- 1 Short title: Integration of multi-omics data in potato
- Corresponding authors: Kristina Gruden, kristina.gruden@nib.si; Markus Teige,
 markus.teige@univie.ac.at
- 5

2

6 Integration of multi-omics data and deep phenotyping provides insights 7 into responses to single and combined abiotic stress in potato

8

9 Maja Zagorščak^{1*}, Lamis Abdelhakim^{2*}, Natalia Yaneth Rodriguez-Granados^{3*}, Jitka Široká^{4*},

10 Arindam Ghatak^{5*}, Carissa Bleker¹, Andrej Blejec¹, Jan Zrimec¹, Ondřej Novák⁴, Aleš Pěnčík⁴,

11 Špela Baebler¹, Lucia Perez Borroto⁶, Christian Schuy⁷, Anže Županič¹, Leila Afjehi-Sadat⁸,

12 Bernhard Wurzinger⁵, Wolfram Weckwerth^{5,9}, Maruša Pompe Novak^{1,10}, Marc R. Knight¹¹,

13 Miroslav Strnad⁴, Christian Bachem⁶, Palak Chaturvedi⁵, Sophia Sonnewald⁷[†], Rashmi

14 Sasidharan³⁺, Klára Panzarová²⁺, Kristina Gruden^{1+#}, Markus Teige^{5+#}

- 15
- 16 Affiliations:
- ¹ Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000
- 18 Ljubljana, Slovenia
- 19 ² PSI (Photon Systems Instruments), spol. s r.o., Prumyslova 470, CZ-664 24 Drásov, Czech Republic
- ³ Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Heidelberglaan 8, 3584
 CS Utrecht, The Netherlands

⁴ Laboratory of Growth Regulators, Palacký University in Olomouc & Institute of Experimental Botany AS
 CR, Šlechtitelů 27, Olomouc, 779 00, Czech Republic

⁵ Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University
 Vienna, Djerassiplatz 1, 1030 Vienna, Austria

⁶ Wageningen University and Research, Plant Breeding, Droevendaalsesteeg 1, 6708 PB Wageningen,
 The Netherlands

⁷ Department Biologie, Lehrstuhl für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg,
 Staudstr. 5, 91058 Erlangen, Germany

⁸ Mass Spectrometry unit, Research Support Facilities, Faculty of Life Sciences, University Vienna,
 Djerassiplatz 1, 1030 Vienna, Austria

32 ⁹ Vienna Metabolomics Center (VIME), University Vienna, Djerassiplatz 1, 1030 Vienna, Austria

- 33 ¹⁰ School for Viticulture and Enology, University of Nova Gorica, Gladni trg 8, 5271 Vipava, Slovenia
- 34 ¹¹ Department of Biosciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
- 3536 * shared first authorship
- 37 + shared last authorship
- 38 # corresponding authors
- 39

40 The authors responsible for distribution of materials integral to the findings presented in this

41 article in accordance with the policy described in the Instructions for Authors

42 (https://academic.oup.com/plphys/pages/General-Instructions) are Maja Zagorščak and Markus
 43 Teige.

- 44
- 45 46

,

© The Author(s) 2025. Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1 ABSTRACT

2 Potato (Solanum tuberosum) is highly water and space efficient but susceptible to abiotic stresses 3 such as heat, drought, and flooding, which are severely exacerbated by climate change. Our 4 understanding of crop acclimation to abiotic stress, however, remains limited. Here, we present a 5 comprehensive molecular and physiological high-throughput profiling of potato (Solanum 6 tuberosum, cv. Désirée) under heat, drought, and waterlogging applied as single stresses or in 7 combinations designed to mimic realistic future scenarios. Stress responses were monitored via 8 daily phenotyping and multi-omics analyses of leaf samples comprising proteomics, targeted 9 transcriptomics, metabolomics, and hormonomics at several timepoints during and after stress treatments. Additionally, critical metabolites of tuber samples were analyzed at the end of the 10 stress period. We performed integrative multi-omics data analysis using a bioinformatic pipeline 11 that we established based on machine learning and knowledge networks. Waterlogging produced 12 13 the most immediate and dramatic effects on potato plants, interestingly activating ABA responses similar to drought stress. In addition, we observed distinct stress signatures at multiple molecular 14 15 levels in response to heat or drought and to a combination of both. In response to all treatments, 16 we found a downregulation of photosynthesis at different molecular levels, an accumulation of minor amino acids, and diverse stress-induced hormones. Our integrative multi-omics analysis 17 provides global insights into plant stress responses, facilitating improved breeding strategies 18 19 toward climate-adapted potato varieties. 20

Keywords: potato, *Solanum tuberosum*, abiotic stress responses, heat, drought, waterlogging,
 multi-omics, integrative omics, adaptomics, panomics

23 24

25 INTRODUCTION

26 Improving crop resilience to climate change is a major challenge of modern agriculture (Bailey-27 Serres et al., 2019; Rivero et al., 2022). High-yielding crop varieties including potato (Solanum 28 tuberosum), are vulnerable to heat, drought, and flooding (Benitez-Alfonso et al., 2023; 29 Zandalinas et al., 2023; Renziehausen et al., 2024; Sato et al., 2024). These environmental 30 stresses affect plant growth, source-sink relationships, sugar and hormone metabolism, among 31 other processes, which in turn, negatively impact product yield and nutritional status (Lal et al., 32 2022). Potato is particularly sensitive to waterlogging (Jovović et al., 2021), and flooding of the 33 fields can ruin the entire harvest within a few days. Since global warming is increasing, the 34 occurrence of such extreme weather events, crop productivity worldwide is under considerable 35 threat (FAO, 2023). To ensure future food security, there is an urgent need for sustainable farming 36 practices including the development of stress tolerant varieties with consistent yields (Dahal et al., 37 2019; Lal et al., 2022).

38

There is already a good understanding of how plants react to single abiotic stresses, which have profound effects on plant metabolism and development. The primary effects of abiotic stress are

1 generation of reactive oxygen species (ROS), destabilization of proteins and changes in enzyme 2 efficiencies and membrane fluidity and integrity (Zhang et al., 2022). Together, these impacts 3 reduce plant productivity through changes in photosynthetic capacity, hormone balance, transport 4 of assimilates from source to sink as well as transport of soil nutrients and water by the roots. In 5 addition, species-specific vulnerabilities impact agronomic productivity, such as for instance tuber 6 initiation and tuber growth dynamics with potato. Potato tuber formation and growth is dependent 7 on mobile tuberization signals produced in source leaves, such as the potato homolog of 8 FLOWERING LOCUS T, SELF-PRUNING 6A (SP6A) (Navarro et al., 2011), that also regulates 9 directional transport of sucrose to the developing tuber (Abelenda et al., 2019). Heat, drought and 10 flooding trigger strong changes in gene expression and thereby strongly interfere with the 11 regulation of flowering and tuberization by the photoperiodic pathway. This leads to a delay in 12 tuberization and anomalies in subsequent tuber development such as second growth and/or 13 internal defects which together severely impacts marketable yields of the tuber crop (Dahal et al., 14 2019; Lal et al., 2022).

15

On the other hand, the response of plants to combined stresses is unique and cannot be 16 17 extrapolated from the response to the corresponding individual stresses (Mittler, 2006). 18 Considering the increasing occurrences of simultaneous or sequential abiotic stresses in the field, 19 the relative lack of knowledge on multi-stress resilience is a major shortfall that hinders the ability 20 to develop effective strategies for crop improvement. Accordingly, the question of how 21 combinations of different stresses impact plants have recently gained a lot of interest (Zandalinas 22 et al., 2021). Several studies on combinatorial stress effects have been performed, especially 23 studying the physiological and molecular responses to combined heat- and drought stress in 24 potato (Demirel et al., 2020), wheat (Manjunath et al., 2023) and tomato (Zeng et al., 2024). In 25 nature, heat and drought often occur together, resulting in different physiological responses as 26 compared to individual stresses. For example, under heat stomatal conductance and transpiration 27 are increased to reduce leaf temperature, whilst under drought, stomata are closed to avoid water 28 loss, which leads to a strongly reduced CO₂-assimilation (Zhang and Sonnewald, 2017). The final 29 phenotypic output in a combined stress scenario greatly depends on synergistic and antagonistic 30 interactions between stress-specific signalling and response pathways. These interactions can 31 be regulated at various levels (gene expression to metabolism), and on different scales (cell to 32 system), thus resulting in complex regulatory network perturbations. Therefore, as information 33 gained by extrapolating from studies on individual stressors is limited, it is crucial to increase our 34 understanding of crop responses in multi-stress situations.

1

2 To this end, high-throughput phenotyping (HTP) platforms and integrative omics technologies can 3 measure molecular mechanisms at multiple levels and in multiple processes simultaneously. This 4 can help us obtain a comprehensive understanding of the intricate dynamics of plant-environment 5 interactions (Yang et al., 2020; Hall et al., 2022; Zhang et al., 2022). Here, advanced data 6 integration pipelines can aid with unbiased integration and systematic extraction of biological 7 knowledge from large multi-omics datasets (Cembrowska-Lech et al., 2023). However, despite 8 the increasing application of high-throughput approaches in agricultural and plant research, only 9 a handful of studies have addressed the problem of data integration from comprehensive multi-10 omics data (Jamil et al., 2020). Therefore, to enable molecular insights across various system 11 levels and disentangle the intricate physiological and molecular crosstalk in the context of non-12 additive effects of different stress combinations, it is imperative to develop and apply multi-omics 13 integrative approaches that leverage statistics, machine learning, and graph theory.

14

In this study, we aimed to increase knowledge on multiple abiotic stress responses of potato 15 16 plants and to integrate this into a complex knowledge network. Therefore, a comprehensive 17 assessment of potato responses to single and combined heat, drought, and waterlogging stress 18 was performed. Using the cv. Désirée, a widely used moderately stress-resistant potato cultivar, 19 we monitored dynamic changes in morphological, physiological as well as biochemical and 20 molecular responses under stress conditions. With the application of HTP, multi-omics 21 technologies, prior knowledge and multi-level integration approaches, we identified important 22 molecular signatures, unique to single and different stress combinations. These results can guide 23 the development of diagnostic markers for rapid detection of stress, allowing for earlier agricultural 24 interventions to enhance plant resilience towards abiotic stress and development of marker-25 assisted breeding programs for climate-resilient crops (Weckwerth et al., 2020; Mishra et al., 2024). 26

27 RESULTS

This study aims to increase the mechanistic understanding of potato acclimation to individual and combined abiotic stresses. We focused on individual heat, drought, and waterlogging stresses, as well as realistic combinations of these. We used the cv. Désirée, a widely used moderately stress-resistant potato cultivar, as our model. To provide insights into multi-level regulation of stress responses, we conducted HTP and comprehensive omics analyses, according to the
 scheme outlined in Figure 1A (for more details, see Supp. Table S1).

3 Effects of single and combined stresses on potato growth and morphology

5 To assess potato phenotypic responses to different stress conditions, multiple morphological and 6 physiological traits (Supp. Table S2) were quantified daily, using several imaging sensors (Figure 7 1B). Using RGB side and top view imaging, we monitored changes in plant growth dynamics 8 during the stress treatments and recovery phases, considering traits such as plant volume, area, 9 height and compactness. We observed that all stress treatments negatively affected plant growth, 10 however, to different degrees (Figure 1C, Supp. Figure S1). Although individual drought (D, 30% of field capacity) and heat stress (H, 30°C during the day, 28°C at night) decreased the rate of 11 12 biomass accumulation (plant volume, area, and height), we saw that heat had stronger effects 13 over time (Figure 1C, Supp. Figure S1A-C). The negative effects of heat became more severe 14 when combined with drought (HD, water withdrawal starting after 7 days of H) (Figure 1C and 15 Supp. Figure S1A-C). Under HD, plants phenotypically resembled more heat-stressed plants, e.g. 16 with respect to top area and compactness, however, with a clearly more negative effect (Supp. 17 Figure S1B, S1D). While heat stress caused hyponastic movement of leaves, waterlogging led to 18 an epinastic leaf movement which was accompanied by growth arrest and significant decrease in 19 the top area, compactness and relative growth rate (RGR) that were observed after one day 20 (Figure 1C, Supp. Figure S1A, S1B, S1D, S1E, Supp. Table S3). In the 3rd week, when the single 21 and HD stress treatments were finished (at treatment day 15), plants recovered well from D, H 22 and HD, as reflected by resumption of growth. This trend was not observed for plants subjected to W stress (Figure 1C). 23

Plant performance was the worst in the triple-stress condition (HDW), where 7 days of H were followed by 7 days of combined HD and 7 days of W. Interestingly, during the first three days of W that followed the period of heat and drought plants grew very fast, but with a prolonged stress exposure, plants collapsed, as indicated by RGB side and top view images, the plant volume and growth dynamics as shown in RGR and other measured morphological traits (Figure 1C, Supp. Figure S1, Supp. Table S3).

30 Effect of single and combined stresses on potato physiology

31

To evaluate photosynthetic performance under single and multiple stresses, a broad range of physiological traits were extracted from chlorophyll fluorescence images and analysed (Figure 2). Top view images of the operating efficiency of photosystem II (PSII) in light steady state (QY Lss) clearly showed the negative impact of stress on photosynthetic capacity in all stress treatments, indicated by the reduction of QY Lss, with D stress causing only a weak negative effect (Figure Downloaded from https://academic.oup.com/plphys/advance-article/doi/10.1093/plphys/kiaf126/8104150 by knjiznica user on 14 April 2025 2A, 2B). Moreover, steady-state fluorescence of maximum efficiency of PSII in the light (F_v/F_m_Lss) showed (only) a significant decrease after 3 days in W alone and when W followed a period of HD till the end of the experiment, indicating a high stress level (Figure 2C, Supp. Table S3). A decrease in steady-state estimation of the fraction of open reaction centres in PSII in the light (gL Lss) was observed after one day of H and remained consistently lower than in other conditions. In contrast, D had no significant effect on these parameters (Figure 2D, Supp. Table S3). When drought was combined with heat stress (HD), an increase in qL_Lss as compared to H alone was observed. Following H and HD stress, qL Lss values did not recover back to the control levels at day 21 (Figure 2D), suggesting that photosynthesis is enduringly affected. There was a slow decrease in qL_Lss after long-term W with a clear decline after stress recovery (Figure 2D). In addition, changes in canopy temperature (ΔT) were deduced from the thermal imaging, while water use efficiency (WUE) was calculated based on plant volume and water consumption. The rapid increase in ΔT and WUE under W and HDW was most likely caused by rapid stomatal closure (Figure 2E, 2F). The strong response remained over the entire stress period and plants were unable to recover from both stress treatments. A steady increase in ΔT and WUE was observed starting at three days in D, suggesting that the stress was recognised, and the plants responded by closing stomata. When D stress was removed on day 15, the plants recovered immediately (Figure 2E, 2F). Heat stressed plants showed a decrease in ΔT together with an increase in water consumption and a lower WUE, thus indicating enhanced leaf cooling (Figure 2E, 2F, Supp. Table S3, S4). During combined HD stress, an intermediate response was observed for these physiological traits compared to single D and H stress. Stress combinations and waterlogging have strong effects on potato yield

27 28 At the end of the phenotyping, plants were harvested to assess the total biomass accumulation 29 and tuber yield (Figure 2G and 2H). Single H stress led to a slightly higher tuber number (Figure 30 2G). However, compared to control conditions, tubers were smaller and weighed less resulting in 31 a lower harvest index. HD also significantly reduced the harvest index compared to control 32 conditions, while D alone did not affect final tuber yield (Figure 2H). W stress strongly inhibited 33 tuber formation and growth and only a few tubers were formed, leading to a significant reduction

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

in the harvest index compared to the control treatment (Figure 2H). A combination of all stress
 factors abolished tuber formation, reflecting the (near) lethal effect of HDW (Figure 2G, 2H).

Negative effects of the stress treatments on tubers were also observed at the metabolic level (Supp. Figure S2). Thus, starch content was significantly lower under H, HD and W stress, while D stress alone has no negative impact. The accumulation of hexoses under H and HD may hint to an increased starch degradation and / or to a reduced starch biosynthesis. W caused a strong accumulation of almost all amino acids, most likely caused by protein degradation and a hampered metabolism (Supp. Figure S2).

Molecular responses across omics levels reveal mechanistic insights into multi-stress acclimation

11

12 In addition to the morphological and physiological measurements (68 variables, Figure 3D, Supp. 13 Table S1, S2), leaf samples were taken for parallel multi-omics analysis. The second and third 14 mature leaf per plant were pooled, homogenized and used for further analysis (Figure 3A). For each of the treatments the fast response (one day post treatment) and the status at the end of a 15 16 prolonged stress duration (7 or 14 days of stress) was investigated (sampling points see Figure 17 1A). While the proteome analysis was untargeted (4258 identified proteins, Supp. Table S5, S6), 18 other omics analyses were targeted comprising 14 pre-selected transcriptional marker genes 19 involved in stress response and tuberization, 13 phytohormones encompassing abscisic acid, 20 ABA; jasmonic acid, JA; salicylic acid, SA; indole-3-acetic acid IAA, and their derivatives as well 21 as 22 metabolites encompassing amino acids and sugars (Supp. Table S4). To identify processes 22 regulated on proteomics level we performed gene set enrichment analysis (GSEA, Supp. Table 23 S6).

24 A multi-level data integration protocol was developed to investigate plant signalling/responses 25 across the different omics levels (Figure 3B). First, we investigated data distribution by 26 multidimensional scaling (Figure 3C, Supp. File S1). This graph shows a clear clustering aside of 27 samples taken after 7 and 8 days of waterlogging. Therefore, only data from the first week of 28 waterlogging were included in further analyses, taking also into consideration that after two weeks 29 of waterlogging all plants were severely damaged. The overview of data distribution also revealed 30 that the most distant physiological state was that of plants exposed to triple stress (HDW): first 31 one week of heat, followed by one week of heat combined with drought, and finally one week of 32 waterlogging (Figure 3C). Because the triple stress treatment turned out to be very harsh and

1 plants were severely affected in both above ground and below ground growth, we also excluded 2 data from these samples from all further analyses. Next, we reduced the number of variables 3 obtained on phenomics and proteomics levels to equalise numbers of variables across different 4 analysed levels. In order to identify the most informative variables, feature selection using random 5 forest with recursive feature elimination was conducted on the phenomics data, keeping 6 6 variables for downstream analysis (Figure 3D: qL_Lss, F_v/F_m Lss, top area, ΔT , compactness 7 and water consumption). The proteomics dataset was reduced to keep only proteins that were 8 identified as differentially abundant in any comparison of stress vs. control (135 proteins) and 9 were functionally assigned to pathways that were studied also on other levels (36 proteins, related 10 to photosynthesis, metabolism of sugars and amino acids, hormone metabolism and signalling, 11 ROS signalling and stress pathways).

In addition, correlation analysis within each level of omics data was performed, revealing that 12 13 these components are only weakly connected in control conditions, while in both heat or drought, 14 they are highly correlated to each other (see e.g. for hormones and transcripts, Supp. Figure S3A, 15 S3B). More severe stresses, such as the combined heat and drought stress and waterlogging, however, broke this link, suggesting a disorganisation of signalling responses. The canonical 16 17 correlation analysis between components of different molecular levels similarly showed low 18 connection in control samples. In stressed samples, blocks of components appeared to be 19 strongly regulated, each specific to a particular stress (Supp. Figure S3C).

20 Variables measured on different omics levels were integrated into a metabolism and signaling 21 cascade-based knowledge network to capture events at the molecular level (Figure 4A). Finally, 22 we superimposed the measured data onto this mechanistic knowledge network and visualised 23 them in parallel for all omics levels per each analysed condition compared to control (Figure 4B, 24 Supp. Table S3, Supp. File S2). This provides a comprehensive overview of how these stresses 25 rewire biochemical pathways and physiological processes. These networks were used for 26 interpretation of processes in single and combined H and D stress as well as for W, and are 27 described in the subsequent sections.

Metabolic and molecular responses to individual and combined heat- and drought stress exhibit combinatorial and distinct signatures

30 While heat stress was effective immediately, drought stress, applied by water withdrawal on day 31 seven in our setup, became effective gradually within three days, visible by an increase in the ΔT

values (Figure 2E). Like previous reports (Demirel et al., 2020; Zaki and Radwan, 2022), we found

1 that Désirée was moderately drought tolerant and exhibited only minor morphological and 2 physiological responses at the moderate stress level applied in our study (30% field capacity) and 3 the plants fully recovered when the stress treatment was finished. The potato plants clearly 4 responded to elevated temperatures (H) with morphological adaptation like the upward movement 5 of leaves (Figure 1C), which is part of thermomorphogenic responses (Quint et al., 2016). 6 Previous work showed that heat stress caused an altered biomass allocation between shoots and 7 tubers of potato plants, with less assimilates allocated to developing tubers (Hancock et al., 2014; 8 Hastilestari et al., 2018). Decreased tuber yield (higher number of tubers with smaller biomass, 9 Figure 2G) and starch accumulation, leading to a lower harvest index, were also observed in our 10 study (Figure 2H and Supp. Figure S2).

To investigate the effect of heat and/or drought stress on leaf carbohydrate metabolism, contents 11 12 of soluble sugars and starch were measured (Figure 5A). While sucrose levels did not change 13 (Supp. Table S3), there was an about twofold increase in the amount of fructose and glucose 14 after 14 days of H and at day 7 of D and HD. Under H and HD combination also less starch 15 accumulated in leaves (Figure 5A). This most likely reflects the decreased photosynthetic 16 assimilate production and contributes to a lower amount of carbon that can be transported to sink 17 organs, such as growing tubers to stimulate growth and starch deposition. The soluble sugars 18 may act as osmoprotectants under these stress conditions, feed the increased demand for energy 19 and serve as building blocks for stress defence responses. Accordingly, we found that, enzymes 20 involved in glycolysis or sucrose degradation were upregulated in H and combined HD stress as 21 indicated by gene set enrichment analysis which summarizes the complex proteomics data set 22 (Figure 5D and Supp. Table S6).

23 Expression of the sugar efflux transporter SWEET11 was upregulated at the end of both H and D 24 stress presumably to maintain sucrose loading into the phloem and carbon allocation to sink 25 tissue to counterbalance the decreased carbon assimilation rate of source leaves. This view is 26 supported by various other studies demonstrating an emerging role of SWEET sugar transporters 27 in abiotic stress responses as summarized in (Gautam et al., 2022). For example, Chen and co-28 workers showed that AtSWEET11/12 are rapidly activated under drought stress in an ABA and 29 SNF1-related protein kinase 2.9 (Snrk2)-dependent manner to enhance assimilate allocation from 30 shoot to root to stimulate root growth and allow stress adaptation (Chen et al., 2022). One key 31 player stimulating tuberization and tuber growth is the tuberigen SP6A. Its expression was 32 downregulated during the first week of H and in combined HD (Figure 5C). During longer heat 33 exposure, expression levels of SP6A were similar to control levels, but remained low in HD. 34 Drought alone had little effect on SP6A, which is consistent with the low impact on final tuber yield.

In potato, the transcriptional regulator protein *Constans-like 1* (CO) was described to act as a negative regulator of *SP6A* expression (Abelenda et al., 2016). *CO* was upregulated within 7 days of drought stress (D), and it increased with longer durations of heat, but was unaffected by HD combination (Figure 5C). Hence, in our experiment, the transcript levels of *CO* did not always change in the opposite direction as *SP6A*, suggesting additional regulatory mechanisms may act under stress conditions.

7 Considering the changes in amino acids, the most striking finding was the strongly elevated levels 8 of histidine (His) in all three stress treatments, with the highest amounts detected in combined HD 9 stress (Figure 5A). This was accompanied by a significant increase of many (minor) amino acids, 10 in particular isoleucine (IIe) and other branched chain amino acids (BCAs). This observation was 11 in line with previous reports on combined heat- and drought stress in potato (Demirel et al., 2020), although its cause and physiological importance need further investigations. Accordingly, at the 12 13 proteome level, proteins involved in BCA synthesis were significantly enriched among the ones 14 with increased levels in stress (Figure 5D, 5E, Supp. Table S5, S6).

15

16 Proline is an established regulator of osmotic potential that protects cells by stabilizing proteins 17 and scavenging ROS. Proline levels increased at day 7 of D stress (sampling day 14) (Figure 5A). 18 This was consistent with increased transcript levels of the delta-1-pyrroline-5-carboxylate 19 synthase 1 (P5CS), the key enzyme for proline synthesis, and of Responsive to Desiccation 29B 20 (RD29B), both being well-known stress marker genes. In line with these findings, the levels of 21 ABA, the key phytohormone that induces stomal closing, proline accumulation and other drought 22 stress responses (Cutler et al., 2010; Zhang et al., 2022), were elevated after 7 days of D but 23 were clearly reduced in H, while no changes were detected in HD stress. Interestingly, the levels 24 of phaseic acid (PA), and dihydrophaseic acid (DPA), two breakdown products of ABA, were lower 25 at one day of D but significantly higher after 7 days in D. The strongest accumulation of DPA 26 levels was detected in the HD treatment, in which DPA levels were elevated already after one day 27 and further increased until the end of the treatment (at day 7). The elevated levels after one day 28 of HD can be explained by the experimental setup, in which the D treatment started after 7 days 29 of H (that also resulted in DPA accumulation). However, the strong accumulation of ABA 30 breakdown products under D and to even higher levels in HD are in line with their suggested role 31 in long-term stress acclimation. PA, the first degradation product of ABA and precursor of DPA, 32 is known to activate a subset of ABA receptors (Weng et al., 2016). Because ABA has a very 33 short half-life, it was suggested that the long-lived PA could prime plants for enhanced responses 34 to future drought (Lozano-Juste and Cutler, 2016).

1

2 The phytohormone JA is another typical stress hormone known to be involved in many biotic but 3 also abiotic stress responses (Wasternack and Feussner, 2018). We found strongly increased 4 levels of the biologically active form jasmonyl-L-isoleucine (JA-IIe) under H, D and HD conditions 5 (Figure 5B). 12-Hydroxyjasmonic acid (12-OH-JA) is a by-product of switching off JA signaling 6 with weak signaling activity (Nakamura et al., 2011). It was also described to function as tuber-7 inducing factor in potato (Yoshihara et al., 1989). Under H, amounts of 12-OH-JA and free JA 8 switched from higher amounts measured at day 1 to lower levels at day 8, and decreased further 9 till the end of the experiment. Also, cis-12-oxo-phytodienoic acid (cis-OPDA), the biochemical 10 precursor of JA, was detected at much lower levels on day 8 and 14 in H. Cis-OPDA was also 11 reduced at the start of the combined HD (day 1) treatment, most likely because of prior heat 12 treatment. Altogether, this indicates a strong upregulation in the last step of conjugation for the 13 synthesis of JA-Ile in H, D and HD.

14

The accumulation of ROS is a detrimental by-product of photosynthesis and other metabolic 15 16 pathways under stress conditions. Accordingly, ROS detoxification by different enzymes such as 17 catalases or superoxide dismutases, together with induction of Ca²⁺ signals, is a typical response 18 emerging from stressed chloroplasts (Stael et al., 2015). In line with that, we measured increased 19 transcript levels of CATALASE 1 (CAT1) and a methyl esterase (MES), which was selected as 20 Ca²⁺ signaling marker gene (M. Knight, unpublished data), at the end of the drought and heat 21 treatment (sampling day 14). The transcript levels of pathogenesis-related protein 1b1 (PR1b), a 22 biotic stress as well as drought and salt stress marker (Akbudak et al., 2020) were first lower in H 23 but increased from day 8 to 14 in H and at day 7 in D (Figure 5C). A similar response was seen 24 for the chloroplast-localized 13-lipoxygenase (St 13-LOX3.1), which is a well-known marker gene 25 for different stresses, especially chloroplast generated ROS (Bachmann et al., 2002) suggesting 26 increased ROS formation and stress level with stress duration. Strikingly, the expression of these 27 genes was less induced or even inhibited when H and D were combined, which may indicate the 28 activation of opposing signaling pathways.

29

Heat stress, but also other stresses, induces the production of heat-shock proteins (HSPs), which is a very conserved process in all organisms. HSPs act as molecular chaperones and play an important role in maintaining cellular homeostasis and the proteome by supporting protein folding, preventing misfolding or by assisting in the degradation of irreversibly damaged polypeptides (Sato et al., 2024). At the transcript level, we observed clearly elevated levels of the *heat shock*

1 protein 70 (HSP70) after single H and D stress. Under H this was accompanied by an 2 accumulation of numerous HSP proteins as indicated by their significant enrichment among the 3 identified proteins in the proteome approach (Figure 5D, 5E). This effect was similarly pronounced 4 in combined HD stress (Figure 5E) with a strong enrichment of HSP70, HSP90, and HSP101 5 involved in heat stress responses and protein folding (Figure 5D). The category "protein folding" 6 comprises mainly HSP70 and 60 group members many of which are present in the chloroplast, 7 where they participate in the repair of PSII components, but also protect enzymes such as 8 Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo). In fact, our physiological data 9 indicate a disturbance in the electron-transport chain through PSII under heat. For example, we 10 saw a strong decrease of PSII efficiency under H stress (Figure 2B). The negative effect of H 11 stress is also reflected in lower abundance of PSII proteins in the gene enrichment analysis 12 (Figure 5D). More specifically (Supp. Table S5), there were reduced amounts of the PsbQ and 13 PsbP subunits of the oxygen-evolving complex.

14

15 Overall, we do see specific stress responses to heat and drought, but also to a combination of 16 both. This is evident in Figure 5E illustrating the signature of responses elicited by combined heat 17 and drought stress in biochemical pathway view (knowledge network overlaid with multi-omics 18 data). The responses to HD only partly overlap with single D stress, e.g. for the accumulation of 19 DPA. However, for most of the measured metabolites, the patterns were similar to those observed 20 under heat stress, with changes being more pronounced under HD (Figure 5E). Here, we cannot 21 exclude that this domination by heat was linked to the rather mild drought stress. Interestingly, 22 the transcriptional changes of selected stress-related enzymes were weakest in HD stress 23 combination pointing to a redirection and rearrangement of signaling pathways compared to 24 individual stress factors as suggested by other studies (Zhang and Sonnewald, 2017).

Comprehensive insight into molecular processes mediating the extreme waterlogging sensitivity of potato

Despite being documented as a highly flood-sensitive species, an in-depth characterization of flooding-induced stress responses in potato is sparse (Jovović et al., 2021). The waterlogging sensitivity of potato was evident in the HTP data, with several morpho-physiological traits related to plant performance being negatively impacted following stress imposition (Figure 1C, Figure 2). This included: leaf epinasty, decreased biomass accumulation and shoot elongation, impaired photosynthesis and stomatal conductance as well as a dramatic reduction of tuber yield (see
 Figure 1,2).

3 Waterlogging significantly affected primary metabolic pathways as reflected in an increase in 4 soluble sugars and free amino acids (Figure 6A). We also observed changes in the expression of 5 stress-associated genes and hormones, thus highlighting potential mechanisms involved in 6 waterlogging acclimation. These include the increase of ABA (ABA, PA, DPA) metabolism and 7 response (RD29B), as well as the upregulation of the ethylene (ET) biosynthesis gene, 1-8 aminocyclopropane-1-carboxylate oxidase 2 (ACO2), and the ROS-producing enzyme, 9 respiratory burst oxidase homolog A (RBOHA). Waterlogging also resulted in the accumulation 10 of various JA metabolites, 9,10-dihydrojasmonic acid (9,10-dHJA), cisOPDA, and JA-Ile, along 11 with the upregulation of 13-LOX3.1, an enzyme involved in JA metabolism. The strong ABA 12 signature observed in waterlogged plants prompted us to compare waterlogging and drought 13 responses (Figure 6B). This revealed common stress-associated responses (e.g.: the induction 14 of ACO2, RD29B, HSP70) and a much stronger ABA response in waterlogging relative to drought. 15 Another notable observation was the upregulation of the tuberigen signal, SP6A after 1 day of waterlogging, coinciding with the downregulation of its negative regulator CO (Figure 6C). 16

Proteomics analyses of waterlogged plants revealed mild effects. Six differentially enriched 17 18 proteins were identified in response to prolonged (7 days waterlogging, W07) waterlogging 19 treatment. Among the strongly upregulated proteins, were a leucyl aminopeptidase 2-like (LAP2-20 like) (VdnPW4_5460), two glucan endo-1,3-beta-glucosidases (VdnPW4_8729, PBdnRY1_427), 21 a Pollen-Pistil Incompatibility 2-like protein (POP2-like) encoding a gamma-aminobutyric acid 22 (GABA) transaminase and a component of the coat protein complex II, SECRETORY31B-like 23 protein (SEC31B-like), involved in vesicular transport from the endoplasmic reticulum (ER) to the 24 Golgi apparatus (Li et al., 2021). Waterlogging led to the downregulation of the chloroplast 25 RIBOSOMAL PROTEIN L27A-like (RPL27-like), demonstrated to be important for protein 26 synthesis (Figure 6D).

The multi-level integrative analyses enabled visualization of the progression of stress symptoms in waterlogged plants. In comparison to one day of waterlogging, molecular responses to prolonged waterlogging stress displayed a distinct signature (Figure 6E). While ABA-, JA- and ROS-biosynthesis and accumulation of free amino acids was further increased, we observed that prolonged waterlogging led to a general inhibition of the tuberization process (i.e. *SP6A* downregulation). In addition, genes related to ethylene biosynthesis (*ACO2*) and response (ETHYLENE RESPONSE FACTOR1, *ERF1*) were no longer found to be transcriptionally upregulated, thus suggesting temporal control of ethylene signaling. Despite representing
 opposite ends of the water stress spectrum, waterlogging and drought, elicited significantly
 overlapping responses, notably related to ABA metabolism and proline accumulation (Figure 6A,
 6B, 6E).

5 DISCUSSION

6 Despite its outstanding importance as a major food crop, research into the vulnerability of potato 7 to abiotic stresses lags that of other staple crops. In recent years, potato yields have been 8 significantly affected by heat, drought, and flooding, often occurring sequentially or simultaneously 9 (Dahal et al., 2019; Jovović et al., 2021; von Gehren et al., 2023). Considering the increasing 10 occurrence of these extreme weather events, this knowledge gap needs to be urgently addressed. In this study, we leveraged the power of several omics techniques and their integrated analysis 11 to build a comprehensive global picture of potato responses to single and combined heat, drought, 12 13 and waterlogging stress.

14

Leveraging multi-omics data integration to capture the complexity of biological systems
 16

Several tools have already been developed for integrative analysis of multi-omics data (Joshi et 17 18 al., 2024). Most broadly used are the mixOmics package (Rohart et al., 2017; Singh et al., 2019), 19 integrating datasets based on correlations, and the pathway visualisation tool PaintOmics (Liu et 20 al., 2022). In this study, however, we integrated five omics-level datasets. Such complex datasets 21 have rarely been analysed, even in medical research (Lee et al., 2019), as most studies combine 22 only two to three omics datasets (Ployet et al., 2019; Lozano-Elena et al., 2022; Núñez-Lillo et al., 23 2023; Núñez-Lillo et al., 2024; Sinha et al., 2024). Since existing tools were not directly suitable 24 for our needs, we developed a pipeline harnessing the potential of both integrative and 25 visualization approaches. An additional step, based on machine learning, was introduced to 26 reduce the number of variables, in particular of phenotypic physiological data. This reduction of 27 variables was especially important for the correlation analyses across omics levels, where we 28 kept only the most informative variable. In the first step we performed statistical modelling and 29 correlation analyses, which provided partial overview of events. In the second step, mechanistic 30 insights were obtained by generating a customised biochemical knowledge network. Our network was constructed based on knowledge extracted from different databases, most notably the Stress 31 32 Knowledge Map (Bleker et al., 2024) and KEGG (Kanehisa et al., 2017), as well as from literature,

to integrate all components that were kept after variable selection. The obtained biochemical knowledge network enabled a comprehensive overview of events at the pathway level and led to the identification of mechanistic differences occurring in response to different stresses. The developed pipeline is thus highly useful for integration and interpretation of complex datasets in future studies and can also be applied to other species.

6

7 Integrative omics provides global insights into potato abiotic stress responses

8

9 Multi-omics approaches have been successfully applied in numerous crop species to better 10 understand abiotic stress responses. Our study does so in potato by subjecting the cultivar 11 Désirée to waterlogging, drought, heat, a combination of heat and drought, and triple stress 12 combination encompassing all three. Across each stress treatment, detailed morpho-13 physiological traits were measured, with a subset of plants sampled for the probing of a diverse 14 array of molecular stress markers, hormones, metabolites, and proteome analyses across several 15 time points.

16

17 In general, stress combinations appeared to be more detrimental to the plant performance than 18 individual stress applications. The combination of H, D and W led to a rapid decline in plant 19 viability and eventually most plants died. However, all individual stress factors caused a reduced 20 plant growth, had a negative impact on photosynthetic assimilate production, and both heat and 21 waterlogging stress impaired tuber yield (Figure 7) and tuber starch accumulation (Supp. Figure 22 S2). Considering all stress responses, it turned out that the cultivar Désirée was less affected by 23 the applied drought stress indicating that it is guite resilient to drought as suggested previously 24 (Demirel et al., 2020). A combination of heat and drought caused stronger growth retardation than 25 both stresses alone with drought responses overwriting heat adaptations.

26 Nevertheless, despite the apparent mild drought phenotypes, a clear drought-associated 27 signature (accumulation of ABA, sugars, proline, histidine and most stress-induced transcripts) 28 confirmed the activation of stress responsive pathways, particularly at day 7, which contributed to 29 stress acclimation (Figure 5). Thus, there was a clear activation of the ABA response pathway, 30 as seen by an increase in the content of the hormone and its degradation products, as well as 31 proline, and the increased expression of ABA-responsive marker genes SnRK2, P5CS, RD29B, 32 leading to the corresponding physiological responses, e.g. a decreased water-use and leaf 33 temperature caused by stomata closure. Particularly interesting was the accumulation of the ABA 34 catabolite DPA after longer drought stress. The precursor of DPA, PA was suggested to have an important role in priming for increased resilience to future drought stress in Arabidopsis (LozanoJuste and Cutler, 2016). It is believed that DPA does not trigger ABA responses, but that has to
our knowledge not been studied in potato. Hence, it might be that DPA acts as priming signal for
stress acclimation and resilience in potato.

5

6 Compared to drought, heat stress had a stronger impact on Désirée plants at all levels from 7 growth to photosynthesis and yield. Thermomorphogenesis is a well-described morphological 8 response to elevated temperature stress comprising shoot elongation and hyponastic movement 9 of leaves which together with an increased transpiration are seen as an acclimation to increase 10 ventilation and to cool the aboveground part (Quint et al. 2016). In our study we clearly observed 11 the hyponastic movement of leaves and stomatal opening, indicated by a decrease in ΔT (Figure 12 7). This physiological response was accompanied by a decreased amount of ABA. In contrast, 13 the heat-mediated shoot elongation that has been seen in other potato varieties was not visible 14 in Désirée (Hastilestari et al., 2018; Tang et al., 2018). Instead, the plant height of Désirée plants 15 was reduced under elevated temperature suggesting cultivar-specific difference that could be 16 exploited in further studies to untangle different morphological stress adaptation mechanisms in 17 potato. In A. thaliana, the thermomorphogenetic hypocotyl elongation is tightly linked with an 18 increase in auxin levels and is mediated by the transcription factor Phytochrome interacting factor 19 4 (PIF4) (Quint et al. 2016). Consistent with the morphological response, we did not find 20 significantly altered levels of the phytohormone IAA in leaves of Désirée plants in response to 21 heat (Figure 5B).

22

23 High temperature treatment negatively affects photosynthetic capacity, particularly the efficiency 24 of photosystem II, which is in line with results of other studies (Mathur et al., 2014), and this was 25 confirmed here at both physiological and proteomic level. In a previous study by (Hancock et al., 26 2014), which also used cv. Désirée, the net CO₂ assimilation was even higher under elevated 27 temperatures than in control conditions. This difference might be related to the different setup, as 28 in the latter study the night temperature was kept at 20°C, while here it was adjusted to 28°C, 29 suggesting that a low night temperature is important to maintain photosynthetic activity. The heat-30 induced impact on photosynthetic capacity most likely caused a lower production of assimilates, 31 indicated by the decreased amount of transitory starch in leaves. Concomitantly, contents of 32 hexoses were found to be increased consistent with earlier studies (Hastilestari et al. 2018). This 33 increase may contribute to the osmoprotection of cells and provides energy for the costly heat 34 stress response such as the formation of heat shock proteins (Guihur et al., 2022). A massive

1 accumulation of heat shock proteins was found after one week of heat stress, together with 2 elevated levels of *HSP70* transcript levels at day 8 (Figure 5C). Although energy-demanding, the 3 transcriptional induction of *HSP* is important for the cellular homeostasis and maintenance of 4 growth and metabolism at elevated temperature. This is well demonstrated by transgenic potato 5 plants with increased expression of a beneficial allele of *HSP70*, that exhibit improved heat stress 6 tolerance (Trapero-Mozos et al., 2018).

7

8 A downregulation of photosynthesis is a typical stress response to prevent potential damage, for 9 example caused by ROS. This has strong implications on plant growth and yield and is therefore 10 regulated at various levels including light-harvesting and electron transport with high implications 11 for crop improvement (Kromdijk et al., 2016), particularly under stress conditions (Grieco et al., 12 2020). The resulting lower photosynthetic capacity together with an increased energy demand for 13 stress defense reduces the amounts of assimilates that can be translocated toward the 14 developing tubers and its availability for storing starch. In addition to assimilates, molecular 15 signals play a critical role in stimulating tuber development and growth. One important regulator 16 is SP6A which was downregulated at the transcript level in our study, consistent with previous 17 findings (Hancock et al., 2014; Lehretz et al., 2020; Park et al., 2022; Koch et al., 2024). The downregulation of SP6A likely contributes to the observed reduction in tuber yield under stress 18 19 conditions. Notably, stem-specific overexpression has been shown to overcome heat-mediated 20 yield reduction by enhancing delivery of assimilates to developing tubers, thereby improving tuber 21 growth and starch accumulation.

22

23 Looking at plant hormones, we observed changes of stress hormones like SA and JA, that 24 traditionally have been associated with biotic stress responses. Quite striking in this context was 25 the increase in the amount of JA-Ile under heat, drought and the combination of both (Figure 5B). 26 This is consistent with previous observations reporting that JA has a positive effect on 27 thermotolerance in Arabidopsis (Clarke et al., 2009; Balfagon et al., 2019). Heat stress increased 28 levels of OPDA, JA and JA-Ile and application of 5µM methyl-jasmonate improved cell viability 29 (Clarke et al., 2009). Using various mutants, this study also showed that JA acts in concert with 30 SA in conferring thermotolerance. Moreover, an accumulation of JA-Ile was also observed in 31 Arabidopsis under drought (Yoshida and Fernie, 2024), and increased levels of JA-Ile by 32 overexpression of JASMONATE RESISTANT1 (JAR1) resulted in improved drought stress 33 tolerance, but in stunted growth (Mahmud et al., 2022). Detailed analyses of how levels of JA and 34 its derivatives as well as biosynthesis and signaling components change in response to stress

are still missing in potato. Therefore, a deeper understanding of regulatory factors is required,
particularly the crosstalk with other hormones and the impact on plant growth. However, a tight
modulation of JA metabolism seems like a promising target for future engineering of abiotic stress
tolerance in potato (Bittner et al., 2022).

5

Extreme sensitivity to waterlogging in potato – integrative -omics highlights commonalities with drought

8

Our study provides detailed insight into the molecular responses underlying the high vulnerability 9 10 of potato to waterlogging. Water saturation imposes rapid oxygen deficiency in the soil, thus 11 impairing root respiration and function. Plant survival in flooded soils involves various 12 morphological and metabolic responses to either escape or cope with hypoxia, which involve 13 acclimation responses in roots but also in aerial organs (Sauter, 2013; Leeggangers et al., 2023). 14 The data showed that plant growth and performance were more drastically affected by 15 waterlogging as compared to H, D and HD treatments. In addition, HTP data suggests that 16 waterlogging had a dominant effect even when applied after a previous combined exposure to 17 heat and drought (HDW) (Figure 1C and 2). When applied as a single stress, detrimental effects 18 on plant performance increased over time. Waterlogging dramatically impairs root conductance 19 and water and nutrient uptake, causing tissue dehydration and wilting. This triggers water-saving 20 responses such as stomatal closure and epinasty, which were reflected in increased leaf 21 temperatures and reduced plant compactness, respectively (Figure 1, 2E, suppl. Figure 1). 22 Epinastic leaf movement, a common waterlogging response in Solanaceae, is thought to reduce 23 photosystem damage by irradiation and transpiration (Jackson and Campbell, 1976; Geldhof et 24 al., 2023). Both stomatal conductance and epinasty are regulated by the pivotal flooding signal 25 ethylene (Leeggangers et al., 2023). While ethylene levels were not measured here, the analyses 26 of synthesis genes (i.e.: ACO2) suggested the activation of ethylene production in waterlogged 27 shoots. Ethylene is also known to trigger RBOH expression and can act synergistically with ABA 28 to reduce stomatal conductance (Zhao et al., 2021). ABA is also considered to signal root stress 29 during waterlogging (Jackson and Hall, 1987; Zhao et al., 2021). We observed both the activation 30 of ABA signaling and ABA accumulation, which together with increased levels of proline, indicates 31 a strong drought signature (Figure 6A, 6B, 6E). While paradoxical, waterlogging is known to elicit 32 shoot drought responses. As root function in hypoxic soil ceases, it triggers a 'drought-like' 33 response in the shoot with the similar goal to trigger water saving measures. A focus on this ABA

and drought-mediated regulatory network might thus be an attractive target for probing common
 resilience mechanisms to both drought and waterlogging.

The energy shortage caused by waterlogging also leads to significant changes in sugar metabolism. The accumulation of soluble sugars such as glucose and fructose, might be a consequence of sink-source imbalances during waterlogging and thereby, a decline in shoot-toroot sugar transport. Strikingly, after one day of waterlogging, we observed upregulation of *SP6A*, a positive regulator of tuberization, thus suggesting potential roles of this gene in short-term responses to waterlogging.

9

10 Prolonged exposure to waterlogging revealed several aspects of late responses and factors 11 contributing to potato susceptibility to waterlogging. Leaves of waterlogged plants overcome 12 energy shortages by recycling carbon from amino acids and GABA. The latter plays an important 13 role not only in TCA replenishment but also in ion homeostasis and reduction of oxidative stress 14 (Lothier et al., 2020; Wu et al., 2021). We observed a strong increase in free amino acids that, 15 together with the upregulation of POP2 and an aminopeptidase (Figure 6), suggests increased 16 protein breakdown and utilization of amino acids as alternative energy sources. Furthermore, the 17 downregulation of RPL27 (and other ribosomal proteins) could indicate the shutting down of 18 energy-demanding processes, such as protein synthesis, as a response to this energy shortage. 19

20 Potato susceptibility to prolonged waterlogging was evidenced by other multi-level events such 21 as the upregulation of proteins related to protein and cell wall component turnover, RBOHA 22 upregulation and photosynthesis impairment (Figure 2, Supp. Figure S3, Figure 6). It is also 23 explained by increased ABA signaling and biosynthesis and RBOHA expression, which 24 convergently indicate increased tissue dehydration and oxidative stress that is reflected in the 25 HTP data (Figure 1C, Figure 2). This includes decreased tuber number and weight, indicating a 26 retardation of both tuber initiation and bulking. As tuberization is a particularly energetically 27 expensive process, the imposition of root zone hypoxia likely disrupts the underground sink force 28 essential for stolon development, tuber initiation and bulking.

Altogether, our data suggest that two weeks of waterlogging led to near-lethal effects, and even if acclimation responses were activated, overall, they could not compensate for maintaining root function (i.e. unrecovered water consumption, Supp. Table S4) and general plant survival, even during recovery, thus confirming the high susceptibility of potato to waterlogging.

34

1 Conclusions

2 The present comprehensive approach produced a rich integrated dataset, which enabled diverse 3 exploration of molecular mechanisms across various levels and processes. Through the 4 connection of phenotype to molecular responses, we attained deeper insights into the intricate 5 regulation of metabolic and phenotypic traits. This should now guide the identification of key 6 regulators that govern the interplay between molecular dynamics and their phenotypic 7 expressions. The utilization of both knowledge-based approaches and multivariate statistical 8 methods played a crucial role in deciphering complex molecular regulatory networks and their 9 association with phenotypic and physiological traits, thereby facilitating the rapid generation of 10 hypotheses. In addition to several insights into potato stress responses, this study also provides a blueprint for 11

performing and analysing single and multiple stress and effective integration of large datasets for potato. Importantly, this setup can also be applied to other plant species. These advancements hold significant implications for potato breeding strategies, providing a deeper understanding of plant stress responses and expediting trait selection. As agricultural landscapes confront challenges like climate change and population growth, embracing multi-omics integration holds promise for cultivating resilient potato varieties that can thrive in various conditions.

18 MATERIALS AND METHODS

19 Plant growth conditions and sampling

20 150 in-vitro potato cuttings (Solanum tuberosum cv. Désirée) were cultivated and grown as 21 described in the supplementary methods. After 32 days of cultivation, plants were randomly 22 distributed into 6 groups (6 plants each) referring to control group and 5 different stress conditions 23 (heat, drought, combined heat and drought, waterlogging and combination of heat, drought and 24 waterlogging) (Figure 1). Plants were moved into two growth units of Growth Capsule (PSI; 25 (Photon Systems Instruments), Czech Republic) where climate conditions for day/night 26 temperature were set in one unit to 22/19°C, referring to control conditions, and in the second unit 27 to 30/28 °C, referring to heat conditions. In both units growing light intensity was set at 330 µmol 28 m⁻² s⁻¹ PPFD and relative humidity was maintained at 55%. All plants were measured under 29 control in day 0 then the stress treatments depicted schematically in Figure 1. The treatments 30 were applied as the following: (1) Control conditions – cultivation at 22/19 °C, watering up to 60% 31 FC; (2) Drought conditions - cultivation at 22/19 °C, watering up to 60% FC until day 7, then

1 reduce watering to 30% FC for 1 week (until day 14); (3) Heat conditions – cultivation at 30/28 °C 2 for 2 weeks, watering up to 60% FC until day 14; (4) Heat + Drought conditions - cultivation at 3 30/28 °C for 2 weeks, watering up to 60% FC for 1 week (until day 7), then reduce watering to 4 30% FC for 1 week (until day 14); (5) Waterlogging conditions – cultivation at 22/19 °C, watering 5 up to 130% FC for 2 weeks (until day 14); (6) Heat + Drought + Waterlogging conditions -6 cultivation at 30/28 °C for 2 weeks with watering up to 60% FC for 1 week (until day 7), then 7 reduce watering to 30% FC until day 14 followed by inducing waterlogging by cultivation at 8 22/19 °C for 1 week with watering up to 130% FC until day 21. Except for Heat + Drought + 9 Waterlogging conditions, all stress treatments were followed by one week of recovery (from day 10 15 and until day 21) in control conditions.

Plants were divided into two sets, "phenotyping plants" and "plants for tissue harvest" (see Supp.
Table S1). Phenotyping set consisted of 6 replicates per treatment, in total 36 plants, and was
used for daily image-based phenotyping (for definition of scored traits see Supp. Table S2).

14 High-throughput phenotyping

Prior to the stress treatment initiation and during the stress treatments, all plants were daily 15 16 phenotyped. A comprehensive phenotyping protocol was used for the acquisition of physiological 17 and morphological traits according to the described method (Abdelhakim et al., 2024). All imaging 18 sensors for digital analysis are being implemented in the PlantScreen[™] Modular system (PSI, 19 Czech Republic). The photosynthesis-related traits were determined using kinetic chlorophyll 20 fluorescence imaging where the selected protocol for measuring plants was similar to the defined 21 approach (Abdelhakim et al., 2024). The measurement of temperature profiles of the plants was 22 measured using thermal imaging, where the acquisition and segmentation of the images were 23 processed as described in (Abdelhakim et al., 2021; Findurová et al., 2023). The morphological 24 and growth dynamics were determined using both top and multiple angles (0°, 120°, and 240°) 25 side view RGB imaging, and images were processed as described by (Awlia et al., 2016). Each 26 pot was loaded onto a transport disk automatically moving on a conveyor belt between the 27 automatic laser height measuring unit, acclimation unit, robotic-assisted imaging units, weighing 28 and watering unit, and the cultivation greenhouse located area. The raw images were 29 automatically processed and parameters were extracted through PlantScreen[™] Analyzer 30 software (PSI, Czech Republic) (Supp. Table S2). Statistical evaluation was performed to check 31 the differences between the treatments using Wilcoxon test (Supp. Table S3).

1 Tissue sampling

2 Leaf sampling was conducted on days 1, 7, 8, 14, 15, and 21 after stress treatment initiation 3 (Treatment days). The 2nd and 3rd fully developed leaves were harvested and flash-frozen in liquid 4 nitrogen. Subsequently, leaf tissue was homogenised, aliquoted and distributed for individual 5 follow-up proteomics, and targeted transcriptomics, metabolomics, and hormonomics analyses. 6 Remaining above ground tissue was harvested and total fresh weight (FW) and dry weight (DW) 7 was measured (Supp. Table S4). In total 112 plants with 4 replicates per sampling time and per 8 treatment were collected. The 4th leaf was harvested to calculate relative water content (RWC) 9 (Supp. Table S4), and three leaf disks were collected and weighed, then soaked in water to 10 determine the turgor weight (TW) and dried in the oven to calculate RWC (Supp. Table S2). In 11 addition, at the end of the experiment, the below ground tissue was collected, where number of 12 tubers per plant and total weight were assessed from four replicates per treatment. Harvest index 13 was calculated as a ratio between tuber weight and the total biomass.

14 Multi-omics analysis

15 Transcriptomic marker analysis

16 RT-qPCR was performed to assess the expression of 14 marker genes involved in redox 17 homeostasis, hormonal signaling (ethylene, cytokinin, ABA, SA, and JA), heat stress, tuber 18 development, circadian clock, and calcium signaling using previously validated reference genes 19 (Supp. Table S7).

20 RNA was extracted and DNase treated using Direct-zol RNA Miniprep Kit (Zymo Research, USA) 21 from 80-100 mg of frozen homogenised leaf tissue, followed by reverse transcription using High-22 Capacity cDNA Reverse Transcription Kit (Thermo Fisher, USA). The expression of the target 23 and reference genes was analysed by RT-qPCR, as described previously (Petek et al., 2014; 24 Abdelhakim et al., 2021). QuantGenius (<u>http://quantgenius.nib.si</u>), was used for quality control, 25 standard curve-based relative gene expression quantification and imputation of values below level 26 of detection or quantification (LOD, LOQ) (Baebler et al., 2017).

27 Hormonomics

28 Concentration of the endogenous abscisate metabolites, auxin metabolites, jasmonates and 29 salicylic acid were determined in 10 mg of frozen homogenised leaf tissue according to the method described (Flokova et al., 2014) and modified by Široká et al. (Siroka et al., 2022) (see
 Supplementary methods for details). All experiments were repeated as four biological replicates.

3 Metabolomics

For determination of soluble sugar, starch and amino acid contents, 30 - 50 mg of freeze-dried leaf or tuber material were extracted with 1 ml of 80% (v/v) ethanol. Soluble sugar and starch content was determined as described in Hastilestari et al. (2018), while amino acids sample preparation and measurements were performed as described elsewhere (Smith and Zeeman, 2006) (Obata et al., 2020).

9 Proteomics

10 High-throughput shotgun proteomics was done according to (Hoehenwarter et al., 2008) with following modifications: 40 mg of leaf tissue from multiple stress conditions were freeze-dried in 11 12 liquid N₂ and ground using mortar and pestle. The proteins were extracted, pre-fractionated (40µg 13 of total protein were loaded onto the gel (1D SDS-PAGE), trypsin digested and desalted (using a 14 C18 spec plate) according to a previously described method (Chaturvedi et al., 2013; Ghatak et 15 al., 2016). One µg of purified peptides was loaded onto a C18 reverse-phase analytical column (Thermo Scientific, EASY-Spray 50 cm, 2 µm particle size). Separation was achieved using a 16 two-and-a-half-hour gradient method, starting with a 4-35% buffer B (v/v) gradient [79.9% ACN, 17 18 0.1% formic acid (FA), 20% ultra-high purity water (MilliQ) over 90 minutes. Buffer A (v/v) 19 consisted of 0.1% FA in high-purity water (MilliQ). The flow rate was set to 300 nL/min. Mass 20 spectra were acquired in positive ion mode using a top-20 data-dependent acquisition (DDA) 21 method. A full MS scan was performed at 70,000 resolution (m/z 200) with a scan range of 380-22 1800 m/z, followed by an MS/MS scan at 17,500 resolution (m/z 200). For MS/MS fragmentation, 23 higher energy collisional dissociation (HCD) was used with a normalized collision energy (NCE) 24 of 27%. Dynamic exclusion was set to 20 seconds.

Raw data were searched with the SEQUEST algorithm present in Proteome Discoverer version
1.3 (Thermo Scientific, Germany) described previously (Chaturvedi et al., 2015; Ghatak et al.,
2020). Pan-transcriptome (Petek et al., 2020) protein fasta was employed. The identified proteins
were quantitated based on total ion count and normalised using the normalised spectral
abundance factor (NSAF) strategy (Paoletti et al., 2006).

1 Data analysis

The programming environments R v.4.3 and v4.4 (https://www.r-project.org/) and Python v3.8 (www.python.org) were used. Experimentally acquired data is available from the Supplementary Table 4. All data, code and algorithms, required for supporting, generating, or reproducing the findings of this study are openly available in GitHub repository at https://github.com/NIB-SI/multiOmics-integration.

7 Data preprocessing

A master sample description metadata file was constructed (Supp. Table S1). Potential inconsistencies between replicates were examined using pairwise plots between omics levels, multidimensional scaling plots and scatterplot matrices within omics' levels using the vegan v2.6.-4 R package (Oksanen et al., 2022). Missing values were handled as described in the Supplementary methods. Due to many missing values, the neoPA (hormonomics) variable was excluded from further analysis.

Variable selection was conducted on the non-invasive phenomics variable sets (Supp. Table S4). 14 15 The random forest (RF) algorithm from the R package caret v6.0-94 (Kuhn, 2008) as well as the 16 python package scikit-learn v1.2.0 were used with default settings, as RF showed the best performance out of a selection of algorithms. Recursive feature elimination was applied in R and 17 18 multiple importance scores, including mutual information, Anova, RF importance and SHAP 19 values (Lundberg and Lee, 2017) were computed in Python, showing consistencies between the 20 approaches for the top 5 variables (top area, compactness, qL Lss, ΔT , water consumption; 21 nonredundancy ranking in R). The sixth variable (F_v/F_m_Lss) was selected based on expert 22 knowledge.

Gene set enrichment was performed on the proteomics dataset using GSEA v4.3.2 (Subramanian et al., 2005) and in-house generated gene sets (Supp. File S3, Supp. Table S6) and visualised using biokit v0.1.1. Proteomics differential expression was conducted using the DEP v 1.22.0 package (Zhang et al., 2018) (Supp. Table S5). For downstream proteomics analyses, differentially abundant and enriched proteins (from pathways important for this experimental setup) were used. Waterlogging stress was cut-off at one-week duration, while triple stress (HDW) was not considered in downstream analyses due to poor plant performance. Pearson correlation coefficient (PCC) heatmaps (pheatmap v1.0.12, heatmaply v. 1.5.0) were generated within each treatment and for explicit treatment duration. Permutation-based t-test (MKinfer v1.2) was used to denote differences between specific treatment and control within the corresponding time-point (Kohl, 2024). Corresponding log2FC were calculated. For downstream analyses, 4 out of 6 replicates were chosen from non-invasive phenomics measurements to allow integration with invasive phenomics and other omics measurements conducted on 4 replicates.

8 Integration across different omics datasets

9 Correlations between components measured in various Omics' levels were calculated and

10 visualised using DIABLO (Singh et al., 2019) as implemented in the mixOmics v6.24.0 package

11 (Rohart et al., 2017). The correlation matrix was calculated separately for each stress as well as

- 12 for control.
- 13 Integration of data with prior knowledge

A background knowledge network was manually constructed considering biochemical pathways between measured variables. Where necessary, pathways were simplified to only include representative variables, to prevent addition of many unmeasured nodes that would impede the visualisation. Proteomics differential expression results were merged with t-test and log2FC results (Supp. Table S3). Final networks were visualised using DiNAR (Zagorscak et al., 2018) and Cytoscape (Shannon et al., 2003).

20

For additional reports and some results not used in this manuscript see supplementary methods and a project's GitHub repository https://github.com/NIB-SI/multiOmics-integration.

- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31

1 Accession Numbers

- 2 Links of gene names used in the study to GenelDs can be found in Supplementary
- 3 table 5 for proteomics data and Supplementary table 7 for qPCR.

4 Funding

- 5 This work was funded by the EU H2020-SFS-2019-2 RIA project ADAPT, GA 2020 862-858 and
- 6 the Slovenian Research Agency (ARIS) under grant agreements P4-0165, J2-3060, and Z4-
- 50146. Moreover, this work was partially supported by the Ministry of Education, Youth and
- 8 Sports of the Czech Republic with the European Regional Development Fund-Project "SINGING
- 9 PLANT" (no. CZ.02.1.01/0.0/0.0/16_026/0008446).

10 Acknowledgments

The authors wish to thank Marijke Woudsma and Doretta Boomsma from HZPC Research for providing the Désirée plantlets for this study and Mirella Sorrentino for help with conducting the experiments at Photon Systems Instruments (PSI) Research Center (Drásov, Czech Republic). Moreover, we the thank following colleagues for their assistance and expertise: Stephen Reid (FAU) and David Pscheidt (FAU) for measuring metabolite content, and Katja Stare (NIB) and Nastja Marondini (NIB) for measuring gene expression.

17 Author contributions

18 KP, KG, SS, RS, CBa and MT conceptualized the study and designed the experiments, KP measured phenotypic traits, SB measured gene expression, ON, AP and JS measured hormone 19 20 content, CS measured metabolite content, PC, AG prepared samples and performed proteomics 21 analysis, LAS performed LC-MS measurements for proteomics analysis; MZ curated data; MZ, 22 CB, AB, AZ and KG defined formal analysis methodology; MZ, CB, JZ, and AB conducted 23 statistical, mathematical and computational analysis; MZ, LA, NR, CB, AB, ŠB and KG performed 24 data visualisation; MZ, LA, NR, CB, SS, RS, KG, CBa and MT wrote the original draft. All authors 25 edited the manuscript and approved the final manuscript version. Detailed author contributions 26 are available from the Supp. Table S8.

1 Figure Legends

2 Figure 1. Overview of the experimental design for single- and combined stress treatments and multi-3 omics sampling. A) Summary of cultivation conditions. Timeline of the experimental set-up and applied stress treatments, including the recovery phase in potato cv. Désirée. Timing and duration of stress 4 5 treatment and days for tissue sampling are shown. B) Actions comprised cultivation in the growing 6 chambers and daily phenotyping with a set of sensors using the PlantScreen[™] phenotyping platform at PSI 7 Research Center. C) Automated image analysis pipeline was used to extract quantitative traits for 8 morphological, physiological, and biochemical performance characterization of the plants during the stress 9 treatment and recovery phase. Side view colour segmented RGB images of plants were digitally extracted 10 for comparison at selected time points of tissue sampling (left panel) and daily plant volume (m³) calculated 11 from top and multiple angle side view RGB images (right panel). Black dotted lines reflect the initiation and 12 removal of drought stress, respectively. Measurements, mean and standard error are shown (n = 6). C: 13 control, D: individual drought stress, H: individual heat stress, HD: combined drought with heat stress, W: 14 individual waterlogging stress, HDW: triple-stress condition.

15 Figure 2. Physiological profiling using high-throughput phenotyping platforms reveals distinct 16 responses to single and combined stresses. A) Pixel-by-pixel false colour images of operating efficiency 17 of photosystem II in light steady state (QY_Lss, arbitrary unit) captured by kinetic chlorophyll fluorescence 18 measurement. Colour scale bar represents the range of fluorescence values. Images for selected time 19 points of tissue sampling were digitally extracted for comparison. Colour coding of the treatments apply for 20 the entire figure. Vertical dashed lines indicate the onset and end of drought. B) QY_Lss values extracted 21 from images for each individual time point. C) Steady-state fluorescence of maximum efficiency of PSII 22 photochemistry in the light trait based on chlorophyll fluorescence top view (F_v/F_m Lss). D) steady-state 23 estimation of the fraction of open reaction centres in PSII trait in light based on chlorophyll fluorescence top 24 view (gL Lss). E) Difference between canopy average temperature extracted from thermal IR images and 25 air temperature measured in the thermal IR imaging unit (Δ T). F) Water use efficiency (WUE) based on 26 plant volume and water consumption. A-F) Black dotted lines reflect the initiation and removal of drought 27 stress, respectively. Measurements, mean and standard error are shown (n = 6). See Supplementary Table 28 S3 for Statistical evaluation of differences between groups using Wilcoxon test. G) Tuber numbers counted 29 per plant on the last day of the experiment (Day 28 = 60 days of cultivation). H) Harvest index calculated 30 from the total biomass and tuber weight on the last day of the experiment. G-H) Measurements, mean and 31 standard deviation are shown (n = 4). Statistical evaluation of differences between groups is given by the 32 non-parametric Kruskal-Wallis test (one-way ANOVA on ranks); p-value above x-axis, where asterisk 33 denotes p-value < 0.05. See Figure 1A for scheme on stress treatments. C: control, D: individual drought 34 stress, H: individual heat stress, HD: combined drought with heat stress, W: individual waterlogging stress, 35 HDW: triple-stress condition.

1

2 Figure 3: Integrated analysis of measured and generated data permits global visualization and multi-3 level amalgamation of potato stress responses. A) Schematics of tissue sampling protocol. 2nd and 3rd 4 leaves were harvested for destructive "omics" analysis, 4th leaf was used for relative water content 5 calculation. Remaining plant tissue was quantified to obtain total above-ground biomass and tuber yield. B) 6 Overview of data analysis pipeline. C) Dataset overview: multidimensional scaling shows combined HDW 7 stressed plants as extremes, the centroid of each plant group is shown. D) Most informative variables from 8 the phenomics level. Pearson correlation coefficients between them are presented as hierarchically 9 clustered heat maps in waterlogging and heat stress. Abbreviations - Fv/Fm: Fv/Fm Lss, gL: gL Lss, top-10 area: top area, compact: compactness, water cons.: water consumption. For trait description see 11 Supplementary Table S2.

12

13 Figure 4: Integration of multi-omics data in a knowledge-based metabolic and signaling network. A) 14 Structure of knowledge network. Individual studied components are coloured according to their function in 15 different pathways. B) To compare the effects of different stresses on the overall state of the plant, we 16 overlaid the knowledge networks with measured changes in component concentration. Nodes are coloured 17 by log2 fold changes (red - increase in stress compared to control, blue - decrease in stress compared to 18 control, grey - measurement not available) shown for two time points: sampling day 8 and sampling day 19 14 for the different stress treatments, days of stress treatment are given with each network (for more details 20 of the set up see Figure 1A). Displayed omics measurements were obtained from leaf samples. Identifiers 21 and descriptions corresponding to the short names shown in graphs are available in Supplementary Table 22 S3 and Supplementary Table S5. ABA: Abscisic acid, Ca2+: Calcium, ET: Ethylene, HSP: Heat shock 23 protein, IAA: Indole-3-acetic acid (Auxin), JA: Jasmonic acid, Pro: Proline, PS: Photosynthesis 24 ROS: Reactive oxygen species, SA: Salicylic acid.

25

Figure 5: Combined heat and drought stress trigger distinct responses compared to each individual 26 27 response. Additive effect of combined stress is most pronounced for branched chain amino acids 28 accumulation and JA signaling response. A-C) Heatmaps showing log2FC (FDR p-value < 0.05) in 29 individual stress heat (H) or drought (D) stress in comparison to combined one (HD) for targeted molecular 30 analyses. Label colours indicate pathway associated with each molecule as in the Knowledge network (see Figure 4 for legend). A) Changes in metabolite levels. B) Changes in hormone levels, and C) Changes in 31 32 selected stress-related transcripts. D) Changes observed on proteomics level. Results of Gene Set 33 Enrichment Analysis (FDR q-value < 0.1) are shown. For more information see Supp. Table S6. E) 34 Biochemical knowledge network showing changes under combined HD stress at day 14 (treatment day 7). 35 In this version of knowledge network, only nodes that were significantly differentially expressed (vs. control 36 conditions) are coloured and the connections between two differentially expressed nodes are coloured 37 black. Node full black border indicates molecules with higher expression levels in HD compared to H and/or 38 D alone. Dashed black border indicates molecules with lower expression levels in HD compared to H and/or

D alone (difference of log2FC > 0.5). Displayed omics measurements were obtained from leaf samples.
 Identifiers and descriptions corresponding to the short names shown in graphs are available in
 Supplementary Table S3 and Supplementary Table S5.

4

5 Figure 6: Waterlogging triggers drought-stress like molecular responses in potato. A-D) Heatmaps 6 showing log2FC (FDR p-value < 0.05) changes in A) metabolite levels, B) phytohormones, C) selected 7 stress-related transcripts. D) Volcano plot of differential proteomics analysis at day 7. Proteins with FDR p-8 value < 0.05 shown as blue (downregulated) and red (upregulated) dots. For more information see Supp. 9 Table S5. E) Knowledge network of waterlogging stress at day 1 and day 7 (unfiltered, colour range [-2, 2]). 10 For legend see Figure 4. Displayed omics measurements were obtained from leaf samples. Identifiers and 11 descriptions corresponding to the short names shown in graphs are available in Supplementary Table S3 12 and Supplementary Table S5. D: individual drought stress, W: individual waterlogging stress.

13

14 Figure 7. Schematic summary of multilevel responses to single and combined heat, drought and 15 waterlogging stresses. Selected variables from each level are shown. Summary of molecular responses 16 (hormones, metabolites and transcripts) was based on the comparisons illustrated in Figures 5 and 6. 17 Summary of morphophysiological responses were based on the data from the last day of the experiment 18 (Day 28), which includes tuber information. Proteomics data set is not included here due to the small dataset 19 of differentially expressed proteins in the waterlogging treatment. Degree of increase or decrease is not 20 specified. ABA: Abscisic acid, DPA: Dihydrophaseic acid, Ja-Ile: Jasmonoyl-isoleucine, SP6A: SELF-21 PRUNING 6A, HSP70: heat shock protein 70, RD29: Responsive to Desiccation 29B.

22

23 Competing interests

24 The authors declare no competing interests.

1 Data availability statement

- 2 Experimentally acquired data and data required to reproduce the analysis are available from
- 3 Supp. Table S4 and NIBs' GitHub repository <u>https://github.com/NIB-SI/multiOmics-integration</u>.
- 4 The MS/MS spectra of the identified proteins and their meta-information from both databases
- 5 have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository
- 6 (https://www.ebi.ac.uk/pride) with the dataset identifier PXD052587.

7 References

8	Abdelhakim LOA, Palma CFF, Zhou R, Wollenweber B, Ottosen CO, Rosenqvist E (2021)
9	The effect of individual and combined drought and heat stress under elevated CO(2) on
10	physiological responses in spring wheat genotypes. Plant Physiol Biochem 162: 301-314
11	Abdelhakim LOA, Pleskacova B, Rodriguez-Granados NY, Sasidharan R, Perez-Borroto
12	LS, Sonnewald S, Gruden K, Vothknecht UC, Teige M, Panzarova K (2024) High
13	Throughput Image-Based Phenotyping for Determining Morphological and Physiological
14	Responses to Single and Combined Stresses in Potato. J Vis Exp
15	Abdelhakim LOA, Rosenqvist E, Wollenweber B, Spyroglou I, Ottosen C-O, Panzarová K
16	(2021) Investigating Combined Drought- and Heat Stress Effects in Wheat under
17	Controlled Conditions by Dynamic Image-Based Phenotyping. Agronomy 11 : 364
18	Abelenda JA, Bergonzi S, Oortwijn M, Sonnewald S, Du M, Visser RGF, Sonnewald U,
19	Bachem CWB (2019) Source-Sink Regulation Is Mediated by Interaction of an FI
20	Homolog with a SWEET Protein in Potato. Curr Biol 29: 11/8-1186 e11/6
21	Abelenda JA, Cruz-Oro E, Franco-Zorrilla JM, Prat S (2016) Potato StCONSTANS-like1
22	Suppresses Storage Organ Formation by Directly Activating the FI-like StSP5G
23	Repressor. Curr Biol 26: 872-881
24	AKDUCIAK WIA, YIICIZ S, FIIIZ E (2020) Pathogenesis related protein-1 (PR-1) genes in tomato
25	(Solanum lycopersicum L.): Bioinformatics analyses and expression profiles in response
20 27	Awlia M Nigro A Faikus I Schmoockel SM Negrao S Santelia D Trtilek M Tester M
27	Awild M, High CA, Fajkus J, Schilloeckel SM, Negrad S, Sahlena D, Hiller M, Tester M, Julkowska MM, Banzarova K (2016) High-Throughput Non-destructive Depotyping of
20	Traits that Contribute to Salinity Tolerance in Arabidonsis thaliana. Front Plant Sci 7:
20	
31	Bachmann & Hause B. Maucher H. Garbe F. Voros K. Weichert H. Wasternack C.
32	Feussner I (2002) Jasmonate-induced lipid peroxidation in barley leaves initiated by
33	distinct 13-I OX forms of chloroplasts. Biol Chem 383 : 1645-1657
34	Baebler S. Svalina M. Petek M. Stare K. Rotter A. Pompe-Novak M. Gruden K (2017)
35	guantGenius: implementation of a decision support system for gPCR-based gene
36	quantification. BMC Bioinformatics 18: 276
37	Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic
38	strategies for improving crop vields. Nature 575: 109-118
39	Balfagon D, Sengupta S, Gomez-Cadenas A, Fritschi FB, Azad RK, Mittler R, Zandalinas
40	SI (2019) Jasmonic Acid Is Required for Plant Acclimation to a Combination of High
41	Light and Heat Stress. Plant Physiol 181: 1668-1682
	-

1	Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A,
2	Kolesnikova A, Dunn JA, Martin AC, Khashi URM, Saati-Santamaria Z, Garcia-
3	Fraile P, Ferreira EA, Frazao LA, Cowling WA, Siddique KHM, Pandey MK, Farooq
4	M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH (2023)
5	Enhancing climate change resilience in agricultural crops. Curr Biol 33: R1246-R1261
6	Bittner A, Ciesla A, Gruden K, Lukan T, Mahmud S, Teige M, Vothknecht UC, Wurzinger B
7	(2022) Organelles and phytohormones: a network of interactions in plant stress
8	responses. J Exp Bot 73: 7165-7181
9	Bleker C, Ramsak Z, Bittner A, Podpecan V, Zagorscak M, Wurzinger B, Baebler S, Petek
10	M, Kriznik M, van Dieren A, Gruber J, Afjehi-Sadat L, Weckwerth W, Zupanic A,
11	Teige M, Vothknecht UC, Gruden K (2024) Stress Knowledge Map: A knowledge
12	graph resource for systems biology analysis of plant stress responses. Plant Commun:
13	100920
14	Cembrowska-Lech D, Krzeminska A, Miller T, Nowakowska A, Adamski C, Radaczynska
15	M, Mikiciuk G, Mikiciuk M (2023) An Integrated Multi-Omics and Artificial Intelligence
16	Framework for Advance Plant Phenotyping in Horticulture. Biology (Basel) 12
17	Chaturvedi P, Doerfler H, Jegadeesan S, Ghatak A, Pressman E, Castillejo MA, Wienkoop
18	S, Egelhofer V, Firon N, Weckwerth W (2015) Heat-Treatment-Responsive Proteins in
19	Different Developmental Stages of Tomato Pollen Detected by Targeted Mass Accuracy
20	Precursor Alignment (tMAPA). J Proteome Res 14: 4463-4471
21	Chaturvedi P, Ischebeck T, Egelhofer V, Lichtscheidl I, Weckwerth W (2013) Cell-specific
22	analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides
23	evidence for developmental priming. J Proteome Res 12: 4892-4903
24	Chen Q, Hu T, Li X, Song CP, Zhu JK, Chen L, Zhao Y (2022) Phosphorylation of SWEET
25	sucrose transporters regulates plant root:shoot ratio under drought. Nat Plants 8: 68-77
26	Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009)
27	Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis
28	thaliana. New Phytol 182: 175-187
29	Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a
30	core signaling network. Annu Rev Plant Biol 61: 651-679
31	Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B (2019) Improving Potato Stress Tolerance
32	and Tuber Yield Under a Climate Change Scenario - A Current Overview. Front Plant
33	Sci 10: 563
34	Demirel U, Morris WL, Ducreux LJM, Yavuz C, Asim A, Tindas I, Campbell R, Morris JA,
35	Verrall SR, Hedley PE, Gokce ZNO, Caliskan S, Aksoy E, Caliskan ME, Taylor MA,
36	Hancock RD (2020) Physiological, Biochemical, and Transcriptional Responses to
37	Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato
38	Genotypes. Front Plant Sci 11: 169
39	FAO (2023) The Impact of Disasters on Agriculture and Food Security 2023 – Avoiding and
40	reducing losses through investment in resilience In. FAO, Rome, Italy, p #168 p.
41	Findurová H, Veselá B, Panzarová K, Pytela J, Trtílek M, Klem K (2023) Phenotyping
42	drought tolerance and yield performance of barley using a combination of imaging
43	methods. Environmental and Experimental Botany 209: 105314
44	Flokova K, Tarkowska D, Miersch O, Strnad M, Wasternack C, Novak O (2014) UHPLC-
45	MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105 :
46	147-157
47	Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, Kumar S (2022) Emerging Roles of
48	SWEET Sugar Transporters in Plant Development and Abiotic Stress Responses. Cells
49	
50	Geldnot B, Pattyn J, Van de Poel B (2023) From a different angle: genetic diversity underlies
51	differentiation of waterlogging-induced epinasty in tomato. Front Plant Sci 14: 1178778

1	Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramsak Z, Bazargani MM, Bajaj P,
2	Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W (2020)
3	Physiological and Proteomic Signatures Reveal Mechanisms of Superior Drought
4	Resilience in Pearl Millet Compared to Wheat. Front Plant Sci 11: 600278
5	Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schrofl A,
6	Desai N, Varshney RK, Weckwerth W (2016) Comprehensive tissue-specific proteome
7	analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J
8	Proteomics 143: 122-135
9	Grieco M, Roustan V, Dermendjiev G, Rantala S, Jain A, Leonardelli M, Neumann K,
10	Berger V, Engelmeier D, Bachmann G, Ebersberger I, Aro EM, Weckwerth W, Teige
11	M (2020) Adjustment of photosynthetic activity to drought and fluctuating light in wheat.
12	Plant Cell Environ 43: 1484-1500
13	Guihur A, Rebeaud ME, Goloubinoff P (2022) How do plants feel the heat and survive?
14	Trends Biochem Sci 47: 824-838
15	Hall RD, D'Auria JC, Silva Ferreira AC, Gibon Y, Kruszka D, Mishra P, van de Zedde R
16	(2022) High-throughput plant phenotyping: a role for metabolomics? Trends Plant Sci
17	27 : 549-563
18	Hancock RD, Morris WL, Ducreux LJ, Morris JA, Usman M, Verrall SR, Fuller J, Simpson
19	CG, Zhang R, Hedley PE, Taylor MA (2014) Physiological, biochemical and molecular
20	responses of the potato (Solanum tuberosum L.) plant to moderately elevated
21	temperature. Plant Cell Environ 37: 439-450
22	Hastilestari BR, Lorenz J, Reid S, Hofmann J, Pscheidt D, Sonnewald U, Sonnewald S
23	(2018) Deciphering source and sink responses of potato plants (Solanum tuberosum L.)
24	to elevated temperatures. Plant Cell Environ 41: 2600-2616
25	Hoehenwarter W, van Dongen JT, Wienkoop S, Steinfath M, Hummel J, Erban A, Sulpice
26	R, Regierer B, Kopka J, Geigenberger P, Weckwerth W (2008) A rapid approach for
27	phenotype-screening and database independent detection of cSNP/protein
28	polymorphism using mass accuracy precursor alignment. Proteomics 8: 4214-4225
29	Jackson MB, Campbell DJ (1976) Waterlogging and petiole epinasty in tomato: The role of
30	ethylene and low oxygen. New Phytologist 76: 21-29
31	Jackson MB, Hall KC (1987) Early stomatal closure in waterlogged pea plants is mediated by
32	abscisic acid in the absence of foliar water deficits. Plant, Cell & Environment 10: 121-
33	130
34	Jamil IN, Remali J, Azizan KA, Nor Muhammad NA, Arita M, Goh HH, Aizat WM (2020)
35	Systematic Multi-Omics Integration (MOI) Approach in Plant Systems Biology. Front
36	Plant Sci 11: 944
37	Joshi S, Patil S, Shaikh A, Jamla M, Kumar V (2024) Modern omics toolbox for producing
38	combined and multifactorial abiotic stress tolerant plants. Plant Stress 11 : 100301
39	Jovović Z, Broćić A, Velimirović ZD, A. Komnenić (2021) The influence of flooding on the
40	main parameters of potato productivity. In, Ed 1320. International Society for
41	Horticultural Science (ISHS), Leuven, Belgium, pp 133-138
42	Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives
43	on genomes, pathways, diseases and drugs. Nucleic Acids Res 45 : D353-D361
44	Koch L, Lehretz GG, Sonnewald U, Sonnewald S (2024) Yield reduction caused by elevated
45	temperatures and high nitrogen fertilization is mitigated by SP6A overexpression in
46	potato (Solanum tuberosum L.). Plant J 117: 1702-1715
4/	Kromdijk J, Glowacka K, Leonelli L, Gabiliy ST, Iwai M, Niyogi KK, Long SP (2016)
48	Improving photosynthesis and crop productivity by accelerating recovery from
49	protoprotection. Science 354: 857-861
50	Lai win, i iwari KN, Kumar A, Dey A, Kumar K, Kumar D, Jaiswai A, Unangan SS, Raigond
51	P, Dutt S, Luthra SK, Mandal S, Singh MP, Paul V, Singh B (2022) Mechanistic

1	Concept of Physiological, Biochemical, and Molecular Responses of the Potato Crop to
2	Heat and Drought Stress. Plants (Basel) 11
3	Lee AH, Shannon CP, Amenyogbe N, Bennike TB, Diray-Arce J, Idoko OT, Gill EE, Ben-
4	Othman R, Pomat WS, van Haren SD, Cao KL, Cox M, Darboe A, Falsafi R, Ferrari
5	D, Harbeson DJ, He D, Bing C, Hinshaw SJ, Ndure J, Njie-Jobe J, Pettengill MA,
6	Richmond PC, Ford R, Saleu G, Masiria G, Matlam JP, Kirarock W, Roberts E,
7	Malek M, Sanchez-Schmitz G, Singh A, Angelidou A, Smolen KK, Consortium E,
8	Brinkman RR, Ozonoff A, Hancock REW, van den Biggelaar AHJ, Steen H, Tebbutt
9	SJ, Kampmann B, Levy O, Kollmann TR (2019) Dynamic molecular changes during
10	the first week of human life follow a robust developmental trajectory. Nat Commun 10:
11	1092
12	Leeggangers HACF, Rodriguez-Granados NY, Macias-Honti MG, Sasidharan R (2023) A
13	helping hand when drowning: The versatile role of ethylene in root flooding resilience.
14	Environmental and Experimental Botany 213: 105422
15	Lehretz GG, Sonnewald S, Lugassi N, Granot D, Sonnewald U (2020) Future-Proofing
16	Potato for Drought and Heat Tolerance by Overexpression of Hexokinase and SP6A.
17	Front Plant Sci 11: 614534
18	Li B, Zeng Y, Cao W, Zhang W, Cheng L, Yin H, Wu Q, Wang X, Huang Y, Lau WCY, Yao
19	ZP, Guo Y, Jiang L (2021) A distinct giant coat protein complex II vesicle population in
20	Arabidopsis thaliana. Nat Plants 7: 1335-1346
21	Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, Ramsak Z, McIntyre L,
22	Gruden K, Tarazona S, Conesa A (2022) PaintOmics 4: new tools for the integrative
23	analysis of multi-omics datasets supported by multiple pathway databases. Nucleic
24	Acids Res 50: W551-W559
25	Lothier J, Diab H, Cukier C, Limami AM, Tcherkez G (2020) Metabolic Responses to
26	Waterlogging Differ between Roots and Shoots and Reflect Phloem Transport Alteration
27	in Medicago truncatula. Plants (Basel) 9
28	Lozano-Elena F, Fabregas N, Coleto-Alcudia V, Cano-Delgado AI (2022) Analysis of
29	metabolic dynamics during drought stress in Arabidopsis plants. Scientific Data 9: 90
30	Lozano-Juste J, Cutler SR (2016) Hormone signalling: ABA has a breakdown. Nat Plants 2:
31	16137
32	Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In
33	Proceedings of the 31st International Conference on Neural Information Processing
34	Systems, Curran Associates Inc., Long Beach, California, USA, pp 4768–4777 Mehmud S. Lilleh C. Kerte A. Bhettecherung S. Yu B. Cereherter J. Vethkreeht UC (2022)
30	Constitutive expression of LASMONATE DESISTANT 1 induces molecular changes that
30 27	constitutive expression of JASIMONATE RESISTANT Tinduces molecular changes that
ა/ ეი	Maniunath KK Krishna H. Davata NP. Sunilkumar VP. Datil SP. Chauhan D. Singh S.
30 20	Wanjunalii KK, Krisinia R, Devale ND, Sunnkunai VF, Falii SF, Chaunan D, Singh S,
39 40	regions governing component traits of yield under combined best and drought stross in
40 11	wheat Front Conct 14 : 1282240
41 1	Mathur S Agrawal D Jaioo A (2014) Photosynthesis: Response to high temperature stress
42 12	Journal of Photochemistry and Photobiology B: Biology 137 : 116-126
43	Mishra S Srivastava AK Khan AW Tran LP Nouven HT (2024) The era of panomics-driven
44 15	dene discovery in plants. Trands Plant Sci
45 46	Mittler P (2006) Abiatic stress, the field environment and stress combination. Trends Plant Sci
40 17	11 • 15-10
-+, //8	Nakamura Y Mithofer & Kombrink F Boland W Hamamoto S Hozumi N Tohma K Heda
49	M (2011) 12-hydroxyjasmonic acid glucoside is a COI1-IA7-independent activator of
50	leaf-closing movement in Samanea saman. Plant Physiol 155 . 1226-1236

1	Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S
2	(2011) Control of flowering and storage organ formation in potato by FLOWERING
3	LOCUS T. Nature 478: 119-122
4	Núñez-Lillo G, Ponce E, Arancibia-Guerra C, Carpentier S, Carrasco-Pancorbo A, Olmo-
5	García L, Chirinos R, Campos D, Campos-Vargas R, Meneses C, Pedreschi R
6	(2023) A multiomics integrative analysis of color de-synchronization with softening of
7	'Hass' avocado fruit: A first insight into a complex physiological disorder. Food Chemistry
8	408: 135215
9	Núñez-Lillo G, Ponce E, Beyer CP, Álvaro JE, Meneses C, Pedreschi R (2024) A First
10	Omics Data Integration Approach in Hass Avocados to Evaluate Rootstock-Scion
11	Interactions: From Aerial and Root Plant Growth to Fruit Development. Plants 13: 603
12	Obata T, Klemens PAW, Rosado-Souza L, Schlereth A, Gisel A, Stavolone L, Zierer W,
13	Morales N, Mueller LA, Zeeman SC, Ludewig F, Stitt M, Sonnewald U, Neuhaus HE,
14	Fernie AR (2020) Metabolic profiles of six African cultivars of cassava (Manihot
15	esculenta Crantz) highlight bottlenecks of root yield. Plant J 102: 1202-1219
16	Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW,
17	Florens L, Washburn MP (2006) Quantitative proteomic analysis of distinct mammalian
18	Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U
19	S A 103: 18928-18933
20	Park JS, Park SJ, Kwon SY, Shin AY, Moon KB, Park JM, Cho HS, Park SU, Jeon JH, Kim
21	HS, Lee HJ (2022) Temporally distinct regulatory pathways coordinate thermo-
22	responsive storage organ formation in potato. Cell Rep 38: 110579
23	Petek M, Rotter A, Kogovsek P, Baebler S, Mithofer A, Gruden K (2014) Potato virus Y
24	infection hinders potato defence response and renders plants more vulnerable to
25	Colorado potato beetle attack. Mol Ecol 23: 5378-5391
26	Petek M, Zagorscak M, Ramsak Z, Sanders S, Tomaz S, Tseng E, Zouine M, Coll A,
27	Gruden K (2020) Cultivar-specific transcriptome and pan-transcriptome reconstruction
28	of tetraploid potato. Sci Data 7: 249
29	Ployet R, Veneziano Labate MT, Regiani Cataldi T, Christina M, Morel M, San Clemente H,
30	Denis M, Favreau B, Tomazello Filho M, Laclau J-P, Labate CA, Chaix G, Grima-
31	Pettenati J, Mounet F (2019) A systems biology view of wood formation in Eucalyptus
32	grandis trees submitted to different potassium and water regimes. New Phytologist 223:
33	766-782
34	Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M (2016) Molecular and
35	genetic control of plant thermomorphogenesis. Nat Plants 2: 15190
36	Renziehausen I, Frings S, Schmidt-Schippers R (2024) 'Against all floods': plant adaptation
37	to flooding stress and combined abiotic stresses. Plant J
38	Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2022) Developing climate-resilient crops:
39	improving plant tolerance to stress combination. Plant J 109 : 3/3-389
40	Rohart F, Gautier B, Singh A, Le Cao KA (2017) mixOmics: An R package for 'omics feature
41	selection and multiple data integration. PLoS Comput Biol 13: e1005752
42	Sato H, MIZOI J, Shihozaki K, Yamaguchi-Shihozaki K (2024) Complex plant responses to
43	drought and heat stress under climate change. Plant J
44	Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16: 282-286
45	Singn A, Snannon CP, Gautier B, Ronart F, Vacner M, Tebbutt SJ, Le Cao K-A (2019)
40 47	DIABLO: an integrative approach for identifying key molecular drivers from multi-omics
4/	assays. Bioinformatics 30: 3055-3062
48	JINNA K, Pelaez-VICO MA, SNOSTAK B, NGUYEN I I, PASCUAI LS, UGGEN AM, LYU Z,
49 50	candidinas SI, JUSHI I, FILISCHI FD, WITTIER K (2024) The effects of multifactorial stress
50	Complination on fice and maize. Fiant Physiol 194: 1336-1369

1	Siroka J, Brunoni F, Pencik A, Mik V, Zukauskaite A, Strnad M, Novak O, Flokova K (2022)
2	High-throughput interspecies profiling of acidic plant hormones using miniaturised
3	sample processing. Plant Methods 18: 122
4	Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1: 1342-
5	1345
6	Stael S, Kmiecik P, Willems P, Van Der Kelen K, Coll NS, Teige M, Van Breusegem F
7	(2015) Plant innate immunitysunny side up? Trends Plant Sci 20: 3-11
8	Tang R, Niu S, Zhang G, Chen G, Haroon M, Yang Q, Rajora OP, Li X-Q (2018)
9	Physiological and growth responses of potato cultivars to heat stress. Botany 96: 897-
10	912
11	Trapero-Mozos A, Morris WL, Ducreux LJM, McLean K, Stephens J, Torrance L, Bryan
12	GJ, Hancock RD, Taylor MA (2018) Engineering heat tolerance in potato by
13	temperature-dependent expression of a specific allele of HEAT-SHOCK COGNATE 70.
14	Plant Biotechnol J 16: 197-207
15	von Gehren P, Bomers S, Tripolt T, Söllinger J, Prat N, Redondo B, Vorss R, Teige M,
16	Kamptner A, Ribarits A (2023) Farmers Feel the Climate Change: Variety Choice as an
17	Adaptation Strategy of European Potato Farmers. Climate 11: 189
18	Wasternack C, Feussner I (2018) The Oxylipin Pathways: Biochemistry and Function. Annu
19	Rev Plant Biol 69: 363-386
20	Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK (2020) PANOMICS meets
21	germplasm. Plant Biotechnol J 18: 1507-1525
22	Weng JK, Ye M, Li B, Noel JP (2016) Co-evolution of Hormone Metabolism and Signaling
23	Networks Expands Plant Adaptive Plasticity. Cell 166: 881-893
24	Wu Q, Su N, Huang X, Cui J, Shabala L, Zhou M, Yu M, Shabala S (2021) Hypoxia-induced
25	increase in GABA content is essential for restoration of membrane potential and
26	preventing ROS-induced disturbance to ion homeostasis. Plant Commun 2: 100188
27	Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J (2020) Crop
28	Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and
29	Future Perspectives. Mol Plant 13: 187-214
30	Yoshida T, Fernie AR (2024) Hormonal regulation of plant primary metabolism under drought.
31	J Exp Bot 75 : 1714-1725
32	Yoshihara I, Omir E-SA, Koshino H, Sakamura S, Kkuta Y, Koda Y (1989) Structure of a
33	Tuber-inducing Stimulus from Potato Leaves (Solanum tuberosum L.). Agricultural and
34	Biological Unemistry 53: 2835-2837
35	Zaki HEIVI, Radwan NSA (2022) Response of potato (Solanum tuberosum L.) cultivars to
30	arought stress under in vitro and heid conditions. Chemical and Biological Technologies
3/	In Agriculture 9: 1 Zendelines SL Fritashi EP, Mittler P (2021) Clobal Warming, Climate Change, and
38	Zandalinas Si, Fritschi FB, Wittler R (2021) Global Warming, Climate Change, and
39	Environmental Poliution: Recipe for a Multifactorial Stress Complication Disaster. Trends
40 11	7 and alines SL Palaez Vice MA Sinha P. Pasaual J.S. Mittler P. (2022) The impact of
41	multifactorial stross combination on plante, crops, and acceptations; how should we
42	propare for what comes payt? Plant I
43	Zong ZI. Wang XO. Zhang SB. Huang W. (2024) Mesonbull conductance limits photosynthesis
44	in fluctuating light under combined drought and heat stresses. Plant Physiol 104 : 1408-
45	1511
40 17	7hand H Sonnewald II (2017) Differences and commonalities of plant responses to single and
47 18	combined stresses Plant 1 00. 830-855
49	Zhang H. Zhu J. Gong Z. Zhu J.K (2022) Abiotic stress responses in plants. Nat Rev Genet 23.
50	104-119

 Zhang R, Zhang C, Yu C, Dong J, Hu J (2022) Integration of multi-omics technologies for crop improvement: Status and prospects. Front Bioinform 2: 1027457

2 3 4

5

Zhao Y, Zhang W, Abou-Elwafa SF, Shabala S, Xu L (2021) Understanding a Mechanistic Basis of ABA Involvement in Plant Adaptation to Soil Flooding: The Current Standing. Plants (Basel) 10

Figure 1 210x235 mm (x DPI)

---Control --Drought --Heat --Heat + Drought --Waterlogging --Heat + Drought + Waterlogging

	Control	Heat	Drought	Heat + Drought	Waterloggi
					and the
		No Co			
		\$ ~			
			-RA		
				Takin	TAR
D		~K -			
Phenotypic traits	•				
Plant volume		• •			• •
		▼	• • • • •		▼
		 ↓			
		▼		•	▼
Hormones & deri	vatives			•	•
ABA	Valives	1 .	+	•	+
DPA		†	+	↑	↑
JA-Ile		†	•	↑	!
Metabolites					
Histidine			1	1	1
Glucose		t	†	<u>†</u>	•
Proline		•	Ť	•	1
Transcripts					
SP6A		Ļ	•	Ļ	ţ
HSP70		†	1	•	1
RD29		•	1	•	1
Non-significant of the second seco	change 🕇 Increase 👃	Decrease			
J					
		Figure 7	2.20		
		176x155 mm ()	x DPI)		