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A B S T R A C T   

Dynamics of the Taylor bubble interface in the vertical counter-current flow was analyzed with video recordings 
at 100 – 800 frames per second. Taylor bubbles in air-water mixture were studied on time intervals of up to 
several minutes in stagnant conditions, where buoyancy is dynamically balanced by the inertial bubble drag in 
the downward turbulent flow. Taylor bubbles of length from 4 to 10 cm were observed in a pipe of 26 mm 
diameter at Reynolds numbers based on liquid superficial velocity around 6000. Algorithms, developed for 
analysis of the interface from the video frames were dedicated to the analysis of the cap and the body of the 
Taylor bubble. The long time averaging of up to 10 min samples do not end up with axisymmetric time-averaged 
shape of the bubble, but with an asymmetric bullet-train shape, with the thinnest liquid film observed on the 
belly of the bullet-train shape bubble. The main result of this study is based on high relative sensitivity of our 
measurements, which was sufficient to track the dynamics of the tiny disturbance waves with a tenth of mm 
amplitudes traveling along the interface of the Taylor bubble. Cross-correlations of time-dependent interface 
fluctuations measured at different spatial positions allowed us to measure propagation speeds of the interface 
waves. When averaged over sufficiently long time intervals of around a minute, the time averaged propagation 
velocities are shown to be equal to the convective velocity of the interface. Moreover, waves propagating on both 
sides of the two-dimensional photographs show clear correlation; crest of the wave on one side of the bubble 
photograph corresponds to the trough of the wave on the other side.   

1. Introduction 

Flows of gas-liquid mixtures in a pipe may exhibit a variety of two- 
phase flow patterns. A basic classification divides multiphase flows in 
vertical pipes into bubbly, slug, churn, annular or misty flow regimes 
(Wallis, 1969). A particular pattern that one observes depends on the 
flow velocities of both phases, volume fractions of the phases, the ma
terial properties of the fluids and the pipe size and orientation. Our focus 
in this study is Taylor bubble flow, which is a sub-pattern of the slug 
flow. Taylor bubble is a bullet-shaped bubble, which is moving in a 
vertical pipe and occupies almost the entire cross-section of the pipe. 
Slug flows with Taylor bubbles are present in numerous practical ap
plications, from vaporizers, boilers, filtration and membrane processes 
(Morgado et al., 2016), to extreme events in the petroleum industry 
(Zhou and Prosperetti 2019), or steam generators in nuclear power 
plants. 

Taylor bubble motion is determined by the magnitudes of inertial, 
viscous, gravitational and interfacial forces. The most frequently used 
dimensionless numbers are:  

• Eo = g(ρL − ρG)D2/σ; Eotvos number as the ratio of gravitational 
effects and surface tension.  

• Mo = gμ4
L(ρL − ρG)/ρ2

Lσ3; Morton number contains the properties of 
the fluid including viscosity  

• Fr = U0/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gD(ρL − ρG)/ρL

√
; Froude number as the ratio of inertial and 

gravitational forces. 

Other dimensionless numbers can be derived from Eo, Mo and Fr and 
include Archimedes number Ar = (Eo3/Mo)1/2, Weber number We =

Eo Fr2, inverse viscosity Nf = Ar1/2, and various Reynolds numbers 
based on the speed of the liquid ReL = ULNf or bubble ReTB = U0Nf . 
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Our experiments are performed in the so-called inertia dominant 
region, where viscosity (Nf ≈ 104) and surface tension (Eo ≈ 100) ef
fects are weak (Wallis, 1969) and the Taylor bubble drift velocity is 
given by Davies and Taylor (1950) as: 

U0 = k
̅̅̅̅̅̅
gD

√
, (1)  

where k ≈ Fr for low ρG/ρL ratio. The correlation (1) predicts U0 for 
Taylor bubbles in our 26 mm diameter pipe between 0.167 m/s and 
0.192 m/s for the values of the constant k= 0.33 and 0.38, respectively, 
proposed by different sources and collected by Liberzon et al. (2006). 
This is close to the average measured liquid velocity UL in our experi
ments between -0.16 m/s and -0.19 m/s, which flows in the downward 
direction (minus sign) and keeps the bubble at fixed position. Relation 
proposed by Nicklin et al. (1962) connects terminal velocity of the 
bubble Ut with a given liquid velocity UL 

Ut = C UL + U0. (2) 

Polonsky et al. (1999a, 1999b) proposed C ≈1.2 for turbulent flows 
of liquid ahead of the bubble. In our experiment, the terminal velocity of 
the bubble Ut = 0 was achieved at liquid velocity around UL = − 0.18 
m/s. This is slightly higher than the one predicted by Eq. (2): UL = − U0 

/C= − 0.14 m/s, which suggests that the value C ≈1.2 is not accurate for 
counter-current flow regime. However, measurements of Polonsky et al. 
were performed only at positive (upward) terminal velocities of the 
bubble, where the bubble retains axisymmetric shape (Dumitrescu 
1943) and have shown that soon after the liquid flow was directed 
downward the Taylor bubble became unstable. One of the first experi
ments in the counter-current turbulent flow were performed by Martin 
(1976), where the air-water mixtures were investigated in circular pipes 
of diameter D = 2.6, 10.16 and 14.0 cm. He demonstrated that the 
bubble velocity in the counter-current slug flow could not be adequately 
represented by the existing theories for co-current background flow or 
stagnant liquid. This is due to the bubble instability, which increases the 
bubble velocity when the bubble is pushed from the axis of the pipe. Lu 
and Prosperetti (2006) have performed analytical stability analysis and 
have shown that breakup of Taylor bubble symmetry happens at liquid 
velocities below critical negative velocity of Uc = − 0.13

̅̅̅̅̅̅
gD

√
. Nu

merical analysis of symmetry breakup was performed by Figueroa-Es
pinoza and Fabre (2011) at different values of surface tension. They 
have shown that asymmetry means increased bubble velocity and 
decreased curvature radius in stagnation point at the bubble nose. The 
same authors (Fabre and Figueroa-Espinoza, 2014) have performed 
experimental study of symmetry breakup and have shown that asym
metry is rather independent of turbulent or laminar regime. They have 
found vorticity-to-radius ratio at stagnation point as a crucial parameter 
for symmetry breakup. Counter-current slug flow was studied also by 
Fershtman et al. (2017), who have measured liquid velocity that exactly 
balances the buoyancy UL = 0.35

̅̅̅̅̅̅̅
gD

√
= 0.178 m/s. This velocity is 

observed also in our experiments. The latest study of the Taylor bubble 
in a downward liquid flow is by Abubakar and Matar (2022). They have 
performed detailed numerical analysis and parametric analysis of 
downward liquid velocity, viscosity and surface tension effects on the 
shape and bubble motion. A linear stability analysis identified regions of 
dimensionless parameters within which the bubble is unstable and as
sumes an asymmetric shape. They have also provided the mechanisms 
responsible for symmetry breakup. Our experiments are performed in 
the unstable region with asymmetric bubble shapes, where unstable 
behavior of the bubble required dynamic flow rate control, which is 
described in the following section. 

Interactions of Taylor bubbles with turbulent liquid flow were topics 
of various studies. Unlike the laminar liquid flow (Benattalah et al. 
2011), in the turbulent background flow the bubble skirt starts to break 
up and this process and the process of recoalescence in the bubble wake 
region can be observed. First such studies were performed by Delfos 

et al. (2001a, 2001b) in a pipe with a diameter of 10 cm and later by 
Kockx et al. (2005). They were measuring gas loss from a Taylor bubble 
that was held stationary in a counter-current liquid flow. This was 
achieved with a special spherical Teflon cap, which held the bubble at 
the fixed position. This was possible as the point of interest in this study 
was the bubble wake region that is not affected by the placement of the 
spherical cap. Even in such configuration the bubble’s interface in tur
bulent flow exhibits unstable and chaotic flapping of the bubble tail, 
which requires long time periods for sufficient statistics accumulation. 
More recent experiments with the Taylor bubble in the turbulent 
counter-current regime were performed with high-speed camera in 
visible light and a disintegration rate of the bubble has been measured 
(Mikuž et al., 2019). With dynamical liquid mass flow rate control the 
Taylor bubble stays trapped in the equilibrium position for hours and 
can be used for studies over time intervals of several minutes. The 
observed flow conditions are therefore suitable for studying various 
phenomena, e.g. coalescence and break-up of gas bubbles. 

Detailed measurements of the velocity field in turbulent flow around 
Taylor bubbles is mostly focused on co-current configurations. Pinto 
et al. (2005) used Particle Image Velocimetry (PIV) technique to pre
cisely measure velocity profiles around the Taylor bubble. They found 
out that the transition of bubble velocity depends on the Reynolds 
number of the background liquid flow and proposed replacement of the 
constant C in Eq. (2) with a function C = C(Re). Shemer et al. (2005, 
2007) also performed PIV measurements around the Taylor bubble in a 
co-current laminar and turbulent flow for different pipe diameters. The 
study has focused on the impact of the Taylor bubble on the liquid 
background flow and on the transition between different basic patterns, 
starting from a complicated version of a circumferential wall jet right 
behind the bubble to gradually approaching a developed pipe flow, 
either laminar or turbulent, far away from the bubble. In one of the most 
recent studies, Cerqueira and Paladino (2020) focused on the interaction 
between the small dispersed bubbles and the Taylor bubble in a 
co-current turbulent flow. The flow was analyzed with PIV techniques, 
high-speed camera imaging and laser diode photocell. The results show 
that the gas volume fraction of the bubbly background flow affects the 
terminal Taylor bubble velocity. 

Some other experimental techniques are relevant for Taylor bubble 
studies: an experimental method in development is Electrical Impedance 
Tomography (De Moura et. al. 2021), which represents an invasive 
technique. This method is able to provide three-dimensional, time 
dependent shapes of the Taylor bubble in a similar way as wire-mesh 
sensor techniques (Yoshida et. al., 2022). Another experimental tech
nique, which was applied in laminar counter-current flow with stagnant 
and stable Taylor bubble, was the magnetic resonance imaging by 
Kemper et al. (2021). The non-invasive method successfully provided 
three-dimensional fields of the steady state flow near the smooth Taylor 
bubble tail and has shown reasonable agreement with the 
two-dimensional PIV measurements. Another three-dimensional 
method relevant for various two-phase flow, is based on X-ray tomog
raphy, which was applied for measurements of horizontal annular flows 
by Porombka et al. (2021). 

Before we move to the main part of this paper, we give a brief 
overview of another topic of two-phase flow research, which is not 
directly connected with the previous studies of the Taylor bubble dy
namics, but is relevant for our current work. The key novelty of our 
paper is tracking of the disturbance waves traveling over the interface of 
the Taylor bubble. Previous studies of disturbance waves on the in
terfaces were focused on film flow studies and on annular two-phase 
flow research. Schubring et al. (2010) performed high-speed video 
camera measurements of individual disturbance wave velocities, lengths 
and temporal spacing, as well as, average properties, such as frequencies 
and intermittency (besides average velocity and length). In their work, 
measured video frames were analyzed with the use of normalized pixel 
brightness signals obtained from several so-called “virtual detectors” 
that sampled pixels at different locations. To improve detection for 
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waves of smaller peaks, a “wave score” metric was introduced, which 
adds information on pixel darkness from the preceding and next video 
frames to the current one. Their measurements were performed in a 
range of gas velocities between 30 and 80 m/s and liquid velocities up to 
50 cm/s, giving wave velocities between 2 and 8 m/s. These values are 
much larger than the characteristic velocities between 0.1 and 1 m/s in 
our experiments. 

For liquid film waves in co-current horizontal annular flow, Pearce 
(1979) provided an empirical model for wave velocity that is deter
mined from the liquid surface velocity, gas velocity and gas-liquid 
density ratio as 

Uwave =
UL,i + UG

̅̅̅̅̅̅̅̅̅̅̅̅
ρG/ρL

√

1 +
̅̅̅̅̅̅̅̅̅̅̅̅
ρG/ρL

√

It is probably not adequate to assume the validity of this annular flow 
correlation for the waves on the Taylor bubble surface, however for the 
very small density ratio in our air-water two-phase system 
(
̅̅̅̅̅̅̅̅̅̅̅̅
ρG/ρL

√
≈ 0.03), Pearce correlation predicts the wave velocity 

approximately equal to the velocity measured at the liquid surface, i.e. 
Uwave ≈ UL,i. This prediction is in agreement with our results in Section 4. 

The film thickness measurements and interface wave analyses in 
annular flow based on optical techniques were performed also by Pan 
et al. (2015) in air-water annular flow on a very small scale (70 pixels 
per mm), and recently by Moreira et al. (2020) in saturated flow of 
R245fa refrigerant. Similar approach has been taken by Lin et al. (2020), 
who has also addressed the refraction uncertainty in annular flow, 
which is relevant also for our Taylor bubble analyses. Ayati et al. (2017) 
studied forced interfacial waves in stratified turbulent gas and liquid 
flow in horizontal pipe and reconstructed instantaneous interface posi
tions from the experiment with digital image processing. Obtained 
surface fluctuations superimposed on the mean liquid height measure
ment were combined with parallel PIV measurements in liquid phase. 

Waves were captured and reproduced well by their technique. 
Some other techniques like laser-induced fluorescence (Alekseenko 

et al. 2014) and Near-Infrared technique (Wang et al. 2018) were also 
used for studies of interfacial waves in annular flow. Rivera et al. (2022) 
used point conductance probes to perform dynamic liquid film thickness 
measurements. Another technique, which provides three-dimensional 
image of interfacial waves in annular flow is to be mentioned: Fersht
man et al. (2020) used a multilayer conductance sensor to obtain 
three-dimensional spatial and temporal information on interfacial wave 
structures in upward annular flow in vertical and inclined pipes. They 
have observed three types of interfacial structures: ripples, disturbance 
and rogue waves, where the amplitude of the waves was the main 
property used to differ between the waves. The methodology has been 
further refined by Fershtman et al. (2021). They have observed experi
mentally the interfacial ripples and disturbance waves in annular flow in 
upward inclined pipes. Non-intrusive liquid film sensor measurements 
were used together with methods for identification of individual waves 
and differentiation between ripples and larger waves. They observed a 
bi-modal distribution of wave heights, where first mode corresponds to 
ripples and the second to disturbance waves, which enabled a clear 
differentiation between the two types. 

Numerical simulations of the Taylor bubble are not directly relevant 
for the present work, however we have performed our experiments with 
a view on the high-resolution numerical simulations with explicit 
interface tracking that will be able to reproduce our measurements. Most 
of the numerical studies were performed in a stagnant or co-current 
background liquid flow in a variety of settings, from simple two- 
dimensional and Euler-Euler simulations to the fully three-dimensional 
simulations with interface tracking. Mao and Dukler (1991) performed 
one of the first simulations of the Taylor bubble. They have also per
formed experiments in the co-current regime and stagnant liquid. These 
experimental data were then compared with two-dimensional 

Fig. 1. Schematics of the test loop (left), photograph of the test section during operation (center), and two of the possible bubble positions and dimensions seen on 
the photographs (right). 
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simulations, where the main focus was placed on the correct prediction 
of the bubble shape and rise velocity. Araujo et al. (2012) performed 
two-dimensional numerical simulations of individual Taylor bubbles 
rising through vertical columns of stagnant Newtonian liquid in laminar 
flow regime. They have used Ansys FLUENT computer code with 
Volume-of-Fluid (VOF) method. The simulations covered wide ranges of 
Morton and Eotvos numbers and classified the hydrodynamic properties 
of the bubble wake, liquid film and nose region as functions of surface 
tension, Froude and Morton numbers. In recent years, there was a rise of 
three-dimensional simulations of the Taylor bubble. Gutiérrez et al. 
(2017) simulated the rise of Taylor bubble in a stagnant liquid using 
level-set/moving mesh method. Frederix et al. (2020) and Mikuž et al. 
(2020) performed large eddy simulations alongside the VOF interface 
tracking solver of the Taylor bubble in co-current turbulent flow. They 
have used Runge-Kutta time integration, moving frame of reference 
which followed the Taylor bubble motion, and mapping of the inlet 
velocity boundary to ensure the fully developed turbulent flow. As the 
bubble undergoes shedding, additional models for coalescence and 
break-up should be incorporated into the simulations. In another study 
Cerqueira et al. (2021) also performed CFD simulations of the problem, 
where they used coupling of the VOF method for the modelling of 
large-scale interface dynamics and the Discrete Bubble Model (DBM) for 
modelling the small-scale bubbles. The results were compared with 
experimental results. CFD results confirmed that the presence of small 
dispersed bubbles increases the terminal velocity of the Taylor bubble. 
Rohilla and Das (2020) have performed experimental and numerical 
study of an impact of a Taylor bubble on a single smaller bubble in a 
rectangular column. They have studied also the influence of Morton 
number on the behavior of a single bubble and differentiated it into 
sprint-away regime and bubble slip regime. Number of studies were 
done also in annular geometry, which is relevant in petrochemical in
dustry. In two recent studies Liu et al. (2023) and Lou et al. (2022) have 
performed experimental and numerical studies of Taylor bubble in a 
pipe of annular cross-section. Wide range of dimensionless numbers of 
Taylor bubble in upward and downward flows was investigated by 
Lizarraga-Garcia et al. (2021) with level set method implemented in a 
commercial code. One of the most recent studies was performed by 
Wang et al. (2023), who have studied accelerated Taylor bubbles with a 
combination of Level-Set and VOF methods. Similar problem was suc
cessfully approached with lattice Boltzmann method by Mitchell and 
Leonardi (2020). 

The structure of this paper, which is focused on the Taylor bubble 
shape and disturbance waves traveling over its body in a counter-current 
turbulent flow, starts with Section 2. dedicated to the description of the 
experimental loop and instrumentation. The most general results on the 

Taylor bubble shape and typical timescales of bubble instability are 
provided in Section 3. The main contribution of the paper in Section 4 is 
focused on the measurements of propagation velocities of the interface 
waves, possibilities and limitations of our velocity measurement tech
nique, which are further discussed in the concluding Section 5. In 
Appendix A, a brief overview of the algorithms used in the image 
analysis is given and in Appendix B further analysis of bubble instability 
is given. 

2. Experimental device and instrumentation 

The experiments were performed in a loop shown in Fig. 1. The key 
part of the loop is a test section of 1.5 m long glass pipe with internal 
diameter D = 26 mm. Water temperature was maintained constant at 
temperatures between 20 and 30 ◦C with a heat exchanger in the tank 
and the mass flow rate was measured with a frequency of 1 Hz with 
Coriolis flow meter. All experiments were performed in turbulent flow 
regime of the liquid above the bubble with Reynolds number around 
6000 based on superficial liquid velocity. The straight section of the pipe 
above the bubble was around 40 diameters long, and was found to be 
sufficiently long to obtain statistically uniform turbulence above the 
nose of the bubble. Taylor bubble was introduced into the test section 
from the dead end pipe installed under the test section. Flow through the 
test section was manually regulated with a control valve that was 
adjusting the distribution of the flow between the main loop and a by- 
pass loop. To keep the bubble within a camera field of view, manual 
adjustments of the flow rate were typically made every couple of 
seconds. 

Taylor bubble was observed with a high-speed camera with a field of 
view that captured 20 cm (~8 diameters = 8D) long section of the pipe 
in the first measurements and was later reduced to 14 cm (~5D) section 
for the main measurements in the present paper. The pipe was sur
rounded with a rectangular glass section filled with water, which has 
minimized the optical distortion. Useful resolution of the camera in the 
main measurements was around 1280 × 240 pixels or approximately 9 
pixels/mm. The lengths of the observed Taylor bubbles were typically 
between 1.5D and 5D, although we had problems to retain the bubbles 
above 4D lengths within the camera field of view over several minutes of 
recording. Measurements in this work were performed over 8, 4, 2, and 
1 min time intervals at camera frequencies 100, 200, 400 and 800 Hz, 
respectively. 

Taylor bubble photograph seen in Fig. 1 (center) provides informa
tion about the inner diameter of the glass pipe and the outer diameter of 
the air bubble. As seen in the right image of Fig. 1, this information does 
not depend on the eccentric position of the bubble in the pipe. Thus, as 
long as the bubble cross-section is of circular shape, we measure its 
diameter from an arbitrary direction; in other words, blue and red 
cameras in the right image of Fig. 1 provide the same information. The 
same image also clarifies our "definition" of the liquid film thickness seen 
from different directions; the liquid film thickness obtained from two- 
dimensional photographs, is a difference between the pipe wall and 
the outer-most points on the bubble perimeter. As will be discussed in 
Appendix B, the cross-sections of the bubbles are indeed very close to the 
ideal circular shape at distances of at least 1 pipe diameter downstream 
the bubble nose. 

Optical distortion of the liquid film thickness measurement is esti
mated to be low (Pan et al., 2015 and Lin et al., 2020). Absolute film 
thickness is measured with a precision between 0.5 and 1 pixel, which 
means relative errors more than 40% for the very thin films below 3 
pixels thickness. Optical distortion is estimated with the geometrical 
optics and enlarges the liquid film thickness for up to 2%, which is 
significantly less than uncertainty of the interface reconstruction. 

The instability of the Taylor bubble in the counter-current flow 
configuration requires dynamic changes of the mass flow rates in the 
experiment to keep the bubble within the camera field of view. Minor 
manual corrections of the valve positions are required every few seconds 

Fig. 2. Mean liquid velocity in the test section upstream of the Taylor bubble 
computed from the measured mass flow rate, case 2D-10(1) in Table 1. Time 
averaged value: 0.175 m/s. 
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and the resulting bulk liquid velocity in the test section obtained from 
Coriolis flow meter readings, during 8 min interval of typical experiment 
is shown in Fig. 2. Statistical dispersion (Root-Mean-Square) of the ve
locity signal shown in Fig. 2 is 4% of the bulk velocity. The range of 
statistical dispersions in other experimental cases is between 3% and 
10% of the bulk velocity. These fluctuations are roughly one order of 
magnitude larger than the flow rate fluctuations due to the turbulent 
nature of the single phase channel flow obtained in our Direct Numerical 
Simulation (DNS) studies at constant pressure gradient boundary con
ditions performed in computational domains that were around 5 hy
draulic diameters long (Bergant and Tiselj, 2007). 

The manual flow rate adjustment technique for the bubble position 
control might seem to be problematic for comparison with similar ex
periments or numerical simulations. However, it is actually similar to 

the numerical technique used in high-fidelity numerical simulation of 
co-current Taylor bubble flow of Frederix et al. (2020). They modelled 
the Taylor bubble in a moving frame of reference, like Taha and Cui. 
(2006), but they have also included minor changes in the inlet velocity 
at each time step. These slow changes of bulk liquid velocity were 
needed to keep the bubble inside their computational domain. 

2.1. Image processing 

The main data analyses in our experiments are based on processing 
of roughly 50,000 photographs taken in each experimental case. The 
image processing provided shapes of the Taylor bubble interface on each 
instantaneous photograph. We have performed this task with a newly 
developed in-house software that relies on widely used libraries avail
able in the open domain. An overview of the algorithms used to extract 
the Taylor bubble’s interface from the photographs is given in the 
Appendix A. At this point it is sufficient to write that the interface 
reconstruction was performed in two steps: 

1) A rough reconstruction of the Taylor bubble interface was first per
formed on the pixel level.  

2) A local information around each pixel identified in the first step is 
used to refine the position of the interface in the second step to a sub- 
pixel level. 

For the further discussion it is important to make a distinction be
tween the absolute and relative accuracy of the interface recognition 
that was achieved in our image processing. Absolute uncertainty of the 
interface position in a single point on a single photograph is between 
half a pixel and one pixel. However, when time series or spatial profiles 
of the interface are recognized, the relative uncertainty of the interface 
motions between the pixels that are neighbors in space or time is 
reduced for a factor of around 5 to approximately ±0.1 pixel. The ab
solute uncertainty is relevant for the analyses of the bubble shape and 
for measurements of the liquid film thickness at the boundary of the 
Taylor bubble. The relative uncertainty is relevant in analyses of the 
waves traveling over the surface of the Taylor bubble. 

3. Results - analyses of time averaged Taylor bubble shape 

3.1. Vertical and horizontal movements of the Taylor bubble 

While we claim that our bubble is at fixed vertical position, this is not 
entirely true due to the unstable nature of the Taylor bubble in the 
counter-current flow, the chaotic nature of the turbulent flow and 
consequently minor unsteadiness of the flow rates in our loop. During 
the measurements we kept the bubble in the observation region with 
manual adjustments of the mass flow rate. The vertical movements of 
the typical Taylor bubble in our experiments are shown in top two 
graphs of Fig. 3. Detailed comparison of the bubble vertical position in 
the top image of Fig. 3 shows that the position is correlated with the 
mass flow rate time history shown in Fig. 2. This is of course a natural 
consequence of the manual flow rate adjustments needed to keep the 
bubble inside the camera field of view, where valve operator followed 
the vertical position of the bubble. Vertical velocity of the bubble 
computed from the positions measured at 10 Hz effective frequency 
(basic recording frequency was 100 Hz with 1 out of 10 images stored), 
is shown in the middle image of Fig. 3. Typical vertical velocity of the 
bubble is around 0.01 m/s, which is low comparing to the 0.18 m/s 
mean liquid velocity upstream of the bubble and around 1 m/s velocities 
on the liquid-air interface of the Taylor bubble. 

The bottom image of Fig. 3 shows radial position of the bubble nose 
during two 8 min measurements. Axisymmetric bubble nose would be 
fixed at the axis at r = 0, however, what one can see in this image is 
quasi-stable asymmetric position of both bubbles. In the particular case 
of the two bubbles shown in the Fig. 3 bottom, one of the bubbles is 

Fig. 3. Top: typical bubble nose vertical position measured from the bottom 
line of the camera field of view. Middle: bubble nose vertical velocity. Bottom: 
distance of the bubble nose from the pipe axis for two typical measurements 
(2D-10(1) and 2D-10(2) in Table 1). 
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inclined to one side of the two-dimensional projection and the other one 
to the other side. The noses of both bubbles cross the axis from time to 
time, however in the average, they remain attached to one side of the 
pipe during the 8 min time interval. Under the conditions of our ex
periments, this asymmetry is very persistent and our empirical obser
vations show that once the bubble has "chosen" the particular side of the 
pipe, it typically remains there for a very long time, despite occasional 
movements in radial direction. The same behavior was observed for all 
other bubbles considered in the present study and in some other cases 
that were not included in this paper: asymmetric position and azimuthal 
orientation of the bubble, which was attained at the beginning of the 
experiment when the bubble was injected into the pipe, remained un
changed during the measurement. Consequently, our two-dimensional 
photographs were affected by the azimuthal position of the bubble 
with respect to the direction of the camera. We have checked possible 
asymmetries of our experimental device to find a possible preferential 
position of the Taylor bubble, however, we did not identify such 
asymmetries and the bubble positions in various experiments were 
actually observed at all azimuthal angles of the pipe. The issue of 
asymmetry is further studied in the next Section 3.2. 

3.2. Time averaged bubble shape 

The initial goal of our research was to predict time averaged Taylor 
bubble shape in the counter-current turbulent flow, which could be 
useful for validation of CFD models that are being developed to study the 
same phenomena (Coste, 2013). However, as already shown in the 
bottom image of Fig. 3 and discussed in the Section 3.1, we cannot 
obtain axisymmetric time averaged images of the Taylor bubble. We 
cannot entirely exclude the possibility that a particular bubble will 
significantly change its azimuthal orientation in the pipe, however, we 
did not observe this phenomenon in around 20 analyzed Taylor bubbles. 

We have restricted our measurements to time intervals of up to 8 min 
due to the decay of the Taylor bubble. Mikuž et al. (2019) have shown 
that small bubbles, which break-up from the tail of the Taylor bubble, set 
the lifetime of the Taylor bubbles of the 4D length to around one hour. 
Thus, we have combined time averaging and ensemble averaging to 
obtain a less skewed shape of the time averaged bubble. For ensemble 
averaging we have performed a series of eight measurements, denoted as 
2D-10 cases in Table 1, at effective 10 Hz camera frequency (100 Hz 
measurements with 1 out of 10 images stored) and 8 min time intervals. 
All eight measurements were performed at similar conditions with the 
length of observed Taylor bubbles around 2D. Time averaging was 
performed for each case and the cases were later merged with ensemble 
averaging into a single set of data shown in Fig. 4. These cases are 
denoted as a single case "8*2D-10" in Table 1. Four different bubbles 
were studied in these eight measurements. Most of the small images in 
Fig. 4 show asymmetric time averaged bubble interface, and even the 
bottom-left pair of small images, which shows symmetric time averaged 
silhouettes, was not symmetric but tilted towards or away from the 
camera plane of view. Ensemble averaged bubble shape shown in large 
image of Fig. 4 exhibits better axial symmetry than most of the particular 

Table 1 
Experimental cases by names, camera frequency and bubble length.  

Measurement 
case 

Camera frequency (Hz) Bubble length 
(D pipe diameter) 

8*2D-10 
(8 separate cases) 

100 
(effective 10) 

2D 

2D-200 200 2D 
2D-400 200 2D 
4D-200 400 4D 
4D-400 400 4D 
4D-800 800 4D  

Fig. 4. Eight small images: time averaged Taylor bubble interface position from eight measurements (8 min, 5000 photographs each). Large image, 8*2D-10 case: 
Taylor bubble interface position obtained with ensemble average of eight time averaged fields. Color scale: share of photographs with interface location at the given 
pixel position (maximum = 1). All units on horizontal (r) and vertical (z) axes are given in pixels. 
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bubbles shown in small images of Fig. 4, however, even this time plus 
ensemble average is tilted towards the right wall. Consequently, the 
axisymmetric time-averaged Taylor bubble shape is not a viable scenario 
under conditions of our experiment. Additional ensemble averaging can 
possibly result in improved axial symmetry, however, such approach is 
questionable, since any numerical simulation or similar experiment 
should eventually produce asymmetric time averaged results, if time 
averaging is used without ensemble averaging. As our measurements 
show, the ideal visual observation should be based on three-dimensional 
images of the Taylor bubble taken from different angles, where the 
azimuthal orientation of the eccentric bubble (shown in right drawing of 
Fig. 1) would be identified before further data processing. 

During the averaging shown in Fig. 4, the axial (z) positions of the 
bubble on each photograph were shifted for an appropriate distance that 
moved the bubble nose into the same axial point at position 0 pixels and 
the axial distance is measured downward from the bubble nose. This 
procedure gives a special meaning to the bubble nose point, which is not 
entirely deserved: more appropriate time averaging would be obtained 
with axial shifting of the bubble position with respect to the center of 
mass of the observed bubble. However, to obtain the center of mass for 
three-dimensional bubble or for its two-dimensional silhouette, the 
complete bubble interface must be reconstructed. Due to the flapping 
and highly asymmetric shape of the bubble tail, where the bubble is 
slowly losing its mass through decay with the detachment of small 
bubbles, we have abandoned this approach. Even if we were able to do 
it, the center of mass of two-dimensional silhouette is not the same as the 
physical center of mass of the bubble. Consequently, since the center of 
mass cannot be computed from the silhouette photographs with high 
accuracy, and the wobbling of the bubble nose in axial direction is rather 
mild, we have kept the nose point as a reference point for the purpose of 
the present study. Fig. 5 shows other five test cases analyzed for the 
present paper. Five different Taylor bubbles of 2D and 4D length were 
time averaged over 1, 2 or 4 min time interval with frequencies 800, 400 
and 200 Hz, respectively. Color intensity in particular pixel in the r-z 
plane corresponds to the number of photographs where the interface 
was located in the particular pixel of the plane. Like in the Fig. 4, time 

averaged shapes of these bubbles do not exhibit axial symmetry. 
Detailed insight into the images of Figs. 4 and 5 shows also the po

sition of the bubble’s tail. Nevertheless, this information is irrelevant 
and is merely an artefact of our bubble interface reconstruction algo
rithm, which recognized the bubble’s tail on some of the photographs. 
However, the quality of the tail reconstruction was not verified or tested 
and should not be considered as a relevant result of the present study. 

Time averaged bubble shapes presented in this Section were against 
our initial expectations that asymmetry will disappear after sufficiently 
long time averaging. The reason was not in experimental uncertainties, 
but in the physics of the Taylor bubble in the counter-current turbulent 
flow. Quasi-stable asymmetries of the bubble positions, which are 
typically observed over several minute time intervals, result in asym
metric time averaged bubble shapes. Since the azimuthal position of the 
asymmetric bubble seems to be determined during the injection of the 
bubble into the test section, one would need three-dimensional infor
mation for comparison of different bubbles from different measure
ments. Consequently, our attempt to produce axisymmetric time 
averaged plus ensemble averaged bubble shapes results in a loss of in
formation in azimuthal direction and thus contains significant statistical 
uncertainties, which might be too large for detailed comparisons with 
similar experiments or with high fidelity simulations. Nevertheless, 
useful results are obtained with averaging of the bubble shape and 
corresponding liquid film thickness over both sides of the photographs. 
This approach results in relatively accurate liquid film thickness, which 
is showing reasonably small statistical dispersion among various Taylor 
bubbles and is discussed in Appendix B. 

The problem of ensemble averaging is in the fact that it enforces axial 
symmetry, which does not exist in our flow conditions. Ideal averaging 
of the three-dimensional bubble shape would require stereoscopic 
measurements and recognition of the three-dimensional bubble shape. 
Such approach would eventually result in an asymmetric bubble shape 
that would be directly comparable to possible future measurements or 
three-dimensional simulations. 

Fig. 5. Time averaged (4, 2, or 1 min, 50,000 photographs) Taylor bubble interface position for 2D and 4D bubbles. Color scale: share of photographs with interface 
location at the given pixel position. Units on horizontal (r) and vertical (z) axes are given in pixels. 

J. Kren et al.                                                                                                                                                                                                                                     



International Journal of Multiphase Flow 165 (2023) 104482

8

4. Results - propagation of disturbance waves on Taylor bubble 
surface 

The main contribution of our research is presented in this Section. It 
is based on the ability of our measurement techniques and image pro
cessing algorithms to track small disturbance waves traveling along the 
Taylor bubble interface. An example of such waves is shown in Fig. 6. 
The mechanisms, which generate the interface waves recognized in our 
experiment are mainly attributed to the turbulence in the incoming 
liquid flow, flow rate fluctuations, or instability of the Taylor bubble in 
the counter-current flow. Some of them might be induced by the vi
brations of the test section structure, air moving inside the bubble, and 
some of them, which would be expected to travel upward, might be 
produced by the flapping tail of the bubble. The later waves were studied 
by Liberzon et al. (2006) for shorter bubbles. Most of the waves pro
duced by the random disturbances are expected to travel in all directions 
parallel to the air-water interface with velocities that are governed by 
the capillary wave equations written for the moving pair of liquids. We 
cannot totally exclude mechanisms, which might generate non-isotropic 
waves, however, we assume that they are not relevant. According to 
Liberzon et al. (2006) the dispersion relation of capillary waves is 

ω2 =
σ k3

ρ tanh(k d),

with wave number k = 2π/λ, angular frequency ω = 2πν, and phase 
velocity c = λν. If we assume that it is approximately valid for the liquid 
film of thickness d near the Taylor bubble, we can estimate the char
acteristic values of the disturbance waves in our system (Table 2). 

Characteristic wavelengths in our experiment can range from 
roughly λ = 2 mm, imposed by the resolution of our photographs, to 
around 10 cm, which is the length of our 4D bubbles. The liquid film 
thickness d spans from around 0.1 mm (~1 pixel) to 1 cm. For liquid 
density ρ = 1000 kg/m3 and surface tension σ = 0.07 N/m the relevant 
frequencies and phase velocities of the capillary waves are collected in 
Table 2 (rounded to a single digit). Extreme values of parameters are 
estimated for the very thin and very thick films, while the values in bold 
are given for films that were most frequently observed in the measure
ments. Further analyses of measurements performed at camera fre
quencies of up to 1600 Hz have shown that all relevant phenomena 
captured in the system appear at frequencies below ~100 Hz. It is 
important to emphasize that the estimated phase (and group) velocities 
of the resolved waves are lower or equal to the mean film velocity 
estimated to be between 0.5 and 1 m/s. That estimate means practically 
all waves on the interface travel downward. The only measurable ex
ceptions were short wavelength and high frequency disturbance waves 
generated at the tail of the short bubbles of length 2D, which traveled a 
few mm upstream. These waves were invisible in longer bubbles of 4D 
length. 

4.1. Disturbance waves velocity - measurement technique 

Fig. 6 shows a short time interval with time development of liquid 
film thickness in two triplets of points along the z axis of the 4D-400 
bubble. Positions of these points are shown in auxiliary drawing in 
Fig. 6. Similarity of the profiles on the same side of Fig. 6 is rather 
obvious and one can also see a time lag between the signals measured in 
the points 300 pixels downstream the bubble nose, and lower points at 
500 and 700 pixels downstream. Especially the oscillations at the left 
side of the Taylor bubble where the film is thicker, show very clear trend 
of film thinning and travelling of the liquid-air interface disturbance 
waves in the downstream direction. The same trend, just slightly less 

Fig. 6. Liquid film thickness time history at 6 points along both sides of the 4D-400 bubble. Legend: z coordinate of the measuring point in pixels, L - left side film, R - 
right side film. 

Table 2 
Characteristic wavelengths λ, frequencies ν and phase velocities c of relevant 
capillary waves.  

film thickness d (mm) λ (mm) ν (Hz) c (m /s)

very thin 0.1 2 100 0.2 
very thin 0.1 100 0.05 0.005 
average thin film 0.5 5 40 0.2 
average thick film 2 50 1 0.05 
very thick 10 2 200 0.5 
very thick 10 100 0.5 0.05  
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pronounced and with more noise from interface reconstruction, is seen 
also in the points at the right side of the film. The key question that we 
try to answer below is, what is the observed axial velocity of the 
disturbance waves travelling over the interface in the downstream 
direction? 

Measurements of the axial disturbance waves velocity w are per
formed with cross-correlations of the time signals at various axial po
sitions along the pipe. For a chosen distance H between the particular 
points in space, for example H = 200 pixels in Fig. 6, velocity w is ob
tained from the measured time lag τ of the signals as w = H/τ. For 
example, the time lag τ400 at the point z400 (400 pixels downstream the 
bubble nose) and at distance H = 200 pixels, approximately sketched in 
graph of Fig. 6, is computed from the cross-correlation of time signals at 
points z400-H/2 = 300 pixels and z400+H/2 = 500 pixels. If time devel
opment of film thickness at the grid point zi = i is denoted as di(j) and j 
denotes time and N number of photographs in a given experiment, the 
cross-correlation coefficient R at that point is obtained as a function of 
time lag τ as 

Ri(τ) =
(
∑N− τ

j=1
d′

i− H/2(j) d
′

i+H/2(j+ τ)
)
/
(
∑N− τ

j=1
d′

i− H/2(j)2
∑N

j=1+τ
d′

i+H/2(j)2

)

,

where d′

i(j) represents the fluctuating part of the film thickness di(j) with 
subtracted time averaged mean value d′

i(j) = di(j) − di . The time lag τi 
at position zi is found as a value of τ with the maximum value of discrete 
cross-correlation coefficient function Ri(τ). 

Fig. 7 shows two graphs with time lag τ measured in frames at 400 Hz 
camera frequency on 2 min time interval (125 s = 50,000 frames). Step 
curves in Fig. 9 show discrete time lags computed at each axial point zi at 
distance H = 80 pixels (bottom curve) and H = 160 pixels (top curve). 
For example, the time lag of the step curve located in the point zi = 140 
pixels and at distance H = 80 pixels, is computed from the cross- 
correlation of time signals in points zi = 140-80/2 = 100 pixels and zi 
= 140+80/2 = 180 pixels. The next time lag at zi = 141 pixels is ob
tained from cross-correlation of signals at zi = 101 and zi = 181 pixels, 
and so on for the points from around zi = 100 and towards the tail of the 
bubble. 

Smooth curves in Fig. 7 represent the time lag τ improved with 
interpolation among the cross-correlation coefficients of discrete func
tion Ri(τ): interpolated maximum was determined from a parabola 
drawn through the time lag τmax with the maximal cross-correlations 
coefficient and the two cross-correlation coefficients at the two neigh
boring time lags: τ = τmax±1 frame. As shown in Fig. 7 and from other 

computations, interpolation of the time lag is useful even for very short 
discrete values of time lag τ, where time lag is down to about one or two 
frames. 

Distance H between the two points, where cross correlation is 
computed, should not be too short to ensure sufficiently long time lag 
between the signals in both points at given frequency of the camera. This 
time lag should be at least a couple of time frames long to achieve a 
reasonably accurate velocity prediction. Too large distance H is also 
detrimental, since we can expect dissipation of the disturbance waves 
that reduces the cross-correlation of the signals over larger distances. 

Waves traveling along the nose of the bubble downstream to a dis
tance of about one radius of the pipe from the nose (~100 pixels) are 
propagating along the curved interface. In our analysis, we compute the 
curved interface length and we use it in evaluation of the velocities, but 
we take into account only part of the amplitudes that are perpendicular 
to the pipe axis, which slightly reduces the accuracy of the signals. 
However, this approximation is rather irrelevant because we focus on 
the interface waves traveling on a well-defined thin film from the dis
tance of the pipe radius D/2≅100 pixels from the bubble nose, down
stream to the end of the bubble. This region of the liquid film can be 
safely considered as a liquid layer with waves traveling in axial (and 
azimuthal) direction with their amplitudes moving in the radial 
direction. 

4.2. Velocities of disturbance waves - results of measurements 

Fig. 8 shows velocity profiles of the disturbance waves along the five 
Taylor bubbles shown in Fig. 5 obtained from the time lags. Solid lines 
show velocities on the right side of the bubble and dashed lines show the 
velocities measured on the left side. The complete time histories (50000 
frames) are analyzed in all cases, which means 1, 2 and 4 min for 800, 
400, and 200 Hz measurements, respectively. Cross-correlations are 
compared at different distances from H = 40 pixels to H = 80 and H =
160 pixels. 

Thick yellow curves are added in each graph of Fig. 8, which 
represent time and left-right averaged liquid-air interface velocity. This 
was approximated from the measured liquid film thickness h(z) and 
continuity equation as 

vi(z) = 1.15 v0R2/[2Rh(z) − h(z)2]
.

The approximate relation between the liquid-air interface velocity 
and the mean liquid film velocity vi = 1.15 vfilm− mean follows from our 
DNS results obtained in infinite turbulent flume flow at similar Reynolds 
numbers (Bergant and Tiselj, 2007), where the ratio between maximum 
and average velocity is approximately 1.15. The factor of 1.15 is valid 
for the free liquid surface near the infinite flat wall and neglects the air 
shear force. A single uncertainty bar is given for the yellow curve ob
tained from the continuity equation. This uncertainty is based on ab
solute uncertainty of the film thickness measurement and interface 
recognition, which is around 1 pixel and dominates other types of 
uncertainties. 

What we see in Fig. 8 are two types of velocity profiles obtained from 
the same measurements but with entirely different analysis: yellow 
curves are obtained directly from the simple measurement of the abso
lute liquid film thickness combined with continuity equation and the 
empirical correction coefficient 1.15, while the disturbance wave ve
locities are obtained from the relative motions of the liquid-air interface. 
What we can see is remarkable similarity of both types of velocities. 
Consequently, we claim that the time averaged velocity of the distur
bance waves on the water-air interface actually shows the velocity of the 
interface itself. This observation is considered to be the central result of 
our present research. 

An important question is how to explain equivalence of the time 
averaged velocities of interface waves with the convective velocity vi of 
the interface and apparently absent contribution of the capillary waves 

Fig. 7. Time lag of interface disturbance waves measured in frames for H = 80 
and H = 160 pixels for left side liquid film of the 4D-400 case. Step curves: 
maximum cross-correlation time lag τ, continuous curves: time lag τ refined 
with parabolic interpolation. 8.8 pixels = 1 mm, 400 frames = 1 s. 
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that are supposed to travel along the surface in all directions. Suffi
ciently long time signals contain capillary waves of all frequencies that 
can propagate in all axial and azimuthal directions. On the videos these 
waves are allowed to propagate in axial direction with velocities: 

vi(z) ± ccapillary(ν)

with interface velocity vi around ~ 1 m/s in the sufficiently thin region 
of the liquid film, and c = ccapillary as the phase velocity of the capillary 
surface waves, which is a function of the wave frequency. The equiva
lence of the time-averaged velocities of interface waves with the inter
face convective velocity vi, which is observed in our experiments means 

that: 
〈
vi(z) ± ccapillary(ν)

〉
= 〈vi(z)〉,

where "<>" is used to denote time averaging. We assume two reasons for 
the equivalence:  

1) As seen from the values of the characteristic phase velocities ccapillary 
in the Table 2, the velocities of the dominant capillary waves (~ 0.1 
m/s) are at least an order of magnitude lower than the interface 
velocities (except in the nose region of the interface). Consequently, 
all disturbance waves recognized in the thin region of the film are 

Fig. 8. Velocity of the interface disturbance waves on two sides of the five bubbles (right side film: solid, left side film: dashed). Thick yellow: interface film velocity 
vi from measured film thickness and continuity equation. X-axis: distance from the bubble nose. Inset graphs: time averaged left- and right-side film thickness. 
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being swept down by the supercritical-like-flow by the liquid film as 
noted also by Fabre and Figueroa, 2014.  

2) Capillary waves are assumed to be isotropically generated at the 
interface and therefore time averaging implicitly used in our cross- 
correlation analysis cancels the random disturbance wave di
rections. This makes the disturbance wave velocity equal to the time- 
averaged convective velocity of the water-air interface. 

Of course, the random and isotropic nature of the disturbance waves 
is not self-evident. While we recognize the method of disturbance wave 
velocity measurements as a potential technique for direct measurement 
of the velocity of liquid-gas interface, we also plan further confirmation 
of our hypothesis with high fidelity simulations and PIV measurements. 

Before we proceed to more detailed analyses of disturbance wave 
propagation, we need to comment certain deviations of the velocity 
profiles in Fig. 8 that demand additional comments of our measure
ments. Despite significant differences between the left- and right-side 
time averaged film thickness visible in inset graphs of Fig. 8, interface 
velocities predicted from the disturbance waves remain very similar on 
both sides. In all graphs of Fig. 8 one can actually see that the interface 
velocity is just slightly higher on the side of the photographs, where 
films are thinner for all five analyzed bubbles. The cases 2D-200 and 4D- 
400, where the difference between the left and right film thickness is 
larger, show slightly more pronounced, but still small differences be
tween the left and right interface velocities. This tiny difference is 
estimated to be of the same order of magnitude as the uncertainty of the 
velocity profiles, however, since the same behavior was observed also in 
the measurements that are not presented in this Section (cases in Fig. 4), 
it might be real. 

Further observations of Fig. 8 show that axial distance H between the 
points, where cross-correlations are computed, impacts the results of our 
measurements. The velocity profile with the largest discrepancy in Fig. 8 
is the one obtained at distances H = 40 pixels and on the side with the 
very thin film of 4D-400 bubble. Just slightly lower discrepancies are 
observed for H = 40 pixel profiles in 2D-200 and 4D-200 bubbles. For 
sufficiently long H (H = 80 and 160 pixels) these differences are rather 
small. The first suspect for the discrepancies seen on curves for H = 40 
pixels were the discrete time lags, which were even less than 1 frame at 
the highest velocities. If that was the main source of the discrepancies, it 
would be easily solved with higher camera frequencies. However, it has 
turned out that this was not the case; discrepancies at short H were 
observed also in measurements at 800 Hz and 1600 Hz camera fre
quencies, where time lags were several times higher. We have concluded 
that the main problem in the time-averaged disturbance velocity mea
surements in the region of the thin film lies in the spatial resolution of 

the film, resolved on 2 to 5 pixels, and less in the low camera frequency. 
Very thin liquid film filters long wavelength disturbances, which are the 
most useful for cross-correlation based velocity measurements. Short 
wavelengths, which are emphasized on the thin films, are more difficult 
to resolve and correlate. The only solution is better spatial resolution of 
the photographs. Further analysis shows that even for short H = 40 
pixels and low camera frequencies, where time lag is only about 1 frame, 
the interpolation still provides accurate results, as long as the liquid film 
is sufficiently thick to allow propagation of lower frequency and longer 
wavelength disturbance waves. This aspect of our analysis is further 
analyzed in the next Section 4.3 dedicated to frequency analyses. 

Comparison of velocities obtained from direct measurements of film 
thickness and from disturbance waves are shown in Fig. 9 for the same 
experimental cases. Mean film velocities in the left image of Fig. 9 are 
multiplied with factor 1.15, which takes into account the difference 
between the maximum film velocity and the mean film velocity. The key 
message of Fig. 9 are uncertainties of the measurements: uncertainty of 
the velocities obtained from the film thickness measurements are clearly 
larger than the uncertainties of the velocity measurements from the 
disturbance waves. Direct quantification of the uncertainties of distur
bance wave measurements is rather complex. Consequently, we estimate 
the uncertainties from Fig. 9 (right) to be predominantly stochastic, 
while the possible systematic errors that affect disturbance wave mea
surements are mainly due to the coordinate system fixed to the bubble 
nose point, which are similar for both types of our analyses. 

4.3. Frequency analysis 

Frequency analysis was performed with Fourier decomposition of the 
time dependent film thickness signals at each axial position along the 
pipe used for cross-correlation analyses. Frequency analysis and wave 
decomposition is especially efficient for linear systems or at least nearly 
linear systems. We can naturally expect, that wave decomposition is 
more successful for sufficiently thick films which allow propagation of 
lower frequency and larger wavelength disturbances. Thinner liquid 
films mean shorter wavelengths, higher frequencies, less precise inter
face detection, and possibly more pronounced nonlinear effects. 

The first result of the spectral analysis are power spectra of the time 
signals at sufficiently large distance from the bubble nose. The length of 
the time signals used in power spectra computations was slightly 
modified: 49,152 points out of 49,778 were used as six independent 
samples of 8192 = 213 points. Spectra of each sample were computed 
and six samples were averaged after that. With this approach, we have 
avoided very large oscillations in the spectra of a single long signal. 

Typical power spectra of film thickness time signal observed at a 

Fig. 9. Left: liquid film interface velocity profiles from film thickness measurements and continuity equation normalized to liquid mean velocity upstream of the 
bubble 0.18 m/s. Right: Interface velocities from disturbance wave propagation. Cross-correlation distance H = 80 pixels. 
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fixed distance z = 200 pixels from the bubble nose point are shown in the 
left image of Fig. 10. Spectrum is computed as square of the Fourier 
transformation of film thickness signal, which is equivalent to the 
Fourier transformation of the autocorrelation function of the signal 
shown in Fig. 10, right. Two spectra and two auto-correlation functions 
in Fig. 10 are given for 4D-400 case left and right film thickness signals. 
These spectra are representative also for spectra at other axial locations 
with well-developed liquid film at distances larger than D/2 (100 pixels) 
from the bubble nose, and for spectra of the other experimental cases. 
The only visible difference between spectra of the other bubbles would 
be difference between the left- and the right-side spectra, which is more 
pronounced for cases with larger differences in liquid film thickness. 

The shape of the power spectra can be discussed in comparison with 
typical frequencies of the liquid turbulence in the pipe above the bubble, 
which is assumed to be one of the key sources of the interfacial waves. 
The frequencies below approximately 1 Hz stem from the frequencies of 
the large scale turbulent vortices and at the same time correspond to the 
manual manipulations of the bypass valve used to compensate the tur
bulence and to regulate the flow rate through the section. From the DNS 
database of Kasagi (Fukata and Kasagi, 2002), pipe flow case at Re =
5300, which is close to our experimental conditions, we have obtained 
typical frequencies of the smallest turbulent structures in such flow. The 
highest frequencies obtained from Kolmogorov length and time scales 

are between 10 Hz and 70 Hz in the axis of the pipe and in the near-wall 
region, respectively. Since most of the turbulent kinetic energy at the 
Kolmogorov scales is already dissipated, the lower frequencies between 
3 and 20 Hz, which correspond to the Taylor microscales, seem to be 
more relevant as the upper limit. Consequently, the main excitations of 
the Taylor bubble are expected at frequencies below 20 Hz. The fre
quencies that follow from the theory are in rough agreement with our 
measurements. The power spectral density graph in Fig. 10 roughly 
follows the x− 2 slope at frequencies between 0.5 and ~5 Hz and the 
slope around x− 3.5 at frequencies from ~10 Hz to ~40 Hz, which points 
to a rapid dissipation in this region. The power spectral density above 
40 Hz already drops for around six orders of magnitude and must be 
ignored due to the numerical errors from interface reconstruction and 
possible external noise below the line around x = 3000. Very similar 
spectra, with the same characteristics are observed also at the other 
locations and in the other experimental cases. 

The frequencies below 1 Hz have the strongest impact on the auto- 
correlation function in Fig. 10, where several oscillations, going above 
and below zero, are observed on a scale of a couple of seconds, but 
without a clear order. Similar auto-correlation functions with irregular 
oscillating behavior at times above 1 s are observed also for other 
experimental cases. 

Further Fourier analysis is based on Fourier transformations of time 
signals at all axial distances along the bubble length. Different frequency 
bands can be removed in the frequency space and after that the signals 
are transformed back into the time domain. These filtered time signals 
are used to compute the cross-correlation coefficients in exactly the 
same way as explained in Section 4.1. Shorter time signals of 32768 =
215 points, out of total 49,778 frames, were used to speed up the Fourier 
transformations. 

The focus of our Fourier analysis is on the thin side film of the 4D-400 
bubble, where the largest discrepancies were observed between distur
bance wave velocities obtained at different cross-correlation distances H 
in Fig. 8. Filtering of the low frequencies from the lowest of around 0.01 
Hz and up to 1 Hz, did not affect the disturbance wave velocity profiles. 
Frequencies above 70 Hz are also irrelevant, which is somehow clear 
from the results shown in previous sections, where we claim that suffi
ciently accurate results are obtained at camera frequencies 200 Hz and 
400 Hz, which can capture 100 Hz and 200 Hz frequency waves, 
respectively. Consequently, the curve ’H = 40, ν = [1:70 Hz]’ in Fig. 13, 
which denotes filtering of the frequencies below 1 Hz and above 70 Hz, 
remains almost unchanged in comparison with the original profile ob
tained with no filtering at cross-correlation distance H = 40 pixels. 
Waves of frequencies between 1 and 40 Hz are found to deliver the 
largest amount of information for disturbance wave velocities studied in 

Fig. 10. Left and right side power spectra (left) and corresponding auto-correlation functions (right) of 4D-400 case at axial position z = 500 pixels downstream the 
bubble nose. Both obtained as average of six samples of 20 s (8192 points) each. Yellow curves: x− 2, x -3.5, x = 3000. 

Fig. 11. Frequency space filtering of Taylor bubble 4D-400 thin side film. 
Legend: frequencies retained in the spectrum of the time signals. 
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our work. The problematic frequency band, which is responsible for the 
discrepancies of the disturbance velocity measurements in Fig. 8 at 
cross-correlation distance H = 40 pixels, is above 40 Hz. As shown in 
Fig. 11, cutting out the frequencies above 40 Hz results in coherent 
disturbance velocity profiles predictions at all cross-correlation dis
tances H. Another profile ’H = 40, ν = [1:20 Hz]’ in Fig. 13 shows that 
the waves in the range of 1 Hz – 20 Hz are crucial and should not be 
filtered from our signals. 

Similar analyses were performed on the other side of the same bubble 
and on the other bubbles, where the filtering was found to be less 
beneficial in comparison with the case 4D-400, where the influence of 
the frequency filtering is the most obvious. Similar filtering of the fre
quencies above 40 Hz applied for other experimental cases is not shown, 
but gives only minor improvement in the agreement of the profiles 

obtained at H = 40 pixels, and practically no changes at higher H ’s. 
Consequently, we see the filtering in frequency space as a potential tool 
for refinement of the measured results. However, filtering itself cannot 
compensate deficiencies in spatial and temporal resolution of the 
measurements. 

4.4. Cross-correlation of left- and right-side disturbance waves 

Another subtle detail can be seen from Fig. 6 showing temporal 
development of liquid film thickness in several points on both sides of 
the Taylor bubble: both films seem to be in negative cross-correlation. 
Fig. 12 shows values of cross-correlation coefficients computed be
tween the film thickness time signals on both sides of the photographs at 
each axial distance downstream the bubble. Rather strong negative 
cross-correlation coefficient means that the disturbance waves travelling 
downstream the Taylor bubble behave like a wobbling of the whole 
Taylor bubble body from one side to the other side of the walls (sketch in 
Fig. 12, right). Knowing the wave behavior on one side of the Taylor 
bubble tells a lot about the film on the other side. One can imagine this 
as a translatory motion, which first moves the nose of the bubble in the 
direction perpendicular to the pipe axis, and the rest of the bubble fol
lows the translation with a traveling wave. 

The observation of the correlated waves on both sides of the pho
tographs of the various Taylor bubbles gives a hint about the possible 
source of the disturbance waves: it looks that the most of the waves are 
being produced somewhere at the bubble nose position by the instability 
of the bubble nose or the liquid turbulence structures that hit the bubble 
nose. 

Filtering of frequencies below 1 Hz was found to affect the cross- 
correlation of film thickness time signals between the left and the 
right points at the same axial distance for bubbles shown in Fig. 12. For 
the specific case of 4D-400 Taylor bubble, the cross-correlation coeffi
cient with a plateau at − 0.9 value, drops to around − 0.6 (dashed lines in 
Fig. 12), when the lowest frequencies bellow 1 Hz are eliminated. This 
result identifies the low frequency oscillations introduced by the large 
scale turbulence and manual manipulations of the flow rate as the most 
important generators of the disturbances that produce coherent distur
bance waves on both side of the Taylor bubble. We must stress that this 

Fig. 12. Cross-correlation of film thickness time signals between the left and the right points at the same axial distance for bubbles in Fig. 7. Solid lines: time signals 
without frequency filtering, dashed lines: frequencies below 1 Hz removed from the signals. Right drawing: correlated disturbance waves. 

Fig. 13. Optimal time lag between time signals at the left and right points at 
the same axial position that results in the most negative cross-correlation co
efficient of both signals. 
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coherence was not visible directly from the videos due to the very small 
amplitudes of the disturbance waves. 

An additional piece of information on the source of the disturbance 
waves can be obtained by cross-correlation of the film thickness time 
signals on both sides, where a film thickness at particular axial position 
on the right side of the photographs is correlated with film thickness at 
the same axial position on the left side of the film, but with variable time 
lag between both signals that results in the most negative cross- 
correlation coefficient. Maximum anti-correlation at a non-zero time- 
lag means that the signal on one side of the bubble travels faster than on 
the other side. Only axial velocity of the disturbance waves is revealed 

with this approach. Fig. 13 shows time lags resulting in maximum cross- 
correlation of time signals in the points at the same axial distances on the 
left and right side of the bubble. An ideal axisymmetric bubble with 
symmetric velocity field and with the disturbance waves generated 
exactly at the nose point and traveling at the precisely the same speed, 
would show maximum anti-correlation for zero time lag. Two curves in 
Fig. 13 are given for the cases 4D-400 and 4D-800 in Fig. 5, where the 
time averaged position of both bubbles is given: thinner liquid film 
appears on the right of the 4D-400 bubble, and on the left side of the 4D- 
800 bubble. Positive time lag means that the signal on the left side 
travels faster than the signal on the right side. For the 4D-400 case, 

Fig. 14. Left to right: a) original image, b) magnitude of the gradients field (step 1), c) extracted bubble interface and pipe inner walls at pixel level (step 2), d, e) 
refinement of the interface position at subpixel level (step 3) with pixel grid in the background: violet "+" - pixel level interface, blue and green "x" - sub-pixel level 
interface. All units in pixels. Scales on x and y axes are not in proportions. 

Fig. 15. Oscillations of the 6 points on the outer wall of the rectangular water tank (points a, b, c, j, k, l in right drawing), and the 6 points on the inner side of the 
glass pipe (points d, e, f, g, h, i). Profiles are arbitrarily shifted in the y direction. Right image: positions of the analyzed points in pixel scale. 
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disturbance waves travel faster on the side of the thick liquid film for 
approximately the first 100 pixels of axial distance. The left-side waves 
catch their right-side counterparts at around 120 pixels and overtake 
them on the remaining length of the bubble. Similar, but less pro
nounced phenomena is seen in the 4D-800 case: axial velocity of waves 
along the thick side of the film is higher at the nose of the bubble, but 
slightly slower after approximately 100 pixel downstream distance. This 
result suggests, that the sources of disturbance waves act roughly at the 
axis of the pipe, where the bulk liquid flow hits the bubble nose. 

The accuracy of the analysis shown in Fig. 13 is not particularly 
large, because computation of the most negative cross-correlation co
efficient at various time lags is not very well posed: cross-correlation 
coefficients of around -0.9 at zero time lags in Fig. 12 are just slightly 
larger at optimal non-zero time lags in Fig. 13. However, qualitatively 
similar behavior is observed also for bubbles not shown in Fig. 13. With 
the existing techniques we cannot precisely quantify the actual differ
ence in velocities on both sides of the film. At distances more than half of 
pipe diameter (~100 pixels) downstream from the bubble nose, we can 
only roughly compare the time lags between 1 and 5 ms in Fig. 13 with 
the 100 ms time interval needed by the disturbance wave to travel along 
the 4D bubble length. This ratio, around 1% to 5%, is also a rough dif
ference between the thin and thick liquid film interface velocity. The 
conclusion of Section 4.4 is in agreement with the Fig. 8 results: we 
observe slightly faster disturbance wave velocities on the side with a 
thinner liquid film. However, precise quantification of the velocity dif
ference will require more accurate measurements. 

4.5. Limitations of the disturbance wave tracking method 

One of the "holy grails" of two-phase flow measurements is mea
surement of instantaneous interface velocities. It is clear that our 
disturbance wave based technique cannot provide instantaneous values, 
neither in time nor in space. Results in the previous sections were ob
tained from measurements recorded over at least 1 min interval at 800 
Hz frequency. Thus, we have attempted to measure disturbance wave 
velocities on shorter time intervals, which would reduce the time 
averaging effect of the measurements. The time lags were computed at 
distance H = 80 pixels and for time signals of 10 s duration. The time 
interval of 10 s is roughly 10 times shorter than the 80 s time interval of 
the 4D-400 recording used in frequency analyses, and at the same time 
roughly 50 times longer than the flow-through time of the liquid film 
past the Taylor bubble of 4D length. Many independent disturbance 
waves are expected to be generated during that time and the cross- 
correlations are expected to generate similar results as on longer time 
intervals of 80 s. Most of the velocity profiles obtained from 10 s time 
intervals are indeed very similar to the velocity measured over 80 s. 
However, some of the 10 s intervals, roughly 1 out of 10, show signifi
cant difference. The disturbance wave velocity predicted on such 
particular time interval is significantly higher than the velocities of other 
profiles. Detailed examination of the cross-correlation coefficients on 
such time interval shows that they are much more blurred and that 
extraction of the maximum correlation from these curves is poorly 
conditioned in comparison with the other time intervals with "normal" 
behavior. Consequently, measurement of the disturbance wave velocity 
on this interval cannot be trusted. When we look at the Taylor bubble 
behavior on the problematic time interval, we can observe that the 
bubble significantly changed its radial position in a very short time in
terval below 0.1 s. Further tests performed with measurements of 
disturbance wave velocities on even shorter time intervals, have shown 
amplified behavior of failed predictions of reconstructed disturbance 
waves in comparison with 10 s time intervals. We can eventually 
conclude, that applied spatial resolution and the current status of our 
interface recognition software do not allow accurate velocity measure
ments on time intervals shorter than roughly half a minute. 

5. Conclusions 

Present study focuses on the dynamics of a smooth interface region of 
the Taylor bubble in a vertical turbulent counter-current air-water flow, 
disregarding the phenomena of the bubble’s tail region. The dynamics of 
the smooth interface region contains a wealth of phenomena, which 
were identified, explained, and more or less successfully quantified. 

The first step into the present study was the development of the in- 
house computer codes that converted digital photographs of Taylor 
bubbles in a glass pipe into two-dimensional silhouettes of Taylor 

Fig. 16. Top: Average film thickness of 13 bubbles analyzed in the present 
study. Measurement uncertainty (not plotted) is below 1 pixel (0.1 mm). Bot
tom: RMS fluctuations of the averaged interfaces. 

Fig. 17. Mean downward film velocity (m/s) based on film thickness mea
surements and continuity equation. 
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bubbles with absolute precision of around 1 pixel and approximately 
five times lower relative uncertainty. Processing of large amounts of 
data, 50000 photographs per experimental case, left very small amount 
of space for manual corrections of the failed interface reconstructions. 
The photographs or segments of photographs with failed spatial recon
struction of the interface were eventually corrected with temporal 
interpolation. 

The main goal and motivation of the research was to obtain a time 
averaged shape of the Taylor bubble interface. We have shown that this 
goal cannot be achieved accurately with time averaging of two- 
dimensional silhouettes alone. Namely, the unstable nature of the bub
ble in counter-current flow turned out to be "quasi-stable". We have 
observed that eccentric position of the bubble’s nose, which was 
randomly taken by the bubble during the initial transient of the air in
jection, remained unchanged for several minutes of the particular 
experimental case. Initial azimuthal positions of the Taylor bubbles were 
found to be stochastic. Averaged bubble shape, which included 
azimuthal direction averaging, was eventually obtained with ensemble 
averaging of several time averaged cases, however, the uncertainties 
remained large; probably too large for comparison with similar experi
ments or with accurate simulations. We believe that the final shape of 
the time averaged bubble, which would retain the axial asymmetry, 
should be eventually obtained with three-dimensional imaging. 

The second part of this study was enabled by the high relative ac
curacy of our interface reconstruction technique, which was found to be 
almost an order of magnitude more accurate than the absolute accuracy 
of the interface reconstruction. The key result of this analysis is a method 
based on cross-correlation of film thickness temporal development 
measured at different axial locations of the bubble. The method predicts 
velocities of the disturbance waves traveling over the Taylor bubble’s 
body. All additional analyses, including those based on spectral 
decomposition of the time signals, indicate that the disturbance wave 
velocity measured over sufficiently long interval of several dozen sec
onds, becomes equal to the axial water-air interface velocity. The main 
contributors to the cross-correlation measurements are low frequency 
and low celerity waves, which are slow in comparison with the interface 
velocity. Consequently, tracking of these waves appears to offer a 
technique for measurements of the time averaged interface velocity. 

Using the method of disturbance wave tracking, we have shown that 
the waves on the Taylor bubble interface are mainly generated near the 
axis of the pipe and travel from the bubble nose downstream in a way 
that is similar to the snake motion of the bubble. Interface velocity seems 
to be slightly higher on the side with thinner liquid film than on the 
thicker film side. Although the precise quantification of the tiny velocity 
difference was not possible, this result is somehow expected: according 
to the Bernoulli equation, slightly lower velocity of the thicker film 

means higher local pressure that is pushing the Taylor bubble towards 
the side with the thinner film. 

Independent validation of the results of this paper with high fidelity 
LES+VOF simulations of the Taylor bubble in the configuration of our 
experiments is a work in progress. Possible improvements of the existing 
experiment and data processing will be focused on cross-correlations on 
short time scales and finer resolution videos, which will capture only a 
part of the Taylor bubble. Another test of our hypothesis on equality of 
interface velocity and interface disturbance waves is expected also from 
the combination of captured videos with PIV analyses of liquid velocity 
fields. 

Data availability 

Data (Taylor bubble videos) and computer codes used for image 
processing and data analyses are available from the corresponding 
author upon reasonable request. 

CRediT authorship contribution statement 

Jan Kren: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Visualization, Writing – original 
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Appendix A – Image Processing 

Roughly 50000 photographs taken in each experiment were processed by the newly developed in-house software that has relied on widely used 
libraries for fitting of the two-dimensional surfaces and one-dimensional lines, Fourier transformations, and cross-correlation of one-dimensional 
functions collected in the Numerical Recipes book (Press et. al. 2007). The key part of these computer codes was image processing that resulted in 
extraction of the Taylor bubble surface from the images. We have followed rather standard image processing methods that can be found in open 
literature. Our rough guide was a document of Grishchenko (2011), which was prepared within the scope of our joint project with the authors of the 
report in 2011. Since the image analysis is being applied on large number of photographs, we have a very limited possibilities for manual corrections of 
the photographs and possible artefacts. Thus, a robust procedure was needed, which reported possible failures in bubble interface reconstruction. A 
rough description of the algorithm is given below and the main intermediate results and final results of reconstruction are shown in Fig. 14:  

1 Convert image intensity matrix into gradient matrix 
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The original digital photograph and video (Fig. 14a) has intensities given as a matrix of integers. This matrix is converted into a field of gradients. 
The gradient was calculated on a staggered grid, where the four closest points were used for the calculation. The magnitude of the gradient field is 
shown in Fig. 14b.  

1 Identification of Taylor bubble outer surface 

The most demanding step of the algorithm was identification of the Taylor bubble outer surface and its extraction. The problem of this step is 
obvious from Fig. 14b: the image of Taylor bubble contains several curves that are a consequence of the various light reflections in the system. The 
outer surface of the bubble, which gives the extent of the bubble at the pipe cross-section perpendicular to the camera direction of view, is very 
seldom the curve with the largest magnitude of the gradient. The subroutine responsible for identification of the outer surface shown in Fig. 14c is 
divided into two steps:   

1.%2 Identification of the bubble nose finds the most exposed point (point=pixel) on the top of the bubble. By approaching the bubble from the 
top, the point with sufficiently large gradient is identified as the nose of the bubble. On most images, this is a rather trivial task, which often 
relies on the position of the nose on the photograph taken in the previous time step. Problems that need to be avoided in advance for smooth 
performance of this subroutine are minor bubbles of around millimeter size that can arrive with the incoming water flow and can be falsely 
recognized near the actual Taylor bubble nose.  

2.%2 Outer surface identification. After the bubble nose point is found, a new subroutine is called, where the neighboring points are examined 
and the continuation of the interface curve is sought. The neighboring point with sufficiently strong magnitude of gradient is selected, if the 
direction of the gradient in this point is not far from the direction of the gradient vector in the previously recognized surface point. The new 
point is not necessarily the point with the largest gradient among the neighbors - this choice would shift the interface recognition from the 
outer surface to the reflections seen inside the bubble (Fig. 14b), which can contain stronger gradients that the bubble surface. The procedure 
is called twice: first, the variation of the gradient direction is sought in clock-wise direction from the bubble nose point, and then in the other 
direction. The iterative search of the neighboring points on the surface is stopped after the difference between the angle of the gradient 
vector in the most recently identified point on the surface and the gradient direction in the bubble nose point is larger than prescribed value 
(typically between π/2 and π).  

1 Sub-pixel Interface position refinement 

When the surface of the Taylor bubble cap and body is identified and the result shown in Fig. 14c is obtained, the algorithm of the interface position 
refinement is applied. At each pixel, where the surface was identified in the step 2, the surface position is refined through the detailed analysis of 
the local gradient around this point. Magnitudes of the gradients are considered on 5 × 5 grid points around each relevant pixel. Surface of gradient 
magnitude is fitted using 6-parameters quadratic equation of two variables on the observed Cartesian 5 × 5 grid. The best fit is required in the 
relevant pixel, slightly weaker fit in the first neighbors, and the weakest fit is required in the points on the edge of the 5 × 5 grid. Maximum values 
of the gradient magnitude are sought on the fitted surface with imposed constraints: local maxima must lie on the discrete lines that cross the grid 
formed by the pixels. For example: if the subgrid refinement is sought around the pixel (i, j) at coordinates (xi, yj), the refined position of the 
maximum gradient magnitude must lie either on the xi = const or yj = const lines as shown in Figs. 14d and e. The maximum gradient is accepted as 
a point on the interface, if the local curvature of the fitted surface is sufficiently large and the point lies less than ~0.7 pixels from the position of the 
starting pixel (xi, yj). Example of the interface after subgrid refinement is shown in Fig. 14d and Fig. 14e. Green and blue crosses in Figs. 14d and e 
show subgrid refined interface points on lines xi = const and yi = const lines, respectively. 

A simpler version of line reconstruction algorithm was applied for extraction of the inner walls of the glass pipe. The basic algorithm described 
above, did not perform with desired precision due to the thick gradient region, which was always present on one side of the pipe. In the case of 
Fig. 14a, the non-sharp gradient is present on the left wall. It has been verified in a separate test with an immersed object that the wall position 
corresponds to the position of a very weak gradient. Consequently, the wall recognition algorithm recognized the wall at the position of the minimum 
light intensity of the original image Fig. 14a (not gradient), and later corrected the wall position for an appropriate visually determined distance 
towards the axis of the pipe. The reconstruction is based on a smaller 3 × 1 stencil of cells in step 3 of the algorithm, where only two neighbors in wall 
normal direction are used to determine the position of the wall. 

A.1. Accuracy of the interface reconstruction 

The image processing algorithm briefly sketched above and the results of the processing shown in Figs. 14d and e, represent the starting points for 
the analyses of the interface dynamics presented in the Sections 3 and 4. 

A couple of remarks are needed at the end of the Section on image processing. Quality of the sub-pixel resolution was verified (rather accidentally) 
with tiny oscillations of the whole test section observed in some of the measurements, which later evolved into the "shake-the-section" test. In-phase 
oscillations with an amplitude of around one quarter of the pixel (around 50 micrometers) were observed in various points of the section shown in 
Fig. 15. This analysis was performed on a short time interval of 1.5 s and 600 photographs. The main frequency of around 8 Hz, which can be 
recognized in Fig. 15, is close to the estimated natural frequency of the test section of around 10 Hz. The amplitudes in all points are giving a good clue 
about the relative error of the sub-pixel interface reconstruction technique, which is estimated to be between one tenth and one quarter of the pixel. 
The image reconstruction displayed in Fig. 15 exhibited a high level of sensitivity, enabling us to detect structural vibrations. Therefore, we refrained 
from applying a common image analysis method that involves eliminating the background image without the Taylor bubble in our analyses, as this 
procedure would eliminate the structural vibrations. Ignoring structural vibrations was recognized as detrimental for our analyses presented in 
Section 4. 
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A.2. Interface reconstruction failures 

The step 2 of the algorithm for interface reconstruction fails on three occasions, which usually result in a global reconstruction failure, where a 
complete Taylor bubble interface or large sections of the bubble interface remain unidentified:  

i) When the bubble nose is not correctly identified by the subroutine described in the step 2.1.  
ii) When the liquid film thickness between the bubble and the glass wall falls below 2 – 5 pixels, and gradient magnitudes of the bubble interface 

interferes with the pipe wall gradient (step 2.2), and  
iii) when the two-nose bubble appears. This case is extremely rare (below 1 out of 50,000 photographs). 

Missing data from the global reconstruction failures are acceptable for the further analyses of the bubble behavior, as long as the number of these 
failures remains low. In numbers: our software fails to recognize large sections of the bubble interface at resolution 9 pixels per millimeter in roughly 1 
out of 10,000 photographs. 

Failures of the sub-pixel refinement step 3 in our algorithm result in missing positions of the interface in some points. Missing sub-pixel points are 
more likely to appear in the thin liquid film, an example is shown in Fig. 14e, which is around 2 pixels wide in that region. In quantitative terms: for 
thin film of thickness 2 to 5 pixels, we observe up to around 500 failed reconstructions in 50,000 photographs in each particular axial or radial 
location. Number of failed local reconstructions falls to around hundred for a film thickness of around 10 pixels. 

Further analyses of the photographs eliminated the interface recognition failures with interpolations that were performed in time and in space to 
fill all large failures mentioned in step 2 and local failures in sub-pixel reconstruction in step 3. As seen in the Sections 3 and 4, the failures in the 
interface reconstruction reduced the accuracy of our analysis, but did not prevent it. 

Appendix B - Time averaged liquid film thickness and mean velocity of the liquid film 

The asymmetry of the time averaged Taylor bubble shown in Figs. 4 and 5 is problematic for independent verifications of our measurement. 
However, by averaging both sides of our silhouettes we are able to obtain results that are less sensitive to the asymmetry. These results are presented in 
Fig. 16, which shows liquid film thickness along the bubble, where time and ensemble averaging are combined with the left-right side averaging of our 
photographs. 

Axial distances on x-axis of Fig. 16 are measured from the bubble nose. Thick violet profile is the time + ensemble + left-right averaged profile of 
the measurements from the Figs. 4 and 5. Two blue lines, which represent the envelopes of all other curves, are time and ensemble averaged profiles of 
the Fig. 4 cases, but for the left and for the right side separately. It is clear that all eight left-right averaged dashed violet curves for each measurement 
in Fig. 4 and additional five orange curves of the measurements shown in Fig. 5, fit inside the envelopes. 

While the combined time + ensemble + left-right averaging result in reasonably narrow definition of the liquid film thickness, the RMS dispersion 
of the film thickness remains high, as shown in the bottom graph of Fig. 16. The left-right averaging, which narrows the film thickness, is increasing the 
RMS dispersion of the film thickness. This is an expected results in asymmetric bubble shape, where film on one side is below the average film 
thickness most of the time, while the film on the other side is thicker. 

Typical variation of different time-averaged liquid film thickness in the top drawing of Fig. 16 is estimated to around 1 pixel at distances more than 
one pipe diameter D (~200 pixels) from the bubble nose and around 2 pixels at lower distances. Absolute uncertainty of time-averaged film thickness 
is also around 1 pixel, which amounts to 10% relative error at axial distances more than 200 pixels from the bubble nose. Uncertainty of the curves in 
the axial direction, as a consequence of the uncertainty in the bubble nose location, is also estimated to around 1 pixel, however, this is a minor 
contribution to the film thickness uncertainty. 

Another simple curve can be obtained from the measured and averaged film thickness profiles: for known upstream liquid velocity, a mean 
downward liquid velocity in the film can be obtained from the continuity equation as v(z) = v0R2/[2Rh(z) − h(z)2

], with the pipe radius R = 13 mm, 
upstream fluid velocity ahead of the bubble v0 = 0.18 m/s, and liquid film thickness h(z). These profiles are shown in Fig. 16 separately for time, 
ensemble and left-right averaged film of eight measurements from Fig. 4 and separately for five measurements from Fig. 5. The velocity profiles 
computed from the continuity equation shown in Fig. 17 are strictly valid only for the bubble of circular cross-section. This condition is relatively well 
satisfied: time development of the Taylor bubble diameter, computed from the liquid film thickness measured on photographs, has shown variations of 

±2% or less measured at axial locations of one pipe diameter or more downstream from the bubble nose. Consequently, we consider the time averaged 
film thickness as a relatively accurate measure of the bubble diameter, which is applicable also for the evaluation of the mean velocity in the liquid 
film. Accordingly, the relative uncertainty of the time averaged mean film velocity profiles is of similar size as the uncertainty of the mean film 
thickness measurements: around 10% at distance larger than D from the bubble nose. 

Dashed curve in Fig. 17 marked as "analytical" is an approximate solution of the simplified film momentum equation that considers the film near 
the Taylor bubble as a free-falling film under the force of gravity, which is opposed by the wall shear stress force. Shear of the air in the bubble is 
neglected. An approximate analytical curve is a numerical solution of the model: 

dv(t)
dt

= g −
fwv(t)3

4Rv0
,
ds(t)

dt
= v(t)

with s denoting the axial position of the mass point in the film, R=13 mm, the bulk liquid velocity above the bubble v0=0.18 m/s, and friction factor 
fw(Refilm = 12000) = 0.025 (Moody, 1944). The observed agreement between the measurements and the profile obtained from the simple analytical 
model indicates that shear of the air flow inside the bubble is indeed very low and air-liquid velocity coupling over the bubble interface is rather weak. 
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