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Abstract

Determining the lithostratigraphic provenance of limestone artefacts is challenging. We
addressed the issue by analysing Roman stone artefacts, where previously traditionalpetro-
logical methods failed to identify the provenance of 72% of the products due to the pre-
dominance of micrite limestone. We applied statistical classification methods to 15 artefacts
using linear discriminant analysis, decision trees, random forest, and support vector ma-
chines. The latter achieved the highest accuracy, with 73% of the samples classified to
the same stratigraphic member as determined by the expert. We improved classification
reliability and evaluated it by aggregating the results of different classifiers for each stone
product. Combining aggregated results with additional evidence from paleontological data
or precise optical microscopy leads to successful provenance determination. After a few
samples were reassigned in this procedure, a support vector machine correctly classified
87% of the samples. Strontium isotope ratios (87Sr/86Sr) proved particularly effective as
provenance indicators. We successfully assigned all stone products to local sources across
four lithostratigraphic members, thereby confirming local patterns of stone use by Romans.
We provide guidance for future use of statistical learning in provenance determination.
Our integrated approach, combining geological and statistical expertise, provides a robust
framework for challenging provenance determination.

Keywords: antiquity; micrite limestone; machine learning; statistics; R; regio X; artefacts;
Ig area

1. Introduction
Determining the provenance of limestone products in geoarchaeology poses a per-

sistent methodological challenge, especially when dealing with micritic limestones. As
micrites (carbonate mudstones) lack diagnostic features, such as fossils, grains, or sedimen-
tary structures, these limitations are particularly pronounced [1–4]. Additionally, other
fine-grained limestone types (e.g., peloid or stromatolite) commonly present this challenge.

The challenge of identifying the provenance of shallow marine limestones is compli-
cated by their mineralogical and geochemical homogeneity [5], which, in the absence of
indicative sedimentological features, increases the difficulty of determining their prove-
nance [6,7]. Consequently, a multi-method approach to data is essential. This involves
combining different analytical techniques with comparative studies of geological prove-
nance assessments by identifying key variables that are relevant to the analysis. However,
because several variables are measured, the data for provenance determination is multi-
variate. A human determinator will not be able to detect patterns hidden in interactions
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of many variables, and classical univariate statistical methods will likewise fail at this
task. Hence, methods for analysing multivariate data have been developed. Classical
multivariate methods such as principal component analysis (PCA) and linear discriminant
analysis (LDA) are commonly used to reduce data complexity and classify lithologies, re-
spectively [8]. However, advances in multivariate methods have been limited by the weak
performance of computers. With the advancement in computational statistics, powerful
methods of statistical learning have emerged [9] to tackle problems as diverse as predicting
relapse in cancer patients, stock market predictions, and weather forecasts. Recently, some
of these methods, such as support vector machines (SVMs) and random forests (RFs), have
also been applied to classifying the provenance of stone products [10,11].

This study aims to improve lithostratigraphic provenance determination of limestone
products by utilising statistical learning methods. We compare the accuracy of provenance
classification using LDA, decision trees (DTs), RFs and SVMs. We show how to improve
the accuracy by reducing the number of variables and fine-tuning the hyperparameters.
The results of different classifications were summarised by looking at how many classifiers
assigned each artefact to any of the possible stratigraphic members. If the majority of
classifiers agreed on classification, which differed from that by a human expert, then
the original provenance determination was reevaluated. This greatly improved overall
determination success. We further demonstrate how the ranking of variable importance
by statistical classifiers can be used to identify the most useful variables for provenance
determination (87Sr/86Sr in our dataset). We provide guidance on applying statistical
learning to provenance classification. We emphasise that the approach is not limited to
the classification of limestone provenance but can be adapted to other rock types (e.g.,
dolomite, chert, gypsum, and marble), as well as other archaeological materials (including
tesserae, ceramics, and mortars). Additionally, quantitative variables other than those in
our dataset can easily be used or added (e.g., fossil records). While statistical learning is
not limited to a subject area, we demonstrate that geological and archaeological studies
would greatly profit from its wider application.

2. Materials and Methods
The data used in this study refers to Roman stone products from the Ig area near Colo-

nia Iulia Emona (Ljubljana, Slovenia), specifically Venetia et Histria (regio X) [12]. While the
local use of limestone is well documented [13,14], the exact lithostratigraphic origin remains
unclear [15–18]. Since petrological methods could identify the stratigraphic origin of only
28% of the Ig samples due to the predominance of micritic limestone [17,19], additional
methodological approaches are necessary to strengthen the provenance determination.

The use of the Lower Jurassic Podbukovje Formation [20] has been previously recog-
nised [18]. This succession was subdivided into Formations 1–3 [12] (Figure 1). Forma-
tion 1 (Hettangian–Sinemurian) comprises micritic and ooidal limestones [21–23]. The
Roman-period quarry at Podutik (stratigraphic extent: Members 1.1–1.2) and the Staje
quarry (stratigraphic extent: Member 1.2) are situated in this formation. Formation 2 (Late
Sinemurian–Early Toarcian) comprises bioclastic and lithiotide-rich limestones [19,24]
with a quarry at Podpeč (stratigraphic extent: Members 2.1–2.2). Formation 3 consists
of peloid–ooid packstones and nodular mudstones [25]. A smaller quarry (stratigraphic
extent: Member 3.3) in the Podpeč area is situated in this formation [19,26].
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Figure 1. Study area. (a) Geographical position in Europe; (b) study area with the locations of Roman
quarries [27] in the surroundings of Ig; and (c) lithostratigraphic division of the area after [12,20,23],
with the presumed stratigraphic extent of the known Roman quarries of the after [19].

Expert provenance identification (Table 1), based on the full dataset published in [12],
followed the classification protocol established for Emona stone products [26]. It integrated
stratigraphic, petrographic, and geochemical analyses, including 87Sr/86Sr isotope ratios,
biostratigraphy, cathodoluminescence, and foraminiferal assemblage studies.

Table 1. Provenance of the studied stone products from the Ig area determined in source lithos-
tratigraphic units. The consecutive numbers of the stone products (IV) are based on the published
catalogue [15].

Lithostratigraphic Unit (Age) Possible or Known
Roman-Period Quarry Inventory Numbers

1.1—Micrite and ooid limestone (J1
1,2) Podutik /

1.2—Peloid limestone (J1
2) Staje IV 39; IV 8

2.1—Bioclastic limestone (J1
2,3) Podpeč IV 27; IV 28; IV 12; IV 35; IV 18; IK-2; IV 3

2.2—Lithiotide limestone (J1
3) Podpeč IV 13; IV 15; IV 1

3.3—Crinoid limestone (J1
4) Podpeč IV 31; IV 38; IV 4

2.1. Geological Samples

A total of 742 geological samples were taken from 28 sedimentological profiles at a
scale of 1:100, representing approximately 400 metres of cumulative stratigraphy. These
profiles were located at key Roman-period quarry sites in central Slovenia, including
Podutik (P1, P3, P4), Staje (D), and Podpeč (POD Arheo, POD1–POD5). Sampling followed
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a systematic protocol using sedimentological logs. At least one sample was taken from each
limestone bed and from thicker beds at intervals of 50 cm or less. For the statistical testing
of the expert model, 25 samples with complete geochemical and isotopic results were used.

2.2. Archaeological Samples

Permission was granted to sample 53 Roman-period stone products from the Ig area—
47 from the lapidarium of Iška vas and 6 from the archaeological Ig roundabout site. The
archaeological materials included architectural, votive, and sepulchral elements. All stone
products were subjected to the same analytical procedures as the geological samples. Of the
53 sampled, 15 were fully analysed due to budgetary constraints and used for statistical val-
idation of the expert model. Additionally, the provenance of five stone products (IV 1, IV 4,
IV 13, IV 31, IV 38) was previously uniquely attributed to specific lithostratigraphic mem-
bers through optical analysis, including macroscopic grains, foraminiferal assemblages,
microfacies, and cathodoluminescence, supported by geochemical and isotopic data.

2.3. Expert Identification Procedure and Input Data for Statistical Classification

Fieldwork was conducted using high-resolution topographic maps and LIDAR sur-
face models [28], which enabled detailed geological mapping at a scale of 1:2.500, with
regional maps for Podutik, Ig, and Podpeč at a scale of 1:5.000. The mapping employed
boundary tracing and full outcrop documentation [29]. Macroscopic descriptions included
lithology, texture, structure, and colour [30]. Petrographic and sedimentological analysis
was performed on 47 × 28 mm thin sections stained with Alizarin Red S and examined
under a digital microscope. Microfacies were named according to references [31,32], while
biostratigraphy was based on benthic foraminifera [33–35]. Cathodoluminescence mi-
croscopy was conducted at ZRC SAZU using a Nikon Eclipse E 600 (Tokyo, Japan) with a
CITL CL8200/MK4 (Hatfield, England, UK). Mineralogical composition was determined
via XRD and Rietveld refinement at the Department of Geology, University of Ljubljana.
Geochemical analyses (Fusion–ICP–MS) were performed at Actlabs (Canada); δ13C and
δ18O measurements were carried out at GeoZentrum Nordbayern and the University of
Erlangen; and 87Sr/86Sr ratios were determined at the University of Oxford, Department
for Earth Sciences, using MC-ICP-MS, in accordance with laboratory protocol [36,37]. For
the expert provenance determination [12], the 87Sr/86Sr ratio was plotted using LOWESS
smoothing and correlated with the global SIS reference curves [38,39]. The 95% confidence
intervals were calculated from the combined uncertainties of both analytical and reference
data. All gathered data were used to classify the stone products in the expert model [12],
whereas only numerical data (geochemical data, stable isotope ratios (δ13C, δ18O), and
strontium isotope ratios (87Sr/86Sr)) were used for statistical analysis.

2.4. Data Processing and Statistical Methods

All statistical analyses and data processing were conducted in R version 4.2.2. [40].
The R code is provided in Supplementary S1 and is accessible to future users. The training
and test dataset comprised measurements of 19 variables (“features” in the language of
machine learning): proportions of ten major oxides (given in percentages) that included
LOI, proportions of six trace elements (measured in parts per million), and three isotope
ratios (δ13C, δ18O, and 87Sr/86Sr). The training dataset used to build the classification
models consisted of 25 sampling units, five for each of the five members (1.1, 1.2, 2.1, 2.2,
and 3.3). All these samples originated from known stratigraphic positions in quarry sites
near the Ig area. Thus, the number of sampling units only slightly exceeded the number
of variables.

The test dataset, utilised for classification with the trained models, comprised mea-
surements of the same 19 variables on 15 Roman-period stone products.
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Before the analysis, these were categorised by the human expert (see above) into four
of the five possible members (1.2, 2.1, 2.2, and 3.3).

2.4.1. Data Processing

Major oxides (in percentages) and trace elements (in mg·kg−1) were treated as two
separate compositions, since they had been measured on such different scales. This is an
acceptable procedure in compositional analysis [41] because it follows from subcomposi-
tional invariance. A composition is a type of data where the elements of the composition
are non-negative and sum to unity [42]. Compositional data analysis (also known as CoDa)
deals with proportions of elements of composition, whereas their absolute amounts are
ignored, because they only depend on the amount of the sampled material. If we consider
only a subcomposition (i.e., ignore some components), the proportions among the remain-
ing components do not change (subcompositional invariance). Compositional data analysis
was conducted using the “compositions” package [41,43].

Most classification methods suffer from “the curse of high dimensionality” [9]; i.e.,
they do not perform well when the number of variables substantially exceeds the number
of sampling units in the training set. To avoid it, we built three datasets with a reduced
number of variables. The first used the first nine principal components (PCs), the second
was obtained by removing correlated variables and those that were not so strongly different
among the members in a Kruskal–Wallis test, and the third only included the values of
three stable isotopes.

Because a composition can be treated as a Euclidean vector space [41], we can use
transformations to map the composition to the real vector space, where it is treated as multi-
variate normally distributed data. We used two such isometric transformations: the centred
log-ratio transformation (clr) to compute PCs and the isometric log-ratio transformation
(ilr) for LDA. We also used a pairwise log-ratio transformation (pwlr) to preprocess the
data for classification with SVMs, DTs and RFs, because it has previously led to the best
classification performance with tree-based methods [44]. Stable isotope values were not
transformed other than the values of 87Sr/86Sr, which were standardised as they previously
varied in the range of 10−4. After that, all the variables had similar variances.

2.4.2. Statistical Learning Methods

We used four types of statistical learning methods for provenance classification: linear
discriminant analysis (LDA) (package “MASS”, version 7.3-58.2) [45], decision trees (DTs)
(package “rpart”, version 4.1.23) [46], random forest (RF) (package “randomForest”, version
4.7-1.1) [47] and support vector machines (SVMs) (package “e1071”, version 1.7-13) [48].

LDA finds a linear combination of variables in the training data that maximises the
differences among groups of samples (in our case, groups were members), while minimising
variation within the groups [46,49]. Simplified, we take a viewpoint of the multivariate
data cloud, from which the predetermined groups differ most. The linear boundaries that
separate the groups are referred to as linear discriminant functions. Data from the test
dataset is projected onto the space determined by the linear combination and classified into
groups, depending on which side of these boundaries they fall.

SVMs are related to LDA. They fit a decision boundary between group clouds of
points to maximise their distance to the neighbouring data points, which are known as
support vectors [9,50]. Other data points that lie further from the boundary and closer to
the centroid are ignored. This decision boundary is not limited to a linear shape. Using
kernel mapping, one can also use different shapes. We used linear (SVMl) and radial basis
kernels. The latter produces curved boundaries. After computing the decision boundaries,
the test data (in our case, data from stone products) was classified based on which side of
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the boundaries they fell. SVMs compute the class membership separately for each possible
pair of groups. The algorithm in the package “e1071” then uses a voting mechanism to
determine the final class [48]. It is necessary to tune the SVM model’s hyperparameters by
testing many possible values to find those that yield the best classification performance.
In the SMV model, we tuned “gamma”, a hyperparameter that controls the radius of the
boundary (only for radial basis kernels), and “cost”, which controls the proportion of data
points that can be on the boundary or on its wrong side.

The DT that we used was not a multivariate method. The method iteratively splits
the predictor space by selecting a boundary that consists of a single value of a single
variable [9]. Such a split can be visualised as a forking of two branches. Samples that match
the partitioning criterion remain in the left branch, while others fall on the right branch.
Decision boundaries in the tree model are referred to as nodes, and the final branches are
referred to as leaves. The partitions are computed in a way that maximises the decrease in
branch impurity (avoiding branches that contain data from different groups). The impurity
can be measured as a decrease in entropy, or as a decrease in the Gini index (the sum of
products of the proportions of each group member in a branch with the proportions of the
other data points). The iterative procedure yields a model that is overfitted to the training
data (with too many nodes and too few data points in each leaf) and is not general enough
to robustly classify different test sets. Therefore, the second stage of model construction
simplifies it by pruning off branches in a cross-validation procedure. We used tenfold
cross-validation; i.e., the training data was split into ten equal groups, each of which was
used once as test data while the model was calculated using the remaining nine-tenths.
Only the most stable branches across the ten folds were kept in the final model.

The weaknesses of DTs are their high variability, bias, and correlation. To remove these
issues, several methods of tree averaging have been developed. “Bagging” (or bootstrap
aggregation) reduces variance and bias by fitting a large number of trees to bootstrap-
sampled versions of training data and averaging the resulting trees. This procedure is
improved by RF, which additionally reduces correlation. Decorrelated trees are built by
limiting the number of variables used for the construction of each tree from a bootstrapped
sample [9]. We tuned the total number of trees in the ensemble and the maximum number
of variables used per tree to obtain the best classification performance by RF. The side
effect of this procedure is that variables can be ranked by their importance, measured as
the largest mean decrease in classification error or Gini index per node. We generated
bootstrap samples in a stratified manner; i.e., each tree was built from a sample comprising
two sampling points from each of the five possible members in a training dataset.

2.5. Evaluating Model Performance

The classification performance of the statistical models was evaluated in terms of
accuracy, i.e., the proportion of stone products that were assigned to the same class by
both the model and the expert. Confusion matrices (contingency tables comparing the
numbers of assignments to different members by an expert to the numbers of assignments
to different members by a model) were used to inspect which members were correctly
classified (the same as by the expert) and to which member any misclassified stone products
were assigned (different to the expert).

Finally, for each stone product, we computed the proportion of classifications aseach
of the possible members and compared the highest proportion to the expert’s identification.
If more than 60% of the statistical models assigned a stone product to the same member
that differed from the expert’s assignment, the latter was reevaluated. This shows how
statistical learning methods can improve classical provenance determination.
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3. Results
3.1. Univariate Analysis

The members of geological samples (training dataset) differed significantly in major
oxides (SiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, and TiO2), LOI, trace elements
(Sr, Zr, La, Ce, Nd, and U) and two isotopes (δ13C, 87Sr/86Sr), with p-values of the Kruskal–
Wallis test below 0.05 (Figure 2a; Supplementary File S2, Table S2.1), except in δ18O. Such a
variable in which classes (geological members) seem to overlap and do not differ in a uni-
variate test can still have a crucial contribution to the multivariate differences, particularly
if the differences in such a variable are uncorrelated to the differences in other variables.

 

Figure 2. Univariate analysis of the geochemical data. (a) p-values of Kruskal–Wallis tests. Red line:
p = 0.05; light blue line: p = 0.001; (b) scatter plots of δ18O, δ13C, 87Sr/86Sr. Note that panels on the
opposite sides of the main diagonal are mirrored.
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Scatter plots showed systematic geochemical variations among the five member groups
(1.1–3.3). The major oxide relationships (Supplementary File S2, Figure S2.1) defined distinct
compositional fields, with Members 1.1–1.2 clustering together in the SiO2–Al2O3–Fe2O3

compositional space. Members 2.1–2.2 were enriched in Fe2O3 and TiO2 and showed MgO
depletion, while Member 3.3 was marked by elevated K2O, Na2O, and TiO2 concentrations.

Scatter plots of minor and trace elements (Supplementary File S2, Figure S2.2) showed
strong Sr–Zr–La coupling and low U and Nd values in Members 1.1–1.2. Member 3.3 displays
U enrichment and high La and Ce levels.

Isotopic analysis (Figure 2b) revealed distinct groupings, with Member 1.1 showing
the lightest and Member 3.3 the heaviest isotopic signatures. δ13C and δ18O in Members
1.1–2.2 indicated a coupled C–O trend, while Member 3.3 deviated with low δ18O despite
high δ13C, reflecting decoupled isotopic behaviour. Strontium isotope ratios (87Sr/86Sr)
cluster between 0.7073 and 0.7076, with member-specific distributions. Nevertheless,
different members overlapped in all the variables of the geological samples (training
dataset), demonstrating the necessity of using multivariate analysis for accurate provenance
classification (e.g., Supplementary File S2, Figure S2.3).

3.2. Statistical Classification Was More Accurate with a Reduced Number of Variables

The “curse of high dimensionality” was observed in all statistical learning methods,
as datasets with fewer variables produced more accurate classifications than those with
either the full set (19 variables) or 63 predictors, including the dataset containing pwlr-
transformed pairs among the geochemical variables.

3.2.1. Linear Discriminant Analysis

LDA models built with a reduced number of variables outperformed those that
included all variables (accuracy 0.6 with PCs and selected variables, accuracy 0.53 with
isotopes only, versus accuracy 0.47 with all variables, Supplementary File S2, Table S2.2). In
the LDA models using all the variables and selected variables, the highest absolute values
of coefficients of the first linear discriminant were achieved by CaO, LOI, and 87Sr/86Sr,
which shows their high contribution to the among-member differences in the training
dataset (quarry samples), though not necessarily in the test dataset, where CaO may be
partially depleted due to weathering. If the model was computed using the PCs, the
second, first, and sixth PCs contributed most to the first linear discriminant. In contrast,
when the model was computed only using isotopes, 87Sr/86Sr made a one magnitude
greater contribution than δ13C and δ18O. All the LDAs assigned all the stone products
from Member 3.3 correctly. Stone products from 1.2 were classified correctly by the LDAs
computed using PCs and stable isotopes, whereas they were sometimes confused with
Member 1.1 by LDAs computed on all or selected variables. Stone products from 2.2 were
often erroneously classified as 3.3, and those that were determined as 2.1 by the expert
were often erroneously classified as 2.2 and occasionally as 1.1 or 3.3. Training and test data
in LDA computed on PCs are shown superimposed on Figure 3.

3.2.2. Decision Trees

DTs are not a multivariate method and perform worse than other methods that lever-
age a multivariate data structure for classification. Many variables were ranked as useful
for classifying the training dataset by the model algorithm (100% accurately); however, the
trees built with some of those (e.g., LOI/CaO log-ratio) were not successful in determining
the provenance of stone products (accuracy: 0.13), being below the chance rate (0.2). How-
ever, when preventing the use of the LOI/CaO log-ratio by weighting it, the model was
built using 87Sr/86Sr (Figure 4). This tree classified the test set significantly better (accuracy:
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0.4). Its performance was comparable to that of the tree built using PCs, whereas the tree
built with only stable isotopes was slightly less successful (accuracy: 0.33).

Figure 3. Results of LDA classification of PCs. Test data (stone product samples) and their classi-
fication by LDA (shape) and expert (colour) are depicted as symbols. In contrast, the clusters of
training data (geological samples) on the first two linear discriminants (LD1 and LD2) are depicted as
ellipses that enclose 99% of the data points predicted for each member. Note that LD3 and LD4 are
not depicted. Nevertheless, one can see that the position of test data points relative to training data
ellipses determines classification by LDA.

 

Figure 4. Decision tree computed from the training dataset with pairwise log-ratios of geochem-
ical data and exclusion of log(LOI/CaO) from the model by weighing it. e.g., K2O.CaO denotes
log(K2O/CaO). Samples that match the partitioning criterion (written on the nodes) remain in the left
branch; others fall on the right branch. Each leaf (final branch) is annotated with the member (class)
value that was assigned during training (e.g., 2.1). The numbers below the member annotations
represent the counts of samples from training data (upper rows) and test data (lower rows) that
were classified as Members 1.1/1.2/2.1/2.2/3.3. The number of samples assigned to the class that is
appropriate according to the trained model is underlined. The values of 87Sr/86Sr are z-transformed.
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3.2.3. Random Forest

Forests of trees performed better in classification than single decision tree models. Both
RF models, computed using pairwise log-ratio transformed geochemical data, classified
the provenance of up to 0.47 of the stone products in the same way as the expert did, on
PCs. The RF that used only measurements of the three isotopes as variables matched as
much as 0.6 stone product classifications with those of the expert.

The analysis of variable importance identified several important predictors (variables
or log-ratios of their pairs), with the strontium isotope ratio (87Sr/86Sr) ranking first in
the models using both geochemical and isotopic data, as well as the isotopic data alone
(Figure 5).

 
Figure 5. Most important predictors (variables or their pairs) in the training data (quarry samples)
for the RF model computed on pairwise log ratios of geochemical composition data (a) or only on
isotope data (b). The variables are ranked according to two metrics of importance for classification.
The Mean Decrease Error reflects the impact of each variable on model accuracy, while the Gini index
measures its contribution to node purity. Agreement between these two metrics enhances confidence
in the importance ranking. LOI/CaO denotes log(LOI/CaO).

3.2.4. Support Vector Machines

The SVM with a radial basis kernel achieved the best classification performances of all
the methods, with the model computed using a dataset with pwlr-transformed geochemical
compositions achieving up to 0.53, the model using PCs two-thirds, and the model solely
using stable isotopes as much as 0.73 classifications of stone product provenance matched
with the experts. If “gamma” and “cost” were tuned to optimise classifications of training
data with leave-one-out cross-validation instead of taking classification accuracy of test
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data as a tuning criterion, accuracies were lower. In contrast, classifications with SVMl
(linear basis kernel) consistently achieved an accuracy of 0.6, both using PCs and isotope
data only, and irrespective of whether the cost was optimised for test data or training data
classification using leave-one-out cross-validation.

The SVM with a radial basis kernel, using PCs and isotopes, classified all the stone
products in the same way as the expert (1.2, 2.2, and 3.3), except for 5/7 and 4/7 of those
that the expert determined as 2.1, respectively.

3.3. Comparison of Statistical Classifiers

The SVMs were the most successful in terms of classification accuracy (proportion of
classifications matching those of the expert), followed by the similarly successful LDA and
RF classifiers. The lowest classification accuracy was achieved by the DTs, which was still
above the chance rate, except in the model that used log-ratio among LOI and CaO rather
than 87Sr/86Sr.

3.4. Aggregating and Summarising Classifications Across Methods

When combining the results, we see that the methods had the easiest job classifying
stone products from Member 3.3, matching the expert in 91.7% of cases (Table 2), followed
by 1.2 (66.7%) and 2.2 (44.4%). Stone products classified by the expert as 2.1 posed the
toughest challenge for classification. They were still most often classified as 2.1 (31.5%),
though they were labelled as 2.2 (28.0%) or 3.3 (26.2%) almost as often.

Table 2. Proportions of stone products from each member (determined by an expert) that were
classified as each member by the statistical learning methods.

Expert provenance identification as 1.2

Statistical
classification

as 1.1 as 1.2 as 2.1 as 2.2 as 3.3
0.229 0.667 0.042 0.063 0.000

Expert provenance identification 2.1

Statistical
classification

as 1.1 as 1.2 as 2.1 as 2.2 as 3.3
0.077 0.065 0.315 0.280 0.262

Expert provenance identification 2.2

Statistical
classification

as 1.1 as 1.2 as 2.1 as 2.2 as 3.3
0.069 0.042 0.125 0.444 0.319

Expert provenance identification 3.3

Statistical
classification

as 1.1 as 1.2 as 2.1 as 2.2 as 3.3
0.014 0.000 0.000 0.069 0.917

The highest proportions are marked in green.

The rows in Table 3 are sorted so that the stone products with the proportion of
statistical methods agreeing on their classification decrease from top to bottom of the table.
One can immediately notice how assignments that were agreed upon by higher proportions
of statistical methods were more likely matched by the expert identification (upper part of
the table) than those on which different statistical methods disagreed (bottom of the table).
This result demonstrates how the aggregation of classification results yields more reliable
conclusions for unanimous results, while also highlighting less reliable classifications.
Classifications of samples, which were classified differently by different methods (bottom
of Table 3), were considered less trustworthy.
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Table 3. Proportions of classifications to different members by statistical learning models compared
to expert identifications for each stone product.

Stone
Product ID

As
Member

1.1

As
Member

1.2

As
Member

2.1

As
Member

2.2

As
Member

3.3

Expert
Identification

Statistical
Majority

Agreement
Expert vs.
Statistics

IV38 0 0 0 0 1 3.3 3.3 TRUE
IV31 0 0 0 0 1 3.3 3.3 TRUE
IV12 0.04 0.04 0.88 0.04 0 2.1 2.1 TRUE
IV15 0.04 0 0.04 0.83 0.08 2.2 2.2 TRUE
IV28 0.04 0 0.79 0.08 0.08 2.1 2.1 TRUE
IV4 0.04 0 0 0.21 0.75 3.3 3.3 TRUE
IK2 0.04 0 0.25 0.71 0 2.1 2.2 FALSE
IV39 0.29 0.67 0 0.04 0 1.2 1.2 TRUE
IV8 0.17 0.67 0.08 0.08 0 1.2 1.2 TRUE

IV27 0.13 0 0.08 0.17 0.63 2.1 3.3 FALSE
IV3 0.04 0 0.08 0.54 0.33 2.1 2.2 FALSE

IV13 0.13 0 0.21 0.21 0.46 2.2 3.3 FALSE
IV18 0.13 0.04 0.04 0.33 0.46 2.1 3.3 FALSE
IV1 0.04 0.13 0.13 0.29 0.42 2.2 3.3 FALSE

IV35 0.13 0.38 0.08 0.08 0.33 2.1 1.2 FALSE
Accepted identifications by the majority of statistical methods are marked in light green, and the maximal
proportions of classification for each sample are in green.

3.5. Accuracies of Statistical Methods After Class Revisions

If the majority of statistical methods and expert disagreed in classification, the latter
was reevaluated (see Section 4 for details). In three stone products (IK2, IV27, and IV3),
the classification by an expert was revised to reflect the classification by the majority of
statistical methods. This improved the accuracy of all statistical methods except LDA
conducted on a subset of variables, with all models except some DTs correctly classifying
more than half of the stone products. The highest accuracies were achieved by SVMs, with
SVM on PCs correctly classifying 0.87 of the stone products and SVMl on PCs correctly
classifying 0.8 of the products (irrespective of whether the model was optimised for test
data or training data classification with leave-one-out cross-validation). The classification
of the SVM model on stable isotopes kept an accuracy of 0.73 after class revision.

4. Discussion
4.1. Statistical Learning Methods Outperformed Traditional Methods in Provenance Classification

Statistical learning methods successfully classified the provenance of Roman stone
products. All classifiers except one version of DTs achieved much higher accuracy than the
chance level (0.2). The best classifiers identified 0.73 samples correctly (SVM on isotope
data), and after correction of three classifications (discussed below), 0.87 (SVM on PCs)
and 0.8 samples were correctly identified (SVMl on PCs). This is substantially higher
than traditional petrological methods, which could only identify the stratigraphic origin
of 0.573 of Emona samples and 0.28 of Ig samples, due to the predominance of micritic
limestone [18,19].

However, the accuracy of statistical methods can be further improved. Namely, our
training dataset contained one member more (1.1) than the test dataset. Consequently,
all models had a non-zero probability of classifying any product as member 1.1 (Table 2,
Figures 3 and 4). This is not common in statistical learning studies, where the number
of classes in the training and test sets is usually the same. Hence, if we were to train the
models without the member 1.1, their classification performance would improve. However,
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in realistic situations, it will be common for the model to be trained on a higher number
of classes than are present in the test set. In most cases, it will be impossible to know in
advance, which classes will be included in the test set. That is why we decided to keep this
handicap in model development.

The best provenance classification performance was achieved by SVMs, which we
also recommend the most for geoarchaeological applications. LDAs and RFs performed
slightly worse. The worst performance was by DTs, which does not suggest that these
types of models are unsuitable for the application. They might be less powerful; however,
their advantage is that they are the easiest to interpret. Furthermore, there are two big
advantages to using many and diverse classifiers.

4.2. Aggregating the Classifications by Many Diverse Models Shown Very Useful for
Provenance Analysis

We demonstrated that aggregating the classification results of multiple models of
different types for each sample unit provided two key benefits: enhanced robustness
of joint classifications and the ability to estimate classification reliability based on the
unanimity of different methods. It is clear that if all the 24 models classified a stone artefact
as belonging to class 3.3, this result is much more reliable than if the artefact was classified
as many different classes in equal numbers by different methods. Hence, if we use a diverse
set of methods, the reliability of results can be evaluated. However, for this to work, it is
essential to ensure that the aggregated results are not merely from repeated training of more
or less the same model, but that there is sufficient variation in the types and applications
of models.

Once we have a measure of reliability for each classification, we can proceed to
reevaluate original class assignments (see below). A high reliability, i.e., a large majority
of methods agreeing on a classification that differs from the original one, means that a
change in class is well-supported. If reliability is weaker, additional evidence that was not
considered in the statistical analysis must be incorporated into the decision process. For this
procedure, demonstrated below, geological expertise is crucial. This shows the importance
of combining different expertise (geological, statistical, and archaeological) in determining
the provenance of stone products. The challenges encountered with samples of similar
composition underline the limitations of purely statistical approaches in complex geological
contexts or with less informative litho- and microfacies types such as micritic limestone.

4.3. Tackling the Curse of High Dimensionality

We show that the classification performance of statistical learning is sensitive to
the “curse of high dimensionality”; i.e., it will be worse if there are more variables than
samples, compared to if the number of samples largely surpasses the number of variables
(e.g., [9,51]). Many classification methods perform poorly on high-dimensional datasets
due to data sparsity, resulting in a loss of effectiveness. Ideally, this can be mitigated by
largely increasing the number of samples in the training dataset. However, the budget
often prohibits this mitigation because chemical analyses are expensive. So, a possibility
remains to reduce the number of variables. This does not mean that less information about
the samples should be input in the analyses, e.g., that the content of a smaller number of
elements should be analysed. It is always better to input more information. If variables
are correlated, which is typical for compositional data [41], the number of variables can
be reduced. We demonstrate that three different approaches lead to improvements in
classification performance: replacing variables with principal components, selecting a
lower number of variables that were proven useful in the exploratory analysis, and using
only isotopic data for the analysis. There was geological evidence suggesting that isotopes
vary systematically across sedimentological strata [12,38,39], which supported the last



Heritage 2025, 8, 464 14 of 21

choice. However, in the lack of such information, we strongly recommend reducing
the number of variables by replacing them with their PCs. This will transform a large
number of correlated variables into a small number of orthogonal variables, which are
more suitable for training the model, while retaining almost all the variation in the data.
Another approach to addressing the problem would be to increase the sample size by
utilising additional publicly available data. Data sharing in public repositories in the future
will largely improve the possibility of this mitigation.

Statistical models can also give false results. For example, if there are low sample sizes
for each class, variations in certain variables for some classes may not be well represented
in the training dataset. If the variation is consequently too small, a false appearance of
separation of classes in these variables will be created. This will lead to a model that
classifies based on differences that do not exist in reality and produces false provenance
assignments. This is why statistical learning requires large sample sizes for training the
models [9,50].

4.4. Strontium Isotope Ratio Is Important for Provenance Classification

Several statistical learning methods can quantify the importance of different variables
for classification. In our dataset, the Sr isotope ratio, CaO, LOI, ratio of U to other rare
elements, and redox indicators played the most important role in training the model from
geological samples. However, this does not mean that they were all also useful in the
classification of stone products. Stone products have undergone different processes since
their manufacture and have been exposed to different conditions compared to geological
samples. The analysis of decision trees showed that Sr isotopes were both useful in model
training and subsequent classification, whereas the log CaO/LOI ratio was only useful in
the former. This underpins the growing recognition of strontium isotopes as powerful indi-
cators of provenance [26,52–54]. The effectiveness of strontium isotopes demonstrates their
resistance to alteration during weathering and diagenetic processes [1,55], which makes
them particularly valuable for identifying the provenance of limestone in an archaeological
setting. We recommend integrating Sr isotope data with traditional geochemical parameters
in archaeological studies of limestone provenance, as it provides improved discriminatory
power. In other geological settings, such as different carbonate platforms [54], the Sr isotope
ratio is expected to remain one of the most important classifiers because it has proven to be
an accurate global geochronological correlation tool [38]. However, if multiple quarries are
located at the same stratigraphic level, or if the oscillating global strontium curves have
similar values, the usefulness of the 87Sr/86Sr may decrease.

4.5. The Impact of Sedimentary Environment on the Classifications of Provenance

The general stratigraphic succession from the Triassic–Jurassic boundary to the Middle
Jurassic indicates a gradual deepening of the sedimentary environment driven by synsed-
imentary tectonics and a relative rise in sea levels [56–61]. This results in three general
environments, which were also apparent in our statistical classification results (both correct
and incorrect). In 7 out of 15 stone products examined, expert provenance identification
was not possible, and the majority of statistical classifications did not match (Table 4). We
will take a closer look at these data below and revise provenance identification by an expert,
if additional evidence supports such a revision.
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Table 4. Revisions of provenance identification after the results of statistical classification.

Stone Product
Key Evidence Supporting

Expert
Provenance

Identification

Classification by
Majority of
Statistical
Methods

Classification by
Majority of
Statistical
Methods

or
Expert

Provenance
Identification

IK2 2.1 2.2 (73%) Zr and Fe2O3 align with Member 2.2.

IV27 2.1 3.3 (64%)
Indicative sedimentary grains found upon further examination
(e.g., lithoclasts), additionally, δ13C is in the Member 3.3 field

(−2.43‰)
IV3 2.1 2.2 (59%) δ13C is in Member 2.2 field (–2.13‰);

IV1 2.2 3.3 (41%) Foraminiferal assemblage (Meandrovoluta
asiagoensis, Amijiella amiji, Lituosepta recoarensis).

IV35 2.1 1.2 (36%) 87Sr/86Sr ratio (0.707450) is indicative of member 2.1.
IV13 2.2 3.3 (50%) Lithiotide bivalves.

IV18 2.1 3.3 (45%) Foraminifera Siphovalvulina variabilis
(Septfontaine).

Light grey rows were revised after statistical classification was considered, whereas for dark grey rows, provenance
assignment by classical methods was kept.

Formation 1 (Members 1.1: Podutik Quarry and 1.2: Staje Quarry) represents the
lowermost part of the Lower Jurassic succession. Sedimentation in the intertidal zone,
with frequent short-term subaerial exposures, is presumed based on sedimentological
analysis [12]. As Members 1.1 and 1.2 statistically cluster together in SiO2, Al2O3, and
Fe2O3, this indicates the influence of subaerial exposure [62,63]. Both members exhibit
geochemical conditions consistent with those of mineralogically pure limestones [62].
Their distinction is based on isotopic analyses (mainly strontium isotopes), which show
globally distinctive values from the Hettangian to the middle Pliensbachian [38,39,64].
The confusion between Member 1.2 and 1.1 was greatest for stone products categorised
by the expert as Member 1.2. This shows their geochemical similarity. However, it is
important to note that, according to our results, none of the stone products originated from
Member 1.1, despite our training of the classifiers for this possibility. Furthermore, no
stone products from 1.2 were classified as 1.1 by the majority of methods (Tables 2 and 3).
This demonstrates that aggregating the results of multiple models yields more robust
classifications than any single model.

Gale and Rožič [65] described breccias indicative of a diffuse rifting phase associated
with the opening of the Alpine Tethys Ocean [66], which subsequently led to a gradual
change in the sedimentary environment. Formation 2 (fossiliferous limestone) is charac-
terised by frequent subaerial exposure horizons, marked with red clay, darker limestone
colouration, and increased bioclastic content. Gale and Kelemen [23] interpret this as
a transition from peritidal to subtidal lagoonal settings, bordered by ooid shoals. This
transition is attributed to a tectonically driven transgression [65], with a minor contribu-
tion from global sea level rise [67]. Subaerially exposed surfaces are widespread in the
Pliensbachian. Discontinuity surfaces, which are abundant in Formation 2, reflect breaks in
sedimentation. These promote the formation of clay minerals [68]. This can be observed in
Members 2.1 and especially 2.2. Isotopic (e.g., elevated δ13C) and geochemical data from
2.2 indicate short-lived redox conditions supported by elevated cerium values indicative
of redox environments during sedimentation or early diagenesis [69]. Among all possible
members, statistical learning methods had the most problems classifying samples that were
originally identified as 2.1. They were assigned to 2.2 and 3.3 almost as often as to 2.1. This
may be due to the unnecessary division of Members 2.1 and 2.2, which is based solely on
evolutionary changes in the biota (Foraminifera) and the presence of lithiotide bivalves in
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Member 2.2. However, these confusions are not of great importance, as Members 2.1 and
2.2 frequently occur together, as is also known for a Roman-period quarry in Podpeč [19,70].
Therefore, the stone products classified as 2.1 by an expert were reclassified into the category
proposed by the majority of statistical models (see Table 4). Specifically, the stone products
IK2, IV27, and IV3 were reclassified. The misclassification of stone product IV35 as Member
1.2 by the majority of models contrasts with the results obtained through strontium isotope
stratigraphy (see Supplement S3), as previously demonstrated [12], which clearly indicate
provenance from Member 2.1.

During the Late Pliensbachian to Early Toarcian, the main rifting phase of the Alpine
Tethys reactivated extensional normal faults on the Adriatic Carbonate Platform [61], likely
altering the depositional environment. This is reflected regionally in the deposition of
breccias [65] and the formation of small depressions (interplatform basins) with an open
marine influence [26]. Strata corresponding to Formation 3 of crinoidal limestone record re-
gional [26,58,66,70] and global [70–77] carbon cycle excursions associated with the Toarcian
Oceanic Anoxic Event (T-OAE). This event is globally associated with laminated, organic-
rich black shales and a pronounced negative carbon isotope excursion (CIE) in the early
Toarcian. The CIE is less pronounced in shallower areas [77]. The dark colouration in Mem-
ber 3.3 is due to framboidal pyrite, which is indicative of low-oxygen conditions [26,78].
Elevated cerium values, on the other hand, are indicative of prolonged redox conditions.
Together with systematically high δ13C values, these features form a unique geochemical
fingerprint for provenance determination, indicating sedimentation in a redox environ-
ment [69,71,79]. The most common error was the classification of the three stone products
(IV1, IV13, and IV18) as Member 3.3 by the majority of models. Examining the geochemical
data (see Supplement S1.2 and S1.3), it appears that the statistical methods considered
redox conditions as indicative of Member 3.3. However, short-term redox conditions can
also be recognised in Members 2.1–2.2. Thus, based on the paleontological data, the expert-
provenance identification is maintained. In addition, it is worth noting that Member 3.3 was
recognised as such by 91.7% of models, demonstrating its distinct geochemical signature.

For stone products IK2, IV27, and IV3, a high majority of statistical models agreed
on classification, which provided strong support for these provenance assignments. For
stone products IV1, IV35, IV13, and IV18, the models were less unanimous, and the
sedimentological and isotopic data contradicted their weak majority. By aggregating
classifications of statistical methods and evaluating their agreement, as well as comparing
them to additional data, we were able to improve the classification of the provenance of the
investigated stone products (Table 5).

Table 5. Final provenance of the studied stone products assigned by classical geological methods [12]
and aggregation of statistical models.

Lithostratigraphic Unit (Age) Possible or Known
Roman-Period Quarry Inventory Numbers

1.1—Micrite and ooid limestone (J1
1,2) Podutik /

1.2—Peloid limestone (J1
2) Staje IV 39; IV 8

2.1—Bioclastic limestone (J1
2,3) Podpeč IV 28; IV 12; IV 35; IV 18

2.2—Lithiotide limestone (J1
3) Podpeč IV 13; IV 15; IV 1; IV 3; IK-2

3.3—Crinoid limestone (J1
4) Podpeč IV 31; IV 38; IV 4; IV 27

Although not explored in detail in this study, the results also offer valuable insights
for reconstructing ancient quarrying practices and distribution networks during the Ro-
man period in the area. The statistical confirmation of stone products provenance from
known local quarries—such as Member 1.2 from the Staje quarry, Member 3.3 from the
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Podpeč quarries, and Members 2.1 and 2.2 from Ig or Podpeč quarries—is consistent with
broader Roman stone use patterns where local supply is predominant due to high transport
costs [27].

The integration of geological and analytical expertise demonstrated in this study
provides a model for future interdisciplinary approaches to studying limestone provenance
in archaeological settings.

5. Conclusions
This study demonstrated that applying statistical learning methods improves prove-

nance determination of stone products. The support vector machine (SVM) computed
on principal components achieved a provenance classification accuracy of 87% after cor-
rection and SVM on isotopic data achieved 73% accuracy. These results significantly
outperform both traditional petrological and statistical methods for identifying the origin
of micritic limestone. Aggregating results from multiple statistical models and assessing
their agreement proved more reliable than relying on single-model outputs. This aggre-
gation also served as a quality control mechanism, highlighting discrepancies between
expert and statistical classifications and enabling targeted re-evaluation of ambiguous
samples. Notably, the 87Sr/86Sr isotope ratio emerged as a powerful indicator, with geo-
chemical data providing valuable differentiation for classification. This study established
a robust methodological framework that integrates geological and analytical expertise,
offering a reliable interdisciplinary approach for determining limestone provenance in
archaeological contexts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/heritage8110464/s1, Supplement S1.1: R code for the data analysis.
Supplement S1.2: Training dataset. Supplement S1.3: Clasification dataset. Supplement S2: Additional
results of statistical analysis: Table S2.1: Results of Kruskal–Wallis rank sum test for geochemical and
isotopic variables.; Table S2.2: Expert determinations and classifications by all statistical learning
models for each stone product; Figure S2.1: Ternary scatter plots of major oxide composition of
the training data—geochemical samples (CaO and LOI were excluded due to their high values,
which would have caused data points to accumulate on the edges); Figure S2.2: Scatter plots of
rare earths and trace elements above detection limit in the training data—geochemical samples;
Figure S2.3: Ternary scatter plot of subcomposition of three oxides (K2O, Fe2O3 and Na2O) illustrates
a large overlap among stratigraphic members as present in many variables. Supplement S3: Strontium
isotope stratigraphy analysis: Table S3.1: Locations of studied Lower Jurassic succession, their
lithostratigraphic positioning and biostratigraphic age; Table S3.2: Calculated age of stone products
based on 86Sr/87Sr measurement; Figure S3.1: δ13Ccarb and δ18Ocarb measurements of studied stone
products plotted on a scatter plot. The samples are arranged according to lithofacies type (Figure S3.2).
The global LOWESS curve from McArthur et al. (2012, 2016) [38,39] is shown, with placements of the
analysed Lower Jurassic stone products indicated according to strontium isotope measurements. Each
Sr measurement shows the standard deviation of the measurement on the x-axis and the calculated
confidence in the measurement on the y-axis; Figure S3.3: Graphical representation of 87Sr/86Sr
measurements using SIS methodology with a comparison of global and local LOWESS curves for
section P1 with placement of the analysed stone products with 87Sr/86Sr in the LOWESS local curves
of the Podutik 1 sedimentological profile. The crosses show the individual measurement (on the
x-axis, the calculated confidence in the mean of the measurement, and on the y-axis, the standard
deviation); Figure S3.4: Graphical representation of 87Sr/86Sr measurements using SIS methodology
with a comparison of global and local LOWESS curves for section Staje quarry. The crosses show the
individual measurement (on the x-axis, the calculated confidence in the mean of the measurement,
and on the y-axis the standard deviation) with placement of the analysed stone products with
87Sr/86Sr in the LOWESS local curves of the Staje quarry sedimentological section; Figure S3.5:
Comparison of global and local LOWESS Strontium curves for units 2.1 and 2.2. Each 87Sr/86Sr
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measurement shows the standard deviation of the measurement on the x-axis and the calculated
confidence in the measurement on the y-axis. The figure is supplemented with the placement of
the analysed stone products with 87Sr/86Sr in the LOWESS local curves of the Ig sedimentological
section, Podpeč Roman time quarry, and Podpeč modern quarry.
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26. Brajkovič, R.; Žvab Rožič, P.; Djurić, B.; Luka Gale, L. Stratigraphic Database for Determination of the Provenance of Limestone

Used in Colonia Iulia Emona (Regio X, Italia). In Proceedings of the ASMOSIA XIII: 13th International Conference of the Association
for the Study of Marble and Other Stones in Antiquity, Vienna, Austria, 19–24 September 2022; Ladstätter, S., Prochaska, W.,
Anevlavi, V., Eds.; Holzhausen Verlag: Vienna, Austria, 2025; pp. 27–41.

27. Russell, B. Gazetteer of Stone Quarries in the Roman World. Available online: http://oxrep.classics.ox.ac.uk/docs/Stone
_Quarries_Database.pdf (accessed on 14 August 2025).

28. Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology
2014, 216, 295–312. [CrossRef]

29. Compton, R.R. Geology in the Field; Wiley: New York, NY, USA, 1985.
30. Munsell Color. Geological Rock-Color Charts with Genuine Munsell Color Chips; Munsell Color: Baltimore, MD, USA, 2011.
31. Lokier, S.W.; Al Junaibi, M. The petrographic description of carbonate facies: Are we all speaking the same language? Sedimentology

2016, 63, 1843–1885. [CrossRef]
32. Sibley, D.F.; Gregg, J.M. Classification of dolomite rock textures. J. Sediment. Petrol. 1987, 57, 967–975. [CrossRef]
33. Fugagnoli, A.; Loriga Broglio, C. Revised biostratigraphy of Lower Jurassic shallow water carbonates from the Venetian Prealps

(Calcari Grigi, Trento Platform, Northern Italy). Stud. Trent. Sci. Nat. Acta Geol. 1998, 73, 35–73.
34. Fugagnoli, A. Trophic regimes of benthic foraminiferal assemblages in Lower Jurassic shallow water carbonates from northeastern

Italy (Calcari Grigi, Trento Platform, Venetian Prealps). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 205, 111–130. [CrossRef]
35. Gale, L.; Barattolo, F.; Rettori, R. Morphometric approach to determination of lower Jurassic siphovalvulinid foraminifera. Riv.

Ital. Paleontol. Stratigr. 2018, 124, 265–282. [CrossRef]
36. Romaniello, S.J.; Field, M.P.; Smith, H.B.; Gordon, G.W.; Kim, M.H.; Anbar, A.D. Fully automated chromatographic purification of

Sr and Ca for isotopic analysis. J. Anal. At. Spectrom. 2015, 30, 1906–1912. [CrossRef]
37. Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; de Jong, J.; Williams, G.A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.S.;

et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst.
2006, 7, 1–30. [CrossRef]

38. McArthur, J.M.; Howarth, R.J.; Shields, G.A. Strontium isotope stratigraphy. In A Geologic Time Scale; Gradstein, F.M., Ogg, J.G.,
Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 127–144. [CrossRef]

39. McArthur, J.M.; Steuber, T.; Page, K.N.; Landman, N.H. Sr-Isotope Stratigraphy: Assigning Time in the Campanian, Pliensbachian,
Toarcian, and Valanginian. J. Geol. 2016, 124, 569–586. [CrossRef]

https://omp.zrc-sazu.si/zalozba/catalog/view/1890/7848/1025-2
http://www.dlib.si/details/URN:NBN:SI:DOC-DYJSFIKD
http://www.dlib.si/details/URN:NBN:SI:doc-FQSHAUMU
https://doi.org/10.1111/arcm.12771
https://doi.org/10.3986/AV.73.06
http://www.dlib.si/details/URN:NBN:SI:DOC-P4PUQFDH
https://doi.org/10.5474/geologija.2000.014
https://doi.org/10.5474/geologija.2003.004
https://doi.org/10.5474/geologija.2017.008
https://doi.org/10.5474/geologija.1997.001
https://doi.org/10.1016/j.palaeo.2025.112841
http://oxrep.classics.ox.ac.uk/docs/Stone_Quarries_Database.pdf
http://oxrep.classics.ox.ac.uk/docs/Stone_Quarries_Database.pdf
https://doi.org/10.1016/j.geomorph.2014.03.008
https://doi.org/10.1111/sed.12293
https://doi.org/10.1306/212F8CBA-2B24-11D7-8648000102C1865D
https://doi.org/10.1016/j.palaeo.2003.12.004
https://doi.org/10.13130/2039-4942/9984
https://doi.org/10.1039/C5JA00205B
https://doi.org/10.1029/2006GC001283
https://doi.org/10.1016/B978-0-444-59425-9.00007-X
https://doi.org/10.1086/687395


Heritage 2025, 8, 464 20 of 21

40. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2024; Available online: https://www.R-project.org/ (accessed on 14 August 2025).

41. van den Boogaart, K.G.; Tolosana-Delgado, R. Analyzing Compositional Data with R, 1st ed.; Springer: Berlin, Germany, 2013.
[CrossRef]

42. Bacon-Shone, J. A short history of compositional data analysis. In Compositional Data Analysis: Theory and Applications; Pawlowsky-
Glahn, V., Buccianti, A., Eds.; John Wiley & Sons: Chichester, UK, 2011; pp. 3–11. [CrossRef]

43. van den Boogaart, K.G.; Tolosana-Delgado, R.; Bren, M. Compositions: Compositional Data Analysis (Version 2.0-8) [R package]; CRAN:
Chicago, IL, USA, 2025; Available online: https://CRAN.R-project.org/package=compositions (accessed on 14 August 2025).

44. Tolosana-Delgado, R.; Talebi, H.; Khodadadzadeh, M.; van den Boogaart, K.G. On machine learning algorithms and compositional
data. In Proceedings of the 8th International Workshop on Compositional Data Analysis (CoDaWork2019), Terrassa, Spain, 3–8
June 2019; Egozcue, J.J., Graffelman, J., Ortego Martínez, M.I., Eds.; Universitat Politècnica de Catalunya: Barcelona, Spain, 2019;
pp. 172–175. Available online: https://hdl.handle.net/2117/167357 (accessed on 14 August 2025).

45. Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002.
46. Therneau, T.; Atkinson, B. Rpart: Recursive Partitioning and Regression Trees (Version 4.1-23) [R Package]. Available online:

https://CRAN.R-project.org/package=rpart (accessed on 14 August 2025).
47. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
48. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.-C.; Lin, C.-C. e1071: Misc Functions of the

Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien (Version 1.7-16) [R Package]. Available online:
https://CRAN.R-project.org/package=e1071 (accessed on 14 August 2025).

49. Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [CrossRef]
50. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R, 2nd ed.; Springer: New

York, NY, USA, 2021. [CrossRef]
51. Guilhaumon, C.; Hascoët, N.; Chinesta, F.; Lavarde, M.; Daim, F. Data augmentation for regression machine learning problems in

high dimensions. Computation 2024, 12, 24. [CrossRef]
52. Galán, E.; Carretero, M.I.; Mayoral, E. A methodology for locating the original quarries used for constructing historical buildings:

Application to Málaga Cathedral, Spain. Eng. Geol. 1999, 54, 287–298. [CrossRef]
53. Maritan, L.; Mazzoli, C.; Melis, E. A multidisciplinary approach to the characterization of Roman gravestones from Aquileia

(Udine, Italy). Archaeometry 2003, 45, 363–374. [CrossRef]
54. Gilli, A.; Hodell, D.A.; Kamenov, G.D.; Brenner, M. Geological and archaeological implications of strontium isotope analysis of

exposed bedrock in the Chicxulub crater basin, northwestern Yucatán, Mexico. Geology 2009, 37, 723–726. [CrossRef]
55. Marshall, J.D. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol. Mag. 1992,

129, 143–160. [CrossRef]
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