency-invariance schemes; strong on
fairness invariance, not DMU-targeted.

• Lin&Chen (2017) treat fixed cost as a complement
to inputs; fairness distance not optimized.

• Network/two-stage works (e.g., Yu et al., Li et al.,
Zhu et al.) extend allocation to internal processes;
they balance network fairness/efficiency but do not
minimize fairness distance nor target a specific
DMU’s efficiency.

• Game-theoretic allocations (e.g., Shapley/Nucleo-
lus in Feng&Ramos, 2024) are fairness-principled
but not integrated with DEA’s targeted efficiency
guarantee.

• This work (proposed) uniquely guarantees an inef-
ficient DMU becomes efficient and minimizes dis-
tance to fair allocation in both crisp and fuzzy con-
texts, with linear solvability; the main limitation is
that it targets one DMU per solve, requiring multi-
ple solves for multiple targets.
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Figure 1. Allocations at different DMUs

Table 10. contrasts our framework with representative approaches in the literature on key capabilities—targeted efficiency guarantee, fairness control,
explicit distance minimization, fuzzy support, and linearity—and notes typical limitations

Approach Guarantees
targeted DMU
becomes effi-
cient?

Fairness
criterion con-
trolled?

Minimizes
distance to
fair alloca-
tion?

Supports
fuzzy
data?

Linearity
/ LP?

Notable limitations

Cook & Kress
(1999) [3]

No Yes (axioms) No (im-
plicit only)

No Yes Focus on fairness; does
not guarantee inefficient
DMU becomes efficient

Cook & Zhu
(2005) [4]

No Yes No No Yes Shared costs via DEA;
not designed to force spe-
cific DMU efficiency

Beasley (2003)
[6]

No Indirect No No Nonlinear May face infeasibility;
optimizes mean per-
formance not fairness
distance

Jahanshahloo et
al. (2004/2017)
[39, 8]

No Yes (common
weights)

No No Yes Emphasizes efficiency
invariance; not DMU-
targeted

Lin & Chen
(2017) [10]

No Complement
input

No No DEA-
based

Treats fixed cost as input
complement; no fairness-
distance control

Yu et al. (2016)
[11]

No Yes (network) No No DEA-
based

Network focus; no DMU-
targeted efficiency guar-
antee

Li et al. (2018)
[13]-[16]

No Various No No Mixed Cross-efficiency/game
variants; not fairness-
distance minimizing

Feng & Ramos
(2024) [20]

No Yes (Shap-
ley/Nucleo-
lus)

Partially No Varies Game allocations; not in-
tegrated with DEA effi-
ciency targets

This work (pro-
posed)

Yes (guaran-
teed)

Yes Yes (ex-
plicit L1)

Yes (tri-
angular
fuzzy)

Yes (lin-
earized)

One DMU targeted per
solve (solve multiple
times for many)
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Figure 2. Efficiency of DMUs after allocations

Figure 3. Minimum distances to fair allocations
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6. Conclusion
In many papers, fixed cost allocation between units has
been discussed. In each of the papers presented in this
regard, the authors pursue a specific purpose of this allo-
cation. In this paper, we want this allocation to be such
that a specific inefficient unit becomes efficient. The
reason for this idea may be that a central decision maker
may pay special attention to some inefficient units in
such a way that he wants to turn them into efficient units.
In addition, in order to have an allocation as fair as pos-
sible, the objective function of the model is such that
the resulting allocation has the minimum possible dis-
tance from the fair allocation. In the following, due to
the widespread use of fuzzy data in applied Sciences,
the proposed model is generalized to the case where in-
puts and outputs are fuzzy. The advantage of the models
presented in this article is their linearity, which makes
them much easier to use. In addition, no articles on the
subject have been published so far.

But the disadvantage of the method presented in this
paper is that the proposed model turns only one ineffi-
cient unit into an efficient one. So the proposed model
must be solved separately for each inefficient unit and
each time it will provide a different allocation than be-
fore. Therefore an interesting idea that could be the
subject of future research is to generalize the models in
which several inefficient units become efficient at the
same time.
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