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Abstract 

The discovery of genes that code for a specific enzymatic activity is important in various fields 

of life science and provides valuable biotechnological tools. Many genes that contribute to the 

production of secondary metabolites and specialised metabolic pathways are still not identified. 

Due to the great diversity of metabolic functions found in nature and their rapid evolutionary 

adaptation, we need precise but high-throughput approaches for a targeted search based on 

minimal prior knowledge. In this chapter, we describe a transcriptomics pipeline that was used 

to search for candidate genes coding for a specific enzymatic activity in a non-model species. 

We generated and combined short- and long-read transcriptomic data to obtain reliable full-

length transcript sequences along with information on allelic variation, isoform expression, and 

condition-specific expression. Based on protein domain annotations of coding sequences and 

transcriptomic data, we selected candidate genes for activity assays. We provide detailed 

instructions for analysis and quality control steps in our pipeline that can be applied to other 

biological questions. 
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1 Introduction 

All branches of life feature a diverse set of metabolic reactions and the resulting metabolites. 

Apart from relatively conserved and ubiquitous primary metabolism, which provides vital 

functions, the more diversified secondary metabolism enables niche adaptation to various 

environmental conditions and is a medium of intra- and inter-organismal communication. 

Discovery and characterisation of such an immense range of biological functionalities is an 

important endeavour, albeit laborious. It contributes knowledge, biological molecules, and 
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metabolites with applications in agriculture, pharmacy, chemical industry, and environmental 

protection, among other areas [1, 2].  

Selection of the approach for the discovery of metabolic pathways mostly depends on the extent 

of prior knowledge and our aim. Searching for a specific metabolic functionality in an organism 

of interest is for example conceptually different to the discovery of novel enzyme families in 

uncharacterised communities [3, 4]. However, all approaches can employ high-throughput 

technologies and computational tools designed to mine large amounts of biological data for 

biological discovery [5–7]. One of the most developed areas of high-throughput biological 

research is transcriptomics, operating through different sampling approaches and a variety of 

RNA isolation methods, followed by parallel sequencing of short or long fragments and 

analysis of obtained sequences [8, 9]. Unlike genomics, it provides dynamic information on 

gene expression under different conditions and is therefore indispensable in functional 

genomics. Its methods still outperform the available toolbox for proteomics in terms of 

completeness and the amount of data obtained per cost unit. 

Gene expression analysis can be particularly valuable for targeted discovery of secondary 

metabolism pathways. By its nature, secondary metabolism is responsive to various conditions 

or can be specific to different developmental stages, sex, and other biological determinants. In 

the case of a targeted search for a specific metabolic activity, transcriptomic data gathered in 

the desired biological context provides enriched information on gene activity, which usually 

indicates the potential functional involvement of detected genes [4]. This approach can benefit 

from short-read and long-read transcriptome sequencing. High-throughput long-read 

sequencing platforms, such as PacBio (PB) and Oxford Nanopore Technologies (ONT), 

produce reads that cover the full length of almost all eukaryotic transcripts [10]. Determining 

full-length transcript sequences enables target gene cloning and expression, as well as the 

design of reverse genetics approaches, for example, targeted mutagenesis and gene silencing. 

It can also provide information on the existence of gene isoforms and their expression, with 

different isoforms potentially having different functionalities. On the other hand, short-read 

sequencing still has some advantages over long-read sequencing [11]. It is more accurate at the 

nucleotide level and provides greater sequencing depth per dollar. The latter can be important 

for identifying novel sequences expressed at very low levels or only in limited cell types and 

tissues, as the sensitivity might be too low to detect them with long-read sequencing.  
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In this chapter, we are showcasing an approach of combining short- and long-read 

transcriptomics data from an economically important insect pest, citrus mealybug 

(Planococcus citri), to identify coding sequences with potential activity in the biosynthesis of 

a monoterpenoid sex pheromone [12]. Sex pheromones are applicable for sustainable pest 

control in agriculture and can be biotechnologically manufactured [13, 14]. Identified P. citri 

genes could therefore be expressed in heterologous systems for biotechnological pheromone 

production. We provide a comprehensive workflow for analysis, quality control, and assembly 

of short and long reads, followed by consolidation of the assemblies, functional annotation and 

search for candidate sequences (Figure 1). In our study [12], candidate sequences were cloned 

and expressed in a bacterial and plant system to test for target enzymatic activity. 

 

Figure 1: Short- and long-read transcriptomic analysis steps for targeted enzyme search 

presented in this chapter. The depicted approach was used to identify candidate sequences 

coding for specific enzymatic activity found in P. citri [12]. For each step, the number of the 

chapter subheading in which it is described in detail is given in a circle. 
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2 Experimental design 

To obtain candidate sequences coding for target activity, it is important to carefully design the 

experiment. The first consideration should be the biological material used for RNA isolation. 

The selection of target tissue and sampling conditions can be guided by prior knowledge of 

tissue and condition-specific occurrence of biological phenomena under study. In our example, 

we intended to identify enzymes involved in P. citri sex pheromone biosynthesis. Therefore, 

we decided to sample and isolate RNA from P. citri females before mating (virgin females), 

when the pheromone is produced by females to attract males for mating, whereas its production 

stops after mating [15]. It is reasonable to assume that the expression of sex pheromone 

biosynthesis genes would be highest in adult virgin females before mating. Additionally, we 

decided to collect a contrasting sample from mated females, enabling us to perform differential 

gene expression analysis comparing read counts from samples of virgin and mated females and 

by that focus the search on genes with higher expression in virgin P. citri females. For other 

systems of interest, one could similarly consider different sampling parameters, such as the sex 

of specimens, time of day, exposure to different stress conditions, nutrient availability, 

developmental stage, and others. In our case, we also considered dissecting and sampling sex 

pheromone gland tissues, however, unlike for some other insect taxa [16, 17], in P. citri their 

anatomical position is unknown therefore we sampled whole organisms. 

Another consideration of the experimental setup should be the choice of sequencing approaches 

and sequencing depth. Since we were searching for a unique enzymatic activity, presumably 

recently evolved and not well understood, we wanted to perform a broad search and obtain 

information on sequence variation, such as expression of isoforms, allelic variation and 

presence of single nucleotide polymorphisms (SNPs). We also aimed to clone and express 

candidate sequences, therefore we required reliable full-length sequences that would support 

successful cDNA amplification or synthesis. Additionally, we hypothesized that the sex 

pheromone biosynthesis genes are expressed in a specific tissue and therefore RNA samples 

collected from whole organisms might contain only limited copies of target transcripts. To 

cover all these requirements, we decided on both long- and short-read sequencing, with the 

first providing full-length isoform sequences and the second contributing high accuracy and 

sufficient depth. 
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3 Materials 

The presented analysis was done mostly on the Linux operating system with publicly available 

command-line tools. In the following protocol, we provide and explain commands and 

parameters important to our use case (see Note 1). However, we do not provide detailed 

instructions for the installation of used tools. We recommend using conda 

(https://conda.io/projects/conda/en/latest/index.html) for computational environment and 

package management (i.e. reproducible installation of tools and their dependencies), as most 

presented tools are available for installation through conda. Below is a list of all software used 

in the presented pipeline with links to their current GitHub repositories or user guides, which 

all include installation instructions: 

- BBTools v39.05 (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/) 

o BBDuk (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-

user-guide/bbduk-guide/) 

o BBMerge (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-

user-guide/bbmerge-guide/) 

o Clumpify (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-

user-guide/clumpify-guide/) 

o Tadpole (https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-

user-guide/tadpole-guide/) 

- rnaSPAdes [18] 

(https://gensoft.pasteur.fr/docs/SPAdes/3.14.0/rnaspades_manual.html, 

https://github.com/ablab/spades) 

- rnaQUAST [19] (https://github.com/ablab/rnaquast) 

- minimap2 [20] (https://github.com/lh3/minimap2) 

- cDNA_cupcake (https://github.com/Magdoll/cDNA_Cupcake) 

- samtools [21] (https://www.htslib.org/) 

- CD-HIT [22] (https://sites.google.com/view/cd-hit) 

- BUSCO [23] (https://busco.ezlab.org/) 

- Mmseqs2 [24] (https://github.com/soedinglab/MMseqs2) 

- STAR [25] (https://github.com/alexdobin/STAR) 

- IGV [26] (https://igv.org/) 

- matchAnnot (https://github.com/TomSkelly/MatchAnnot) 
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- InterProScan [27] (https://interproscan-docs.readthedocs.io/en/latest/index.html) 

- R (https://www.r-project.org/) 

o edgeR [28] (https://bioconductor.org/packages/release/bioc/html/edgeR.html) 

o limma [29] (https://bioconductor.org/packages/release/bioc/html/limma.html) 

- transDecoder (https://github.com/TransDecoder/TransDecoder) 

4 De novo transcriptome assembly 

Short reads obtained with Illumina sequencing can be used for mapping to reference genome 

or transcriptome, followed by read counting, differential expression analysis, and SNP analysis 

or reference-guided transcriptome assembly. If good quality reference is not available, short 

RNA-Seq reads can be also de novo assembled into contigs (see Note 2). 

We generated short Illumina reads for eight samples – four from virgin and four from mated 

P. citri females (see Note 3). If you did not generate sequencing data for your project or want 

to complement your data, you can use publicly available data sets. Most short-read data is 

deposited at NCBI’s SRA database (https://www.ncbi.nlm.nih.gov/sra) (see Note 4). 

After you obtained your FASTQ files, create a folder for your analysis and a folder for 

generated or downloaded short-read files: 

mkdir /MyAnalysis 
mkdir /MyAnalysis/short 
mkdir /MyAnalysis/short/raw 

4.1 Pre-processing short Illumina reads 

Before using FASTQ files for de novo assembly, it is important to do quality control and pre-

processing, including, but not limited to adapter trimming, removing low-quality reads, and 

removing contaminating reads from other organisms. 

You can first concatenate all FASTQ files from the same study into a single file, simplifying 

downstream processing. Only reads of the same length should be concatenated into one file 

and if sequencing was done in paired-end mode, FASTQ files with forward and reverse reads 

should be concatenated into two separate files. Names of files with forward and reverse reads 

usually include _1 and _2 suffixes, respectively: 

cd /MyAnalysis/short/raw 

cat ./*_1.fastq > ./MyStudyShort_1.fastq 
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cat ./*_2.fastq > ./MyStudyShort_2.fastq 
 

4.1.1 Quality and adapter trimming 

With concatenated FASTQ files, you can proceed to read quality filtering and adapter trimming 

using BBTools’ BBDuk script: 

cd .. 
mkdir ./bbduk_filter 
cd ./bbduk_filter 
 
/PathToInstalledTool/bbduk.sh \ 

-Xmx230g \ 
in=../raw/MyStudyShort_1.fastq \ 
in2=../raw/MyStudyShort_2.fastq \ 
out=./MyStudy_trimmed.fastq \ 
ktrim=r \ 
k=23 \ 
mink=11 \ 
hdist=1 \ 
ref=./adapters.fa \ 
tbo \ 
tpe \ 
maxns=0 \ 
trimq=20 \ 
qtrim=r \ 
maq=12 

 
We specified forward and reverse read FASTQ files as inputs (in, in2), memory usage (230 

GB with -Xmx230g), k-mer-based adapter and contaminant trimming parameters, and quality 

trimming and filtering parameters. Adapter and contaminant trimming is performed to the right 

side of reads (ktrim=r), using k-mer length of 23 (k=23) or 11 at read tips (mink=11) and 

maximum hamming distance of 1 (hdist=1). A reference FASTA file with adapter sequences 

(“adapters.fasta”) is provided (ref) (see Note 5). Trim by overlap (tbo) and even pair 

trimming (tpe) are enabled. For quality trimming, regions with average quality below 20 

(trimq=20) are discarded to the right (qtrim=r). The script will also discard reads with 

average quality below 12 after trimming (maq=12) and reads with Ns (maxns=0). The output 

will be a quality- and adapter-trimmed FASTQ file with both forward and reverse reads (path 

to and output name file specified with out). Other known contaminating sequences and 

sequencing artefacts can be further trimmed in a second round with the trimmed FASTQ file 

as an input and a list of FASTA files with contaminating sequences (see Note 5). 
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/PathToInstalledTool/bbduk.sh \ 

-Xmx230g \ 
in=./MyStudy_trimmed.fastq \ 
out=./MyStudy_filtered.fastq \ 
k=31 \ 
ref=./sequencing_artefacts.fa,./phix174_ill.ref.fa 

4.1.2 Error correction 

After quality and contaminant trimming, sequencing error correction can be performed. One 

option for Illumina reads is the Bayes Hammer method [30]. We used it within the rnaSPAdes 

tool [18], later used for de novo assembly (see Subheading 4.2), by running it in --only-

error-correction mode: 

cd .. 
mkdir ./error-corr 
cd ./error-corr 
 
/PathToInstalledTool/spades.py \ 

--only-error-correction \ 
-m 230 \ 
-t 32 \ 
-o . \ 
--pe-12 ../bbduk_filter/MyStudy_filtered.fastq 

Input is the filtered FASTQ file, for which the type is specified (file with interlaced forward 

and reverse paired-end reads, --pe-12). The command also specifies thread (-t) and memory 

usage (-m) and current directory as the output directory (-o). Spades error correction will 

generate two FASTQ files with corrected forward and reverse paired reads, respectively, and a 

FASTQ file with corrected unpaired reads. 

Additional read correction can be performed using overlap-based error correction integrated 

into the BBTools’ BBMerge tool. Several rounds of such correction can be performed. As input, 

we take the output of Bayes Hammer correction, processing paired and unpaired reads 

separately.  

For paired files: 

/PathToInstalledTool/bbmerge.sh \ 
-Xmx230g \ 
in1=./MyStudy_trimmed2_1.00.0_0.cor.fastq \  
in2=./MyStudy_trimmed2_2.00.0_0.cor.fastq \ 
out=./MyStudy_ecco_PE.fastq \ 
ecco \ 
mix \ 
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vstrict \ 
adapters=default 

For unpaired files:  

/PathToInstalledTool/bbmerge.sh \ 
-Xmx230g \ 

in=./MyStudy_trimmed2_unpaired.00.0_0.cor.fastq \ 
out=./MyStudy_ecco_SE.fastq \ 
ecco \ 
mix \ 
vstrict \ 
adapters=default 

The parameters used above call for error correction of overlapping parts of paired reads (ecco) 

under very strict conditions (vstrict), while outputting both mergeable and unmerged reads 

(mix) in the same output file (out). We also specified to consider a list of common adapter 

sequences (default). 

The resulting paired-end FASTQ files for paired-end and unpaired single-end reads can be 

sorted so that similar reads are positioned near each other in the file with the BBTools’ clumpify 

tool. By using the ecc parameter, we also perform error-correction with 6 passes on reads with 

identity to consensus greater than 0.98 (minid):  

/PathToInstalledTool/clumpify.sh \ 
-Xmx200g \ 
in=./MyStudy_ecco_PE.fastq \ 
out=./MyStudy_eccc_PE.fastq \ 
ecc \ 
passes=6 \ 
minid=0.98 
 

/PathToInstalledTool/clumpify.sh \ 
-Xmx200g \ 
in=./MyStudy_ecco_SE.fastq \ 
out=./MyStudy_eccc_SE.fastq \ 
ecc \ 
passes=6 \ 
minid=0.98 

An additional round of correction can be performed with BBTools’s tadpole tool, using ecc 

parameter to specify k-mer count-based error correction: 

/PathToInstalledTool/tadpole.sh \ 
-Xmx200g \ 
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in=./MyStudy_eccc_PE.fastq \ 
out=./MyStudy_ecct_PE.fastq \ 
ecc 
 
 

/PathToInstalledTool/tadpole.sh \ 
-Xmx200g \ 
in=./MyStudy_eccc_SE.fastq \ 
out=./MyStudy_ecct_SE.fastq \ 
ecc 

Finally, corrected paired reads can be merged with BBTools’ BBMerge tool: 

/PathToInstalledTool/bbmerge.sh \ 
-Xmx200g \ 
in=./MyStudy_ecct_PE.fastq \ 
out=./MyStudy_merged.fastq \ 
outu=./MyStudy_unmerged.fastq \ 
rem \ 
k=62 \ 
extend2=50 \ 
adapters=default 

The output includes both a FASTQ file with merged (out) and a FASTQ file with unmerged 

reads (outu). Merging is performed with enabled read extension of up to 50 nucleotides 

(extend2) in cases of failed merge (no overlap). It also restricts merging extended reads for 

which the predicted insert size after extension does not match the insert size before extension 

(rem). 

4.2 De novo transcriptome assembly with rnaSPAdes 

Polished short reads are ready for de novo transcriptome assembly with rnaSPAdes in --only-

assembler mode. Before the assembly, you can concatenate the merged paired-end reads 

(“MyStudy_merged.fastq”) and single-end corrected reads (“MyStudy_ecct_SE.fastq”) into 

one FASTQ file with single reads: 

cat ./MyStudy_merged.fastq ./MyStudy_ecct_SE.fastq > 
./MyStudy_SE.fastq 
 
cd .. 
mkdir ./spades_assembly 
cd ./spades_assembly 
 
/PathToInstalledTool/rnaspades.py \ 

--only-assembler \ 
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-k 29,49 \ 
-m 245 \ 
-t 32 \ 
-o . \ 
--ss-rf \ 
--pe1-fr \ 
--pe1-12 ../error-corr/MyStudy_unmerged.fastq 
--pe1-s ../error-corr/MyStudy_SE.fastq 

 

Using the above command, the contigs will be assembled using k-mers of lengths 29 and 49 (-

k). We determine the type of sequencing libraries – strand-specific (--ss-rf) and type of 

Illumina reads – paired-end, with a forward-reverse orientation (--pe1-fr).  We provide two 

input FASTQ files originating from the same library - one with interlaced reads from a paired-

end library (unmerged reads, --pe1-12), and one with unpaired reads from a paired-end 

library (unpaired and merged paired reads, which we concatenated in the previous step, --

pe1-s). Additionally, we also specified memory and thread usage (-m, -t) and output 

directory (-o). Output includes a FASTA file with assembled transcripts (“transcripts.fasta”) 

and two FASTA files with hard-filtered (long and more reliable transcripts with high 

expression) and soft-filtered transcripts (including also short transcripts with low expression), 

respectively. 

4.3 De novo transcriptome quality assessment with rnaQUAST 

De novo assembled transcriptome should undergo quality control to assess the completeness 

and correctness of obtained contigs. If an annotated genome for the species of interest is 

available, several quality metrics can be calculated at once using the rnaQUAST tool [19]. Its 

outputs include general metrics (transcript number, average length, N50, …) and reference-

related metrics, such as number of transcripts aligning, misaligning or not aligning to the 

reference, NA50, assembly completeness, and assembly specificity (based on different metrics 

related to coverage of reference genome coding sequences with mapped sequences).  

Prepare a folder for rnaQUAST analysis and a folder for reference genome assembly and 

annotation files: 

cd .. 
mkdir ./rnaQaust_QC 
cd ./rnaQaust_QC 
mkdir /MyAnalysis/genome 
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Upload your reference genome data to the “/MyAnalysis/genome” folder and run rnaQUAST: 

/PathToInstalledTool/rnaQUAST.py \ 
--transcripts ../spades_assembly/transcripts.fasta \ 
--reference /MyAnalysis/genome/MyGenome.fa \ 
--gtf /MyAnalysis/genome/MyGenome.gtf \ 
--output_dir . \ 
--threads 20 

rnaQUAST output includes text reports and plots with calculated quality metrics and summary 

text and PDF files, which include the most important metrics.  

5 Processing Iso-Seq long reads 

Iso-Seq is a full-length sequencing and analysis method using SMRT sequencing technology 

and pipelines for isoform discovery. Outputs of the Iso-Seq clustering pipeline are FASTA files 

with high- and low-quality isoforms. Depending on the purpose of the study, low-quality 

transcripts can be discarded or included in downstream analyses. In our case, we decided to 

include low-quality isoforms and we therefore concatenated both isoform FASTA files into one 

using cat command (see Note 6). 

First, create a folder for the Iso-Seq analysis and put the data provided by the sequencing 

facility in the “input” subfolder: 

mkdir /MyAnalysis/long 
mkdir /MyAnalysis/long/input 
mkdir /MyAnalysis/long/output 
cd /MyAnalysis/long 

cat ./input/hq_isoforms.fasta ./input/lq_isoforms.fasta > 

./input/hq_lq_isoforms.fasta 

Isoform sequences can be further refined and filtered using different tools and pipelines. 

Among the recommended polishing steps before downstream transcriptome analyses is 

collapsing the redundant sequences representing the same isoform. If a reference genome is 

available, sequences can be collapsed to unique isoforms by mapping the isoform FASTA file 

to the reference fasta. Mapping can be done using minimap2 [20]: 

/PathToInstalledTool/minimap2 \ 
-t 30 \ 
-ax splice \ 
-uf \ 
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--secondary=no \ 
-C5 \ 
-O6,24 \ 
-B4 \ 
/MyAnalysis/genome/MyGenome.fa ./input/hq_lq_isoforms.fasta > 
./output/hq_lq_isoforms.fasta.sam 2> 
./output/hq_lq_isoforms.fasta.sam.log 

The above command defines the input reference genome assembly and the isoform FASTA to 

be mapped to the reference. It also calls for two output files – SAM file and a “log” file. We 

specified the following mapping parameters: mapping spliced long reads (-ax splice), 

considering forward transcript strand only (-uf), not outputting secondary alignments (--

secondary no), cost for a non-canonical GT-AG splicing of 5 (-C5), gap open penalty of 6 

and 24 (-O6,24), mismatching penalty of 4 (-B4), and the number of used threads (-t). 

After mapping, isoform collapsing can be performed using a Python script provided by the 

cDNA_cupcake GitHub repository (https://github.com/Magdoll/cDNA_Cupcake). The script 

requires a sorted SAM file, which can be generated with samtools [21]: 

/PathToInstalledTool/samtools sort \ 
-k 3,3 \ 
-k 4,4n \ 
./output/hq_lq_isoforms.fasta.sam > 
./output/hq_lq_isoforms.fasta.sorted.sam 

Sorted SAM is used as an input for the cDNA_cupcake Python script: 

/PathToInstalledTool/collapse_isoforms_by_sam.py \ 
--input ./input/hq_lq_isoforms.fasta \ 
-s ./output/hq_lq_isoforms.fasta.sorted.sam \ 
--dun-merge-5-shorter \ 
-o ./output/isoforms 

We specified the isoform FASTA file (--input) and sorted SAM file (-s). The command also 

includes the option to skip collapsing shorter 5’ transcripts (--dun-merge-5-shorter). It 

will generate “./output/isoforms.collapsed.*” files, including a GFF format file with unique 

isoforms, a FASTA file containing sequences of representative isoforms 

(“isoforms.collapsed.rep.fa”), and a text file with information on groups of isoforms collapsed 

to the same gene (“isoforms.collapsed.group.txt”).  

The cDNA_cupcake repository also includes a Python script for filtering away isoforms with 

5’ degradation, an artefact potentially introduced during cDNA synthesis: 
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/PathToInstalledTool/filter_away_subset.py 
./output/isoforms.collapsed 

The above command will generate “./output/isoforms.collapsed.filtered.*” files, including a 

GFF format file with filtered isoforms, a FASTA file containing filtered sequences of 

representative isoforms (“isoforms.collapsed.filtered.rep.fa”), and a text file with information 

on full-length reads associated with each isoform 

(“isoforms.collapsed.filtered.abundance.txt”). 

6 Sequence consolidation and transcriptome completeness analysis 

6.1 Collapsing identical sequences 

Merging de novo and Iso-Seq transcriptome assemblies results in a redundant set of transcript 

sequences. It is therefore useful to collapse identical sequences, albeit of different lengths, 

retaining only the longest unique sequences. This can be done with CD-HIT tool [22] at a 100% 

sequence identity threshold (see Note 7). If you plan to use different transcriptomic resources, 

you should first concatenate FASTA files of transcriptomes of interest. In our case, we 

combined Iso-Seq isoforms and de novo assembled contigs: 

mkdir /MyAnalysis/combine 
cd /MyAnalysis/combine 
 
cat \ 
../long/output/isoforms.collapsed.filtered.rep.fa \ 
../short/spades_assembly/transcripts.fasta > 
./full_transcriptome.fasta 
 
/PathToInstalledTool/cdhit-est \ 

-i ./full_transcriptome.fasta \ 
-o ./collapsed_transcriptome.fasta \ 
-c 1 \ 
-M 100000 \ 
-t 30 
 

If you wish to be more stringent and collapse very similar but not identical sequences, you can 

use lower identity thresholds (-c). This depends on the downstream analyses, as more stringent 

filtering can remove unwanted technical variability (sequencing and assembly errors) but also 

true biological variability, potentially important for your study. When searching for sequences 

coding for target activity, it might be beneficial to retain as much variability as possible, as you 
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can remove technical errors later in the analysis but keep information on possible functionally 

important SNPs. 

6.2 Assessment of transcriptome completeness 

After sequence consolidation, you should assess the quality of your transcript set and its 

usefulness for your research goal. When searching for coding sequences with specific 

metabolic functionality, it is important to have a complete and accurate sequence resource, 

encompassing the whole pool of expressed genome in the target organism. Apart from reference 

genome-based assessment of completeness (for example with rnaQUAST tool, as described in 

Subsection 3.3), a more general approach is to determine the coverage of universal single-copy 

genes with your transcriptomic data. Complete transcriptome should include orthologs of most 

single-copy genes known to be universally conserved and expressed in the taxonomic clade of 

your species of interest. This approach is implemented in the BUSCO tool [23], which 

determines the completeness of a sequence dataset by searching for orthologs of BUSCOs – 

Benchmarking sets of Universal Single-Copy Orthologs: 

/PathToInstalledTool/busco \ 
-i ./collapsed_transcriptome.fasta \ 
-l insecta_odb10 \ 
-o transcriptomeBUSCO \ 
-m tran \ 
-c 30 

 

To run BUSCO, you must define the input files (-i) and the type of input data (-m; genome, 

protein, or transcriptome FASTA file). It is also recommended to select the most appropriate 

BUSCO lineage dataset to be used (-l), which is a set of marker genes present as single-copy 

genes in at least 90 % of species from a specific evolutionary lineage. In our case, we used the 

BUSCO dataset specific for insects. Additionally, you can specify the output path with prefixes 

for output file names (-o) and the number of threads to use (-c). The results are numbers and 

percentages of complete BUSCOs, complete but duplicated BUSCOs, fragmented BUSCOs, 

and missing BUSCOs, given in a text file and as a stacked bar plot image (Figure 2). Complete, 

nonredundant transcriptomes without assembly or sequencing errors will have a high 

percentage of complete BUSCOs and minimal numbers of duplicated, fragmented, and missing 

BUSCOs. 
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Figure 2: Results of BUSCO completeness assessment. The analysed transcriptome has good 

completeness (1350 out of 1367 complete BUSCOs) but high redundancy (1210 out of 1350 

complete BUSCOs are duplicated). There are only a few fragmented and missing BUSCOs. 

6.3 Assessment of transcriptome contamination 

RNA samples from target organisms are prone to contamination by nucleic acids from other 

organisms – symbionts of your species of interest, their food, airborne organisms, and human 

nucleic acids from the operator. Additionally, foreign nucleic acids can be introduced with 

reagents during RNA isolation and library preparation, and during sequencing as a result of 

index hopping causing misassignments of reads between samples sequenced on the same lane. 

To obtain a transcriptome of your target species, contaminating sequences need to be identified 

and removed. Alternatively, you might be interested in sequences from symbiotic organisms 

and need to identify and separate them from other sequences.  

To identify sequences from non-target organisms, you can run tools for taxonomic 

classification, for example, mmseqs2 taxonomy workflow [24, 31]. You must first download 

and create a reference sequence database with taxonomic information against which your query 

sequences will be aligned. In our case, we selected to use the non-redundant NCBI database 

(NR). You also need to create a database of your query sequences: 

mkdir /MyAnalysis/combine/taxonomy 
cd /MyAnalysis/combine/taxonomy  
 
/PathToInstalledTool/mmseqs databases NR NRdatabase ./Database 
 
/PathToInstalledTool/mmseqs createdb 
../collapsed_transcriptome.fasta ./QueryDatabase 
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/PathToInstalledTool/mmseqs createindex QueryDatabase 
./QueryDatabase_index 

You can then run the taxonomy workflow and create different types of outputs: 

/PathToInstalledTool/mmseqs taxonomy \ 
./QueryDatabase \ 
./Database \ 
./taxonomyResult \ 
. 

The first specified parameter is the path to the created query database, followed by the path to 

the reference database. With the next two parameters, you specify the name of the output files 

and the path to the output folder. The result is a report text file with a taxon tree and the numbers 

of sequences assigned to each taxon. You can also generate a text file in which each sequence 

is annotated with a taxonomic unit (or unassigned, if no high-confidence matches were found): 

/PathToInstalledTool/mmseqs createtsv \ 
./QueryDatabase \ 
./taxonomyResult \ 
./taxonomyResult.tsv 

Additionally, mmseqs can also generate Kraken [32] and Krona-style [33] taxonomy reports . 

For Kraken-style report, which can be visualised with Pavian [34], use: 

/PathToInstalledTool/mmseqs taxonomyreport \ 
./QueryDatabase \ 
./taxonomyResult \ 
./taxonomyResult_report 

To generate Krona HTML report, use : 

/PathToInstalledTool/mmseqs taxonomyreport \ 
./QueryDatabase \ 
./taxonomyResult \ 
./Kronareport.html \ 
--report-mode 1 

Inspect the output files and identify any major contaminants. Transcript sequences with a high 

probability of originating from non-target species can be discarded from the transcriptome 

FASTA file if needed. 
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7 Mapping short and long reads 

7.1 Mapping long sequences to the reference genome 

If a reference genome of the species you are analysing is available, de novo assembled contigs 

and Iso-Seq isoforms can be mapped to it. Mapping to the genome can be informative in several 

ways. It aligns the transcripts to existing gene models and provides novel structural information 

or corrections to gene model predictions. It can also provide evidence for missing gene models 

in the genome assembly or even evidence for gaps in the assembly, in the case of unmapped 

transcripts. By comparing gene models to assembled and sequenced transcripts, we can predict 

the correct gene structure with higher confidence. Additionally, we can also detect single 

nucleotide polymorphisms and allelic variations. 

First, generate the folders for mapping results: 

mkdir /MyAnalysis/mapping 
mkdir /MyAnalysis/mapping/contigs 
cd /MyAnalysis/mapping/contigs 

Besides the already mentioned minimap2, which we used for mapping Iso-Seq isoforms, 

STARlong is another option for mapping full-length transcripts. We applied STARlong for 

mapping de novo assembled contigs. First, a genome index needs to be generated: 

mkdir /MyAnalysis/mapping/index_genome 
 
/PathToInstalledTool/STARlong \  

--runThreadN 32 \ 
--runMode genomeGenerate \ 
--genomeDir ../index_genome \ 
--genomeFastaFiles /MyAnalysis/genome/MyGenome.fa \ 
--sjdbGTFfile /MyAnalysis/genome/MyGenome.gtf \ 
 

To generate a genome index, the user must define the genomeGenerate mode and provide 

reference FASTA and annotation (GFF or GTF) files (--genomeFastaFiles, --

sjdbGTFfile). We also specified the directory in which we want the index files to be saved 

(--genomeDir) and the number of used threads (-t). With the generated index, you can 

proceed to mapping in alignReads mode: 

/PathToInstalledTool/STARlong \ 
--runMode alignReads \ 
--runThreadN 32 \ 
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--genomeDir ../index_genome \ 
--readFilesIn 
/MyAnalysis/short/spades_assembly/transcripts.fasta \ 
--outFileNamePrefix ./TRtoGenome_STARlong \ 
--outSAMtype BAM SortedByCoordinate \ 
--outReadsUnmapped Fastx \ 
--seedPerReadNmax 100000 \ 
--seedPerWindowNmax 1000 \ 
--alignTranscriptsPerReadNmax 100000 \ 
--alignTranscriptsPerWindowNmax 10000 
 

The command specifies the input FASTA file with transcripts to be mapped (--readFilesIn), 

path to genome index folder (--genomeDir), output directory and output file prefix (--

outFileNamePrefix), and sorted by coordinate BAM as the output alignment file (--

outSAMtype). Additionally, we also wanted all unmapped transcripts to be put out in a 

separate FASTA file (--outReadsUnmapped). We also specified four additional mapping 

parameters (last four rows), defining the maximum numbers of seeding and aligning per 

window and read. 

The sorted BAM file is useful for the visualisation of transcript mapping to the genome, for 

example with IGV (Integrative Genomics Viewer) [26]. You can view your genes/transcripts 

of interest and check for discrepancies between gene models and assembled or sequenced 

transcript sequences (Figure 3). It is also useful to generate a list connecting mapped transcripts 

and genome features at the site of mapping. This can be done with the MatchAnnot Python 

script by first converting the mapping BAM file to SAM format using samtools: 

/PathToInstalledTool/samtools view \ 
-@ 32 \ 
-O SAM \ 
-o ./TRtoGenome_STARlong.Aligned.out.sam \ 
./TRtoGenome_STARlong.Aligned.sortedByCoord.out.bam 

The above command defines the output file name and location (-o), output file type (-O), input 

file and number of used threads (-@). The generated SAM file needs to be sorted by 

coordinates, which can be done using the bash sort command: 

sort -k 3,3 -k 4,4n ./TRtoGenome_STARlong.Aligned.out.sam > 
./TRtoGenome_STARlong.Aligned.sortedByCoord.out.sam 

Sorted SAM is used as an input for the MatchAnnot script together with the genome annotation 

file: 
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python /PathToInstalledTool/matchAnnot.py \ 
--gtf=/MyAnalysis/genome/MyGenome.gtf \ 
--format=alt \ 
./TRtoGenome_STARlong.Aligned.sortedByCoord.out.sam > 
./TRtoGenome_STARlong.Aligned.sortedByCoord.out.sam.matchAnnot.txt 

You need to specify the input SAM alignment file, reference GTF annotation file and its format 

(--format, standard GENCODE GTF, an alternative version of GTF or a pickle file), and 

name and location of the output text file. The output text file includes a “result” line for each 

mapped transcripts sequence, which lists the feature at the site of mapping and matching score. 

The score goes from 0 to 5, with a score of 0 assigned to transcripts with overlap to gene but 

little to no exon congruence and a score of 5 to transcripts with a one-for-one match to gene 

exon structure. 

 

Figure 3: Visualisation of long and short reads mapping to the reference genome in IGV. 

Visualisation of mapping files (indexed BAM files) of short reads (top track) and de novo 

assembled contigs (middle track) to the reference genome (bottom track). Assembled contig 

and short read coverage imply a different gene model than the models predicted in the reference 

genome. 

7.2 Mapping short reads to genome and transcriptome reference 

For differential expression analysis and to analyse SNPs and allelic variations, short reads can 

be mapped either to reference genome (if available) and/or transcriptome (Iso-Seq isoforms or 

de novo assembled contigs). For de novo transcriptome assembly, short read mapping statistics 

are also important for quality control assessment, as a high fraction of reads should map back 

to the assembled contigs.  

Short-read mapping can be done using STAR [25]. First, reference indices need to be generated 

for each type of reference (genome – as given above for long read mapping, de novo contigs, 

and Iso-Seq isoforms). We already generated an index file for the reference genome in the 
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“/MyAnalysis/mapping/index_genome” folder. For a transcriptome reference, we do not need 

to provide an annotation GTF/GFF file: 

cd /MyAnalysis/mapping/ 
mkdir /MyAnalysis/mapping/short 
mkdir /MyAnalysis/mapping/index_denovo 
mkdir /MyAnalysis/mapping/index_IsoSeq 
 
/PathToInstalledTool/STAR \ 

--runMode genomeGenerate \ 
--runThreadN 32 \ 
--genomeDir ./index_denovo \ 
--genomeFastaFiles ../short/spades_assembly/transcripts.fasta 

 
/PathToInstalledTool/STAR \ 

--runMode genomeGenerate \ 
--runThreadN 32 \ 
--genomeDir ./index_IsoSeq \ 
--genomeFastaFiles 
../long/output/isoforms.collapsed.filtered.rep.fq 

With generated reference indices, we can proceed to short read mapping in alignReads mode: 

/PathToInstalledTool/STAR \ 
--runMode alignReads \ 
--runThreadN 32 \ 
--genomeDir ./index_genome \ 
--readFilesIn \ 
/MyAnalysis/short/raw/Sample1_1.fastq.gz \ 
/MyAnalysis/short/raw/Sample1_2.fastq.gz \ 
--outFileNamePrefix ./short/mapToGenome_Sample1_ \ 
--outSAMtype BAM SortedByCoordinate \ 
--readFilesCommand pigz -c -d 

We specified the input short read FASTA files (--readFilesIn), in our case a forward (_1) 

and reverse (_2) read files, path to reference index directory (--genomeDir), output directory 

and output file prefix (--outFileNamePrefix), and sorted by coordinate BAM as the output 

alignment file (--outSAMtype). If you are working with compressed input files, you can also 

specify –readFilesCommand (see Note 8). The above example applies to mapping to 

reference genome. For mapping to transcriptome data, change the --genomeDir parameter 

to specify the path to index folder of transcriptomic sequences. For mapping multiple samples, 

you can also create a “for” loop using bash syntax. 
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Output BAM files can be used for mapping visualisation with IGV. You can, for example, 

inspect gene structure, allelic variation, and SNPs (Figure 4). 

 

Figure 4: Assessment of SNPs in IGV. Visualisation of mapping files (indexed BAM files) of 

short reads from two biological replicate samples (upper two tracks) to the reference genome 

(bottom track). Short reads include nucleotide substitutions at two different positions compared 

to the reference genome sequence. Contig assembled from short reads includes the SNPs as 

well (middle track). 

Additionally, BAM files can be used to generate count data, by summarising the number of 

reads mapping to each feature (gene model in reference genome or contigs and isoforms in 

reference transcriptome). Counting mapped short reads to transcriptome reference can be done 

with the samtools idxstats tool. You first need to index BAM files generated by STAR mapping: 

/PathToInstalledTool/samtools index \ 
-@ 6 \ 
./short/mapToGenome_Sample1_Aligned.sortedByCoord.out.bam 
 
/PathToInstalledTool/samtools idxstats \ 
-@ 6 \ 
./short/mapToGenome_Sample1_Aligned.sortedByCoord.out.bam > 
./short/mapToGenome_Sample1_Aligned.counts 

For counting reads mapped to annotated reference genome you have other options (see Note 

9).  
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8 Differential expression analysis 

Gene- and transcript-level read counts are used for differential expression analysis. Here, we 

used statistical analysis in R with edgeR and limma packages [35]. Below we list crucial steps 

of our analysis, while the whole script is available on GitHub (https://github.com/NIB-SI). 

After first importing your count data for all samples and organising it in a data frame (x) with 

samples as columns and all genes or transcripts as rows, you can proceed to specifying your 

experimental groups. In our case, we had two groups with four replicates in each group: 

group <- factor(c(1,1,1,1,2,2,2,2)) 

With a count data table and specified experimental groups, you can create a DGEList object: 

y <- edgeR::DGEList(counts=x, group=group) 

Before statistical calculations, you need to filter out low-expressed genes: 

keep.exprs <- edgeR::filterByExpr(y, group = group, min.count = 50, 
min.total.count = 100) 
y_filter <- y[keep.exprs, keep.lib.sizes=TRUE] 

We specified that we want to keep only genes that have at least 50 counts in some samples and 

a minimal total count across all samples of 100. After filtering, we can calculate normalisation 

factors using TMM normalisation: 

y_filter <- calcNormFactors(y_filter, method=”TMM”) 

After filtering and normalisation, you can proceed to linear model fitting, by defining the model 

matrix and contrasts: 

design <- model.matrix(~0+group) 
colnames(design) <- c("virgin ","mated") 
contrastMatrix = limma::makeContrasts("virgin-mated", levels=design) 

In the final steps, you fit the linear model, compute the statistics and output a results table: 

fit <- edgeR::voomLmFit(y_filter, design) 
fit2 <- limma::contrasts.fit(fit, contrastMatrix) 
fit2 <- limma::eBayes(fit2) 
results <- limma::topTable(fit2, coef=1, number=1000000, 
sort.by="none") 
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The result table will include log2 fold-changes (logFC), p-values and FDR-adjusted p-values 

for each gene in the specified contrast set by the topTable parameter “coef”. In the above 

example the “coef=1” outputs the first contrast, namely “virgin-mated”. 

9 Candidate selection 

9.1 Identification of open reading frames 

With sequence and expression information, we can proceed to candidate selection. First, we 

should identify open reading frames (ORFs) in transcriptome sequences and translate them to 

protein sequences. This can be done with transDecoder [36]: 

cd /MyAnalysis/combine 
 
/PathToInstalledTool/TransDecoder.LongOrfs \ 
-t ./collapsed_transcriptome.fasta  

TransDecoder.LongOrfs will by default extract ORFs that are at least 100 amino acids long 

(300 nucleotides). From the extracted ORFs, you can predict putative coding sequences with 

TransDecoder.Predict:  

/PathToInstalledTool/TransDecoder.Predict \ 
-t ./collapsed_transcriptome.fasta \ 

Among other output files will be “collapsed_transcriptome.fasta.transdecoder.pep”, a FASTA 

format file with putative coding sequences. It can be used for functional annotations, for 

example with InterProScan protein domain search. 

9.2 Functional annotation with InterProScan 

Looking for a specific enzymatic activity, you might have some preexisting knowledge on 

possible protein families that perform similar reactions. In this case, it is sensible to extract 

protein sequences with homology to target protein families and domains from your 

transcriptomic data. InterPro [37] is a protein classification resource that combines protein 

function signatures from different protein databases and offers classification of target 

sequences based on the presence of specific signatures (domains, motifs, and other conserved 

sites). For the characterisation of novel sequences, you can use the InterProScan tool [27]: 

/PathToInstalledTool/interproscan.sh \ 
--applications Pfam \ 
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--seqtype p \ 
--input ./collapsed_transcriptome.fasta.transdecoder.pep \ 
--output-dir . \ 
--disable-precalc \ 
--iprlookup \ 
--formats TSV \ 
--cpu 100 

We define the input file (--input), input file type (--seqtype, protein sequences in our 

case), output directory (--output-dir), and tab-separated output file format (--formats). 

With the specified parameters, InterProScan will perform Pfam-based search (--

applications Pfam) and map the results to InterPro database entries (--iprlookup). 

Output tab-separated file will include highest scoring Pfam protein domain matches to query 

proteins with confidence values (E-value) and matching InterPro entries. From this file, you 

can extract IDs of query sequences that likely contain your target protein domain or a conserved 

site.   

9.3 Selection of candidate sequences 

When you extract target transcript sequences from your species of interest, you can perform 

manual evaluations and curation of selected candidates. First, you can cross-check candidates 

with the results of the taxonomic assessment (see Subheading 6.3) and determine their most 

probable taxa of origin. If you are interested only in sequences encoded in the genome of your 

target species, you can discard candidates originating from contaminating sequences. You can 

also check the confidence values of InterPro annotation (see Subheading 9.2) and inspect the 

protein sequences of candidates to possibly eliminate candidates with low similarity to target 

protein domains or families. 

The next important step is to address sequence redundancy, which can be estimated from 

BUSCO results (see Subheading 6.2) – the redundant dataset will have a high percentage of 

complete but duplicated BUSCOs. Transcriptome obtained with the presented pipeline might 

be highly redundant, as we did not perform any assembly thinning and collapsed only 

sequences with 100% identity (see Subheading 6.1). Therefore, the same locus can be 

represented with many different sequences in our transcriptome dataset. These differences can 

arise from biological variation – mRNA processing, alternative splicing, allelic variation, 

SNPs, or from technical variation (sequencing errors, assembly errors). Additionally, we 

combined transcripts from two separate sequencing approaches – de novo assembled short 
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reads and Iso-Seq – which could each include sequences corresponding to the same mRNA 

transcript. By comparing and clustering all candidate sequences you should obtain consensus 

sequences for each locus with additional information on biological variability while discarding 

transcript variations most probably resulting from technical errors. 

The most reliable and thorough approach for the selection of consensus sequences is manual 

assessment, which is of course more feasible for a lower number of candidate sequences. First, 

you can cluster your candidate sequences based on sequence identity with CD-HIT (see 

Subheading 6.1) using identity thresholds below 100%. You can either perform clustering on 

the nucleotide level with CD-HIT-EST or use CD-HIT for protein sequences. One of the output 

files will have information on formed clusters of sequences with identity above the threshold. 

We recommend that you also perform multiple sequence alignments for each cluster. This can 

be done with several tools, for example, online tools (Clustal Omega at EMBL-EBI servers, 

https://www.ebi.ac.uk/jdispatcher/msa/clustalo), or applications such as MEGA-X [38] and 

Geneious (https://www.geneious.com/). You can inspect the alignments and determine types of 

sequence variations. To evaluate whether they could be of biological origin or technical errors, 

you can use short-read mapping data (see Subheading 7.2). By visualising short-read 

mappings to candidate transcripts (e.g. in IGV, Figure 4) you can determine which variations 

have the highest read coverage and support. You can also determine allelic variations by 

inspecting the frequency of SNPs in short-read data. Ambiguities can be also resolved by giving 

priority to Iso-Seq transcripts compared to de novo assembled contigs, especially in cases of 

discrepancies at 5’ or 3’-ends, as full-length sequencing should be more reliable compared to 

assembly algorithms. 

You might encounter similar sequences with relatively high variability for which you cannot 

easily decide whether they originate from the same loci or recent duplication events and 

therefore represent paralogs. In this case, we recommend BLAST searches against different 

non-redundant and experimental databases, for example, TSA (Transcriptome Shotgun 

Assembly), and determine whether you can find convincing evidence for the existence of 

orthologs of each sequence in related species. The latter suggests that your sequences of interest 

are paralogs, which can be further substantiated with phylogenetic analyses and evaluation of 

the evolutionary time of duplication events. 

The above selection process should result in a list of candidate isoforms, which can be tested 

and validated experimentally. For this, the list should be concise, especially if there is no option 
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for high-throughput experimental testing. To further shorten the list of candidates, any prior 

knowledge and experimental data can be used. In our case, we also considered differential gene 

expression data, expecting higher expression of genes coding for target functionality in samples 

of virgin females, compared to mated females (see Subheading 8). We, therefore, gave higher 

priority to candidates with strong and significant differential expression. 

10 Making your data FAIR 

To facilitate fast, efficient, and equitable scientific development, research should be conducted 

and disseminated by standards of open science [39, 40]. One important pillar of open science 

is applying FAIR principles [41] to your experimental data. FAIR guiding principles for 

scientific data management and stewardship propose that data should be findable, accessible, 

interoperable, and reusable. This encompasses, among other approaches, the use of standard 

and machine-readable (meta)data formats, diligent and thorough metadata reporting, and the 

use of public repositories. 

The data management plan should be made before the start of your project. The plan specifies 

(among other things) the types of data generated, requirements and plan for their local storage, 

minimum information metadata standards used for each data type, and plan of data sharing, 

curation, and preservation.  

10.1 Organise your pipeline and results with pISA-tree 

Experimental data is usually uploaded and processed locally on personal computers. If not 

organised in a standard manner, it is usually difficult and time-consuming for an external 

collaborator or reader of your work to find, reuse or reanalyse your data. Therefore, besides 

data, computational analysis should also follow FAIR principles. This implies that the tools, 

pipelines and analysis results are well-organised, documented and reproducible. To cope with 

the local organisation and storage of research data and metadata, we developed the pISA-tree 

system  [42], which establishes a standardised data storage hierarchy and guides users to 

provide sufficient metadata. It encompasses a set of consecutive batch files that generate a 

standardised directory structure and template metadata files. It also interactively guides users 

to input notes and descriptions of the aims and approaches of conducted research.  Folders 

generated by pISA-tree follow the hierarchical order of Project-Investigation-Study-Assay, 

expanding the ISA framework [43]. In this way, you can organise different experiments, 
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analyses, and pipelines of the same project, with the subfolders on the assay level containing 

the actual research data. The standard directory tree for bioinformatic assays will include 

subfolders such as “input”, “output”, “scripts”, and “reports” encouraging you to meaningfully 

organise your data for every step of your analysis. 

The pipeline presented in this chapter was conveniently organised with pISA-tree, with the 

bioinformatic search for candidate genes organised as an investigation. Each subheading was 

further organised as a study and each analysis or processing step as an assay (see Note 10). 

10.2 Share data and results through public databases 

After finishing and publishing your project, your locally organised data should be made 

publicly accessible, unless there are justifiable restrictions. When planning your project, you 

should define whether your data can be shared or not and find appropriate repositories for each 

type of generated data. Below, we provide suggestions for data repositories applicable to the 

types of data generated and used in this chapter. 

Raw high-throughput sequencing data can be deposited to specialised public repositories.  

RNA-Seq and Iso-Seq data can be uploaded to NCBI’s SRA (Sequencing Read Archive, 

https://www.ncbi.nlm.nih.gov/sra/). Since RNA-Seq data was used for gene expression 

analysis, we uploaded our raw data and expression analysis results to GEO (Gene Expression 

Omnibus, https://www.ncbi.nlm.nih.gov/geo/), which automatically uploads raw sequencing 

data to SRA as well. Transcriptome assemblies generated from your sequencing data can be 

deposited to NCBI’s TSA database (Transcriptome Shotgun Assembly).  

If possible, you should also share your analysis steps and results. There are several cloud 

repositories specialised for FAIR research data storage and sharing, for example, Zenodo 

(https://zenodo.org/), Dataverse Project (https://dataverse.org/), and FAIRDOMHub 

(https://fair-dom.org/fairdomhub). You can upload folders with raw data, metadata, notes, 

methodology descriptions, results, scripts, and any other data important to your research 

project. If you organised the data with pISA-tree tool, your investigation folders can be either 

uploaded to FAIRDOMHub using pISA-tree’s auxiliary R libraries or compressed and 

uploaded to one of the general research data repositories. 
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11 Notes 

Note 1: For other research questions, you should check user guides and consider adapting the 

parameters. Additionally, tools might have been updated and their use and options changed. 

We included links to support pages for all the used tools. 

Note 2: For our study, we decided on de novo assembly, as only a fragmented reference genome 

was available. 

Note 3: Raw FASTQ read files from our study are available at NCBI (GEO accession 

GSE179660, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179660).  

Note 4: You can download deposited data through a web browser from search results or use 

the command line tool SRA Toolkit (https://github.com/ncbi/sra-tools). 

Note 5: If you know the sequences of adapters used in sequencing library preparation, you can 

prepare a FASTA file with adapter sequences and use it for adapter trimming. If you are aware 

of any other contaminating sequences (for example determined by FastQC quality control [44], 

https://github.com/s-andrews/FastQC), you can prepare additional FASTA files for filtering. 

We used artefact and contaminant files available on BBMap’s Github page: 

https://github.com/BioInfoTools/BBMap/tree/master/resources. 

Note 6: We hypothesized that target transcripts might be present in RNA samples at very low 

copy numbers, resulting in lower sequencing coverage and low isoform quality. 

Note 7: For nucleotide sequences, you need to use CD-HIT-EST. 

Note 8: The readFilesCommand parameter can be used to decompress input FASTQ files, 

for example using the gzip or pigz program. If working with larger files, decompression can be 

even faster using more parallelised programs such as rapidgzip. 

Note 9: If you are mapping short reads to the annotated reference genome and want more 

control over which mapped reads should be counted (based on mapping score, coverage of 

reference region, mismatches, multimapping etc.), you can use “featureCounts” 

(https://subread.sourceforge.net/featureCounts.html). To count just uniquely mapped reads you 

can also use and specify --quantMode parameter in STAR command. Option --quantMode 

GeneCounts will give you an output text file with counts for each gene model specified in 

the annotation file. 
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Note 10: During the project, each project partner organised the data and results with pISA-tree 

locally. Investigation folders from all partners were uploaded on FAIRDOMHub at the end of 

the project and are publicly available: https://fairdomhub.org/investigations/550. 
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