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A B S T R A C T

The Strain Gradient Crystal Plasticity (SGCP) model, based on cumulative shear strain, is devel-
oped to regularize and simulate the size effect behavior of polycrystalline aggregates, specifically
addressing the formation of localization bands, such as slip and kink bands, influenced by strain
softening during the initial stages of plastic deformation. In this respect, the thermodynamically
consistent derivation of the SGCP equations is presented, establishing their connection to the
kinematics of classical crystal plasticity (CCP) framework. The governing balance equations
are solved using the fixed-point algorithm of the fast Fourier transform (FFT)-homogenization
method, involving explicit coupling between the classical and SGCP balance equations. To
address this problem, a strong 21-voxel finite difference scheme is established. This scheme
is considered to solve the higher order balance equation inherent to SGCP. Additionally, three
types of interface conditions are implemented to explore the impact of grain boundaries on the
transmission of localization bands. These conditions yield consistent intragranular/transgranular
localization patterns in the MicroFree and MicroContinuity cases, while in the MicroHard
condition all localization bands are intragranular with stress concentrations appearing at the
grain boundaries.

Analytical solutions corresponding to different material behaviors are developed and com-
pared with numerical results to validate the numerical implementation of the FFT fixed-point
algorithm. It is observed that both the macroscopic behavior and microscopic variables in
CCP framework are highly influenced by grid resolutions (non-objective), leading to numerical
instabilities arising from the material softening and subsequent formation of localization bands,
both in single crystals and polycrystalline aggregates. Remarkably, the developed SGCP model
provides results that are independent of grid resolutions (objective) and effectively regularizes
the material behavior on local scale. Moreover, the non-local parameter of the model is capable
of controlling the localization band widths. Finally, the proposed SGCP model, together with
employed MicroHard condition on grain boundaries, is demonstrated to qualitatively reproduce
main microstructural features of irradiated polycrystalline materials.

. Introduction

The study of heterogeneity in dislocation glide during plastic deformation of crystals has been a long-established focus in solid
echanics, aiming to generate a connection between microscopic and macroscopic behaviors. As a consequence of this heterogeneity,

train localization has been observed, manifesting as necking, buckling, shear bands, Lüders bands, etc. Generally, this phenomenon
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results from mechanical instability, which can be divided into global and material types. For instance, necking and buckling stem
from global instability (Hart, 1967), while shear bands are associated with material instability (Rice, 1976). From a computational
erspective, global instability arises from the loss of solution uniqueness or the null determinant of the tangent operator (singularity).

Conversely, material instability occurs in cases of strain softening behavior, resulting in a discontinuity in strain rate within the
interface of the shear bands. Depending on the coupling of thermal effects and plastic deformation, shear bands are typically
characterized into isothermal or adiabatic types (Zener and Hollomon, 1944; Rogers, 1979). Pioneering work (Asaro and Rice,
1977) conducted a bifurcation analysis, categorizing two potential (isothermal) bands with different orientations in single crystals:
lip bands (parallel to the slip plane) and kink bands (perpendicular to the slip direction). Moreover, a particular utilization of these
ands is microscopically evident in irradiated solids. In such solids, hardening defects like Frank dislocation loops are introduced
ithin the material as a result of irradiation (Cui and Po, 2018). When dislocations start to glide within the material, they eliminate

these defects, leading to the formation of localized softened paths (Mahajan and Eyre, 2017). This phenomenon is commonly referred
to as clear channel or dislocation channeling mechanism. This mechanism has a significant impact on the macroscopic mechanical
properties of materials used in nuclear power plants, such as austenitic stainless steels and Zircaloys. For example, loss of toughness
and ductility, increasing of yield stress and reduction of work hardening domain have been experimentally observed in irradiated
austenitic stainless steels (Pokor et al., 2004). Furthermore, dislocations can interact with grain boundaries in corrosive environments
like nuclear reactor and contribute to the mechanism of Irradiation Assisted Stress Corrosion Cracking (IASCC) (McMurtrey et al.,
2011), or interact with other radiation-induced defects such as voids or bubbles (Scherer et al., 2019).

Conventional theories, in particular the classical crystal plasticity (CCP) finite element method (Erinosho and Dunne, 2015;
El Shawish et al., 2020; Hure et al., 2016; El Shawish and Cizelj, 2017; Lame Jouybari et al., 2023; Hardie et al., 2023), have
been employed in the numerical simulations of irradiated and unirradiated solids. However, these theories cannot predict size effect
behavior and often lead to ill-posed problems during (strain) localization process which is theoretically characterized by a shift in
the form of the governing differential equations from hyperbolic to elliptic or contrariwise (Needleman, 1988). Hence, the results
obtained from these classical theories frequently depend on the chosen discretization techniques and size of elements which is a
onsequence of the loss of ellipticity and stability (Lorentz and Benallal, 2005). For instance, the width of the localization bands

is typically equivalent to one element width; accordingly, when the discretization becomes finer, the width becomes smaller. The
iterature presents two main strategies to overcome this numerical issue. One approach is to consider the element size as a material

parameter that can be determined through experimental testing. This approach, however, introduces additional costs and relies on
rior knowledge of where within the microstructure localization is probable to occur (Achouri et al., 2013; Xue et al., 2010). An

alternative solution is to integrate non-local theory into the conventional methods. This theory postulates that the behavior of each
aterial point is influenced not only by its own state but also by that of the finite number of its surrounding neighbors, and the width

f the localization region is controlled by considering the gradient of the appropriate internal variable and material length scale
non-local parameter). Initially, such a material length scale was incorporated into the conventional crystal plasticity framework by
dding the plastic strain gradient within the yield function to address the width of localization bands (Aifantis, 1984, 1987) and to
liminate strain singularities in front of the crack tip (Aifantis, 1992). Later, the framework has been updated to account for large
eformations (Gurtin, 2008; Clayton et al., 2004; Clayton, 2010). Also, different length scales have been proposed in the framework

of viscous strain gradient crystal plasticity theory based on the energetic and dissipative gradient of shear strain associated to
each slip system and in application to the voided crystals by Niordson and Kysar (2014) which is followed to incremental flow
theory by Nellemann et al. (2017). The non-local theory has been successfully applied in various domains to regularize the material
ehaviors, including the study of void growth and coalescence (Ling et al., 2018), in analyzing ductile fracture through a non-local

relationship among dislocation density, plastic deformation, areas of defectiveness, damage regularization (Boeff et al., 2014; Al-Rub
et al., 2015; Scherer et al., 2019; Tang et al., 2023; Lindroos et al., 2022), and grain boundaries (Zhang et al., 2023). The presence of
rain boundaries poses a significant obstacle for slip/twin transfer, necessitating a specialized treatment in computational analyses
f polycrystalline aggregates (Kameda and Zikry, 1998; Rezvanian et al., 2007; Ahmadikia et al., 2021, 2023; You et al., 2023).

Experimental testing on metallic alloys has revealed the size effect behavior, commonly referred to as the Hall-Petch effect,
hrough tensile tests on mild steels (Hall, 1951; Petch, 1953) and torsion tests on thin wires (Fleck and Hutchinson, 1997).

To incorporate this effect into crystal plasticity theory, the concepts of Statistically Stored Dislocation (SSD) and Geometrically
ecessary Dislocation (GND) have been introduced, which have led to the development of strain gradient plasticity theory. The
SD density typically increases with plastic deformation and is associated with dislocations that glide through the microstructure
nd trap other dislocations. In contrast, GND is related to variations in plastic flow (attributable to the strain gradient). It is widely
ccepted that SSDs contribute to material hardening, akin to increasing the strength of the crystal (or the critical resolved shear
tress), while GNDs contribute to additional hardening due to the size effect. The GND density in the microstructure is typically
valuated using Nye’s tensor (Nye, 1953). However, based on the decomposition of edge and screw dislocations, the GND density
an also be calculated using the gradient of shear strain (Arsenlis and Parks, 1999). Consequently, strain gradient crystal plasticity

that accounts for the size effect and considers GNDs has been developed based on Nye’s tensor (Gurtin, 2002; Cermelli and Gurtin,
2002), and micromorphic crystal plasticity has been formulated based on the gradient of shear strain (Wulfinghoff and Böhlke,
2012) to capture GNDs.

Within the field of solid mechanics, the regularization of governing constitutive equations is employed to smooth discontinuous
ariables such as plastic strain (Forest, 2016). Specifically, this method has been incorporated into the treatment of material softening

and size effect behaviors (Peerlings et al., 2012) to achieve discretization-independent (objective) numerical results, which involve
the Laplacian operator within the Helmholtz differential equation. Typically, this equation is regarded as a higher order balance
quation, and its coupling with classical constitutive equations is ensured through a thermodynamic formulation involving higher
2 
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order stresses and traction tensors (Forest, 2009). Various types of regularization methods are discussed in the literature, including
formulations that utilize additional degrees of freedom (Forest, 2009) and gradient terms (Waffenschmidt et al., 2014). In particular,
the micromorphic crystal plasticity theory has been developed to account for the gradient of micromorphic variable as an additional
degree of freedom which is interpreted as a counterpart of a single scalar total cumulative shear strain variable, as demonstrated
in the works of Wulfinghoff et al. (2013), Ling et al. (2018), Scherer et al. (2019). This approach is termed as the MicroSlip

icromorphic crystal plasticity model. In this development, to ensure the equality between the micromorphic variable and total
umulative shear strain, a substantial penalty modulus is introduced alongside the non-local parameter, which provides two effective
arameters. In this way, the micromorphic crystal plasticity model can be seen as a relaxed (i.e., not strict) strain gradient plasticity
odel. In addition, in Scherer et al. (2020), a Lagrange multiplier based approach has been proposed as another way of deriving a

relaxed strain gradient formulation.
The inception of the first FFT-homogenization method dates back to 1998 within the context of mechanical behavior of

eterogeneous materials (Moulinec and Suquet, 1998) which is relatively recent in comparison to the Finite Element Method (FEM).
The remarkable progress of the FFT-homogenization method in CCP framework (Lebensohn et al., 2012; Eisenlohr et al., 2013;
Marano et al., 2019; Lucarini and Segurado, 2019; Dadhich and Alankar, 2022; Eghtesad et al., 2022) has recently extended to
damage mechanics in large deformation (Cocke et al., 2023), elastic micropolar composites (Francis et al., 2024), strain localization
in nano-metallic laminates by the irregular grid in the initial configuration (Zecevic et al., 2022), interface-dominated plasticity
of nano-metallic laminates (Zecevic et al., 2023), size effects and reversible plasticity (Berbenni et al., 2020), cohesive composite
oxels for fracture of materials (Chen et al., 2021). Furthermore, the method has been developed toward SGCP (Lebensohn and
eedleman, 2016) by explicit coupling between classical and strain gradient governing equations using same strategy as the Nye’s

tensor-based field dislocation mechanics formulation (Berbenni et al., 2014; Brenner et al., 2014). These studies computationally
solved the higher order balance equation from SGCP by transferring the equation into Fourier space, allowing for precise and fast
computation of differentiation operators (like divergence, curl, gradient, etc.) of internal variables using special properties of the
Fourier transform.

In the context of irradiated structural materials, a recent study by Marano et al. (2021) investigated the capability of MicroCurl
GCP model based on the curl of the plastic part of displacement gradient tensor as a strain gradient variable to predict the emergence
nd stability of intragranular localization (shear) bands in polycrystalline aggregates. The study employed a phenomenological
xponential softening law to trigger the formation of these bands under applied macroscopic loading. Utilizing the SGCP approach,
hich incorporates the energy stored by geometrically necessary dislocations (linked to the lattice curvature) by the curl of the
lastic part of displacement gradient tensor as the strain gradient variable along with two non-local parameters in terms of the

average grain size and critical resolved shear stress, the research was performed using a highly parallel FFT-based solver within
polycrystalline aggregates. The results demonstrated that the model breaks the equivalence between slip and kink bands, showing
the replacement of the thick kink bands by the bundle of slip bands intragranularly within the crystals. This leads to a more
accurate simulation of plastic slip fields in materials prone to intense slip localization. However, the model provides non-regularized
spacings and a non-regularized number of slip bands, which makes the results grid dependent (non-objective). Unstable results were
obtained also in single crystal simulations with material softening behavior. This indicates that further refinement of the SGCP
model or its alternative may be required. Additionally, the study (Marano et al., 2021) addressed various implementations of higher
order interface conditions based on the higher order traction tensor in terms of the curl of plastic part of displacement gradient
tensor, to investigate the potential effect of grain boundaries on plastic deformation transmission between neighboring grains, as
recently reported (Zhang et al., 2022). It was found that these interface conditions mainly influence the intensity of the localization
(shear) bands without altering the pattern formation. Therefore, the exploration of alternative SGCP models, which could impact
the localization pattern and potentially regulate the distribution of slip and kink bands, remains to be explored.

The primary goal of this study is to address the issue of localization (shear) band instability observed in single crystal and
olycrystalline aggregates of irradiated structural materials under mechanical loading, and to thoroughly examine different higher
rder interface conditions at grain boundaries relevant for slip transfer. To achieve this, new (strict) MicroSlip SGCP model based on
umulative shear strain associated with each slip system is developed and proposed. Moreover, the impact of grain boundaries on
lip transmission is elucidated by introducing new higher order traction stress and imposing various conditions on grain boundaries.
he model is formulated within a thermodynamically consistent framework and implemented into an in-house code (Matlab, 2022)

using newly upgraded fixed-point algorithm of the FFT-homogenization method. Here, several computational modifications to the
fixed-point algorithm are incorporated with respect to the original version, to improve numerical accuracy and reduce oscillations
n areas of the microstructure with high variations in material properties due to localization and higher order interface conditions.
nce the MicroSlip SGCP framework is developed and FFT fixed-point algorithm upgraded, analytical closed-form solutions are

derived from the SGCP theory in the case of a single slip associated with linear hardening, perfect plasticity, and linear softening
behaviors. After validating the FFT implementation against these analytical solutions, the FFT-based solver is used to investigate the
evolution and stability of localization (isothermal shear) bands in irradiated-like polycrystalline materials. This includes a focused
examination of the critical role of grain boundaries which affect the transmission of the bands and their subsequent impact on local
stress concentrations. For this purpose, a 2D plane strain periodic aggregate unit cell, comprising 200 randomly oriented columnar
grains each with one active slip system, is considered and subjected to tensile loading. A recently proposed exponential softening
behavior for plastic flow is used in order to trigger the localization and model the softening due to clearing of irradiation defects
by the dislocation channeling mechanism. In addition, the microstructure size effect and impact of a single intrinsic length scale
(non-local parameter) of the SGCP model are investigated. This is aimed at controlling the transmission of localization bands through

grain boundaries and regularizing both slip and kink bands.

3 
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The paper is outlined as follows. Section 2.1 presents a thermodynamically consistent derivation of the SGCP (MicroSlip)
constitutive equations within the context of the localization problem. Section 2.2 provides the FFT-homogenization method
and the implementation of the fixed point algorithm used in this study. In Section 3.1, the analytical solutions for the SGCP

odel corresponding to different material behaviors are established. Section 3 encompasses the results of the single crystal and
polycrystalline aggregate, including a comparison of numerical results with analytical solutions, the regularization of localization
bands in single crystals and polycrystals, and an exploration of the role of grain boundaries and microstructure size effects on the
evolution of localization patterns. Finally, a comparison with existing experimental results is performed and discussed.

The notation used in this study includes scalar, first-order (vector), second-order, and fourth-order tensors represented as X, 𝑋,
𝑋
∼

, and 𝑋
≈

, respectively. Superscripts tot, e, p, ., ,̂ ⋆, and ̄ are utilized to signify the total, elastic, plastic, time derivative, Fourier
ransform, fluctuation, and spatial mean value part of the variable, respectively. Additionally, mathematical symbols such as ⊗,
, ., ∶, ∇, and 𝛥 denote the tensor product, convolution, dot product, double contraction, gradient, and Laplacian operators. The
artesian coordinate basis is denoted as (𝑒1, 𝑒2, 𝑒3), and the Einstein’s summation convention is used in indicial representations.

2. Material and methods

This section introduces the proposed strict MicroSlip SGCP model and the improved FFT-homogenization method that are
developed in this study.

2.1. MicroSlip strain gradient crystal plasticity model

In the framework of infinitesimal strain, a crystal lattice is assumed with 𝑁𝛼 slip systems, slip directions and normals to slip
lanes (𝑠𝛼 , 𝑚𝛼). In this framework, the total displacement gradient tensor undergoes additive decomposition into its elastic and plastic
arts, Eq. (1). The elastic strain is identified as the symmetric part of the elastic displacement gradient tensor, Eq. (2), and the rate
f plastic displacement tensor is defined by the process of dislocation glide in all active slip systems, Eq. (3).1

(∇𝑢)tot = (∇𝑢)e + (∇𝑢)p (1)

𝜀
∼

e = 1
2

(

(∇𝑢)e + (∇𝑢)eT) (2)

(∇̇𝑢)p =
𝑁𝛼
∑

𝛼
�̇�𝛼𝑠𝛼 ⊗ 𝑚𝛼 (3)

The total cumulative shear strain is a history-dependent scalar variable, which is positive definite and increases due to plastic
eformation and is defined by Eq. (4), following previous studies in the reduced micromorphic crystal plasticity model (Wulfinghoff
t al., 2013; Ling et al., 2018). Inspired from these studies, the cumulative shear strain associated with slip system, Eq. (5), is chosen

as a thermodynamic internal variable to incorporate strain gradient effect.

𝛾 tot
𝑐 𝑢𝑚 = ∫

t

0

𝑁𝛼
∑

𝛼

|

|

|

�̇�𝛼||
|

𝑑t (4)

𝛾𝛼𝑐 𝑢𝑚 = ∫

t

0

|

|

|

�̇�𝛼||
|

𝑑t (5)

In the context of static deformation and the absence of body and inertial forces, the principle of virtual power is formulated for any
ubdomain of the body (𝐵 ⊆ ) and its boundary (𝜕 𝐵 ⊆ 𝜕) in terms of the internal and contact power densities.

∫𝐵

(

𝜎
∼
∶ (∇̇𝑢)tot +

∑𝑁𝛼
𝛼 𝑆𝛼 �̇�𝛼cum +

∑𝑁𝛼
𝛼 𝑀𝛼 .�̇�𝛼

)

𝑑 𝑉 = ∫𝜕 𝐵
(

𝑡. ̇𝑢tot +
∑𝑁𝛼
𝛼 𝑚𝛼 �̇�𝛼cum

)

𝑑 𝑆 ∀�̇�tot, ∀�̇�𝛼cum, ∀𝐵 ⊆ , ∀𝜕 𝐵 ⊆ 𝜕 (6)

where 𝜎
∼

represents the Cauchy stress tensor, 𝑆𝛼 and 𝑀𝛼 are higher order stress tensors associated with strain gradient effects,
𝛼 = ∇𝛾𝛼cum represents the higher order thermodynamic variable, and 𝑡 stands for the classical Cauchy traction vector, while 𝑚𝛼

signifies higher order scalar traction. As a consequence, for each material point within the crystal , both the Cauchy stress tensor
nd higher order stress tensors satisfy the following pair of balance equations during deformation in terms of the classical linear
omentum balance equation, Eq. (7), and higher order balance equation, Eq. (8).

∇.𝜎
∼
= 0 ∀𝑥 ∈  (7)

∇.𝑀𝛼 − 𝑆𝛼 = 0 ∀𝑥 ∈ , ∀𝛼 ∈ 𝑁𝛼 (8)

Additionally, at each material point on the boundary of the crystal, the stress tensors are observed to be in a state of equilibrium
with the classical traction vector and scalar traction, serving as the prescribed boundary conditions.

𝑡 = 𝜎
∼
.𝑛 ∀𝑥 ∈ 𝜕 (9)

𝑚𝛼 =𝑀𝛼 .𝑛 ∀𝑥 ∈ 𝜕, ∀𝛼 ∈ 𝑁𝛼 (10)

1 To avoid any misleading in notation the (∇̇𝑢)p = ( 𝑑 (∇𝑢))p.

𝑑 𝑡

4 
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Here, 𝑛 represents a unit vector denoting the outward surface normal. In the context of thermodynamics, the specific isothermal free
nergy potential is postulated to take on a straightforward quadratic form, reflective of the non-dissipative and dissipative energies

during the deformation.

𝜓 = 𝜓(𝜀
∼

e, 𝛾𝛼cum,∇𝛾
𝛼
cum) = 1

2𝜌 𝜀∼
e ∶ 𝐶

≈
∶ 𝜀

∼
e + 𝜓ℎ(𝛾𝛼cum) +

𝑁𝛼
∑

𝛼

1
2𝜌𝐴𝑄

𝛼 .𝑄𝛼 (11)

In this potential, the hyperelastic material is assumed for the elastic part of deformation, a strictly positive non-local parameter
denoted as 𝐴 serves to weight the gradient of the cumulative shear strain associated with each slip system,2 𝜓ℎ(𝛾𝛼𝑐 𝑢𝑚) is the hardening
otential, and 𝜌 denotes the density of the crystal. From both the first and second principles of thermodynamics, the Clausius-Duhem
nequality, under isothermal deformation conditions, implies that the internal power density (𝑝𝑖 stands for the left side of Eq. (6))

of the crystal is consistently greater than or equal to the free energy rate across the entire volume of the crystal.

𝑝𝑖 − 𝜌 �̇� ≥ 0 (12)

Therefore, using chain rule in evaluating the time derivative of the free energy, the Clausius-Duhem inequality turns to the following
equation.

(

𝜎
∼
− 𝜌 𝜕 𝜓𝜕 𝜀

∼
e

)

∶ 𝜀
∼

e + 𝜎
∼
∶ (∇̇𝑢)p +

𝑁𝛼
∑

𝛼

(

𝑆𝛼 − 𝜌 𝜕 𝜓ℎ
𝜕 𝛾𝛼cum

)

�̇�𝛼cum +
𝑁𝛼
∑

𝛼

(

𝑀𝛼 − 𝐴∇𝛾𝛼cum
)

.�̇�𝛼 ≥ 0 (13)

Assumptions are made that both the power associated with the elastic part of the deformation and the gradient of the cumulative
shear strain exhibit non-dissipative characteristics during deformation. Consequently, the ensuing state equations are derived for
the Cauchy stress tensor and higher order stress vector.

𝜎
∼
= 𝜌

𝜕 𝜓
𝜕 𝜀
∼

e = 𝐶
≈
∶ 𝜀

∼
e (14)

𝑀𝛼 = 𝜌
𝜕 𝜓
𝜕 𝑄𝛼 = 𝐴𝑄𝛼 (15)

When the Eq. (15) is substituted into the higher order balance equation, Eq. (8), it results in the following equation where cumulative
shear strain directly links to the scalar higher order stress.

𝑆𝛼 = ∇.𝑀𝛼 = 𝐴𝛥𝛾𝛼cum (16)

Consequently, the residual dissipation during deformation is determined by the dissipative powers encompassed within the
Clausius-Duhem inequality.

𝛼 = |

|

|

𝜏𝛼||
|

�̇�𝛼 −
(

𝜏𝛼cr − 𝑆
𝛼) �̇�𝛼cum ≥ 0 (17)

Within this context, 𝜏𝛼 = 𝜎
∼

∶
(

𝑠𝛼 ⊗ 𝑚𝛼) represents the resolved shear stress, while the critical resolved shear stress, denoted as

𝜏𝛼cr, is defined by 𝜏𝛼cr = 𝜌 𝜕 𝜓ℎ
𝜕 𝛾𝛼cum

and is regarded as the thermodynamic driving force. The dissipation potential is established as
𝛼 = 𝛺

(

𝜏𝛼 , 𝜏𝛼cr − 𝑆
𝛼). Additionally, the Schmid yield function is assumed to take the form of 𝑓 𝛼 = |

|

|

𝜏𝛼||
|

−
(

𝜏𝛼cr − 𝑆
𝛼) and carries

following relations with the evolution of the flow rule and cumulative shear strain.

�̇�𝛼 = 𝜕 𝛺𝛼

𝜕 𝜏𝛼 = sign
(

𝜏𝛼
) 𝜕 𝛺𝛼

𝜕 𝑓 𝛼 (18)

�̇�𝛼cum = − 𝜕 𝛺𝛼

𝜕
(

𝜏𝛼cr − 𝑆
𝛼)

= 𝜕 𝛺𝛼

𝜕 𝑓 𝛼 = |

|

|

�̇�𝛼||
|

(19)

In order to ensure non-negativity of dissipation during deformation, the dissipation potential must satisfy the condition 𝜕 𝛺𝛼
𝜕 𝑓𝛼 > 0.

ince rate-independent crystal plasticity theories often lead to ill-posed conditions (Miehe and Schröder, 2001; Forest and Rubin,
2016), particularly concerning the selection of active slip systems which require additional computational considerations, a rate-
ependent viscoplastic deformation approach is adopted here to address these numerical issues. Consequently, a viscoplastic

power-law potential, characterized by the Norton flow coefficient, 𝐾, Norton flow exponent, 𝑛, and Macaulay bracket,3 is chosen
for the dissipation potential.

𝛺𝛼 (𝜏𝛼 , 𝜏𝛼cr − 𝑆
𝛼) = 𝐾

𝑛 + 1

⟨

𝑓 𝛼
(

𝜏𝛼 , 𝜏𝛼cr − 𝑆
𝛼)

𝐾

⟩𝑛+1

= 𝐾
𝑛 + 1

⟨
|

|

|

𝜏𝛼||
|

− 𝜏𝛼cr + 𝑆
𝛼

𝐾

⟩
𝑛+1

(20)

Therefore, the shear strain evolution is derived by the Eq. (18) and the critical resolved shear stress is chosen to take the form of
the exponential of the cumulative shear strain associated with each slip system to trigger the localization due to softening. Such
exponential softening corresponds to the interactions between dislocations and hardening defects caused by neutron irradiation,
such as Frank loops, and their subsequent annihilation, resulting in the formation of localized softened regions inside the grains.

2 In general, each slip system 𝛼 can be associated with different 𝐴𝛼 , however, a single non-local parameter (𝐴𝛼 = 𝐴) is employed here.
3 Which yields zero for negative argument value and the value itself when it is positive.
5 
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�̇�𝛼 = sign
(

𝜏𝛼
)

⟨
|

|

|

𝜏𝛼||
|

− 𝜏𝛼cr + 𝑆
𝛼

𝐾

⟩
𝑛

(21)

𝜏𝛼cr = 𝜏𝛼0 − ▵𝜏𝛼
[

1 − exp
(

− 𝛾𝛼𝑐 𝑢𝑚
𝛾0

)]

+𝐻𝛼𝛾𝛼𝑐 𝑢𝑚 (22)

Here, 𝜏𝛼0 represents the initial critical resolved shear stress, 𝐻𝛼 indicates the hardening modulus, ▵𝜏𝛼 denotes the maximum softening
arameter, and 𝛾0 serves as a parameter controlling the softening rate. These parameters are instrumental in calibrating physics-
ased irradiation models and the effects of various irradiation doses. A comprehensive discussion on the physical interpretation of
igher order stresses, their correlation with Nye’s tensor, and the determination of the specific range for the non-local parameter

is provided in Appendix A. Furthermore, the calibration of the material parameters within the proposed model, in relation to the
dislocation-based crystal plasticity framework, is detailed in Appendix B.

Furthermore, the lattice rotation angle resulting from elastic distortion is taken into consideration to distinguish between the
two types of localization bands (slip and kink bands). Both types of bands are localized in the plastic part of the deformation, but
they exhibit different elastic behaviors. Consequently, the polar decomposition of the elastic part of the deformation gradient tensor
is utilized to calculate the rotation tensor and rotation angle by the elastic part of deformation (Marano et al., 2019).

𝐹
∼

e = 1
∼
+ (∇𝑢)e = 𝑅

∼
e.𝑈

∼
e (23)

𝜃 = ar ccos
(

1
2

(

tr(𝑅
∼

e) − 1
))

(24)

This SGCP model introduces higher order traction, 𝑚𝛼 , which is evaluated based on the gradient of cumulative shear strain. This
raction is utilized when applying higher order boundary conditions to analyze the influence of grain boundaries on localization
atterns in polycrystalline aggregates. In this context, the study considers the most well-known higher order boundary conditions,4

which have previously been reported in terms of MicroContinuity (Marano et al., 2021), MicroFree (Cermelli and Gurtin, 2002), and
MicroHard (Lebensohn and Needleman, 2016). These higher order boundary conditions are directly applied to the voxels that come
into contact with the grain boundaries, a process automated through an in-house code. For instance, in the MicroFree boundary
condition, the higher order traction on the grain boundary is set5 to zero (𝑚𝛼 = 0), reflecting a scenario in which all dislocations
arriving at the grain boundaries are freely transmitted, without encountering resistance, to the neighboring grain. This boundary
condition is implemented in the code by setting the non-local parameter to zero for the voxels located on each side of the grain
boundaries, as illustrated by the following equation:

𝐴 = 0 ∀𝑥 ∈ grain boundary (25)

In addition, the MicroHard boundary condition signifies that plastic shear strain does not transmit to the neighboring grains or
dislocations stop on grain boundary. This condition is implemented by assigning an exceptionally high critical resolved shear stress
value to the voxels situated on the grain boundaries,6 as expressed by the equation:

𝜏𝛼cr = 105 𝜏𝛼0 ∀𝑥 ∈ grain boundary, ∀𝛼 ∈ 𝑁𝛼 (26)

Lastly, the MicroContinuity boundary condition interprets that the higher order scalar traction (𝑚𝛼#) remains continuous7 on
both sides of the grain boundary, and its implementation does not require any modifications to the constitutive equations due
to establishing finite difference scheme in Fourier space described in the next section.

2.2. FFT-homogenization method

The FFT-homogenization method is employed for the numerical solution of the SGCP model discussed in the preceding section.
The computational framework includes the solution of both balance equations: the classical linear momentum balance equation
(Cauchy equation of motion Eq. (7)) and the higher order balance equation, Eq. (8), which are explicitly coupled and integrated
into a fixed-point iterative algorithm. Initially, the algorithm solves the classical linear momentum balance equation iteratively until
the desired tolerance is reached (Table 1: Steps 3–13). Subsequently, the higher order stress is determined using the cumulative shear
train from the first part of the algorithm through a finite difference scheme (Table 1: Step 14). Within this algorithm, a periodic

microstructure of the material, enclosed within a volume denoted as 𝑉 = 𝐿1 × 𝐿2 × 𝐿3, is discretized into a regular square grid
composed of voxels, with a total of 𝑁 tot = 𝑁1 × 𝑁2 × 𝑁3 voxels in each Cartesian direction. In the Fourier space, the discretized
frequency is expressed in relation to the dimensions of the lattice and grid resolution. Particularly, if the grid resolution is even, the
frequency is determined by the following expression (Moulinec and Suquet, 1998).

𝜉𝑖 =
2𝜋 𝑚𝑖
𝐿𝑖

, 𝑚𝑖 = 1 − 𝑁𝑖
2
, 2 − 𝑁𝑖

2
,… , 0,… ,

𝑁𝑖
2

− 1, 𝑁𝑖
2

(27)

4 The higher order traction expression used in this study differs from those cited; hence, its interpretations differ, despite sharing the same name.
5 𝑀𝛼 = 0 ⇒ 𝑚𝛼 = 0.
6 This boundary condition type is interpreted in this study as a result of the corrosive environment in reactor conditions. Hydrogen and oxygen diffusion

towards the grain boundary renders it brittle and thicker, which makes the transition of dislocations less likely.
7 Also 𝑀𝛼#.
6 
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Table 1
Pseudo code of the FFT-Algorithm.

1 Extrapolation of the displacement gradient tensor at new time step
∇𝑢𝑖(𝑡𝑛 + 𝛥𝑡𝑛) = ∇𝑢(𝑡𝑛) + 𝛥𝑡𝑛

𝛥𝑡𝑛−1

[

∇𝑢(𝑡𝑛) − ∇𝑢(𝑡𝑛−1)]
2 Implicit time integration of state variables: Appendix E
3 FFT-algorithm: New iteration (i+1)
4 Convergence test: linear momentum balance equation (Eq. (42))
5 Polarization tensor field: Evaluation in real space
𝜏
∼
𝑖(𝑥) = 𝜎

∼
𝑖(𝑥) − 𝐶

≈
0 ∶ ∇𝑢𝑖(𝑥)

6 Polarization tensor: Transform to Fourier space
𝜏
∼
𝑖(𝜉) =   

(

𝜏
∼
𝑖
)

7 Tensile loading: Mixed boundary condition (Eqs. (40), (41))
8 Displacement gradient tensor: Evaluation in Fourier space for new iteration
∇̂𝑢

𝑖+1
(𝜉) = −𝛤

≈

𝑀
∶ 𝜏

∼
𝑖(𝜉) ∀𝜉 ≠ 0

∇̂𝑢
𝑖+1

(0) = ∇𝑢
𝑖

𝜉 = 0
9 Displacement gradient tensor: Inverse transform to real space
∇𝑢𝑖+1(𝑥) =    

(

∇̂𝑢
𝑖+1

(𝜉)
)

10 Anderson Acceleration
10.1 Displacement gradient tensor: Saved
10.2 Apply every three iterations (𝑖 + 1∕3 == 3𝑘, 𝑘 = 1, 2, 3,…)
11 Implicit time integration of state variables: Appendix E
12 Convergence tests: mixed boundary conditions (Eqs. (43), (44))
13 If all convergence tests satisfy the tolerances
13.1 Yes: Go to step 14
13.2 No: Go to step 3
14 Higher order balance equation
14.1 Cumulative shear strain: Transform to Fourier space

𝛾𝛼𝑐 𝑢𝑚 =    (

𝛾𝛼𝑐 𝑢𝑚
)

14.2 Higher order stress: Evaluating in Fourier space
𝑆𝛼 (𝜉) = 𝐴 𝛥 𝛾𝛼cum

14.3 Higher order stress: Inverse transform to real space
𝑆𝛼 (𝑥) =    

(

𝑆𝛼 (𝜉)
)

15 Updating time step

The Lippmann–Schwinger equation (Lippmann and Schwinger, 1950) is derived through the additive decomposition of the total
displacement gradient tensor into its average and fluctuation parts, Eq. (28), with the assumption that the fluctuation term exhibits
eriodic behavior (∇𝑢⋆#𝜕) while the traction vector displays anti-periodic (𝜎

∼
.𝑛 − #𝜕) characteristics at the boundary of the

icrostructure. To incorporate the effect of the elastic deformation-induced rotation within the framework of infinitesimal strain,
he Lippmann–Schwinger equation is expressed in terms of the displacement gradient tensor rather than the symmetric infinitesimal
train tensor. This modification is of particular importance in the present study because it enables the consideration of the non-
ymmetric part of the displacement gradient, thereby facilitating the calculation of the lattice rotation angle, Eq. (24), attributable

to the elastic part of the total deformation, as previously reported (Marano et al., 2021).

∇𝑢(𝑥) = ∇𝑢 + ∇𝑢⋆(𝑥) ∀𝑥 ∈ , ∇𝑢⋆#𝜕 (28)

𝜎
∼
(𝑥) = 𝐶

≈
(𝑥) ∶ ∇𝑢(𝑥) ∀𝑥 ∈ , 𝜎

∼
.𝑛 − #𝜕 (29)

𝜏
∼
(𝑥) = 𝜎

∼
(𝑥) − 𝐶

≈
0 ∶ ∇𝑢(𝑥) ∀𝑥 ∈  (30)

∇.
(

𝜎
∼
(𝑥)

)

= 0 ∀𝑥 ∈  (31)

Hence, the solution in both real space and Fourier space is acquired by performing the convolution (in real space) and double
contraction (in Fourier space) between the Green operator, denoted as (𝛤

≈
), and the polarization tensor, represented as 𝜏

∼
:

Real space: ∇𝑢tot(𝑥) = −𝛤
≈
∗ 𝜏

∼
(𝑥) (32)

Fourier space:
⎧

⎪

⎨

⎪

⎩

∇̂𝑢
tot
(𝜉) = −𝛤

≈
(𝜉) ∶ 𝜏

∼
(𝜉) ∀𝜉 ≠ 0

∇̂𝑢
tot
(0) = ∇𝑢 𝜉 = 0

(33)

To enhance the accuracy, the algorithm employs the rotated scheme together with an auxiliary isotropic homogeneous medium,
0, to compute the modified Green operator. This choice effectively mitigates oscillations in the Fourier space, even in regions with
≈

7 



A. Lame Jouybari et al.

t

s

(

p

B

c

b
f

e
t

International Journal of Plasticity 183 (2024) 104153 
high contrast, as it is well-documented for its superior accuracy in handling local fields (Willot, 2015). Additionally, it is noteworthy
hat this Green operator is both general and non-symmetric, ensuring consistency with the non-symmetric displacement gradient.

𝛤
≈

𝑀
= 𝑓𝑅 ⊗

[

𝑓𝑅.𝐶
≈
0.𝑓𝑅

′]−1
⊗ 𝑓𝑅′ (34)

Here, the 𝑓𝑅 and 𝑓𝑅′ are modified frequencies respectively corresponding to the gradient and divergence operators in this rotated
cheme, Eq. (35), and centered scheme, Eq. (36), are determined as follows (Willot, 2015):

𝑓𝑅𝑖 = j

4
t an

(

𝜉𝑖
2

)

(

1 + exp (j𝜉1
)) (

1 + exp (j𝜉2
)) (

1 + exp (j𝜉3
))

(35)

𝑓𝐶𝑖 = j sin
(

𝜉𝑖
)

(36)

where j is the imaginary complex unit. Moreover, the fixed-point algorithm is enhanced with Anderson acceleration. This
augmentation serves the dual purpose of circumventing the need for calculating the tangent operator in nonlinear material behavior
and accelerating the convergence process. In particular, this study opts for the Anderson acceleration method known as ‘‘alternate
2 − 𝛿’’, Appendix C, due to its documented superior performance as reported in a previous study (Ramière and Helfer, 2015).

Upon achieving the desired level of accuracy in solving the linear momentum balance equation in the first part of the algorithm
Table 1: Step 13), the cumulative shear strain serves as the input for the higher order balance equation (or evaluating the higher

order stress Eq. (16)) stemming from the SGCP model. Within this algorithm, the cumulative shear strain variable is transformed
into the Fourier space (Table 1: Step 14.1) and subsequently subjected to multiplication by the Laplacian operator and non-local
arameter (Table 1: Step 14.2). While the MicroFree boundary condition is applied within the Fourier space, Eq. (25), the MicroHard

boundary condition is implemented in the real space, Eq. (26). The last step consists of the transformation of higher order stress
back into the real space via the inverse Fourier transform (Table 1: Step 14.3). In this study, the 21-voxel differentiation scheme
is employed to evaluate the Laplacian operator in the Fourier space which provides better performance compared to the 9-voxel
differentiation scheme (Marano et al., 2021; Lebensohn and Needleman, 2016) in the discontinuous regions like grain boundary.

oth schemes were compared in a previous study considering an elastic material with inclusion (Neumann et al., 2002). Since this
operator is evaluated only once throughout the entire simulation, it is worth noting that both finite difference schemes have equal
omputational costs.8

𝛥 =

⎧

⎪

⎨

⎪

⎩

∑

𝑖
2
𝑑 𝑥2𝑖

[

cos
(

𝜉𝑖
)

− 1
]

+ O(𝑑 𝑥2𝑖 ) 9-voxel scheme
∑

𝑖
1

6𝑑 𝑥2𝑖
[

− cos
(

2𝜉𝑖
)

+ 16 cos
(

𝜉𝑖
)

− 15
]

+ O(𝑑 𝑥4𝑖 ) 21-voxel scheme
(37)

In particular, this operator together with the non-local parameter are multiplied with the cumulative shear strain in the Fourier
space to evaluate the higher order stress and return to the real space by the inverse Fourier transform.

𝑆𝛼 =    
(

𝐴 𝛥 𝛾𝛼cum

)

(38)

Furthermore, when tensile loading is taken into account in simulations, a mixed boundary condition is applied when solving the
classical linear momentum balance equation (Table 1: Step 7). This boundary condition requires simultaneous control over both the
macroscopic displacement gradient tensor and the macroscopic Cauchy stress tensor. Specifically, to model tensile loading along
the 𝑦-direction, the macroscopic displacement gradient tensor along the 𝑦-direction is constrained, while the macroscopic stress
in the other directions is maintained at zero to permit unrestricted deformation of the microstructure in those directions. These
oundary conditions are assigned at zero frequency in Fourier (complex) space, corresponding to the macroscopic behavior. Higher
requencies within the Green operator and polarization tensor govern the microscopic behavior.

⎧

⎪

⎨

⎪

⎩

(̂∇𝑢)𝑖𝑗 (0) = (∇𝑢)𝑖𝑗 if 𝑖𝑗 = 22
(𝜎
∼
)𝑖𝑗 = 0 if 𝑖𝑗 ≠ 22

(39)

The macroscopic displacement gradient tensor is initially imposed as an input but is subjected to modification during the fixed-point
iterations (Table 1: Step 7 and Eq. (40)). In addition, the arc-length method is employed, as it has been previously reported to offer
nhanced performance when dealing with strongly nonlinear constitutive equations (Michel et al., 1999). In this method, only
he direction of the loading is enforced using an auxiliary parameter associated with the arc-length method; for tensile loading in
𝑦-direction denoted as 𝛴

∼
0 = 𝑒2 ⊗ 𝑒2. Subsequently, the components of the displacement gradient tensor are derived in terms of the

displacement gradient tensor from the previous iteration, the Cauchy stress tensor from the previous iteration, the unknown level
of the overall stress parameter (𝑘𝑖), and the direction of the loading.

∇𝑢
𝑖
= ∇𝑢

𝑖−1
+
[

𝐶
≈
0
]−1

∶
(

𝑘𝑖𝛴
∼
0 − �̄�

∼
𝑖−1

)

(40)

𝑘𝑖 =
∇𝑢

𝑖−1
∶𝛴
∼
0+𝛴

∼
0∶

(

[

𝐶
≈
0
]−1

∶ �̄�
∼
𝑖−1 − ∇𝑢

𝑖−1
)

𝛴
∼
0∶

[

𝐶
≈
0
]−1

∶𝛴
∼
0

(41)

8 More details in Appendix D.
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To ensure the accuracy of the results, the algorithm incorporates three convergence tests. These tests are established for the linear
momentum balance equation (Moulinec and Suquet, 1998), macroscopic stress (Joëssel et al., 2018), and macroscopic displacement
gradient tensor (Nguyen, 2010). In all simulations, a tolerance Tol = 10−4 is specified to satisfy the convergence criteria.

test𝑖Cauchy =

(

1
𝑁 𝑡𝑜𝑡

∑

𝑑 ‖𝑓
′
𝑑
. ̂𝜎
∼
(𝜉
𝑑
)‖2

)1∕2

‖𝜎
∼
(0)‖ < Tol (42)

test𝑖Stress Mac =
‖𝜎
∼
𝑖(0)−𝑘𝑖𝛴

∼
0
‖

‖𝑘𝑖𝛴
∼
0
‖

< Tol
{

∀𝑖𝑗|𝜎𝑖𝑗 ≠ tensile direction
}

(43)

test𝑖Displacement Mac = ‖∇̂𝑢
𝑖
(0)−∇𝑢‖

‖∇̂𝑢
𝑖
(0)‖

< Tol
{

∀𝑖𝑗|∇𝑢𝑖𝑗 = tensile direction
}

(44)

where ‖ ‖ represents the Euclidean norm of tensor. The overall pseudo code9 of the FFT algorithm is presented in Table 1 and
etails of time integration are provided in Appendix E. Superior performance of the code due to introduced improvements in the

fixed-point iteration of the FFT algorithm in the proposed SGCP model is demonstrated in Appendix F.

3. Results

The results compose the validation of the FFT-homogenization algorithm concerning the developed analytical analysis for
ifferent material behaviors, as well as simulations and visualizations of slip and kink bands within single crystal and polycrystalline

simulations. In all simulations except Section 3.4, two-dimensional periodic microstructures with a single voxel thickness along the
3 basis vector are considered, which corresponds to an infinite 3-dimensional columnar microstructure along the 𝑒3 direction. The
hoice to simulate in 2 dimensions is motivated by the objective of tracking and visualizing the path of localization bands more
ffectively, as well as observing the transmission of these bands along the grain boundaries.

3.1. Analytical solution of the MicroSlip SGCP model

Previous studies have derived analytical solutions based on their generalized continua models. For instance, (Cordero et al.,
2010) proposed analytical solutions for the Cosserat continuum and MicroCurl SGCP of a two-phase periodic microstructure. The
MicroCurl SGCP was further developed into the shear band problems (Marano et al., 2021). Additionally, (Scherer et al., 2019)
developed micromorphic crystal plasticity. Inspired by these studies, analytical solutions for the proposed MicroSlip SGCP model,
accounting for different material behaviors, are developed and presented in this section.

In this context, a single crystal that is unbounded in the 𝑦-direction is considered, Fig. 1. The crystal is subjected to shear
loading, �̄�, and is capable of exhibiting elasto-plastic behavior through a single slip system (𝑁𝛼 = 1), which is oriented in the
direction of the Cartesian basis (𝑒1, 𝑒2). The elastic behavior conforms to the linear isotropic case, Eq. (49), while plastic deformation
is accompanied by linear rate-independent type associated with cumulative shear strain, Eq. (50). Consequently, the following
equations are presented in accordance with the requirements of the MicroSlip SGCP model.

𝑢tot = 𝑢(𝑥1)𝑒2 (45)

(∇𝑢)tot = 𝜕 𝑢
𝜕 𝑥1

𝑒2 ⊗ 𝑒1 (46)

(∇𝑢)p = 𝛾𝑐 𝑢𝑚𝑒1 ⊗ 𝑒2 (47)

(∇𝑢)e = 𝜕 𝑢
𝜕 𝑥1

𝑒2 ⊗ 𝑒1 − 𝛾𝑐 𝑢𝑚𝑒1 ⊗ 𝑒2 (48)

𝜎
∼
= 𝜇

(

𝜕 𝑢
𝜕 𝑥1 − 𝛾𝑐 𝑢𝑚

)

(

𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1
)

(49)

𝜏cr = 𝜏0 +𝐻 𝛾𝑐 𝑢𝑚 (50)

𝑆 = 𝐴
𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥21

(51)

The resolved shear stress corresponding to this slip system equals the shear component of the Cauchy stress tensor, as the slip system
s parallel to the Cartesian basis.

𝜏 = 𝜎
∼
∶
(

𝑒1 ⊗ 𝑒2
)

= 𝜎12 (52)

The linear momentum balance equation results in a uniform distribution of both the Cauchy stress tensor and the resolved shear
stress due to the absence of body and inertial forces.

∇.𝜎
∼
= 0 ⇒

𝜕 𝜎12
𝜕 𝑥2

= 𝜕 𝜏
𝜕 𝑥2

= 0 (53)

9 The arrangement of different parts of the fixed-point iteration, along with optimal choices for various steps, is the main novelty of the proposed FFT-algorithm
n the SGCP model.
9 
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Fig. 1. Single crystal under shear loading.

The yield function in the elasto-plastic region of the crystal provides a differential equation of cumulative shear strain, which is
written in the following expression:

|

|

|

𝜏||
|

− 𝜏cr + 𝑆 = 0 ⇒
𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥21

− 𝐻
𝐴
𝛾𝑐 𝑢𝑚 +

𝜏 − 𝜏0
𝐴

= 0 (54)

3.1.1. Linear hardening (𝐻 > 0)
By introducing the new constant 𝜆0 =

√

𝐴
𝐻 , the differential equation, Eq. (54), is transformed as follows:

𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥21

− 1
𝜆20
𝛾𝑐 𝑢𝑚 +

𝜏 − 𝜏0
𝜆20𝐻

= 0 (55)

The differential equation, Eq. (55), possesses a single non-trivial general solution in the form of hyperbolic sine and cosine functions
in the case of hardening (𝐻 > 0).

𝛾𝑐 𝑢𝑚
(

𝑥1
)

= 𝛼 cosh
( 𝑥1
𝜆0

)

+ 𝛽 sinh
( 𝑥1
𝜆0

)

+
𝜏 − 𝜏0
𝐻

(56)

By taking into account the symmetry condition regarding shear strain with respect to the Cartesian basis 𝑒1, the coefficient 𝛽 becomes
zero, and imposing the microhard boundary condition at the boundary of the elasto-plastic crystal, the coefficient 𝛼 becomes:

𝛾cum(±𝐿
2 ) = 0 ⇒ 𝛼 = − 𝜏 − 𝜏0

𝐻 cosh
(

𝐿
2𝜆0

) (57)

By substituting these coefficients into the Eq. (56), the solution reduces to the following expression:

𝛾cum(𝑥1) =
𝜏 − 𝜏0
𝐻

⎡

⎢

⎢

⎣

1 −
cosh

( 𝑥1
𝜆0

)

cosh
(

𝐿
2𝜆0

)

⎤

⎥

⎥

⎦

(58)

Therefore, the only remaining variable that needs to be determined to fully obtain the solution is the resolved shear stress. This
variable can be determined by integrating the shear strain over the domain and subtracting it from the total applied shear loading
(�̄�).

𝜏 = 𝜇
[

�̄� − 1
𝐿 ∫ 𝐿∕2−𝐿∕2 𝛾cum(𝑥1)𝑑 𝑥1

]

= 𝜇[�̄� +
𝜏 − 𝜏0
𝐻 𝐿

2𝜆0 t anh
(

𝐿
2𝜆0

)

−1

] ⇒ (59)

𝜏 =

�̄� − 𝜏0
𝐻 𝐿

2𝜆0 t anh
( 𝐿
2𝜆0

)

−1

1
𝜇 −

2𝜆0 t anh
(

𝐿
2𝜆0

)

−1

𝐻 𝐿

(60)
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3.1.2. Perfect plasticity (𝐻 = 0)
In the case of perfect plasticity, 𝐻 = 0, the differential equation, Eq. (54), transforms into the following equation:

𝜕2𝛾cum

𝜕 𝑥21
=
𝜏0 − 𝜏
𝐴

(61)

The non-trivial general solution takes the form of a parabola:

𝛾cum
(

𝑥1
)

=
𝜏0 − 𝜏
2𝐴

𝑥21 + 𝛼 𝑥1 + 𝛽 (62)

Applying the boundary condition leads to the determination of the two unknown constants.
{

Symmetry condition: 𝛼 = 0
Micro hard boundary on the boundary: 𝛽 = 𝜏−𝜏0

2𝐴 (𝐿2 )
2

(63)

As a result, the cumulative shear strain and resolved shear stress are acquired.

𝛾cum
(

𝑥1
)

=
𝜏 − 𝜏0
2𝐴

[

(𝐿2 )
2 − 𝑥21

]

(64)

𝜏 = 𝜇

[

𝛾 − 1
𝐿 ∫

𝐿
2

−𝐿2

𝛾cum
(

𝑥1
)

𝑑 𝑥1
]

= 𝜇
[

𝛾 − 𝜏−𝜏0
12𝐴 𝐿

2
]

⇒

𝜏 =
𝛾 + 𝜏0

12𝐴
𝐿2

1
𝜇 + 𝐿2

12𝐴

(65)

3.1.3. Linear softening (𝐻 < 0)
In the context of softening behavior, the differential equation, Eq. (54), is of the elliptic type, which transforms into the following

equation by introducing new constant (𝜆′0):
𝜕2𝛾cum

𝜕 𝑥21
+ 4𝜋2

𝜆′20
𝛾cum + 4𝜋2

𝜆′20

𝜏 − 𝜏0
|𝐻|

= 0; 𝜆′0 = 2𝜋
√

𝐴
|𝐻|

(66)

The non-trivial general solution to this differential equation is given by the following expression:

𝛾cum
(

𝑥1
)

= 𝛼 cos
( 2𝜋 𝑥1

𝜆′0

)

+ 𝛽 sin
( 2𝜋 𝑥1

𝜆′0

)

+
𝜏 − 𝜏0
𝐻

(67)

The symmetry condition leads to the determination of the coefficient 𝛽 = 0. Additionally, owing to the localization resulting from
oftening behavior and instability at the onset of yield stress, it is anticipated that shear strain becomes localized within a region
f width 𝜔. Consequently, beyond this localized region, the cumulative shear strain attributed to plastic deformation is set to zero
s a boundary condition. On the other hand, instead of applying the microhard boundary condition at the crystal’s boundary, a
anishing higher order traction is imposed at the boundary of this localized region as an additional boundary condition.

⎧

⎪

⎨

⎪

⎩

Localization condition: 𝛾cum(±𝜔
2 ) = 0

Higher order traction: 𝑚(±𝜔
2 ) =𝑀(±𝜔

2 ).𝑛 = 0 ⇒
𝜕 𝛾cum
𝜕 𝑥1 |𝑥1=

𝜔
2
= 0 (68)

These boundary conditions give the expressions for both the width of shear strain localization and the final coefficient.
⎧

⎪

⎨

⎪

⎩

𝛼 = 𝜏−𝜏0
𝐻

𝜔 = 𝜆′0 = 2𝜋
√

𝐴
|𝐻|

(69)

Hence, the solution is derived as:

𝛾cum(𝑥1) =
𝜏 − 𝜏0
𝐻

[

1 + cos
( 2𝜋 𝑥1

𝜆′0

)]

(70)

The resolved shear stress is determined by evaluating the integral over the entire crystal.

𝜏 = 𝜇[𝛾 − 1
𝐿 ∫

𝜔
2

−𝜔2

𝛾cum(𝑥1)𝑑 𝑥1] = 𝜇[𝛾 −
𝜔[𝜏 − 𝜏0]
𝐻 𝐿 ] ⇒

𝜏 =
𝛾 +

𝜆′0𝜏0
𝐿𝐻

1
𝜇 +

𝜆′0
𝐿𝐻

(71)
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Fig. 2. Comparison of numerical and analytical results.

3.2. Comparison with analytical solutions

In this section, the numerical results from FFT-homogenization algorithm are compared with the analytical solutions in
Section 3.1. To do this comparison, an infinite two-dimensional single crystal with its normal direction parallel to 𝑒3 basis vector
is considered. Moreover, the crystal is equipped with an in-plane slip system (𝑠, 𝑚) = (𝑒1, 𝑒2) and is subjected to shear loading with
an amplitude of 𝛾 = 0.01 with a relatively small shear rate of 10−6 s−1. To facilitate a comparison between the analytical solution
and numerical results, the crystal’s behavior is composed of linear isotropic elasticity, Eq. (14), and viscoplasticity, Eq. (21). In the
isotropic elastic part of the deformation, the crystal is characterized by the Young’s modulus of 𝐸 = 100 GPa and Poisson’s ratio
of 𝜈 = 0.3. In the plastic part of deformation, the crystal’s behavior is modeled as rate-dependent viscoplasticity. Since the analytic
solution belongs to the rate independent case, the Norton flow parameters are set to values that represent small rate dependence.

In all cases, the higher order balance equation from the SGCP model is solved using the 21-voxel finite difference scheme and
same higher order interface condition as analytical solution prescribed on the crystal’s boundary. Furthermore, the initial yield stress
is set to 𝜏0 = 10 MPa, and the parameters of the Norton flow rule are chosen in the range of 𝑛 = (100, 150) and 𝐾 = (0.5, 1) MPa s−𝑛.
Fig. 2 shows a comparison between the analytical and numerical results for the crystal in-plane dimensions of 0.01 mm × 0.01 mm
and resolution of 64 × 64 voxels using the non-local parameter 𝐴 = 10−3 N. Remarkably, a high degree of agreement is observed
in all three cases of linear hardening, perfect plasticity, and linear softening, which validates the implementation of the fixed-point
FFT-algorithm.

Fig. 3 illustrates the size effect of single crystal under simple shear loading (�̄� = 0.01). To observe this effect, two single crystals of
different sizes are considered: the first one with dimensions 0.01 mm× 0.01 mm and the second one with dimensions 0.1 mm× 0.1 mm.
12 
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Fig. 3. Single crystal size effect on the localization band formation under simple shear loading for softening behavior (𝐻 = −500 MPa).

A softening modulus of 𝐻 = −500 MPa is chosen to reproduce localization bands and demonstrate the effect of different non-local
parameters on band width. The crystal properties of elastic and viscoplastic behaviors are the same10 as those in Fig. 2. Additionally,
oth single crystals are discretized with a resolution of 128 × 128 voxels. The results from numerical simulations and analytical

solutions clearly show the effect of crystal size on the amplitude and width of the localization bands under the same non-local
arameter. Moreover, they explicitly demonstrate the significant effect of the non-local parameter on the regularization (smoothness)
f bands in the crystals. In particular, if the amplitude of the non-local parameter meets the threshold outlined in Appendix A, the

regularization process is effective, yielding stable results and appropriate band width. For instance, in a crystal with dimensions of
.1 mm× 0.1 mm, a non-local parameter of 𝐴 = 10−4 N does not satisfy the proper threshold, resulting in an inefficient regularization

process and narrow band width. Conversely, in a crystal with dimensions of 0.01 mm× 0.01 mm, a non-local parameter of 𝐴 = 10−2
N overestimates the effect of regularization and large band width. Therefore, it is concluded that selecting an appropriate amplitude
for the non-local parameter ensures the correct influence of higher order stresses within the localization band. This influence is
physically interpreted as the energy stored in the dislocation pile-up mechanism, detailed in Appendix A, which increases the width
of the band by resisting dislocation glide.

3.3. Single crystal: regularization of localization bands and irradiation effect

In this section, a periodic single crystal with unit cell dimensions of 0.1 mm × 0.1 mm is subjected to tensile loading along
he 𝑦-direction. Specifically, the applied tensile loading has a magnitude of ∇𝑢𝑦𝑦 = 0.01 with a strain rate of 10−6 𝑠−1 and all other

components of the Cauchy stress tensor are fixed to zero. A single slip system11 (𝑁𝛼 = 1) is oriented at a 45-degree clockwise with
respect to the loading direction. To trigger the localization at the center of a crystal, an imperfection or defect is deliberately placed
at the central voxel (𝑁1

2 ,
𝑁2
2 ). Namely, the critical resolved shear stress12 on this voxel is set to 𝜏𝑑0 = 0.99𝜏0. The results are presented

or the CCP and SGCP model, where in the latter the MicroContinuity interface condition is assumed on the unit cell boundary.
The crystal parameters for the results in Figs. 4, 5, and 6 are specified as follows. Isotropic elastic behavior is modeled by the

oung modulus (𝐸 = 100 GPa) and Poisson ratio (𝜈 = 0.3). The Norton flow coefficient (𝐾 = 10 MPa s-n) and exponent (𝑛 = 15)
re chosen to represent typical viscoplastic behavior of irradiated austenitic stainless steel (Hure et al., 2016). Furthermore, the

irradiation effect corresponding to local softening behavior is characterized by the initial critical resolved shear stress 𝜏0 = 100 MPa,
maximum softening parameter ▵𝜏 = 30 MPa and softening rate 𝛾0 = 0.05. Also, the non-local parameter of the SGCP model is set to
𝐴 = 10−3 N and three different grid resolutions are considered for the crystal, corresponding to 40 × 40, 60 × 60, and 80 × 80 voxels
to assess the regularization of the SGCP model. Respectively, Figs. 4, 5, and 6 depict the distributions of cumulative shear strain
𝛾cum), absolute value of higher order stress (|𝑆|), and rotation angle (𝜃) from the CCP and SGCP frameworks with different grid

resolutions. The results from both frameworks reproduce two types of localization bands: the first being a slip band parallel to the
slip direction 𝑠, and the second being a kink band perpendicular to the slip direction. CCP simulations demonstrate a well-known
ssue in the localization problem, where the results are dependent on discretization (grid resolution). For instance, the width of
he localization bands decreases or even disappears once the resolution is increased. Moreover, variables such as the cumulative
hear strain and rotation angle undergo changes in amplitude. On the other hand, the results from SGCP show that the localization
and width, it’s amplitude and rotation angle remain constant (objective) for different grid resolutions. Additionally, SGCP results
xhibit concentration (from crossing of the two bands) around the crystal defect, which is absent in the CCP. To investigate the
egularization process, the corresponding higher order stress, 𝑆, is plotted in Fig. 5, revealing variations in amplitude within the
ocalization bands while maintaining consistent width and intensity across different grid densities. In summary, the proposed SGCP
odel properly regulates and overcomes the localization instability in single crystal simulations.

10 In the crystal with dimensions of 0.1 mm × 0.1 mm larger 𝜏0 is used to obtain comparable band amplitudes.
11 Employing a single slip system, in combination with the proposed FFT algorithm, is sufficient to accurately reproduce both slip and kink bands within the

same grain.
12 Slightly different strengths of the defect, 𝜏𝑑 = 0.995𝜏 or 𝜏𝑑 = 0.98𝜏 , produce similar distributions for the localization bands.
0 0 0 0
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Table 2
Material properties used in single crystal simulations.

Case 𝜏0 ▵𝜏 𝛾0 𝐻 Representing

Hardening 80 MPa 0 MPa – 200 MPa unirradiated material
Softening-1 100 MPa 40 MPa 0.2 0 MPa irradiated material
Softening-2 100 MPa 20 MPa 0.05 0 MPa irradiated material
Softening-3 100 MPa 50 MPa 0.1 0 MPa irradiated material

Fig. 4. Single crystal: distribution of the cumulative shear strain (𝛾cum).

The investigation into material parameters within the proposed SGCP model, particularly in the evolution of critical resolved
shear stress, is depicted in Fig. 7. This exploration involves a single crystal with identical elastic and viscoplastic parameters, loading
and dimensions as the crystal in Fig. 5, measuring 0.1 mm × 0.1 mm and discretized by 128 × 128 voxels, with a defect in the
center. Four sets of parameters are chosen for Eq. (22), represented as quadruples (𝜏0,▵𝜏 , 𝛾0, 𝐻) defined in Table 2. The results of the
hardening case are obtained using the CCP framework, while the softening results are provided by SGCP (to avoid instability) with
a non-local parameter of 𝐴 = 10−3 N and MicroContinuity condition at the boundary. In the hardening case, no localization bands
are produced, with a homogeneous distributions of cumulative shear strain and critical resolved shear stress. Due to hardening,
the critical resolved shear stress increases from its initial amplitude (𝜏0 = 80 MPa). In the softening cases, all three reproduce two
perpendicular localization (slip and kink) bands. The cumulative shear strain amplitudes in these bands are inversely proportional to
the critical resolved shear stress, which is indicative of crystal strength. This phenomenon indicates that dislocation glide produces
localized softened (weaker) bands, commonly known as clear channels in the irradiated materials such as austenitic stainless steel.

3.4. Three-dimensional single crystal

In this section, a three-dimensional face centered cubic (FCC) single crystal equipped by 12 slip systems, defined by Miller
indices as

{

111
}

⟨110⟩, with dimensions of 1 mm × 1 mm × 1 mm is considered under tensile loading along the 𝑧-direction. The
purpose of these simulations is to investigate the higher order stress, Eq. (16), associated with both localized and non-localized slip
systems, as well as instabilities due to multiple slip systems activation. Therefore, a direct comparison is performed between the
results obtained from the proposed FFT-algorithm and the FEM computation using the Umat-Abaqus subroutine (Simulia, 2015) to
validate the CCP framework in three-dimensional crystal. To be compatible with the FFT method, periodic boundary conditions are
implemented in the FE model, as briefly described here. In each Cartesian direction, 𝑒𝑖, a reference node, 𝑃𝑖, is defined to constrain
all nodes’ displacements on the parallel boundary surfaces of the crystal, obtaining the periodic boundary condition. For example,
to implement tensile loading along the 𝑧-direction, an incremental displacement, 𝑢𝑧(𝑃𝑖), is applied to the reference node. This results
in non-zero macroscopic stress in the 𝑧-direction, ⟨𝜎33⟩ ≠ 0, and zero macroscopic stress in other directions, ⟨𝜎𝑖𝑗⟩ = 0 if 𝑖𝑗 ≠ 33.
Consequently, the same periodic boundary condition as in the FFT-homogenization method is achieved.
14 
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Fig. 5. Single crystal: distribution of the absolute value of the higher order stress (|𝑆|).

Fig. 6. Single crystal: distribution of the rotation angle (𝜃).

Three orientations of the single crystal are considered by setting three tensile directions, [123], [001], and [111], in the local
coordinate system. In all simulations of this section, the crystal is subjected to tensile loading along the 𝑧-direction, including the
mean value of the displacement gradient field ∇𝑢𝑧𝑧 = 0.01 at a relatively low strain rate 10−6 s−1, and other components of the
Cauchy stress tensor are constrained to zero. Furthermore, the single crystal in the FEM is discretized by the 500 C3D4 elements.13

In order to allow the localization bands to flow naturally within the crystal due to multiple slip systems, there is no defect in the
center, and all material parameters are set to the Table 3 except 𝛾0 = 0.0125 and ▵𝜏 = 40 MPa.

Fig. 8 shows tensile curves for this single crystal with different orientations. Inset (a) of Fig. 8 presents the comparison between
the FEM results from the Umat-Abaqus subroutine and the proposed FFT-homogenization method under the same periodic boundary
condition and CCP framework. In all cases, perfect agreement is observed in terms of the linear elastic behavior at the initial
part of deformation, the dependence of yield stress on the orientation of the crystal, and nonlinear softening behavior. Inset (b)
of Fig. 8 illustrates the effect of resolution (number of voxels) on the softening behavior in both the CCP and proposed SGCP
(MicroContinuity higher order boundary condition and A = 10−4 N) frameworks. In the CCP framework, increasing the number of
voxels from 32 × 32 × 32 to 64 × 64 × 64 leads to an increased softening rate after a certain point during deformation, causing
the macroscopic tensile curves to suddenly diverge from other curves due to the instability induced by the increased number of

13 Four-node tetrahedral element.
15 
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Fig. 7. Distributions of the cumulative shear strain (𝛾𝑐 𝑢𝑚) and critical resolved shear stress (𝜏𝑐 𝑟) in a single crystal under tensile loading at the end of deformation
(∇𝑢𝑦𝑦 = 0.01), displaying the effect of different material parameters.

Fig. 8. Three-dimensional single crystal: tensile curves.

voxels. Interestingly, the results of the proposed SGCP framework indicate that the macroscopic tensile curves for these different
resolutions almost coincide, demonstrating that the results are voxel-independent in this nonlinear softening behavior.

Fig. 9 exhibits the instability and voxel dependency of the computational results in the CCP framework for the distribution of the
total cumulative shear strain at the end of deformation ∇𝑢𝑧𝑧 = 0.01 from the simulations in Fig. 8 inset (b). For example, by increasing
the number of voxels by a factor of two in each Cartesian direction, the localization bands become more concentrated with higher
amplitude, and the number of bands increases within the crystal. Furthermore, Fig. 10 presents the distributions from the SGCP
framework, which maintains the number, width and amplitude of the bands constant despite the increase in the number of voxels.
Additionally, the higher order stresses associated with different slip systems, as described by Eq. (16), are plotted in Fig. 11, showing
different distributions for different slip systems. Accordingly, it is concluded that the proposed SGCP model performs correctly in
three-dimensional crystalline materials and confirms that the higher order stress is computationally evaluated based on its own slip
system and does not affect other slip systems by the proposed flow potential in Eq. (20).

3.5. Polycrystalline aggregate

In this section, the periodic Voronoi tessellation of a polycrystalline aggregate with dimensions of 1 mm × 1 mm is considered.
The microstructure is composed of 200 randomly oriented columnar grains14 (Quey et al., 2011), Fig. 12 . The analysis in this section

14 Mean grain size 𝑙2 = 1∕200 mm2.
𝑝
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Fig. 9. Three-dimensional single crystal with [123] orientation: distributions of cumulative shear strain, 𝛾 𝑡𝑜𝑡𝑐 𝑢𝑚, from the CCP framework at the end of deformation
(∇𝑢𝑧𝑧 = 0.01) at different resolutions.

Fig. 10. Three-dimensional single crystal with [123] orientation: distributions of cumulative shear strain, 𝛾 𝑡𝑜𝑡𝑐 𝑢𝑚, from the SGCP framework at the end of deformation
(∇𝑢𝑧𝑧 = 0.01) at different resolutions.

Fig. 11. Three-dimensional single crystal with [123] orientation: distributions of the absolute value of higher order stress, |𝑆𝛼 |, associated with different slip
systems from the SGCP framework at the end of deformation (∇𝑢𝑧𝑧 = 0.01).

compares the localization patterns, their regularization, and prediction of size effects using the proposed SGCP model against the CCP
framework and experimental observations in a polycrystalline aggregate. At low tensile strains (e.g. 0.01), localization (shear) bands
usually initiate and propagate within a single slip system, exhibiting severe plastic deformation in a narrow lamellar region. The
corresponding experimental observations often depict these shear bands as parallel lines on the surface of a sample (Di Gioacchino
and da Fonseca, 2015; Thomas et al., 2019). In this view, one planar slip system per grain is sufficient to reproduce main localization
features observed in experiments15 at relatively low strain (e.g. 0.01). Using 𝑁𝛼 = 1, two potential perpendicular directions in terms
of slip bands and kink bands can be induced in each grain as demonstrated in the single crystal case in the previous section.

15 Experimental observations confirm that in many grains only one slip system is activated for the applied range of tensile loading used in this
study (Di Gioacchino and da Fonseca, 2015).
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Table 3
Material properties of polycrystalline aggregate.

E 𝜈 K n 𝜏0 ▵𝜏 𝛾0 H

100 GPa 0.3 10 MPa s−𝑛 15 100 MPa 50 MPa 0.05 0 MPa

Fig. 12. Geometry of the polycrystalline aggregate composed of 200 grains: different colors correspond to different orientations with respect to the loading
direction (absolute value of Euler angle) and black lines are grain boundary voxels. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Planar slip systems are aligned16 with grain orientations which are assumed random. In all subsequent simulations, the material
properties of the constitutive model (Eqs. (21), (22)) remain constant, detailed in Table 3, unless explicitly stated otherwise. The
elastic parameters, such as Young’s modulus and Poisson’s ratio, match those used in single crystalline simulations. The Norton
flow exponent and coefficient reflect typical values for the viscoplastic behavior of austenitic stainless steel. Additionally, softening
parameters are set based on investigations in single crystal simulations (see Fig. 7): 𝛾0 = 0.05 is chosen to expedite localization
initiation, and a maximum softening parameter of ▵𝜏 = 50 MPa is set to increase the softening in the shear bands.17 Furthermore,
the polycrystal is subjected to tensile loading along the 𝑦-direction, inducing the mean value of the displacement gradient ∇𝑢𝑦𝑦 = 0.01,
at a relatively low strain rate 10−6 s−1, while all other components of the Cauchy stress tensor are constrained to zero.18

3.5.1. Regularization of the macroscopic behavior
Initially, the polycrystalline aggregate is analyzed with different grid resolutions to assess the influence of the CCP framework

and the impact of higher order boundary conditions from SGCP on the macroscopic behavior. The grid resolutions selected are
40 × 40, 50 × 50, and 60 × 60 voxels per grain, equivalent to a total of 570 × 570, 710 × 710, and 850 × 850 voxels, respectively.
Fig. 13 compares the tensile curves calculated with the CCP and SGCP models using different interface conditions. All behaviors
exhibit macroscopic hardening up to 1 percent tensile loading (∇𝑢𝑦𝑦 = 0.01). The distributions of cumulative shear strain in Figs. 14,
15, 16, and 17 reveal that most parts of the polycrystalline material remain elastic (𝛾𝑐 𝑢𝑚 = 0). This is attributed to the fact that the
grains, each possessing only one slip system, are randomly oriented. This results in a reduced Schmid factor. Consequently, only a
subset of the grains initiates plastic deformation. In addition, due to relatively large amplitude of the softening parameters, such
as the maximum softening parameter (▵𝜏 = 50 MPa), plastic deformation in those grains is concentrated into the narrow shear
bands. Accordingly, the elastic behavior outside of the shear bands macroscopically overcome the microscopic softening within the
shear bands, resulting in the observed macroscopic hardening. The SGCP model exhibits significantly higher macroscopic stresses,
primarily due to the presence of isotropic hardening term (higher order stress) in the SGCP model. While MicroContinuity and
MicroFree cases exhibit approximately similar macroscopic behaviors, the MicroHard condition generates the strongest hardening by
preventing the transgranular dislocation movements. Furthermore, when altering the grid resolution of the polycrystalline aggregate,
it becomes evident that the CCP framework yields resolution-dependent results. In contrast, the MicroContinuity SGCP model does
not exhibit dependence on grid resolution.19

16 By employing the 𝑍1𝑋2𝑍3 type of Bunge convention representation of Euler angles.
17 Same parameters were used in Marano et al. (2019, 2021) for the irradiated material.
18 These constraints are subjected to the macroscopic behavior applied at zero frequency in the Fourier (complex) space.
19 The consistent regularization is also achieved for the SGCP MicroFree model, while grid dependency becomes apparent in the SGCP MicroHard condition.

This discrepancy arises from the higher order interface condition on the grain boundary, as described by Eq. (26), which possesses an intrinsic length scale equal
to the voxel size.
18 
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Fig. 13. Polycrystalline aggregate: tensile curves for 𝐴 = 10−3 N.

3.5.2. Regularization of the localization bands
The distributions of cumulative shear strain, von-Mises stress, and rotation angle are shown in Figs. 14–17 at final displacement

gradient ∇𝑢𝑦𝑦 = 0.01. The distribution of cumulative shear strain in the polycrystalline simulation illustrated in Fig. 14 exhibits voxel
dependency within the CCP framework. Notably, the localization bands have typically the width of one voxel, and their intensity
varies with different grid resolutions. Moreover, similar to the CCP results shown in Fig. 4(c), some kink bands tend to disappear
at higher grid resolutions.

On the other hand, results in Figs. 15–17 obtained from the SGCP model demonstrate no dependency on grid resolution
(objective), consistently maintaining both the width and intensity of localization bands across various higher order boundary
conditions when the grid resolution is altered. The localization patterns for MicroFree and MicroContinuity, as shown in Figs. 15 and
16, are generally the same, with slight differences in corresponding intensities. The CCP, SGCP MicroFree, and SGCP MicroContinuity
models predict same types of localization bands, as shown in Figs. 14–16(c,e). Bands with finite 𝜃 amplitude are identified as kink
bands. Upon comparing insets (c) and (e) in Figs. 14–16, it appears that slip and kink bands occur in approximately equal proportions,
consistent with the single crystal simulations in Section 3.3. However, the MicroHard condition shown in Fig. 17 displays distinct
localization patterns, where the localization bands are predominantly intragranular. The most distinct feature compared to other
higher order interface conditions and CCP results is the presence of numerous parallel slip bands within the grains (see Figs. 17(a)).
As a result, plastic deformation is more evenly distributed over these bands. Since plastic deformation is not allowed to transmit
across the grains, stress concentrates at grain boundaries where the bands meet from both sides, a phenomenon less commonly
observed for other conditions.

The capability to regularize the localization bands and control their transmission through grain boundaries by utilizing a single
non-local parameter 𝐴 along with various higher order interface conditions, renders the proposed SGCP model a valuable tool for
simulating polycrystalline materials exhibiting softening behavior, such as dislocation channeling in irradiated steels.

3.5.3. Size effect
In the previous section, the results are presented for a fixed aggregate size of 1 mm× 1 mm with a constant non-local parameter

of 𝐴 = 10−3 N. In this section, the effect of microstructure size is investigated by keeping the number of grains fixed at 200 and
maintaining the same grid resolution of 50 × 50 voxels per grain, as well as using the same material parameters specified in Table 3.
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Fig. 14. (a) Distribution of cumulative shear strain (𝛾𝑐 𝑢𝑚) in polycrystalline aggregate from the CCP framework using 60 × 60 voxels per grain. Insets (b) and
(c) show 𝛾𝑐 𝑢𝑚 at two grid resolutions. Insets (d) and (e) show von-Mises stress and rotation angle at 60 × 60 voxels per grain.

Fig. 15. (a) Distribution of cumulative shear strain (𝛾𝑐 𝑢𝑚) in polycrystalline aggregate from the SGCP MicroFree model using 60 × 60 voxels per grain. Insets
(b) and (c) show 𝛾𝑐 𝑢𝑚 at two grid resolutions. Insets (d) and (e) show von-Mises stress and rotation angle at 60 × 60 voxels per grain.

The dimensions are varied to capture the macroscopic and microscopic behaviors associated with size effects. Accordingly, three
microstructures with dimensions of 1 mm × 1 mm, 0.1 mm × 0.1 mm, and 0.01 mm × 0.01 mm are selected for this analysis. The
non-local parameter is adjusted to 𝐴 = 10−4 N for the first two microstructures and 𝐴 = 10−5 N for the smallest microstructure.20

Higher order interface conditions, including MicroFree and MicroContinuity, are applied at the grain boundaries.

20 This adjustment is made to avoid overestimating the GND effect, as discussed in Appendix A.
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Fig. 16. (a) Distribution of cumulative shear strain (𝛾𝑐 𝑢𝑚) in polycrystalline aggregate from the SGCP MicroContinuity model using 60 × 60 voxels per grain.
Insets (b) and (c) show 𝛾𝑐 𝑢𝑚 at two grid resolutions. Insets (d) and (e) show von-Mises stress and rotation angle at 60 × 60 voxels per grain.

Fig. 17. (a) Distribution of cumulative shear strain (𝛾𝑐 𝑢𝑚) in polycrystalline aggregate from the SGCP MicroHard model using 60 × 60 voxels per grain. Insets
(b) and (c) show 𝛾𝑐 𝑢𝑚 at two grid resolutions. Insets (d) and (e) show von-Mises stress and rotation angle at 60 × 60 voxels per grain.

Fig. 18 displays the tensile curves for all microstructures under the applied higher order interface conditions at the grain
boundaries. In general, smaller microstructures demonstrate higher macroscopic stress during plastic deformation. This is in
agreement with the fact that smaller grains possess larger total area of grain boundaries per unit volume, leading to a higher density
of obstacles for dislocation (localization band) glide. Additionally, slight differences between the MicroFree and MicroContinuity
conditions are observed in the microstructures with dimensions of 0.1 mm × 0.1 mm and 0.01 mm × 0.01 mm. The MicroContinuity
condition in these microstructures results in approximately 10 percent higher macroscopic stress at the end of deformation (∇𝑢𝑦𝑦 =
0.01).

Fig. 19 illustrates the distributions of cumulative shear strain and von-Mises stress in the microstructures with the dimensions
of 0.01 mm × 0.01 mm and 1 mm × 1 mm under the MicroFree condition. In the smaller microstructure, the localization bands
21 
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Fig. 18. Aggregate size effect on tensile behavior.

Fig. 19. Size effect in polycrystalline aggregate: SGCP MicroFree framework. Distributions of (a) cumulative shear strain in smaller microstructure (b) cumulative
shear strain in larger microstructure (c) von-Mises stress in smaller microstructure (d) von-Mises stress in larger microstructure.

have a relatively wider width (almost homogeneous) and contain a lower amount of cumulative shear strain compared to the larger
microstructure. Consequently, the von-Mises stresses are typically less localized in the smaller microstructure, showing also relatively
fewer concentration spots near the grain boundaries. Practically identical patterns are observed under the MicroContinuity condition
compared to the MicroFree condition, albeit with slight differences near grain boundaries (not shown).

3.6. Comparison with experimental results

In this section, the results from the proposed SGCP model are compared and discussed in relation to experimental testing on both
unirradiated and irradiated materials. One particular experimental study is considered, which involves a Zircaloy specimen (Thomas
et al., 2019), nominally Zr-1.5Sn-0.2Fe-0.1Cr, subjected to less than 2 percent tensile loading in both unirradiated and irradiated
planar polycrystals. The purpose of the experiment was to observe shear bands using high-resolution digital image correlation
(HRDIC) and electron backscatter diffraction (EBSD). In addition to novel experimental techniques, instruments, and image
processing used in that study, important mechanical details relevant for numerical comparisons are mentioned here. The Zircaloy
polycrystal with the approximate grain size of 10−5 m was irradiated using proton acceleration resulting in final irradiation damage
ranging between 0.09 to 0.13 dpa (displacements per atom). The uniaxial tensile test was conducted at room temperature with a
strain amplitude of 2 percent and an initial strain rate of 1.6 × 10−4 s−1.
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Fig. 20. Measured distributions of (effective) shear strain in percent (a) unirradiated and (b) irradiated Zircaloy polycrystal after 2 percent tensile loading. White
lines correspond to grain boundaries.
Source: Taken from Thomas et al. (2019).

Fig. 20 illustrates the distribution of shear bands in unirradiated and irradiated Zircaloy polycrystalline materials, based on
shear strain parameters introduced in the experimental study as representative of local deformation21 obtained through HRDIC
post-processing. Insets (a) and (b) demonstrate an impact of irradiation during tensile testing on the heterogeneous distribution of
deformation. While shear bands are closely spaced in unirradiated Zircaloy material, strain localization in the irradiated Zircaloy is
noticeably different, featuring distinct bands with higher effective strain amplitudes and almost zero deformation outside the bands.
Additionally, deformation in the unirradiated Zircaloy polycrystalline material is concentrated near the grain boundaries; however,
in the irradiated material, the highest deformation is predominantly localized within shear bands near the grain centers.

To qualitatively compare the localization pattern with this experimental study, simulations are performed on the Voronoi
tessellation model shown in Fig. 12. The model dimensions are set to 1 mm × 1 mm, with each grain size approximately 10−5 m.
These simulations, conducted under tensile loading with an amplitude of 1 percent, correspond to both unirradiated and irradiated
states. To emphasize that the material parameters are chosen based on representative characteristics rather than strictly through
a calibration procedure, the resulting material behaviors are labeled as ‘‘unirradiated-like’’ and ‘‘irradiated-like’’. Experimental
observations from Onimus et al. (2006) on the macroscopic behaviors of irradiated and unirradiated Zircaloy under mechanical
loading indicate that the unirradiated specimen exhibits hardening behavior, while softening behavior is observed under irradiated
conditions. Consequently, for the unirradiated state, the initial critical resolved shear stress (yield stress) is set 20 percent lower
than that of the irradiated state, with 𝜏0 = 80 MPa. During the plastic deformation phase, a hardening modulus of 𝐻 = 500 MPa
is applied, as described in Eq. (22), with no exponential softening (▵𝜏 = 0 MPa). Furthermore, to capture the softening behavior
in the irradiated state,22 the exponential term in Eq. (22) is established with ▵𝜏 = 50 MPa and 𝛾0 = 0.05. In the context of the
IASCC mechanism, the grain boundary is recognized as playing a crucial role in the transmission of localization bands (McMurtrey
et al., 2011). Particularly in reactor environments, such as pressurized water reactors, the diffusion and penetration of hydrogen and
oxygen isotopes at the grain boundary can be several orders of magnitude higher than within the grains (Laghoutaris et al., 2008).
These isotopes contribute to the grain boundary becoming brittle and thicker, which, within the IASCC mechanism, is interpreted as
an inability of the grain boundary to accommodate and transmit localized plastic deformation, leading to high stresses and potential
microcrack initiation. As a result, the application of higher order interface conditions, such as the MicroHard condition, allows for
a qualitative consideration of the IASCC mechanism at the grain boundary. Accordingly, numerical simulations for the irradiated
state are carried out using the SGCP framework with the MicroHard higher order interface condition applied to grain boundaries,
and simulations for the unirradiated state are conducted using both the CCP (𝐴 = 0 N) and SGCP frameworks. In both unirradiated
and irradiated states in SGCP framework, the non-local parameter is set to the amplitude of 𝐴 = 10−4 N.

Fig. 21 depicts the macroscopic behavior of unirradiated-like in both CCP and SGCP frameworks and irradiated-like in
SGCP framework under tensile loading. In addition to (imposed) increased yield stress, the irradiated-like aggregate exhibits
smaller macroscopic hardening, which results from local exponential softening behavior. Overall, the numerical results confirm
typical macroscopic effects of irradiation in polycrystalline aggregate (Pokor et al., 2004; Onimus et al., 2006). Furthermore, the
macroscopic behavior of the unirradiated-like state shows almost no difference between the CCP and SGCP frameworks. As shown in
Fig. 7, insets (a) and (e), for a single crystal, the hardening behavior does not result in the formation of localization bands. Instead,
a homogeneous deformation is observed, leading to a gradient of the cumulative shear strain that is approximately negligible,
rendering the higher order stress, Eq. (16), inactive in the shear flow rule, Eq. (21), due to the higher amplitude of the critical

21 This effective shear strain parameter is not equal to the cumulative shear strain (𝛾𝑐 𝑢𝑚) but has the same qualitative meaning.
22 The remaining parameters not discussed here for the irradiated and unirradiated states are consistent with those provided in Table 3.
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Fig. 21. Calculated tensile curves of the irradiated-like and unirradiated-like polycrystalline material.

resolved shear stress, Eq. (22), in the hardening behavior (𝑆 ≪ 𝜏𝑐 𝑟). As a result, the outcomes from the CCP and SGCP frameworks
are nearly identical in the unirradiated state.

Fig. 22 illustrates the microscopic distributions of cumulative shear strain and von-Mises stress at the end of deformation for
two polycrystalline aggregates (∇𝑢𝑦𝑦 = 0.01). In both unirradiated-like and irradiated-like states, heterogeneous distributions of
plastic deformation are observed. In the unirradiated state, as depicted in inset (a) of Fig. 22 and consistent with aforementioned
experimental study, shear bands are closely spaced, with strain primarily localized near the grain boundaries. Additionally, in inset
(b) of Fig. 22, the shear band distributions differ significantly in the irradiated state, exhibiting highly localized plastic deformation
within evenly spaced bundles of parallel shear bands, whereas the space between bands experiences zero plastic deformation.
Moreover, some grains display two perpendicular bundles of shear bands in terms of slip and kink bands which are predominantly
localized at the grain centers, with reduced intensity toward the grain boundaries. Most of these effects were also observed in the
experimental study. The main qualitative difference is the absence of secondary localization bands (due to 𝑁𝛼 = 1), which, however,
are induced in few of the Zircaloy grains (Fig. 20 inset (b)).

In insets (c) and (d) of Fig. 22, the distribution of von-Mises stress is visualized for the unirradiated-like and irradiated-like states
of the polycrystalline material. In the unirradiated state, depicted in inset (c) of Fig. 22, the von-Mises stress is distributed more
homogeneously across the grains, with some concentration regions close to grain boundaries. Conversely, in the irradiated state,
shown in inset (d) of Fig. 22, the von-Mises stress is strongly concentrated in regions where the shear bands intersect the grain
boundaries. Such stress concentration spots are potentially risky for the formation of micro cracks in real materials. Indeed, this
confirms to be the similar case in IASCC in irradiated austenitic stainless steel under light water reactor conditions (Jiao and Was,
2010). Experimental observations on irradiated materials highlight interactions between shear bands (or clear channels) and grain
boundaries (Hesterberg et al., 2019; Howard et al., 2019; Johnson et al., 2019). These interactions lead to dislocation pile-up at
grain boundaries, resulting in high stress concentrations and crack initiation. In austenitic stainless steels, clear channels running
parallel to grain boundaries, particularly in proximity to triple junctions, have been found to enhance stress states and initiate
cracks, [Figure 15 of Hesterberg et al. (2019)]. Similarly, Howard et al. (2019) conducted micro-tensile tests on irradiated stainless
steel, observing clear channels on grain boundaries contributing to high stress concentrations and the presence of both transgranular
and intergranular bands on fracture surfaces, [Figure 13 of Howard et al. (2019)]. Additionally, Johnson et al. (2019) noted that
the region between two clear channels interacting with grain boundaries is prone to crack initiation under tensile loading, [Figure
6 of Johnson et al. (2019)]. In this view, the microscopic results in Fig. 22 qualitatively agree with experimental observations in
(un)irradiated structural materials.

To conclude, the proposed SGCP model, complemented by the MicroHard higher order interface conditions on grain boundaries,
appears to be a suitable computational tool for predicting strain localization patterns and stress concentrations at grain boundaries
in irradiated material under IASCC mechanism.

4. Conclusions

This study proposed a new SGCP model based on cumulative shear strain, referred to as strict MicroSlip, to study the strain
localization phenomena in polycrystalline materials. The primary objectives of this study were twofold: firstly, to address the
dependency of results on grid resolution in classical framework, and secondly, to regularize both the macroscopic behavior
and local evolution of strain localization patterns accounting for the aggregate (or grain) size effects. To achieve these goals,
thermodynamically consistent constitutive equations for SGCP model were derived. Subsequently, analytical solutions corresponding
to linear hardening, perfect plasticity, and linear softening behaviors were developed.

The proposed SGCP model was implemented within the fixed-point algorithm of the FFT-homogenization method. To enhance
the numerical accuracy, various techniques were employed, including the modified Green operator based on the rotated scheme,
alternate 2 −𝛿 Anderson acceleration method, arc-length method for mixed control of macroscopic stress and displacement gradient,
and a 21-finite difference scheme for evaluating the higher order stresses.
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Fig. 22. Calculated distributions of cumulative shear strain and von-Mises stress at the end of deformation ∇𝑢𝑦𝑦 = 0.01 in the unirradiated-like and irradiated-like
polycrystalline material.

The implementation of the SGCP model in the proposed fixed-point algorithm was successfully validated against the analytical
solutions. The model was then used to reproduce localization bands in single crystal and polycrystal simulations. While in the
CCP framework, the width of localization bands was typically constrained to one voxel size, the results from SGCP remained
grid independent, in terms of amplitude and width for both slip and kink bands. Furthermore, the model was applied to
simulate polycrystalline aggregates under three higher order boundary conditions (MicroFree, MicroContinuity, MicroHard) on grain
boundaries, resulting in regularization of the localization patterns. Under MicroFree and MicroContinuity conditions, intragranular
and transgranular bands were observed, whereas in MicroHard conditions, all the bands were intragranular, with substantial stress
concentrations emerging at grain boundaries. The proposed SGCP model was also shown to exhibit the (grain) size effects. When
varying the size of a polycrystalline aggregate, different responses were obtained for a fixed non-local parameter. Smaller grains
provided relatively wider localization bands and stiffer macroscopic responses compared to the larger grains. Comparing with
existing experimental results, the proposed SGCP model, complemented by the MicroHard higher order interface conditions on
grain boundaries, appears to be a suitable computational tool for predicting strain localization patterns and stress concentrations at
grain boundaries in irradiated materials.

Perspectives for future work include the integration of the proposed SGCP model with a MicroCurl model, and the implementation
of composite voxels to improve the grid independence of higher order boundary conditions (MicroFree and MicroHard).
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Appendix A. Physical interpretation of higher order stresses and correlation with the Nye’s tensor

In a three-dimensional single crystal within a Cartesian coordinate system, consider a slip system characterized by the slip
direction 𝑠 = 𝑒1 and the normal to the slip plane 𝑚 = 𝑒2. According to Arsenlis and Parks (1999), the edge dislocation density
𝜌⊢) and screw dislocation density (𝜌⊙) within the slip plane can be directly determined from the gradient of the shear strain and
he slip direction.

𝜌⊢ = −𝑒1.∇𝛾 = − 𝜕 𝛾
𝜕 𝑥1

(A.1)

𝜌⊙ =
(

𝑒1 × 𝑒2
)

.∇𝛾 =
𝜕 𝛾
𝜕 𝑥3

(A.2)

The corresponding higher order stresses, given by Eqs. (15), (16), are projected onto the slip plane, and the yield function for
perfect plasticity behavior (𝜏𝑐 𝑟 = 𝜏0) are recalled here. In this analysis, the slip direction and the normal to the slip plane align with
the positive directions of the Cartesian coordinate system, and a single active slip system is considered for the crystal, resulting in
𝛾𝑐 𝑢𝑚 = 𝛾. Additionally, the partial derivatives in the higher order stress can be expressed in terms of the edge and screw dislocation
densities, as described by Eqs. (A.1), (A.2).

𝑀 = 𝐴
(

𝜕 𝛾𝑐 𝑢𝑚
𝜕 𝑥1

𝑒1 +
𝜕 𝛾𝑐 𝑢𝑚
𝜕 𝑥3

𝑒3

)

= 𝐴
(

−𝜌⊢𝑒1 + 𝜌⊙𝑒3
)

(A.3)

𝑆 = 𝐴

(

𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥21

+
𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥23

)

= 𝐴
(

−
𝜕 𝜌⊢
𝜕 𝑥1

+
𝜕 𝜌⊙
𝜕 𝑥3

)

(A.4)

𝑓 = |𝜏| − 𝜏0 + 𝑆 (A.5)

Fig. A.1 illustrates the dislocation pile-up mechanism in the slip plane. The figure demonstrates that the partial derivatives of
he edge and screw dislocation densities consistently have opposite signs within the loop, sign( 𝜕 𝜌⊢𝜕 𝑥1 ) = −sign( 𝜕 𝜌⊙𝜕 𝑥3 ), and therefore do
ot cancel out in the dislocation pile-up mechanism. Consequently, higher order stress is always present in the dislocation pile-up
𝑆 ≠ 0). This leads to the conclusion that the higher order stresses 𝑆 and 𝑀 are arising from the energy stored in the dislocation
ile-ups, which resist the glide of dislocations.

To characterize the non-local parameter 𝐴, a dimensionless coordinate system is introduced in the slip plane, defined by 𝑥′1 =
𝑥1
𝑙𝑝

and 𝑥′3 =
𝑥3
𝑙𝑝

, where 𝑙𝑝 represents the characteristic length scale. Using this dimensionless coordinate system, the higher order stress
and yield function in Eqs. (A.4), (A.5) are transformed into the following equations.

𝑆 = 𝐴
𝑙2𝑝

(

𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥′21

+
𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥′23

)

(A.6)

𝑓 = 𝜏 − 𝜏0 +
𝐴
𝑙2𝑝

(

𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥′21

+
𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥′23

)

(A.7)

Once plastic deformation begins, the yield function equals zero (𝑓 = 0).

𝜏 = 𝜏0 −
𝐴
𝑙2𝑝

(

𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥′21

+
𝜕2𝛾𝑐 𝑢𝑚
𝜕 𝑥′23

)

(A.8)

Therefore, in the perfect plasticity behavior, higher order stress can be interpreted as a variation in yield strength induced by
eometrically Necessary Dislocations (GNDs). The influence of GNDs varies depending on the ratio of 𝐴∕𝑙2𝑝 relative to the initial
ield stress (𝜏0). Accordingly, three possible scenarios are considered: first, when 𝐴∕𝑙2𝑝 ≪ 𝜏0, the effect of higher order stress on
ield strength is negligible (𝑆 ≪ 𝜏 ⇒ 𝑓 ≅ 𝜏 − 𝜏 ). Second, when 𝐴∕𝑙2 ≅ 𝜏 , the GNDs or higher order stress properly influence the
0 0 𝑝 0
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Fig. A.1. Schematic mechanism of dislocation pile-up by the evolution of screw and edge dislocation density in the slip plane. Dislocation lines orientation is
indicated by the red signed loop.

yield strength of the crystal (𝑆 ≅ 𝜏0 ⇒ 𝑓 = 𝜏 − 𝜏0 + 𝑆). Third, when 𝐴∕𝑙2𝑝 ≫ 𝜏0, the effect of GNDs is overestimated (𝑆 ≫ 𝜏0). It is
concluded here that the non-local parameter is proportional to 𝐴 ∝ 𝜏0𝑙2𝑝 .

Furthermore, to establish a relationship between the higher order stress and Nye’s tensor, a definition of Nye’s tensor based on
the edge and screw dislocation densities is recalled here (Gurtin, 2002) for the specific single crystal discussed at the beginning of
this section and in the small deformation framework (Marano et al., 2021).

𝛼
∼
= 𝜌⊙𝑒1 ⊗ 𝑒1 + 𝜌⊢𝑒1 ⊗ 𝑒3 = −∇ × ((

∇𝑢
)𝑝) (A.9)

Following the studies that consider the Nye’s tensor as a strain gradient variable (Marano et al., 2021; Lebensohn and Needleman,
2016), the back-stress term, 𝜒 , in those studies is calculated here.

𝜒 = −𝐴∇ ×
(

−𝛼
∼

)

∶ 𝑠 ⊗ 𝑚 = 𝐴
(

𝜕 𝜌⊢
𝜕 𝑥1

−
𝜕 𝜌⊙
𝜕 𝑥3

)

(A.10)

It is thus concluded that the back-stress in the Nye’s tensor SGCP model is equal in magnitude but opposite in sign to the higher
order stress in the proposed SGCP model (𝜒 = −𝑆), due to their differing evolution in the shear flow rule.

Appendix B. Dislocation based crystal plasticity model accounting for clear channel mechanism

In this section, the material parameters within the proposed crystal plasticity model are calibrated based on the dislocation-
based crystal plasticity method proposed for irradiated Zircaloy (Onimus and Béchade, 2009) to reproduce clear channels. The
irradiation induces hardening defects in the microstructure in form of loops with a diameter of 𝑑, which act as obstacles to dislocation
glide. According to the dispersed barrier hardening model, this results in an evolution to the critical resolved shear stress in the
dislocation-based crystal plasticity model (𝛿 𝜏𝑐 𝑟 = 𝜏𝐼 𝑟𝑐 𝑟 − 𝜏𝑈 𝑛𝐼 𝑟𝑐 𝑟 ).

𝛿 𝜏𝛼𝑐 𝑟 = 𝛽 𝜇 𝑏
√

𝑁 𝑑 (B.1)

where 𝑏, 𝛽 , 𝑁 , and 𝜇 are respectively the Burgers vector, the proportionality factor of the obstacle strength, the number of hardening
defects, and the shear modulus. Accordingly, the total critical resolved shear stress is expressed by summing the initial yield stress
(𝜏0𝑐 𝑟) and introducing the density of hardening defects (𝜌𝐿 = 𝑁∕𝑑).

𝜏𝛼𝑐 𝑟 = 𝜏0𝑐 𝑟 + 𝛿 𝜏𝛼𝑐 𝑟 = 𝜏0𝑐 𝑟 + 𝛽 𝜇 𝑏
√

𝜌𝐿 (B.2)

The initiation of dislocation glide within the plastic region of deformation interacts with pre-existing defects, leading to the softening
of the material by clearing these defects within the channel. This sweeping mechanism can be modeled by assuming that all defects,
are distributed at a distance of 𝐻∕2 from the dislocation plane, interact with dynamic dislocations characterized by a density 𝜌 and
velocity �̄� over specific time. Consequently, the number of defects removed from the channels is given by 𝑁 𝐻 𝜌 ̄𝑣𝑑 𝑡, and using the
Orowan equation leads to expression of the plastic shear strain rate �̇� = 𝜌𝑏 ̄𝑣. Therefore, the defect density can be described by the
following expression, assuming single slip activation during the formation of a dislocation channel.
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𝑑 𝜌𝐿
𝑑 𝑡 = −𝐻

𝑏 𝜌𝐿|�̇�
𝛼
| (B.3)

Consequently, the solution is obtained through time integration and solving differential equation.

𝜌𝐿 = 𝜌𝐿0𝑒𝑥𝑝(−
𝐻
𝑏 |𝛾|) (B.4)

By substituting the expression for 𝜌𝐿 into Eq. (B.2), the critical resolved shear stress for the clear channel is obtained.

𝜏𝛼𝑐 𝑟 = 𝜏0𝑐 𝑟 + 𝛽 𝜇 𝑏
√

𝜌𝐿0𝑒𝑥𝑝(−
𝐻
2𝑏 |𝛾|) (B.5)

Finally, by comparing Eq. (B.5) with Eq. (22) under irradiation conditions (no hardening modulus or 𝐻𝛼 = 0), the material
arameters in the proposed crystal plasticity model are calibrated with respect to the dislocation-based model.

𝛾0 =
2𝑏
𝐻 (B.6)

▵𝜏 = 𝛽 𝜇 𝑏 (B.7)

𝜏0 = 𝜏0𝑐 𝑟 + 𝛽 𝜇 𝑏 (B.8)

Appendix C. Anderson acceleration

This FFT-homogenization algorithm employs a specific type of Anderson acceleration known as the alternate 2 − 𝛿 method,
which has been reported to provide superior performance compared to other types in the literature (Ramière and Helfer, 2015).
This particular Anderson acceleration method is briefly outlined here. Within this method, a vector field 𝑦 with dimension R𝑁
evolves by the following nonlinear fixed-point equation,23

𝑦 = 𝐺(𝑦), 𝑦 ∈ R𝑁 , 𝐺 ∶ R𝑁 → R𝑁 (C.1)

where due to the fixed point iterations, the vector field at new iteration is evaluated by the field at previous iteration,

𝑦
𝑛+1

= 𝐺(𝑦
𝑛
) (C.2)

In this equation, 𝑦
𝑛+1

corresponds to the solution of the vector field at the new iteration. This type of Anderson acceleration is
activated every three iterations to extrapolate the new accurate solution,

𝑦
𝑛+1

= 𝑦
𝑛
− 𝜆1𝑛

[

𝑦
𝑛
− 𝑦

𝑛−1

]

− 𝜆2𝑛
[

𝑦
𝑛
− 𝑦

𝑛−1

]

(C.3)

where the expressions of the two scalar parameters 𝜆1𝑛 and 𝜆2𝑛 are solved by minimizing the following constraint,

𝛿 𝑦
𝑛
= 𝑦

𝑛
− 𝑦

𝑛−1
− 𝜆1𝑛

[

𝑦
𝑛
− 2𝑦

𝑛−1
+ 𝑦

𝑛−2

]

− 𝜆2𝑛
[

𝑦
𝑛−1

− 2𝑦
𝑛−2

+ 𝑦
𝑛−3

]

(C.4)

Appendix D. Finite difference scheme

The fast Fourier transform (   ) and inverse fast Fourier transform (    ) of a scalar field 𝑔 are defined for the periodic
microstructure, discretized into 𝑁tot = 𝑁1 ×𝑁2 ×𝑁3 voxels, as follows (in discrete Fourier transform notations):

�̂�(𝜉1, 𝜉2, 𝜉3) =   (

𝑔
)

= 1
𝑁𝑡𝑜𝑡

𝑁1−1
∑

𝑥1=0

𝑁2−1
∑

𝑥2=0

𝑁3−1
∑

𝑥3=0
𝑔(𝑥1, 𝑥2, 𝑥3) exp

(

−2𝜋j
(

𝜉1𝑥1
𝑁1

+ 𝜉2𝑥2
𝑁2

+ 𝜉3𝑥3
𝑁3

))

(D.1)

𝑔(𝑥1, 𝑥2, 𝑥3) =    (

�̂�
)

=
𝑁1−1
∑

𝜉1=0

𝑁2−1
∑

𝜉2=0

𝑁3−1
∑

𝜉3=0
�̂�(𝜉1, 𝜉2, 𝜉3) exp

(

2𝜋j
(

𝜉1𝑥1
𝑁1

+ 𝜉2𝑥2
𝑁2

+ 𝜉3𝑥3
𝑁3

))

(D.2)

According to special properties of the Fourier (complex) space, two finite difference schemes are derived for evaluating the
Laplacian operator within the SGCP model (Neumann et al., 2002). Further details of this evaluation are provided herein.

   (

𝛥𝑔
)

≃ 𝛥    (

𝑔
)

+

{

O(𝑑 𝑥2𝑖 ) if the 9-voxel scheme is used
O(𝑑 𝑥4𝑖 ) if the 21-voxel scheme is used

(D.3)

The first and second order partial derivatives based on the 9-voxel finite difference scheme are written for the regular cubic voxel
at the position

(

𝑥1, 𝑥2, 𝑥3
)

in real space as:
𝜕 𝑔
𝜕 𝑥1

=
𝑔
(

𝑥1 + 𝑑 𝑥1, 𝑥2, 𝑥3
)

− 𝑔
(

𝑥1 − 𝑑 𝑥1, 𝑥2, 𝑥3
)

2𝑑 𝑥1
(D.4)

23 For example, in the proposed FFT algorithm, the displacement gradient tensor is a 9-dimensional vector space.
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𝜕2𝑔
𝜕 𝑥21

=
𝑔
(

𝑥1 + 𝑑 𝑥1, 𝑥2, 𝑥3
)

− 2𝑔 (𝑥1, 𝑥2, 𝑥3
)

+ 𝑔
(

𝑥1 − 𝑑 𝑥1, 𝑥2, 𝑥3
)

𝑑 𝑥21
(D.5)

Additionally, the derivatives based on the 21-voxel finite difference scheme involve more neighboring voxels in their calculation as:

𝜕 𝑔
𝜕 𝑥1

=
−𝑔

(

𝑥1 + 2𝑑 𝑥1, 𝑥2, 𝑥3
)

+ 8𝑔 (𝑥1 + 𝑑 𝑥1, 𝑥2, 𝑥3
)

− 8𝑔 (𝑥1 − 𝑑 𝑥1, 𝑥2, 𝑥3
)

+ 𝑔
(

𝑥1 − 2𝑑 𝑥1, 𝑥2, 𝑥3
)

12𝑑 𝑥1
(D.6)

𝜕2𝑔
𝜕 𝑥21

=
−𝑔

(

𝑥1 + 2𝑑 𝑥1, 𝑥2, 𝑥3
)

+ 16𝑔 (𝑥1 + 𝑑 𝑥1, 𝑥2, 𝑥3
)

− 30𝑔 (𝑥1, 𝑥2, 𝑥3
)

+ 16𝑔 (𝑥1 − 𝑑 𝑥1, 𝑥2, 𝑥3
)

− 𝑔
(

𝑥1 − 2𝑑 𝑥1, 𝑥2, 𝑥3
)

12𝑑 𝑥21
(D.7)

Consequently, the Laplacian operator associated to these different schemes are derived in Fourier space using the periodicity of
Fourier transform and Euler formula.

𝛥 =

⎧

⎪

⎨

⎪

⎩

∑

𝑖
2
𝑑 𝑥2𝑖

[

cos
(

𝜉𝑖
)

− 1
]

for 9-voxel scheme
∑

𝑖
1

6𝑑 𝑥2𝑖
[

− cos
(

2𝜉𝑖
)

+ 16 cos
(

𝜉𝑖
)

− 15
]

for 21-voxel scheme
(D.8)

Appendix E. Time integration

The time integration method solves the constitutive equations to find increments of state variables (𝛥𝑣𝑖+1) by the implicit Newton–
Raphson algorithm. In general, the algorithm consists of evaluating residual and Jacobian ( 𝑖, 𝑅𝑖) of the respected variables at the
previous iteration and updating the state variables, 𝑣𝑖+1, until reaching the tolerance.

{

 𝑖(𝑣𝑖).𝛥𝑣𝑖+1 = −𝑅𝑖(𝑣𝑖)
𝑣𝑖+1 = 𝑣𝑖 + 𝛥𝑣𝑖+1

(E.1)

The infinitesimal linear elastic strain (𝜀
∼

e) and shear strain associated with the slip system (𝛾𝛼) are considered for the integration
variables and other variables are obtained with respect to these integration variables. Assuming that the variables at the previous
time step 𝑡𝑛 and the total displacement gradient tensor field at the current time step, ∇𝑢𝑡𝑜𝑡(𝑡𝑛+𝛥𝑡), are known, the residual and their
partial derivatives are derived as:

𝑅𝜀
∼
𝑒 = 𝛥 𝜀

∼
𝑒 + 𝜀

∼
𝑒(𝑡𝑛) − sym

(

∇𝑢𝑡𝑜𝑡(𝑡𝑛 + 𝛥𝑡)
)

+ 𝜀
∼
𝑝(𝑡𝑛) +

∑

𝛼
𝛥𝛾𝛼 sym(𝑠𝛼 ⊗ 𝑚𝛼) (E.2)

𝑅𝛾𝛼 = 𝛥𝛾𝛼 − 𝛥𝑡 sign
(

𝜏𝛼
)

⟨

|

|

|

𝜏𝛼 ||
|

−𝜏𝛼cr+𝑆
𝛼

𝐾

⟩n
(E.3)

( 𝜕 𝑅𝜀∼𝑒
𝜕 𝛥 𝜀

∼
𝑒

)

𝑖𝑗 𝑘𝑙
= 1

2
[

𝛿𝑖𝑘𝛿𝑗 𝑙 + 𝛿𝑖𝑙𝛿𝑗 𝑘
]

(E.4)

𝜕 𝑅𝜀
∼
𝑒

𝜕 𝛥𝛾𝛼 = sym(𝑠𝛼 ⊗ 𝑚𝛼) (E.5)

𝜕 𝑅𝛾𝛼
𝜕 𝛥 𝜀

∼
𝑒 = −𝛥𝑡 𝑛𝑘

⟨

|

|

|

𝜏𝛼 ||
|

−𝜏𝛼cr+𝑆
𝛼

𝐾

⟩n-1
sym(𝑠𝛼 ⊗ 𝑚𝛼) ∶ 𝐶

≈
(E.6)

𝜕 𝑅𝛾𝛼
𝜕 𝛥𝛾𝛽 = 𝛿𝛼 𝛽 (1 + 𝛥𝑡 sign

(

𝜏𝛼 𝛾𝛼
) 𝑛
𝐾

⟨

|

|

|

𝜏𝛼 ||
|

−𝜏𝛼cr+𝑆
𝛼

𝐾

⟩n-1 [

𝐻𝛼 −
𝛥𝜏𝛼 exp

(

− 𝛾𝛼cum
𝛾0

)

𝛾0

]

) (E.7)

Notably, during the operation of this time integration, it is assumed that the higher order stress from the SGCP model, 𝑆, remains
onstant.

Appendix F. Performance of the FFT-algorithm

To demonstrate superior performance, the proposed FFT-algorithm is compared to the algorithms from previous studies that used
the centered scheme Green operator and 9-voxel finite difference scheme. A relatively large single crystal measuring 10 mm × 10 mm
s selected and discretized into 64 × 64 voxels. Material parameters are taken from Table 3, using slightly modified ▵𝜏 = 10 MPa and
0 = 0.05, and 𝐴 = 10−3 N. Tensile loading is applied, as described in Section 3.3, and a defect is positioned at the center to initiate
ocalization. Fig. F.1 presents the results obtained using two different Green operators and finite difference schemes. The localization

bands appear ideally smooth when using the rotated Green operator with the 21-voxel scheme. However, with the centered Green
operator and the 9-voxel finite difference scheme, the bands exhibit significant oscillations.
29 



A. Lame Jouybari et al. International Journal of Plasticity 183 (2024) 104153 
Fig. F.1. The performance of the proposed FFT-algorithm in the SGCP model: a comparison of different Green operators and finite difference schemes in the
calculation of the distribution of the cumulative shear strain 𝛾𝑐 𝑢𝑚.

Data availability

Data will be made available on request.
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