

# Linear and Multilinear Algebra



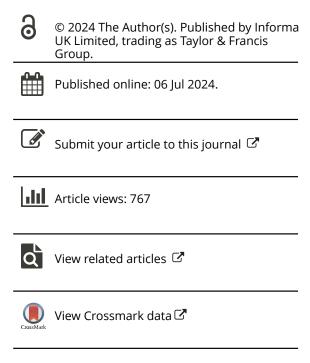
ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/glma20

# On commutators of idempotents

## Roman Drnovšek

**To cite this article:** Roman Drnovšek (2025) On commutators of idempotents, Linear and Multilinear Algebra, 73:4, 649-654, DOI: <u>10.1080/03081087.2024.2368734</u>

To link to this article: <a href="https://doi.org/10.1080/03081087.2024.2368734">https://doi.org/10.1080/03081087.2024.2368734</a>









# On commutators of idempotents

### Roman Drnovšek

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia

### **ABSTRACT**

Let T be an operator on a Banach space X that is similar to -T via an involution U. Then, U decomposes the Banach space X as  $X = X_1 \oplus X_2$  with respect to which decomposition we have  $U = \begin{pmatrix} I_1 & 0 \\ 0 & -I_2 \end{pmatrix}$ , where  $I_i$  is the identity operator on the closed subspace  $X_i$  (i = 1, 2). Furthermore, T has necessarily the form  $T = \begin{pmatrix} 0 & * \\ * & * \end{pmatrix}$  with respect to the same decomposition. In this note, we consider the question when T is a commutator of the idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  on P = 1. We also determine which scalar multiples of unilateral shifts on P = 1 spaces ( $1 \le P < \infty$ ) are commutators of idempotent operators.

### **ARTICLE HISTORY**

Received 2 November 2023 Accepted 23 May 2024

### **COMMUNICATED BY**

L. Molnar

### **KEYWORDS**

Banach spaces; operators; idempotents; commutators

# 2020 MATHEMATICS SUBJECT CLASSIFICATIONS

47B47: 39B42

### 1. Introduction

A (bounded linear) operator C on a Banach space is said to be the *commutator* of the operators A and B if C = AB - BA = [A, B]. The operators on a separable infinite-dimensional Hilbert space that arise as commutators have been characterized by Brown and Pearcy [1] as the operators that are not the sum of a compact operator and a non-zero scalar multiple of the identity.

It is natural to ask which operators are commutators of operators of given forms. For example, commutators of self-adjoint operators have been characterized in [2], and commutators of idempotent matrices have been characterized in [3]. In this paper, we first improve the ring-theoretic characterization of commutators of idempotents from [3], and then we characterize commutators of the idempotent operators on a Banach space. Motivated with the case p=2 in [4, Corollary 5.9] we also determine which scalar multiples of unilateral shifts on  $l^p$  spaces ( $1 \le p < \infty$ ) are commutators of idempotent operators.

We now recall some definitions. Let R be a unital ring with identity 1. An *idempotent* is any  $p \in R$  such that  $p^2 = p$ , while  $u \in R$  is called an *involution* if  $u^2 = 1$ . Of course, elements in R of the form [a, b] := ab - ba are called *commutators*.

### 2. A characterization of commutators of idempotents

We first complement the ring-theoretic characterization of commutators of idempotents as given in [3, Theorem 1]. This sheds new light on the proof of [3, Theorem 1].

**CONTACT** Roman Drnovšek roman.drnovsek@fmf.uni-lj.si Faculty of Mathematics and Physics, University of Ljubljana, Jadranska, 19, Ljubljana 1000, Slovenia

**Theorem 2.1:** Let R be a unital ring with identity 1 in which the element 2 is invertible, and let  $t \in R$ . The following assertions are equivalent:

- (i) t is a commutator of a pair of idempotents in R;
- (ii) 4t is a commutator of a pair of involutions in R;
- (iii) There exist  $u \in R$  and  $s \in R$  such that  $u^2 = 1$ , ut + tu = 0, us = su, st = ts and  $s^2 = t^2 + 1/4$ .

**Proof:** Assume that t = pq - qp for some idempotents p and q. Define u := 2p - 1 and v := 2q - 1. Then  $u^2 = v^2 = 1$  and

$$4t = [2p, 2q] = [2p - 1, 2q] = [u, 2q - 1] = [u, v].$$

This proves the implication (i)  $\Rightarrow$  (ii). Since the proof of the converse implication is similar, we omit it.

Now assume (ii), that is, 4t = uv - vu for some involutions u and v. Then

$$4ut + 4tu = (v - uvu) + (uvu - v) = 0.$$

Define

$$s := \frac{1}{4}(uv + vu).$$

Then

$$4us = v + uvu = 4su$$

$$16st = (uv + vu)(uv - vu) = (uv)^{2} - 1 + 1 - (vu)^{2} = 16ts,$$

and

$$16s^{2} - 16t^{2} = ((uv)^{2} + 1 + 1 + (vu)^{2}) - ((uv)^{2} - 1 - 1 + (vu)^{2}) = 4.$$

This completes the proof of the implication (ii)  $\Rightarrow$  (iii).

Now assume (iii). Define v := 2u(s + t) = 2(s - t)u. Then

$$v^2 = 2(s-t)u \cdot 2u(s+t) = 4(s^2 - t^2) = 1,$$

and

$$uv - vu = 2(s + t) - 2(s - t) = 4t$$
.

This proves (ii), and it completes the proof of the theorem.

Let T be an operator on a complex Banach space X. Suppose that T is similar to -T via an involution U, so that TU + UT = 0. Then (it is well-known that) U decomposes the

Banach space *X* as  $X = X_1 \oplus X_2$  with respect to which decomposition we have

$$U = \begin{pmatrix} I_1 & 0 \\ 0 & -I_2 \end{pmatrix},$$

where  $I_i$  is the identity operator on the closed subspace  $X_i$  (i = 1, 2). Write

$$T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

with respect to the same decomposition. Since TU + UT = 0, we have A = 0 and D = 0. Now Theorem 2.1 gives the following characterization.

**Theorem 2.2:** *The operator* 

$$T = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$$

is a commutator of the idempotent  $P=\left(\begin{smallmatrix}I_1&0\\0&0\end{smallmatrix}\right)$  and some idempotent Q on X if and only if the operator  $BC + \frac{1}{4}I_1$  has a square root  $S_1$  on  $X_1$ , the operator  $CB + \frac{1}{4}I_2$  has a square root  $S_2$ on  $X_2$ , and  $S_1B = BS_2$ ,  $S_2C = CS_1$ .

**Proof:**  $(\Rightarrow)$  By Theorem 2.1 and its proof (or by the proof of [3, Theorem 1]), there exists an operator S on X such that SU = US, ST = TS and  $S^2 = T^2 + \frac{1}{4}I$ . Since SU = US, S has the form  $S = \begin{pmatrix} S_1 & 0 \\ 0 & S_2 \end{pmatrix}$ . Since

$$\begin{pmatrix} S_1^2 & 0 \\ 0 & S_2^2 \end{pmatrix} = S^2 = T^2 + \frac{1}{4}I = \begin{pmatrix} BC + \frac{1}{4}I_1 & 0 \\ 0 & CB + \frac{1}{4}I_2 \end{pmatrix},$$

we have  $S_1^2 = BC + \frac{1}{4}I_1$  and  $S_2^2 = CB + \frac{1}{4}I_2$ . It follows from ST = TS that  $S_1B = BS_2$  and  $S_2C = CS_1$ .

 $(\Leftarrow)$  Define  $S := \begin{pmatrix} S_1 & 0 \\ 0 & S_2 \end{pmatrix}$  on  $X = X_1 \oplus X_2$ . Then

$$S^{2} = \begin{pmatrix} S_{1}^{2} & 0 \\ 0 & S_{2}^{2} \end{pmatrix} = \begin{pmatrix} BC + \frac{1}{4}I_{1} & 0 \\ 0 & CB + \frac{1}{4}I_{2} \end{pmatrix} = T^{2} + \frac{1}{4}I.$$

Since  $S_1B = BS_2$ ,  $S_2C = CS_1$ , we have ST = TS. Clearly, SU = US. By Theorem 2.1 and its proof (or by the proof of [3, Theorem 1]),  $T = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$  is a commutator of the idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent Q on the Banach space X.

We say that a compact subset K of the complex plane does not separate 0 from  $\infty$  if 0 lies in the unbounded component of the complement of *K*.

## Corollary 2.3: Let

$$T = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$$

be an operator on the Banach space  $X=X_1\oplus X_2$ . Suppose that  $\sigma(BC+\frac{1}{4}I_1)$  does not separate 0 from  $\infty$ . Then T is a commutator of the idempotent  $P=\begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent Q on X.

**Proof:** By the Riesz functional calculus, the assumption implies that  $BC + \frac{1}{4}I_1$  admits a square root  $S_1$  which lies in the norm-closed algebra generated by  $BC + \frac{1}{4}I_1$ . More precisely, the hypothesis implies that there is a function f, holomorphic in a simply connected open set  $\Omega$  containing the closed set  $\sigma(BC + \frac{1}{4}I_1) \cup \{\frac{1}{4}\}$ , which satisfies  $(f(z))^2 = z$ . It is well known that the spectra  $\sigma(BC + \frac{1}{4}I_1)$  and  $\sigma(CB + \frac{1}{4}I_2)$  differ perhaps only in the point  $\frac{1}{4}$ . So, we can define  $S_1 = f(BC + \frac{1}{4}I_1)$  and  $S_2 = f(CB + \frac{1}{4}I_2)$ . Since  $(BC + \frac{1}{4}I_1)B = B(CB + \frac{1}{4}I_2)$ , we have  $S_1B = BS_2$ . Similarly, since  $C(BC + \frac{1}{4}I_1) = (CB + \frac{1}{4}I_2)C$ , it holds that  $CS_1 = S_2C$ . By Theorem 2.2, T is a commutator of the idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent Q on the Banach space X.

As a special case of Corollary 2.3 we obtain the following generalization of [4, Lemma 5.6].

### Corollary 2.4: Let

$$T = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$$

be an operator on the Banach space  $X = X_1 \oplus X_2$ . Suppose that  $r(BC) < \frac{1}{4}$ , where r denotes the spectral radius function. Then T is a commutator of the idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent Q on X.

## 3. Multiples of unilateral shifts on I<sup>p</sup> spaces

Let us begin with the following simple lemma.

**Lemma 3.1:** Let A be an operator on a Banach space X such that  $\dim(\ker A) = 1$  and  $\dim(\ker A^2) = 2$ . Then A is not a square of some operator B on X.

**Proof:** Assume that  $A = B^2$  for some operator B on X. Then  $\ker B \subseteq \ker A$ , and so either  $\ker B = \{0\}$  or  $\ker B = \ker A$ . If  $\ker B = \{0\}$ , then  $\ker A = \ker B^2 = \{0\}$  that is not true. Therefore,  $\ker B = \ker A = \ker B^2$ . Then  $\ker B^k = \ker B$  for all positive integers k, by Abramovich and Aliprantis [5, Lemma 2.19]. In particular,  $\ker B = \ker B^4 = \ker A^2$ . This contradicts the assumption that  $\dim(\ker A^2) = 2$ .

Let *S* be the unilateral forward shift on either  $l^p$   $(1 \le p < \infty)$  or  $c_0$ , that is, the operator defined by  $S(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, x_3, \ldots)$ . In each case, *S* is an isometry. In [4, Corollary 5.9] it is shown that when p = 2 the operator  $\mu S$  is a commutator of idempotents if and only if the complex number  $\mu$  satisfies  $|\mu| \le \frac{1}{2}$ . We now consider this in our context.



To end this, we first write S in the block form  $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$ . Let  $\{e_n\}_n$  denote the standard unit vectors in either  $\mathbb{P}$  or  $c_0$ , and write  $X_1 = \bigvee_n \{e_{2n}\}$  and  $X_2 = \bigvee_n \{e_{2n-1}\}$ . Then,  $X = X_1 \oplus X_2$ , and with respect to this decomposition S has the form

$$S_0 := \begin{pmatrix} 0 & I \\ S & 0 \end{pmatrix}.$$

**Theorem 3.2:** Let  $\mu$  be a complex number. Then  $\mu S_0$  is a commutator of the idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent Q on either  $l^p$   $(1 \leq p < \infty)$  or  $c_0$  if and only if  $|\mu| \leq \frac{1}{2}$ .

**Proof:** Since S is similar to  $\alpha S$  via a diagonal operator whenever  $\alpha \in \{z \in \mathbb{C} : |z| = 1\}$  we may assume without loss of generality that  $\mu \geqslant 0$ . We consider 3 cases.

Case 1. If  $0 \le \mu < \frac{1}{2}$ , then  $r(\mu S \cdot \mu I) < \frac{1}{4}$ , and so by Corollary 2.4  $\mu S_0$  is a commutator of the idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent Q.

Case 2. If  $\mu = \frac{1}{2}$ , then by Theorem 2.2 we must show that the operator  $\frac{1}{4}S + \frac{1}{4}I = \frac{1}{4}(S +$ I) has a square root commuting with S. It is well-known that  $\sum_{n=0}^{\infty} |\binom{\frac{1}{2}}{n}| < \infty$ , and so  $R := \sum_{n=0}^{\infty} {1 \choose n} S^n$  converges absolutely, RS = SR and  $R^2 = S + I$ .

Case 3. If  $\mu > \frac{1}{2}$ , then put  $\lambda := -\frac{1}{4\mu^2} \in (-1,0)$ , so that  $\mu^2 S + \frac{1}{4}I = \mu^2 (S - \lambda I)$ . In view of Theorem 2.2 it is enough to show that  $S - \lambda I$  has no square root on either  $l^p$  $(1 \le p < \infty)$  or  $c_0$ . Then it is enough to prove that the adjoint operator  $A := S^* - \lambda I$  has no square root on either the dual space  $(l^p)^* = l^q$ , where q is the conjugate exponent of p, or the dual space  $c_0^* = l^1$ . To end this, we apply Lemma 3.1. It is easy to show that

$$\ker A = \bigvee \{ (1, \lambda, \lambda^2, \lambda^3, \ldots) \} \quad \text{and}$$
$$\ker A^2 = \bigvee \{ (1, \lambda, \lambda^2, \lambda^3, \ldots), (0, 1, 2\lambda, 3\lambda^2, 4\lambda^3, \ldots) \},$$

so that  $\dim(\ker A) = 1$  and  $\dim(\ker A^2) = 2$ . This completes the proof.

In the similar manner one can prove the corresponding result for the unilateral backward shift B on either  $l^p$   $(1 \le p < \infty)$  or  $c_0$ , that is, the operator defined by  $B(x_1, x_2, x_3, ...) = (x_2, x_3, x_4, ...)$ . We will omit its proof.

As before, we first write *B* in the block form  $\begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$ . Let  $\{e_n\}_n$  denote the standard unit vectors in either  $l^p$  or  $c_0$ , and write  $X_1 = \bigvee_n \{e_{2n}\}$  and  $X_2 = \bigvee_n \{e_{2n-1}\}$ . Then  $X = X_1 \oplus I$  $X_2$ , and with respect to this decomposition B has the form

$$B_0 := \begin{pmatrix} 0 & B \\ I & 0 \end{pmatrix}.$$

**Theorem 3.3:** Let  $\mu$  be a complex number. Then  $\mu B_0$  is a commutator of the idempotent  $P = \begin{pmatrix} I_1 & 0 \\ 0 & 0 \end{pmatrix}$  and some idempotent Q on either  $l^p$   $(1 \leq p < \infty)$  or  $c_0$  if and only if  $|\mu| \leq \frac{1}{2}$ .

### Disclosure statement

No potential conflict of interest was reported by the author(s).



### **Funding**

The author acknowledges the financial support from the Slovenian Research and Innovation Agency (research core funding No. P1-0222).

### References

- [1] Brown A, Pearcy C. Structure of commutators of operators. Ann Math. 1965;82(2):112-127. doi: 10.2307/1970564
- [2] Radjavi H. Structure of  $A^*A AA^*$ . J Math Mech. 1966;16:19–26.
- [3] Drnovšek R, Radjavi H, Rosenthal P. A characterization of commutators of idempotents. Linear Algebra Appl. 2002;347:91–99. doi: 10.1016/S0024-3795(01)00533-X
- [4] Marcoux LW, Radjavi H, Zhang Y. Around the closure of the set of commutators of idempotents in B(H): biquasitriangularity and factorisation. J Funct Anal. 2023;284(8):109854 doi: 10.1016/j.jfa.2023.109854Paper No. 109854.
- [5] Abramovich YA, Aliprantis CD. An invitation to operator theory. Providence: American Mathematical Society; 2002.