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Abstract Assessing landslide risk is a fundamental requirement to plan suitable prevention actions. To date,
most risk studies focus on individual slopes or catchments. Whereas regional, national or continental scale
assessments are hardly available because of methodological and/or data limitations. In this contribution, we
present an overview of all requirements and limitations in landslide risk studies across all spatial scales, by means
of a hybrid form that combines elements of original research with the comprehensive characteristics of a review
study. The review critically analyses each component in the landslide risk analysis providing a detailed
explanation of their state‐of‐the‐art, with dedicated sections on susceptibility, hazard, exposure, and
vulnerability. To put the theoretical framework to test, we also dive into a case study, expressed at the continental
scale. Specifically, we take the main European mountain ranges and provide the reader with a textbook example
of risk assessment for such a large territory. In doing so,we take into account issues associatedwith cross‐national
differences in landslide mapping. As a result, we identify landslide‐prone European landscape and explore the
associated possible economic consequences (human settlements and agricultural areas). We also analyze the
population at risk during daytime and nighttime. Moreover, a modern view of the problem is explored in the form
of how risk outcomes should be delivered to master planners and geoscientific personnel alike. Specifically, we
convert our output into an interactiveWebApplication (https://pan‐european‐landslide‐risk.github.io/) to include
notions of scientific communication both to a large public as well as to a technical audience.

Plain Language Summary Landslide risk assessment is essential for planning preventive measures,
and safeguarding human properties and health. However, existing studies often limit their analysis to individual
slopes or catchments. Conversely, risk analysis is hardly implemented when the scale involves regions, nations,
or continents. This limitation arises from challenges in data acquisition and methodology. This contribution
presents a hybrid structure, merging review and original research contents. The review part analyzes landslide
risk components, focusing on modeling landslide occurrence, response and exposure of elements at risk. The
original research component conducts a continental‐scale case study, specifically in the European landscape. A
two‐step protocol addresses cross‐national differences in landslide mapping and data storage, identifying areas
more inclined to trigger landslides and assessing potential economic losses for human settlements and
agriculture. The population at risk is analyzed across daytime and nighttime by combining landslide likelihood
with the corresponding population distribution. A key aspect is represented by a modern view of how to
disseminate the findings of such studies. We implement a user‐friendly Web Application to share our output.
This initiative aims to improve accessibility to crucial information and raise awareness about landslide threats.

1. Introduction
Landslides represent a significant threat with potentially severe impacts on human lives and properties (Froude &
Petley, 2018; Haque et al., 2016). This risk is further intensified by human activities, which can increase the
likelihood and impact of landslides (Apon et al., 2024; Jaboyedoff et al., 2016). In the last decades, the increasing
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frequency and magnitude of extreme meteorological events (Huggel et al., 2012; Stoffel et al., 2014), as well as
the expansion of human footprint in landslide‐prone areas (Dille et al., 2022; Görüm & Fidan, 2021; Haque
et al., 2019; Ozturk et al., 2022; Petley, 2012), has certainly highlighted the need to predict where and when
landslides may occur, and possible losses in case of landsliding. This increased need to estimate landslide
occurrence and consequences is also driven by multiple factors. Looking at the global level, population growth
and weak governance have led to greater exposure to landslides, particularly in low and middle‐income countries
(Depicker et al., 2021). Another key factor is land use and cover changes (e.g., deforestation, road construction,
intensive agriculture), which have significantly altered landslide controls (Cendrero et al., 2020; Lacroix, Dehecq,
& Taipe, 2020). Additionally, climate change plays notable role, as its impacts are often more challenging to
assess in many regions compared to those of land use changes (Masson‐Delmotte et al., 2021). Therefore, un-
derstanding which places may be affected by landslides and what elements are exposed to them are crucial for
effective land‐use planning, and risk management (Corominas et al., 2014; Fell et al., 2005, 2008).

Landslide risk analysis ormodeling aims to identifywhat economic and social losses an area could suffer if affected
by landslides (M. Rossi et al., 2019). Therefore, it is an ideal instrument upon which to plan effective mitigation
strategies (Dai et al., 2002). However, at a careful analysis of the literature on landslide risk, what stands out is that
most of the available research is dedicated to site‐specific case studies (Gatto et al., 2023; Remondo et al., 2008;
Uzielli et al., 2015; Zêzere et al., 2008). The few existing exceptions hardly encompass basin or regional scale
(Caleca et al., 2022; Catani et al., 2005; Crawford et al., 2022; Depicker et al., 2021; Lu et al., 2014; Peng
et al., 2015), and even less is available for very wide regions (Caleca, Scaini, et al., 2024; Gaprindashvili & Van
Westen, 2016; M. Rossi et al., 2019). The reason behind this trend has mostly to do with the limitations in accessing
data related to: (a) systematic and reliable landslide inventories either manually (Colombo et al., 2005) or (semi‐)
automatically (Bhuyan et al., 2023) mapped, and each risk component. The latter consists of the susceptibility term
(C.VanWesten et al., 2006) and the spatial thematic data it requires (e.g., topography, geology, soil properties, etc.)
(Budimir et al., 2015), as well as the temporal (Guzzetti et al., 1999) and intensity (Lari et al., 2014) characteristics
of the landslide process, vulnerability (B. Ahmed, 2021), and exposure information (Pellicani et al., 2014).

Each one of the main risk components and sub‐components may be more available than others, but further
differences also depend on the data context one may work on. For instance, if vulnerability data is most likely the
least available component irrespective of the geographic area of interest, the accessibility to landslide inventories
largely varies depending on the given country. And, because there is no standard on what information a landslide
inventory should present, not only their availability but also the content dramatically changes.

To bring things into context through practical examples, Italy has an open national polygonal inventory, IFFI, and
each landslide record is associated with failure mechanism and partially with the time of occurrence (Trigila
et al., 2007). To make up for the fact that this inventory does not fully inform users about the landslide timing, a
more recent effort led to a second open national inventory, FraneItalia (Calvello & Pecoraro, 2018). There, the
occurrence date is associated with each record, although landslides do not report the failure mechanism and are
expressed as points. These points may even indicate widespread landsliding rather than individual failures.
Moreover, each point reports its confidence level. A further notable example is the ITALICA (ITAlian rainfall‐
induced LandslIdes CAtalogue) inventory presented by Peruccacci et al. (2023). This database provides tempo-
ral and spatial information on rainfall‐induced landslides across Italy, covering events that occurred between
January 1996 and December 2021. In this catalog, landslide occurrences are also represented as points, with both
spatial and temporal accuracy levels indicated. This is already an indication of the variability one has to deal with,
even in data‐rich contexts. To further elaborate on such variability, below,we will further examine the situation in a
few more data‐rich cases (e.g., USA, Switzerland, and Colombia) before exploring data‐scarce ones. Unlike the
European community, the USA maintains a standardized database that covers its entire territory. The inventory is
compiled by the U.S. Geological Survey (USGS) and is freely accessible. For a complete technical description, we
refer the reader to Mirus et al. (2020). The USGS inventory includes both polygonal and point data on landslides,
which are collected from a variety of sources, including federal, state, and local agencies as well as academic
institutions. The inventory consistently reports information such as location, data sources, and oftentimes general
characteristics (e.g., type and material involved). However, details like date of occurrence, fatalities, or damage are
not always available. To account for challenges related to inconsistent reporting, data gaps, and varying levels of
detail and coverage, the USGS classifies the collected landslides into five confidence levels using a semi‐
quantitative scale, ranging from 1 (lowest confidence) to 8 (highest confidence). Information on landslide dam-
age is also part of the Swiss hazard inventory (Hilker et al., 2009). However, the problem here is that the inventory
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is specifically made to report damage. Thus, each point (it is not a polygonal inventory) is located where the given
phenomenon produced a financial loss rather than where the process started. This being said, the hazard inventory
metadata also includes the date of occurrence and classifies each record by type, differentiating among “debris
flows,” “landslide,” “rockfall” (and floods). Another example of a rich and open national landslide database is that
of Colombia. Specifically, more than one exists, though they both fall within the Sistema de Información de
Movimientos en Masa (Information System of Mass Movements) or SIMMA in short. The system allows access to
what it refers to as a landslide catalogue or inventory. The first reports historical landslides obtained from sec-
ondary sources, civil protection or Red Cross, and because of this, it also contains a field indicating the potential
uncertainty in the event location. As for other attributes, it reports the point coordinates, class and associated losses,
either in the form of injured or victims and economic damage. Regarding the inventory, it essentially represents a
better version of the former, mainly because landslides are recorded after mapping on the basis of satellite images
(hence a better spatial identification of the event) and/or fieldwork activities. Even in this case, landslides are
identified as points, and the attributes include time of occurrence, in addition to class and losses.

The diversity in all these systems limits the production of standard hazard and risk products, but the situation
becomes even more dire when looking into a data‐scarce context. For instance, African countries are mostly
unequippedwith a centralized landslide database andmost of the available information is the outcome of individual
efforts. In this sense, well known is the unifying effort made by Broeckx et al. (2018) and the data‐sharing platform
(link‐here) maintained by the geomorphological team working at AfricaMuseum. There, national landslide in-
ventories relative to Burundi, the Democratic Republic of Congo, and Rwanda can be openly accessed, and a
number of associated studies can be found in Jacobs et al. (2017), Kubwimana et al. (2021), and Dille et al. (2019).
Beyond the Central African sector, few additional studies cover regional (Monsieurs et al., 2018) and national
(Niyokwiringirwa et al., 2024) scales in the neighboring areas. Moreover, even fewer of these consistently map
landslides as polygons (Depicker et al., 2020), provide occurrence time (Deijns et al., 2024) and quantify elements
at risk (Ferrer et al., 2024). To explore other data‐scarce geographic contexts and some of the initiatives to close the
gap with data‐rich counterparts, we'll mention a few studies of relevance, which will also highlight variability in
landslide reports even more. In this sense, the work of Chang et al. (2023) constitutes an example of exceptional
richness focused on landslide mapping and risk assessment in Afghanistan. The authors themselves state that their
national landslide inventory is the first of its kind, and with it, they produced the first robust national risk
assessment. However, the time span for the landslide mapping only covers the period from 2015 to 2023, during
which they only mapped 3,000 slope failures (left unclassified). In this sense, their work inevitably misrepresents
failuremechanisms and temporal trends. Zooming out once again and looking acrossAsia, very fewopen databases
exist. A further example is represented by the online Indonesian Disaster Data and Information Database (DIBI),
which can be accessed online at DIBI‐link. Notably, the landslide inventory provided by DIBI includes spatial and
temporal information on recorded landslides as well as their consequences (Ngadisih et al., 2017). However, this
data is limited to landslides causing fatalities. Moreover, this landslide inventory also lacks appropriate geore-
ferences and information on landslides' sizes and volumes (Samodra et al., 2018).

It iswith such observations inmind thatwe thought of exploring and documenting the limited literature on regional‐
to‐national scale risk assessment. In fact, it is largely because of these inconsistencies, lack of data and international
standards that the geoscientific community have not been able to provide methodological improvements. Given
this background, this paper provides a comprehensive review of the relevant literature. Specifically, we analyze the
literature on landslide risk, and thus, we also go through state‐of‐art approaches associated with several relevant
concepts, including landslide susceptibility, hazard, exposure, and vulnerability. The literature review reveals that
while there are studies modeling landslide occurrence on a regional/continental scale (Broeckx et al., 2018;
Günther et al., 2014; Mirus et al., 2024; D. Wang et al., 2021), most risk assessments are either site‐specific
(Agliardi et al., 2009; Budetta, 2002; Corominas et al., 2019; Uzielli et al., 2015) or presented qualitatively (X.
Liu & Miao, 2018) when applied to larger areas. To bridge this gap between theory and practice, we incorporate a
case study at the continental level. By focusing onmajor Europeanmountain ranges,we offer a textbook example of
large‐scale risk assessment. Specifically, the landslide risk analysis aims to estimate potential economic losses in
terms of human properties (human settlements and agricultural areas). We do all the analyses based on geo-
morphologically meaningful hillslope partitions, Slope Units (SUs; Alvioli et al., 2016; Carrara, 1988; Giles &
Franklin, 1998). Each one of these SUs constitutes the prediction target of a Binomial Generalized Additive Model
(GAM) equipped with a bias capture/removal term (Steger, Brenning, Bell, & Glade, 2016). The bias we aim at
removing is due to the inaccuracies ofmultiple landslide inventory sources (Loche et al., 2022), being originated by
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different mapping groups and even national research organizations. This procedure allows for identifying the
European landslide‐prone areas in terms of spatial probability of landslide occurrence (i.e., susceptibility).
Landslide risk is later computed, adjusting for the necessary approximations due to the size and complexity of the
study area. Specifically, the landslide hazard is expressed via the occurrence probability due to the impossibility of
quantifying landslide type, frequency and size across the whole European landscape. The spatial distribution of
exposed elements and their associated economic values are computed using open data, such as the GHS‐BUILT‐S
(Pesaresi & Politis, 2022) or CORINE Land Cover (Bossard et al., 2000) databases. The vulnerability of exposed
elements is set to 1, that is, we hypothesize that in the occurrence of a landslide, any structure in its pathwould suffer
irreparable damage. Similarly to the hazard case, such simplification is due to the lack of continent‐wide
vulnerability data: intensity of the phenomenon and structural resistance of the elements at risk (Glade, 2003b).
The integration of these data allows for defining landslide risk throughout the European mountain ranges.
Furthermore, the analysis explores the population at risk within the study area. Notably, we provide a cartographic
representation that illustrates the population at risk during both daytime and nighttime. This representation is
achieved by combining the spatial distribution of landslide susceptibility with population density data for each
daily context. This overall protocol is to date, the most comprehensive in the literature, and we assume its findings
to be useful even beyond the context of academic research. It is the product of a large‐scale collaborative initiative
that has involved several national geological agencies in Europe. The findings are meant to provide valuable in-
sights into the varying degrees of potential economic losses faced by different regions. This knowledge can inform
land‐use planning, risk reduction strategies, and emergency preparedness and ultimately contribute to more
resilient European societies and sustainable development in landslide‐prone areas. By addressing these critical
aspects, we aim to contribute to the ongoing efforts to mitigate the impacts of landslides and foster a more resilient
Europe. For this reason, we opted to share our results in an interactive Web Application (WebApp), accessible at
this link: https://pan‐european‐landslide‐risk.github.io/.

2. Review of Landslide Risk Assessment
Analyzing landslide risk is a complex procedure that presents several challenges. These vary with the scale of the
analyses and they arise from various factors, including data limitations, associated uncertainties and the dynamic
nature of landslides (C. Van Westen et al., 2006). The first and most exhaustive definition of landslide risk has
been provided by Varnes (1984), who denotes it as the expected number of lives lost, persons injured, damage to
property and disruption of economic activity due to a particular damaging phenomenon for a given area and
reference period. This definition has been translated into mathematical form and modified with time by numerous
geoscientists, with seminal contributions on the topic such as Fell (1994), Leroi (1996), Lee and Jones (2004), and
Corominas et al. (2014, 2023). In this overall context, if we consider the scenario of a single landslide, the risk can
be analytically expressed as follows:

R = P(Mi)P(Xj|Mi)P(T|Xj)VijC, (1)

where the risk (R) is related to a landslide of magnitude (Mi) affecting a specific element depends on the distance
(Xj) between the element itself and the landslide source. Then, P(Mi) denotes the probability of occurrence of a
landslide with magnitude Mi, whereas P(Xj|Mi) is the probability of a landslide reaching the element at risk
located to a distance X from the landslide source and with an intensity j. P(T|Xj) is the probability that an element
will be present at place X at the time of occurrence of landslide (T), Vij is the vulnerability of the element to a
landslide with magnitude i and intensity j and C is the value of the element.

If we extend the scenario to multiple landslide occurrences, the risk Equation 1 can be re‐written as follows (C.
Van Westen et al., 2006):

R =∑(H∑ (EV)) (2)

where the landslide risk (R) is given by Hazard (H), Exposure (E) and Vulnerability (V) of elements at risk.

As seen in the equations presented above, the susceptibility is just one element of the landslide hazard definition
(Caleca et al., 2022; Lombardo et al., 2021) and similarly, the hazard itself is an element of the risk definition
(Corominas et al., 2014; Fell & Hartford, 2018). Exposure and vulnerability, on the other hand, could be
expressed in multiple ways, associated with interactions between hazards and elements under consideration.
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In this context, these aspects do not belong to the geomorphological sphere but rather represent an interdisci-
plinary topic (Gill et al., 2021). Specifically, the estimation of exposure and vulnerability should also take into
account socio‐economical dimensions as well as elements of structural engineering and urban planning. Overall,
each risk component and the risk itself should be estimated separately depending on the landslide type. Notably,
each landslide type, whether rockfall, debris flow, or rotational slide, presents distinct characteristics in terms of
their mechanic, triggers, velocity and materials involved. Given these differences, the definition of the risk
components should theoretically require tailored assessments.

However, due to the difficulty in collecting information required to identify each of these elements, small‐scale
landslide risk studies mostly exploit simple indicators or are based on some assumptions simplifying the given
risk definition (Abella & Van Westen, 2007; de Almeida et al., 2016; Pereira et al., 2020; Segoni & Caleca, 2021).
Below, we provide an overview of each of these elements required to assess the landslide risk.

2.1. Review of Landslide Hazard Assessment

Analyzing where a landslide will occur (spatial component), when it will be triggered (temporal component) and
how large (magnitude or intensity component) it will be, represent the necessary requirements to assess landslide
hazard (Guzzetti, 2005; Guzzetti et al., 2005). Many approaches have been proposed by the geoscience com-
munity to quantify hazard and each of its components. However, the term “hazard” has been historically confused
with “susceptibility,” as explained in details by Reichenbach et al. (2018). In short, the first definition of landslide
hazard is what later became known as susceptibility. This, in turn, has led to some confusion (Corominas
et al., 2023), especially in the early transitioning years from the old definition to the latest one. In Figure 1, we

Figure 1. Temporal distribution of scientific contributions on landslide hazard, landslide susceptibility, landslide intensity, vulnerability, and landslide risk. The data
collection is realized on the Scopus database by using specific criteria. For landslide hazard, data are filtered using “landslide hazard” in the title or keywords. For
landslide susceptibility, data are obtained using “landslide susceptibility” in the title or keywords. For landslide intensity, data are retrieved using “landslide intensity” or
“landslide magnitude” or “landslide destructiveness” in the title or keywords. For vulnerability, data are filtered using “vulnerability” and “landslide” in the title or
keywords. For landslide risk, data are obtained using “landslide risk” in the title or keywords.
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provide an overview regarding the scientific trends from the earliest documents in landslide literature until today,
reporting all the contributions per year of each individual risk components. To do so, we searched on Scopus the
contributions related to landslide hazard, susceptibility, intensity, vulnerability, and risk. Notably, we do not
report exposure because the associate distribution through time is essentially the same as landslide risk, because
whenever exposure is assessed, this is done specifically for risk purposes.

2.1.1. Review of Landslide Susceptibility Assessment

The component pertaining to the spatial occurrence probability, or susceptibility, is the most studied one
(Figure 1) and its quantification has witnessed a substantial improvement over the last decades. Expert‐based
mapping (Brabb et al., 1972) has been initially superseded by heuristic approach (Stanley & Kirsch-
baum, 2017b), and later by physics‐based (Formetta et al., 2016) and statistical analyses (Pardeshi et al., 2013), or
machine (Marjanović et al., 2011) and deep learning approaches (Dahal et al., 2022). Expert‐based mapping
depends on the skills of the investigator, and therefore it might not provide objective products. In heuristic ap-
proaches, the investigator weighs specific properties related to the landslide‐triggering and provides a semi‐
quantitative mapping (Leoni et al., 2009). Despite the possibility of obtaining reliable zonations, these ap-
proaches can not be reproduced over large areas (Crozier & Glade, 2005; C. Van Westen et al., 1999). Physically‐
based models rely on understanding the mechanism behind failure conditions, and thus, they could provide ac-
curate assessment regarding slope stability or amount of displacement for a given set of conditions if the relevant
geotechnical parameters are available (Alvioli & Baum, 2016; Medina et al., 2021; G. Rossi et al., 2013). They
need a large and detailed data set describing mechanical and hydrological properties (Tofani et al., 2017), which
restricts their use to a limited geographic extent (Formetta et al., 2014; Seyed‐Kolbadi et al., 2019). Nevertheless,
few examples do exist in the literature where such limitations are suitably addressed (Cuomo et al., 2021; Medina
et al., 2021; Salvatici et al., 2018). Lastly, statistical and machine/deep learning approaches belong to the family
of data‐driven methods. These techniques statistically evaluate the combination of factors that have triggered
landslides in the past. This is done by analyzing the relationship between those factors and the past/present
distribution of a landslide population through a landslide inventory (Carrara, 1983; Guzzetti et al., 1999; Ohl-
macher & Davis, 2003; Reichenbach et al., 2018; C. J. Van Westen et al., 2008). In data‐driven methods, the
dependent variable is usually represented via a binary structure (i.e., landslide presence or absence) in each
mapping unit. Therefore, the fitted model is used to predict whether a mapping unit will trigger (or not) a
landslide. The output may be expressed in terms of probability or classified into different susceptibility levels.
However, data‐driven methods can also be affected by several shortcomings: (a) the general assumption that
future landslides can occur under the same past conditions (Guzzetti, 2021), (b) the effect of some factors can vary
with complex settings (Lombardo & Mai, 2018), and (c) the propagation of uncertainties and systematic errors of
landslide inventories can lead to biased outputs (Steger, Brenning, Bell, & Glade, 2016; Steger, Brenning, Bell,
Petschko, & Glade, 2016). Evidently, no single approach exists, nor is it universally accepted. The choice mainly
depends on the scale of analysis and the availability of data on landslide occurrence and triggering conditions.

In recent years, researchers have extended this susceptibility framework to account for the temporal aspects in a
single space‐time modeling solution (Lombardo et al., 2020; Nocentini et al., 2023). These models differ from the
traditional susceptibility because they simultaneously predict landslides both over the geographical space and the
time of interest, which can vary from years (Finlay et al., 1997) to days (Mondini et al., 2023) and even down to
the hour resolution (Cao et al., 2022). Whenever the temporal unit corresponds to a large interval, the corre-
sponding landslide prediction is usually generated with the purpose of supporting master planners to optimize
long‐term investments (Ko & Lo, 2018). Conversely, whenever the prediction involves short‐term intervals, the
output of such models is typically integrated as part of early‐warning systems (Segoni et al., 2018). Despite
individual differences, the element in common among these temporal models lies in the ability to capture the
dynamic changes in landslide distributions across different time windows by integrating various spatiotemporal
predisposing, preparatory and triggering factors (Steger et al., 2023). As a result, they provide valuable insights
into potential landslide occurrences and their patterns over specific regions and periods (N. Wang et al., 2022).
These models offer a comprehensive approach to understanding the complex interactions between geological,
meteorological, and environmental factors that influence landslide events, ultimately enhancing our ability to
predict landslide occurrences. The main limitation in creating such models corresponds to the acquisition of data
on past landslides because most landslide inventories unfortunately still do not report occurrence dates (Guzzetti
et al., 2012). This lack of temporal information is not only due to omissions during the mapping phase but also
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stems from the challenges of accurately defining these dates, even when using remote sensing products.
Therefore, it is a common practice to assume that failure conditions may not change during the time and
approximate the landslide hazard to the simple spatial probability of occurrence. In other words, the landslide
susceptibility is often used as a proxy for hazard (Caleca et al., 2022; Corominas et al., 2014).

2.1.2. Review of the Assessment of Landslide Temporal Occurrence

The development of space‐time predictive models is a recent solution in the context of landslide hazard
assessment (Fang et al., 2024). Despite this step forward, the evaluation of the temporal probability of landslide
occurrence still represents a challenge. This component is generally represented in the form of frequency (i.e.,
number of events per time interval), return period, or exceedance probability (Corominas et al., 2014). The
literature proposes different approaches for assessing the temporal occurrence of landslides, and they essentially
follow a similar structure to that of the susceptibility case. They can, in fact, be grouped into distinct families:
heuristic, probabilistic, indirect, and physically‐based methods. Heuristic methods rely on the investigator's
judgment, with interpretations that can be quantified through probability assignments (Wong, 2005).

Probabilistic techniques seek to model the probability of an event occurring within a given time frame. These
approaches involve the analysis of time series of past landslide events, allowing for frequency extrapolation. The
temporal probability of occurrence is then defined by employing suitable models, such as the binomial or Poisson
model (Catani et al., 2005; Corominas & Moya, 2008; Crovelli, 2000; Guzzetti et al., 2005; X. Li et al., 2023). The
main drawback of these approaches lies in the assumption that landslides are random and independent occur-
rences. This assumption is inadequate for landslides, given their inherent dependence on a multitude of factors,
such as climatic or anthropogenic conditions, but also in the fact that the same slopes may present characteristics
that promote or reject future slope failures. For instance, if a debris flow mobilizes all the soil columns, the very
same slope will not be susceptible to the same process until the weathering has generated enough potentially
unstable material in the future (Parker et al., 2016). Similarly, a deep‐seated landslide is a phenomenon that not
only persists for long periods on the same slope but also affects the slopes nearby. Thus, there may be some degree
of dependence between one landslide and the next, both in space and in time (Lombardo et al., 2020). Another
limitation is related to the requirements of such models. Landslide inventories have to contain temporal details for
temporal probabilities to be obtained. However, this is a condition which is not met in many areas around the
globe (Guzzetti et al., 2012).

The indirect modeling of landslide temporal occurrence relies on the assumption that the return period of a trigger
(e.g., rainfalls or earthquakes) might be the same as the landslide (Chau et al., 2004; Grant et al., 2016; Martino
et al., 2020; Peres & Cancelliere, 2018). As a result, after selecting the magnitude of the reference trigger and its
relative return period, it is possible to assume the same for landslides (Frattini et al., 2009; Jaiswal & van
Westen, 2009; Tsunetaka, 2021). This allows for estimating how frequently landslides may occur in the study area
but not which slope will be unstable.

Physically‐based approaches are the only ones to consider slope instability conditions by accounting for both
spatial and temporal dependence (Alvioli & Baum, 2016; Aristizábal et al., 2016; Salvatici et al., 2018; Schilirò
et al., 2016). However, they are only applicable to limited areas (e.g., slope or catchment scale) and short time
intervals (a few hours to a few days), mostly because required parameters such as geological and geotechnical
data are prohibitive to reliably collect over larger areas. Ultimately, assessing the temporal occurrence of land-
slides lacks a universally accepted approach. The selection of the more appropriate technique depends on the scale
of analysis as well as the availability and quality of historical landslide data.

2.1.3. Review of Landslide Intensity Assessment

A further component related to landslide hazard, especially when the study case is limited in its extension, is
represented by the intensity of the phenomena. Landslide intensity expresses the destructiveness power of the
event. Therefore, it is mainly associated with the energy released by the landsliding event (Ferro et al., 2020) and
depending on the type of landslide, it can be represented by a function of landslide's movement velocity and depth,
deposit thickness, impact pressures, depth of erosion, differential movements, or strain (Hungr, 1997). Similarly to
the occurrence probability case, even the intensity has been addressed in a number of different ways. Specifically,
researchers have attempted to define the destructive potential of landslides by employing a range of parameters:
planimetric area (Moreno, Steger, et al., 2023), initial (Jaboyedoff et al., 2020) or total (Brunetti et al., 2009)
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volumes, number of events (Lari et al., 2014), runout (Jakob et al., 2005), or velocity (Pudasaini & Kraut-
blatter, 2022). These parameters are listed above, and thus, the intensity assessment could vary for different
landslide types. In fact, the definition of landslide includes very different phenomena (Hungr et al., 2014).
Therefore, each landslide class requires a different approach to identify the corresponding intensity component. For
instance, in the case of slow‐moving landslides, either the differential displacement or the total displacement is
utilized to assess the potential damage or disruption to structural elements (Corominas et al., 2014) using the
magnitude of the event as index (Guzzetti, Galli, et al., 2006). Especially when dealing with these types of
movements (Lacroix, Handwerger, & Bièvre, 2020), the intensity can be estimated by utilizing data on ground
deformation as a proxy for velocity (Tofani et al., 2014). This data can be obtained through in‐situ measurements
(Artese & Perrelli, 2018; Corominas et al., 2000; Moss, 2000) or remote sensing techniques, the most common
making use of Interferometric Synthetic Aperture Radar (Caleca et al., 2022; Raspini et al., 2018; Solari
et al., 2020). Conversely, fast‐moving landslides (e.g., debris flows, shallow landslides) cannot be monitored
through remote sensing and they rather require numerical scenario‐based simulations (D’Ambrosio et al., 2003;
Van den Bout et al., 2021).

2.2. Review of Exposure Assessment

Exposure is also a fundamental component that explains the interaction between hazard and elements at risk. This
refers to the characteristics of individuals, assets, infrastructure, or any other elements within the areas that could
be affected by landslide impacts (Emberson et al., 2020; Lee & Jones, 2004). This aspect is likely the least
explored in the landslide literature (Maes et al., 2017; Pellicani et al., 2014), although it is well represented for
other natural hazards, for example, storms or earthquakes (see, Crowley & Bommer, 2006; Dell’Acqua
et al., 2013; Liao et al., 2019). The exposure of an element is determined by its position relative to the path of the
landslide, which varies depending on the landslide kinematics (Corominas et al., 2014). As a result, the number
and location of elements at risk differ depending on the type of expected landslide, be it a rockfall, a debris flow or
a slow‐moving landslide (Cánovas et al., 2016; Hantz et al., 2021; X. Wang et al., 2014). Due to this dynamic
characteristic, quantifying the exposure to landslides involves a pre‐required categorizing step where elements at
risk are labeled as static or dynamic (Y. Li et al., 2021). The exposure evaluation of static elements, such as
buildings, infrastructure, and agricultural areas, typically requires no extensive investigation because their in-
formation can be generally accessed through cadastral archives (Hunter & Williamson, 1990) or through remote
sensing products (C. Liu et al., 2019). Conversely, assessing the exposure of moving elements, including people
and vehicles, presents significant challenges and entails estimating conditional probabilities (spatial and tem-
poral) of their presence at the time when a given landslide might occur (Fell et al., 2005; C. Van Westen
et al., 2006). For the assessment of population exposure, the quantification is based on the number of human lives
exposed (Maes et al., 2017), whereas, for physical assets (e.g., buildings, infrastructure, or agricultural areas) their
exposure is determined by their monetary value (Burns et al., 2017). Therefore, the accuracy of exposure
assessment heavily relies on the quality of such data (Di Napoli, Miele, et al., 2023). However, recent ad-
vancements have seen an increase in high‐resolution data covering extensive regions and even global scale. This
improvement in data availability has facilitated more refined and comprehensive exposure assessments in risk
studies (De Bono & Mora, 2014; Emberson et al., 2020; Pittore et al., 2017; Scaini et al., 2023).

2.3. Review of Vulnerability Assessment

Aside from all these nuances, the vulnerability of exposed elements is related to the impact of an adverse event on
them. Therefore, its assessment is largely dependent on the estimation of landslide intensity and related effects on
exposed elements (Promper et al., 2015). Such consequences are expressed in terms of damages or losses on a
continuous numerical scale ranging from zero (no damages/losses) to one (total damages/losses) (Alex-
ander, 2005; Galli & Guzzetti, 2007).

Vulnerability can be split on the basis of the exposed elements: leading to a division in physical and social
vulnerability. Physical vulnerability refers to the impact on buildings, infrastructures and utilities (Papathoma‐
Köhle et al., 2011). Conversely, social vulnerability determines whether a landslide event will cause injuries or
fatalities (Antronico et al., 2020). Ideally, social vulnerability should also take into account the inequalities that
inevitably predispose specific social groups in the context of a potential disaster (Hewitt, 2014; Tapsell
et al., 2010). Because of this dual aspect, vulnerability analysis is a research topic that has been addressed via
multiple communities, involving engineers, as well as natural and social scientists (Glade, 2003b). As a result, its
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quantification has also been tacked with a proportional number of approaches, featuring two main approaches:
judgmental/heuristic as well as data‐driven or analytical methods (Corominas et al., 2014).

On the one hand, judgmental/heuristic approaches use expert opinion to evaluate the potential degree of damages
or loss (Bell & Glade, 2004; Kang & Kim, 2016). As a consequence, they are somewhat subjective and strongly
dependent on the specific case study (Ngadisih et al., 2014). On the other hand, data‐driven methods represent a
quantitative approach to evaluate vulnerability as a function of the landslide intensity and are frequently applied
thanks to their simplicity, reliability and lower degree of subjectivity (Fuchs et al., 2019; Singh et al., 2017).

A careful assessment of the available literature shows that buildings are the most addressed typology of elements
at risk considered in vulnerability studies (Luo et al., 2023). The reason lies in the fact that it is much easier for
buildings to gather damage data based on the intensity of past events and consequently lay the foundations for
building data‐driven models. These are generally expressed in terms of vulnerability curves, whose estimation
comes from regression analyses aimed at linking the hazard intensity to the losses (Agliardi et al., 2009; Peduto
et al., 2017). Alternatively, some models opt to estimate fragility curves. These boil down to functional relations
between landslide intensity and the probability of exceeding a specific building damage state (Del Soldato
et al., 2019; Fotopoulou & Pitilakis, 2013; Mavrouli et al., 2014).

Differently from the physical vulnerability case, assessing social vulnerability poses greater challenges due to our
society's diverse and distinct characteristics, leading to social imbalances in various parts of the world (Cutter
et al., 2013). Despite its complexity, social vulnerability analysis is an essential component of landslide risk
assessment, and a commonly used method for this purpose is the Social Vulnerability Index (SoVI; Y. Xiao
et al., 2022). SoVI is a quantitative tool that combines multiple indicators related to social factors, such as income,
education, age, access to resources, and population density (Nor Diana et al., 2021). These indicators are often
weighted according to their influence on vulnerability levels. The resulting SoVI value calculates the degree of
vulnerability for a specific area or community (Guillard‐Gonçalves & Zêzere, 2018; Wijaya & Hong, 2018).

2.4. Historical Development: An Overview Across Spatial Scales

The combination of all elements described above (landslide hazard modeling, exposure, and vulnerability ana-
lyses) constitutes the foundation of a complete landslide risk analysis (Fell et al., 2005). Notably, the complete
application of Equation 1 and Equation 2 allows for estimating landslide risk in quantitative terms. However,
landslide risk assessments are heavily related to the scale of analysis (Corominas et al., 2014). Therefore, it is not
always feasible to estimate the risk components in a strictly quantitative manner. For instance, in a risk analysis of
a specific landslide event, it is possible to conduct a detailed assessment of the landslide hazard and to model its
run‐out. This implies a fully understanding of what elements are exposed and how vulnerable they are to the given
landslide (L. Xiao et al., 2020). Accordingly, landslide risk may be expressed through multivariate approaches
and diagrammatic representations. In the multivariate context, it is essential to establish representative risk
scenarios (Guo et al., 2020). In turn, this refers to risk values associated with an object or geographical region that
can be visually depicted through risk curves. These curves express the relation between all probabilistic events
and the corresponding losses (Fu et al., 2020; Martha et al., 2013). In the context of human lives, landslide risk is
often expressed through F‐N curves (Jaiswal et al., 2011; Morgenstern, 2018). These curves illustrate, in graphical
form, the cumulative frequency of N or more fatalities (F) against the number of fatalities (N), typically plotted on
a log‐log scale (Reeves et al., 1999; Sim et al., 2022). However, when the extent of the study area increases (e.g.,
regional or even larger spatial extents), Equations 1 and 2 cannot be completely solved because not only is the
required data often unavailable, but spatial variance also becomes a limiting factor. In such cases, the results of
landslide risk assessments can be presented in a univariate format, typically as economic losses per year (Peng
et al., 2015; Remondo et al., 2008) or per mapping unit (Bednarik et al., 2012; Erener & Düzgün, 2013; Pereira
et al., 2017).

To summarize, the literature on landslide risk from 2000 showed remarkable growth (Figure 1) in the number of
scientific contributions (Lei et al., 2023). The observed rise can be ascribed to the widespread adoption of
Geographic Information System (GIS) techniques, which have been extensively utilized as a tool for conducting
spatial data analysis and graphical depiction in diverse fields, encompassing the domain of landslide risk
assessment (Carrara et al., 1991; Rautela & Lakhera, 2000; C. Van Westen, 2004). Building upon the foundations
laid during the previous years, the field of landslide risk assessment further experienced consistent advancements
from 2005, mainly in the form of high‐resolution data inclusion and the development of new approaches
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(Caleca et al., 2022; Novellino et al., 2021; Peng et al., 2015; Remondo et al., 2008; Saleem et al., 2019). Focusing
on the spatial scale at which these risk studies have been applied, what emerges is that the analyses are vastly site‐
specific and hardly go beyond this level (Corominas et al., 2005; Ferlisi et al., 2012; Karantanellis et al., 2020),
with very few regional‐scale contributions (Catani et al., 2005; Hidalgo & Vega, 2021; Remondo et al., 2005;
Vranken et al., 2015). Similarly, contributions addressing national cases are rare in the literature (see; Dorren
et al., 2009; Gaprindashvili & Van Westen, 2016). Conversely, when dealing with continental scale, the analysis
boils down to a rough identification of regions where landslide hazard and the corresponding risk might be
elevated (see; Jaedicke et al., 2014). More generally, risk analyses involving large landscapes are usually
implemented by means of simple indicators (see; Abella & Van Westen, 2007; de Almeida et al., 2016; Pereira
et al., 2020; Segoni & Caleca, 2021). This is the current state of the literature and in this context, we see the
potential for risk assessments encompassing extensive geographical domains. This should be achievable, espe-
cially in light of recent developments in impact‐based digital archives. Such data sets offer the potential for
conducting—at least—preliminary regional scale studies aimed at identifying areas likely to suffer losses and
obtain rapidly updatable and easy‐to‐understand results.

3. European Mountain Ranges and Mapping Unit Partition
The Baltic Shield, the Hercynian Massif, the Alpine System, and the Carpathians are the principal geological
settings across the European continent. Geomorphologically, Europe hosts different landforms ranging from
rugged mountain ranges to coastal plains, river valleys, and glacial landscapes, a product of various erosional and
depositional processes over time (Meeus, 1995). The Pleistocene glaciations have left a significant signature on
the European landscape, with large ice sheets covering northern Europe, forming fjords in Norway, U‐shaped
valleys in the Alps and Scotland, and moraines and drumlins in places like Sweden and the British Isles (Bug-
gle et al., 2013; Mahaney & Andres, 1991). Alongside these processes, the European landscape also underwent a
post‐deglacial phase when a prominent uplift and subsequent relief growth took place in response to isostatic
adjustments. This is particularly evident across the Scandinavian landscape (Nielsen et al., 2009).

To perform our analyses, the study area is divided into 13 mountain zones (Figure 2a), each reflecting different
geological settings. In this work, we use the r.slopeunits software proposed by Alvioli et al. (2016) to further
partition the 13 mountain ranges into SUs. This decision follows an initial criterion where we set out to assess
landslide risk across the main morphotectonic features of Europe. In this sense, focusing on these 13 zones
satisfies the initial objective, leaving out only small and individual hills. As for the SU choice, we opt for these
units for geomorphological, statistical and purely computational reasons. Geomorphologically, SUs successfully
approximate the slope response. In other words, if a landslide occurs, its initiation (and in most cases also its
propagation) will be confined within a single slope, or SU, with the exception of extremely large ones. Statis-
tically, this also implies that labeling an individual SU as unstable will be largely independent of the stable/
unstable condition of the adjacent units, a requirement of most data‐driven models (Bergtold et al., 2010).
Conversely, when using grid cells, assigning an unstable label to a small unit will most likely be dependent on its
neighboring units. Computationally, an SU partition also ensures generating a relatively small data‐matrix and,
with it, limits the final computational burden. Continuing the parallelism with the grid‐cell case, the choice of a
small pixel may lead to data matrices thousands or even millions of times larger than an SU counterpart. In the
case of a comparatively coarse grid‐cell choice, then km‐wide grids will span over contrasting morphometric
characteristics, making the resulting model mostly unreliable.

The way r.slopeunits operates is for it to make exclusive use of a Digital Elevation Model as data entry. From it,
the aspect (Zevenbergen & Thorne, 1987) is generated, and SUs are obtained by clustering slope exposition pixels
following a hydrological criterion. In short, SUs are delineated between stream and divide lines, creating a fractal
representation of sub‐catchments. The notions summarized above are numerically translated into a number of
parameters, which r.slopeunits requires. Specifically, the fractal representation of sub‐catchments is expressed
with the flow accumulation threshold and minimum surface area, two parameters that regulate the starting and
ending planimetric extent targeted by the user. As for the aspect clustering procedure, this is regulated by the
circular variance, a parameter that controls how rigidly (values close to 0) or flexibly (values close to 1) the
calculation should allow for variations in aspect values within a single SU polygon. Notably, because of its
relatively simple requirements, r.slopeunits has seen significant use in recent years (Amato et al., 2023; Schlögel
et al., 2018). This has even stimulated other scientists to produce alternative SU generators (Al‐Thuwaynee
et al., 2023; F. Huang et al., 2021; K. Wang et al., 2019). More generally, this has been translated into several
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contributions interest in the field of landslide occurrence modeling studies (Amato et al., 2019; Domènech
et al., 2020; Lombardo et al., 2020).

In our case, the r.slopeunits configuration we adopt led to 570,635 SUs, with a mean surface extent of 3.6 km2

and a variability of 4.2 km2 measured in a single standard deviation. The exact parameters are: minimum
area= 400,000; circular variance= 0.4; clean size= 200,000; threshold= 10,000,000; reduction factor= 10. For
further explanation of what each of these parameters implies, we refer the reader to Alvioli et al. (2016).

3.1. Landslide Inventories

Landslide inventories are crucial to support any consideration or assessment involving susceptibility, hazard, and
risk analyses (Corominas et al., 2014; Fell et al., 2008). In the current state, no unique and comprehensive Eu-
ropean landslide inventory exists. Individual countries respectively host and maintain their own databases, which
in most cases are either inaccessible or limitedly accessible (Foster et al., 2012; Jaedicke et al., 2009; Rosser
et al., 2017). This leads to an overall scenario where the digital information on slope failures at the European scale
is mostly incomplete. As a result, the true landslide occurrence can be largely underestimated in specific locations
(Herrera et al., 2018). Exhaustive information on the structure and availability of landslide inventories among
European countries has been widely analyzed by different authors in the last decade. For instance, Van Den
Eeckhaut and Hervás (2012) and Herrera et al. (2018) summarized the state‐of‐art on this topic. The very same
data set was used here to model the landslide occurrence probability over Europe. Specifically, we collected 17
inventories among national, regional and local European administrations intending to cover the main mountain
ranges. The information on the collected data is summarized in Table 1.

Figure 2. Panel (a) illustrates the different mountain zones in Europe. Panel (b) shows a detail of the Slope Unit partition using examples from Innsbruck.

Reviews of Geophysics 10.1029/2023RG000825

CALECA ET AL. 11 of 45

 19449208, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000825 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [08/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Overall, we collected 1,034,700 landslides. These landslides geographically fall inside 66,764 SUs, or 11.7% of
the total units. Out of all the European mountain ranges, the Apennines and Alps are the ones that host the largest
amount of landslides, with 87.3% of all the ones we collated. Such observation is already an indicator of a
substantial unbalance in the European database we collated. One may argue that this may be a natural distribution.
However, it is much more logical to assume that the human factor controls the spatial distribution and frequency
of landslide occurrences in the data, expressed explicitly in how geological surveys operate in landslide mapping
or in how they transfer the mapping responsibilities to other agencies or professional groups. This is, for instance,
the case highlighted by Loche et al. (2022) among different regions in Italy. Therefore, the situation can only be
more diversified when different countries are involved. As a result, if one would generate a susceptibility model
trained over SUs labeled as stable and unstable based on the landslide distribution over Europe, the results would
potentially reflect heightened occurrence probabilities at locations where more landslides are reported but not
necessarily where the susceptibility is actually high. In the context of susceptibility modeling, these issues are
typically addressed by including some bias‐removal procedure in the modeling, which is also the strategy adopted
in this work. Further technical explanations on this topic will be provided in Sections 3.2.2 and 4.

Notably, in this specific case where we do not have access to consistent temporal information for each European
landslide, we simply focus on estimating and removing spatial biases. However, temporal biases are also to be
generally expected over wide regions (Steger et al., 2024). In the literature, this is mostly mentioned in relation to
recent improvements in the quality and frequency of orthophoto and satellite data acquisition, in contrast to older
inaccurate reports and low‐quality aerial cartographic support (Niyokwiringirwa et al., 2024).

3.2. Covariates

The selection of an appropriate set of covariates to explain the distribution of stable/unstable slopes is a
fundamental requirement that should always have a dual connotation in any data‐driven model. The first
(qualitative) aspect concerns choosing a covariate set that follows a geomorphological criterion (Budimir
et al., 2015). In other words, an initial screening is performed by any user, who typically opts for a set of pre-
disposing and triggering factors, whose role in the model is to explain directly or as proxies some parameters or
quantities tied to the physics of the process under consideration. The second (quantitative) aspect in selecting a

Table 1
Overview of the Collected Landslide Inventories Across European Countries

Country/Region Mountain domain Repository

Austria Alps Link‐At

Bavaria (Germany) Alps and Central West Link‐De

Chania, Karditsa (Greece) Dinarides ‐ Balkans Link‐Gr

Czechia Central East and Carpathians Link‐Cz

France Alps, Massif Central, Pyrenees and Sardinia‐Corsica Link‐Fr

Great Britain British Isles Link‐Uk

Iceland Iceland Link‐Is

Ireland British Isles Link‐Ie

Italy Alps, Apennines and Sardinia ‐ Corsica Link‐It

Norway Scandinavia Link‐No

Portugal Iberian peninsula Link‐Pt

Romanian Carpathians (Romania) Carpathians Link‐Ro

Slovakia Carpathians and Central East Link‐Sk

Slovenia Dinarides ‐ Balkans Link‐Si

Spain Pyrenees and Iberian peninsula Link‐Es

Sweden Scandinavia Link‐Se

Switzerland Alps, Massif Central and Central West Link‐Ch

Reviews of Geophysics 10.1029/2023RG000825

CALECA ET AL. 12 of 45

 19449208, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000825 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [08/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.geosphere.at/de
https://www.lfu.bayern.de/index.htm
http://eng.metal.ntua.gr/
https://mapy.geology.cz/svahove_nestability/
https://www.georisques.gouv.fr/
https://www.bgs.ac.uk/
https://en.vedur.is/
https://www.gsi.ie/
https://idrogeo.isprambiente.it/app/
https://www.nve.no/
https://zenodo.org/records/7117037#.ZBrdHXbP02y
http://www.geo.uaic.ro/
https://www.geology.sk/
http://www.geo-zs.si/
https://info.igme.es/BDMOVES
https://www.sgi.se/
https://www.wsl.ch/en/natural-hazards/understanding-and-forecasting-floods/flood-and-landslide-damage-database/


suitable set of covariates should follow a numerical criterion directed to removing any redundant information
(Van Der Linde, 2005).

In this manuscript, two additional elements conditioned the strategy for the choice of a suitable set of covariates.
These correspond to the lack of information on the type of landslides, due to the continental nature of the in-
ventory we collated. And, the second boils down to the geomorphological complexity of the mountain regions
under consideration. For this reason, we decided to collect a very large data set of independent variables
expressing the general environmental characteristics, and the meteorological conditions (e.g., slope steepness,
rainfall data). From this large set, we plan to isolate the most relevant covariates by undertaking a penalized
variable selection (Marra & Wood, 2011).

However, such a scheme would not work in a situation where a strong bias affects the data. In fact, one or more
variables in the set could be partially sensitive to the bias (share part of the spatial patterns with it). As a result, the
estimation of the regression coefficients could be influenced and ultimately lead to classification results whose
performance may seem high, but whose susceptibility patterns would reflect artifact trends. This topic is
extensively discussed in the following articles, and we refer the reader to these for understanding multi‐scale bias
propagation issues in landslide susceptibility studies (Lima et al., 2021; Lin et al., 2021; Loche et al., 2022;
Stanley & Kirschbaum, 2017b; Steger et al., 2021; Steger, Brenning, Bell, & Glade, 2016).

The same articles mentioned above offer solutions to minimize the propagation of inventory biases into any
susceptibility model. Among them, the most elegant and accepted solution consists of the introduction of a co-
variate that has a strong association with the bias. Its role would be to capture all the spatial dependence related to
the incompleteness of the landslide inventory, leaving the estimation of the remaining covariate effects unaf-
fected. As a result, one can then remove the bias covariate from the additive structure of the model and produce
bias‐removed probability estimates. It is for this reason that the following two subsections will separately present
the covariates that we choose to carry the susceptibility signal (see, Section 3.2.1) and the covariates that we chose
to capture and remove the bias from the model (see, Section 3.2.2). A generic list of all tested covariates can be
found in Table 2. As for how we performed the penalized variable selection, the relative explanation is presented
in Section 4.1.

3.2.1. Bias‐Unrelated Covariates

The covariates we choose to explain European landslides' predisposing and triggering factors include
geomorphological, geological, meteorological and land use properties. The morphometric ones are obtained

Table 2
Covariates' Overview: Names, Description and Acronyms

Covariate Description Acronym

Country Country to which the SU belongs Zone

Length of infrastructures Total length of infrastructures within SU IL

Slope μ Mean of slope steepness within SU SLμ

Slope σ Standard deviation of slope steepness within SU SLσ

Distance to active faults Distance between the SU centroid and nearest seismogenic
active fault

D2F

% Land use change Total percentage in terms of land use change within SU LUC

NDVI μ Mean of NDVI over 20 years within SU NDVIμ

Cumulated yearly rainfall μ Mean of cumulated yearly rainfall over 20 years within SU ARμ

Profile curvature μ Mean of profile curvature within SU PrCμ

Planar curvature μ Mean of planar curvature within SU PlCμ

Lithology Dominant lithology class within SU LIT

Northness μ Mean of northness exposure of SU NNμ

Eastness μ Mean of eastness exposure of SU ENμ
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from the Copernicus GLO‐90 DEM (https://doi.org/10.5270/ESA‐c5d3d65), namely: (a) slope steepness
(Zevenbergen & Thorne, 1987); (b) eastness and northness (Fassnacht et al., 2012); (c) profile and planar
curvature (Moore et al., 1991). We also include a proxy for seismicity computed as the distance between the
centroid of each SU from the nearest seismogenic active fault (provided by Danciu et al. (2021)). The mete-
orological proxy is obtained instead as the mean annual rainfall over the past 20 years of NASA global pre-
cipitation measurement data (see, Huffman et al., 2015). We also incorporate vegetation density as the mean
annual Normalized Difference Vegetation Index (NDVI; Pettorelli et al., 2005), referred to the last 20 years of
LANDSAT 7 imagery (Masek et al., 2006). As for the lithological signal, each SU is assigned the dominant
class, whose information was accessed through the map made by Wilde et al. (2018). We also include land use,
not in its raw expression but rather in terms of land use change (Glade, 2003a). We do so by computing the
percentage change of each land use class per SU, over the last 20 years of MODIS data (Justice et al., 2002).
Notably, we opt for MODIS instead of the CORINE Land Cover database (Bossard et al., 2000) because the last
update of the European‐specific product dates back to 2018, and also excludes information on areas such as the
Ukrainian Carpathians.

During the pre‐processing phase of any SU‐based model, summarizing the variability of high‐resolution pre-
dictors over the polygon extent of each mapping unit is required. For instance, in Section 3, we report a mean SU
planimetric area of 3.6 km2, while in this Section, we mentioned the use of a 90 m resolution Copernicus DEM. As
a result, an average SU in our European delineation theoretically contains 444 grid cells (3.6 km2 divided by
0.0081 km2). We assign each SU the mean and standard deviation values to reflect the associated covariate
distribution. This is a common procedure (Guzzetti, Reichenbach, et al., 2006), justified whenever the covariate
distribution per SU is normal or close to it (see Figure 3 in Lombardo and Tanyas (2020)). Notably, alternatives do
exist in the form of a quantile covariates' representation (Amato et al., 2019), but such a choice would increase the
predictor space. For this reason, in the context of the large SU number we generated over Europe, the choice of a
dual representation (μ and σ) ensured the least complexity.

To provide an overview, we list the predictors and their statistical properties in Table 2.

3.2.2. Bias‐Related Covariates

To capture the spatial variability in the data due to national patterns of inventories' completeness rather than
natural characteristics, we used two covariates. These are: (a) national country of the institutions that have
generated the different inventories (see, Loche et al., 2022; Meinhardt et al., 2015); (b) total spatial distribution of
transportation infrastructure per SU (see, Stanley & Kirschbaum, 2017a; Steger et al., 2017) computed using the
OpenStreetMap database (Haklay & Weber, 2008). We recall once more that such properties will not be strictly
used for susceptibility modeling. They will enter the regression procedure only during the initial stage, with the
aim of capturing the effect of various mapping organizations (the ith case mentioned above) or the greater ten-
dency to report landslides along transportation lines (the iith case mentioned above). For predictive/mapping
purposes their contribution to the model will be forced to zero, effectively removing the bias.

4. European Landslide Susceptibility Modeling
Below, we briefly provide a comprehensive overview of the model adopted to estimate landslide occurrence
probabilities across the main European mountain belts, the choice of validation routines and the related perfor-
mance assessment.

4.1. Generalized Additive Models

Generalized Additive Models (GAMs) represent a class of statistical models that extend the Generalized Linear
Model (GLM) by allowing for the incorporation of non‐linear relationships between independent and dependent
variables. These non‐linear associations are accommodated using smoothing functions in the form of splines
(Hastie & Tibshirani, 1987). Thus, independent variables can be employed in either linear or non‐linear forms,
leading to high flexibility and associated performance. This characteristic enables the approach to be categorized
within the interpretable machine learning family (Molnar, 2020). Consequently, owing to their transparency and
interoperability, GAMs have found extensive application in geomorphological studies, mainly in the form of
landslide susceptibility (Brenning et al., 2015; Goetz et al., 2015; Loche et al., 2022; Steger, Brenning, Bell,
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Petschko, & Glade, 2016). GAMs are versatile in handling various statistical distributions, including but not
limited to binomial, Poisson, and Gamma (see, Yadav et al., 2023). In the context of landslide susceptibility,
where the response variable indicates the presence or absence of landslides for each mapping unit, a Binomial
GAM is often chosen, this being also the case for the present contribution. The general structure of the Binomial
GAM we implement can be expressed as follows:

log(
p

1 − p
) = β0 + βNNμ

NNμ + βENμ
ENμ +∑ f1(Zone, LIT)

+∑ f2 (SLμ,SLσ,NDVIμ, IL,ARμ,PrCμ,PlCμ,LUC,D2F)
(3)

where log( p
1 − p) is the Binomial probability we aim to estimate via a logit link function, p being the actual

probability of landslide occurrence. The right side of the equation shows the additive structure of a GAM, listing
the covariates we selected and the related effects. Specifically, β0 is the global intercept, NNμ and ENμ correspond
to two linear cases, and the remaining ones represent the random effects. Overall, f1 indicates two categorical
effects, and f2 indicates splines used for nine ordinal covariates.

As elaborated in Section 3.2.2, our objective is to construct a model that effectively addresses the spatial
incompleteness present in landslide inventories. To achieve this, we equipped our Binomial GAM with a bias‐
removal step. We recall here that the aim of any statistical model is to explain the variability of a given
response variable according to the selected probability distribution. In our case, the spatial distribution of
landslides across Europe is what our model would attempt to explain according to the set of covariates we chose.
Therefore, if the variability of landslide presence/absence is controlled by external factors such as different
reporting protocols across European countries or simply the task of mapping being exclusively executed by road
management agencies, using such covariates would heavily bias the resulting susceptibility (Loche et al., 2022).
However, it is possible to turn this around and make use of such biased covariates to capture the variability in the
landslide inventories and then set, a posteriori, the estimated regression coefficients of biased covariates to zero
(Steger et al., 2017). In such a way, the remaining covariates would not be affected negatively in their effects'
estimation, and the final susceptibility map would remain unbiased (e.g., Lin et al., 2021; Steger et al., 2021). For
this reason, we introduced a covariate we referred to as Zone, this being responsible for capturing the bias in the
European inventories associated with the differences in landslide mapping protocols. Similarly, we also intro-
duced an additional covariate we refer to as IL, with the aim of capturing the variability in the European in-
ventories due to the dominant mapping along roads.

In our model, we introduced the covariate Zone as a categorical random effect (see, f1 in Equation 3). This means
that one random intercept will be estimated independently for each country listed in the vector Zone. In other
words, we used Zone as an i.i.d. effect, or “independent and identically distributed random variable”
(Wood, 2013). For reasons not related to bias‐removal actions, we also included an additional i.i.d. covariate, this
being the predominant lithotype per SU, or LIT, as per notation in Equation 3. Similarly to the Zone, a categorical
use of the LIT implies an estimation of a random and independent intercept for each lithological class. The effects
of the remaining covariates were considered nonlinear and fitted via smoothing functions ( f2). To control their
maximum flexibility, a constraint was imposed on these functions by setting a k‐value of 5. Conversely, for the
covariate IL the value was set to 3 after numerous tests. In analogy to the Zone case, the IL function will be set to
zero to remove any bias accordingly.

The Binomial GAM we set up incorporates an automatic variable selection procedure utilizing the double penalty
technique. A comprehensive technical description of this technique is provided in Marra and Wood (2011), to
which we refer the reader for further details. Ultimately, the implementation of our Binomial GAM was carried
out in the R environment (Ihaka & Gentleman, 1996) by using the mgcv package (Wood, 2017).

4.2. Performance Assessment

To evaluate the performance of our model, we employed three distinct cross‐validation routines. The initial
approach involved a classical random cross‐validation (RCV), partitioning the data set into 10 mutually exclusive
subsets. Therefore, the model was iteratively trained and tested 10 times, with each 10% subset serving as the test
set once. However, the RCV often produces limited variations in performance with respect to the fit, whenever the
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given data set exhibits some degree of spatial clustering. A complementary and even more relevant cross‐
validation routine has been suggested in the literature to break down any spatial coherent structure in the data.
We refer the readers to the spatial cross‐validation (SCV, hereafter) explained by Brenning (2012), or to the leave‐
group‐out recently introduced by Z. Liu and Rue (2022).

In this manuscript, we opt for implementing a SCV (Pohjankukka et al., 2017), to explore the predictive results of
our model without obtaining overly positive metrics due to residual clustering effects. SCV results can offer
valuable insights into spatial robustness as they allow for monitoring of how model performance may vary across
different spatial regions. Thus, one can recognize specific sectors of a given study area associated with the worst
predicting scenario. Building upon these principles, we implement two different SCVs. We refer to the first as a
domain‐oriented SCV strategy, wherein the data set is partitioned into n distinct subsets based on the different
mountain regions (n= 13). The model is subsequently trained on n − 1 subsets and tested on the remaining region.
We then iterate the process for all 13 mountain regions, ensuring comprehensive coverage and assessment of the
model performance across diverse geomorphological domains. Conversely, we implement the second SCV
approach based on a more conventional k‐means clustering routine, as per the sperrorest package. For technical
details about the implementation, we refer the reader to Brenning (2012). In short, sperrorest uses the x and y
coordinates of the mapping unit of choice (here corresponding to the centroid of each SU), and clusters them into a
number of groups defined by the user using a k‐mean technique. The interesting aspect of sperrorest is that one
may obtain high or low predictive performances due to the initial spatial arrangement. To avoid such effect,
sperrorest offers an additional option to randomize the clustering procedure. As a result, one can obtain any
number of subsets, each one further clustered differently from the previous. Here, we opt for a ten‐by‐10 partition,
creating 10 random subsets, each one divided into 10 clusters. As a result, we train at each fold over nine clusters
and validate onto the remaining one, repeating this operation across the random subsets for a total of 100 SCV
replicates.

Variations in performance are evaluated via cut‐off independent metric, opting for the Area Under the Receiver
Operating Characteristic curve (AUROC, Hosmer & Lemeshow, 2000). The AUROC is a common evaluation
metric used to assess the performance of binary classification models (Hanley & McNeil, 1982). The AUROC is
derived from the Receiver Operating Characteristic (ROC) curve, which is constructed by graphing the True
Positive Rate (TPR) against the False Positive Rate (FPR) over a range of classification thresholds. Notably,
AUROC values range from 0.5 (no realistic classifier should report values below 0.5) to 1, where the former
points out a purely random classifier, while an ideal classifier attains a value of 1 (Fawcett, 2006).

5. European Landslide Risk Modeling
In the forthcoming sections, we delineate the methodological procedures adopted for modeling landslide risk
across the diverse landscapes in Europe. Leveraging the findings obtained by the previous susceptibility step,
together with high‐resolution data on elements at risk, below, we propose a protocol to quantify the potential risk
posed by landslides. We express risk in terms of expected losses for potential human lives, settlements and
agricultural regions within each SU. To the protocol presented below, we will also add considerations regarding
the inherent uncertainties and approximations (see, Sections 5.1 and 5.2.1) that arise when dealing with regional
scale studies.

5.1. European Exposure

5.1.1. Human Settlements and Agricultural Areas

In the context of risk analysis, exposure is a component that describes the interaction between the dynamics of the
phenomenon at hand and the elements at risk, as well as vulnerability (Corominas et al., 2014). Specifically, the
exposure of an element exhibits a strong dependence on its spatial proximity to the landslide runout (Pellicani
et al., 2014). Nevertheless, constrained by the limitations of regional to continental scale studies, the precise
modeling of this intricate relationship remains elusive. This has mostly to do with the impossibility of simulating
landslide runout over large geographic areas. Consequently, in our risk model, we assume that, in the event of a
landslide, all elements placed within a SU will be affected.

Our analysis does not account for transportation infrastructure among the exposed elements due to the un-
availability of a comprehensive European database enabling the extrapolation of the monetary values or

Reviews of Geophysics 10.1029/2023RG000825

CALECA ET AL. 16 of 45

 19449208, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023R

G
000825 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [08/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



reconstruction costs. We express exposure in monetary units (€), necessitating a preliminary computation of the
spatial extent occupied by the distinct categories of elements at risk within each spatial unit (SU).

To calculate the extent of land occupied by human settlements in our mapping unit, we use the GHS‐BUILT‐S
database (Pesaresi & Politis, 2022). This database is represented as a spatial raster available with different spatial
resolutions (e.g., 10, 100, and 1,000 m), providing a detailed representation of the global distribution of built‐up
surfaces. Furthermore, the data are spatio‐temporal interpolated or extrapolated from the period between 1975 and
2030. This aggregation is performed on a 5‐year interval basis, allowing for potential studies with future sce-
narios. For further details related to this product, we refer the readers to Schiavina et al. (2022). In our context, we
opt to utilize the 100‐m spatial resolution data set, as opposed to the more detailed 10‐m data set. While the latter
offers greater spatial information, it is constrained by its data availability, with the most recent update dating back
to 2018. As a result, we derive the extent of the built‐up area within each SU by summing the values of each 100 m
× 100 m grid cell, quantifying the surface area covered by human settlements for each mapping unit. Concerning
the economic evaluation of human settlements, we employ an exposure database specifically designed for seismic
risk analysis in Europe (Crowley et al., 2020), whose information is available in the repository provided by
Crowley et al. (2021). The exposure database describes the spatial distribution of residential, commercial and
industrial building classes in terms of building count, covered area m2, occupants and reconstruction cost (€) for
44 European countries. The database can be accessed at various resolutions; however, in our specific context, we
employ the higher resolution characterized by a hexagonal grid with a spacing of 0.30 × 0.34 decimal degrees.
Despite being relatively coarse, this resolution represents the best description of building exposure in Europe
among the available products. Consequently, we calculate the mean value in €/m2 for each hexagonal grid by
dividing the relative total reconstruction cost and the covered area by buildings. As a result, we determine the
mean building economical value for each hexagonal grid and further aggregate this information at the SU level by
taking the mean of the cost distribution. The quantification of human settlement exposure within each SU is then
achieved by multiplying the relative mean monetary value (€/m2) with the corresponding built‐up surface
area (m2).

As for the spatial distribution of agricultural areas, we derive this information from the CORINE Land Cover
2018 (CLC 2018) database. In contrast to the approach used for land use covariate in the landslide susceptibility
modeling (see, Section 3.2.1), we use the CLC 2018 database instead of the MODIS database. The choice is due to
the CLC 2018 database's superior spatial resolution of a 100‐m grid side compared to the 500‐m resolution offered
by the MODIS database. Additionally, the CLC 2018 database provides more comprehensive and detailed in-
formation regarding the various classes of land use. This enhanced level of detail and resolution in the CLC 2018
database is crucial for capturing the heterogeneity of agricultural areas, making it the preferred choice for our
analysis, although it does not provide information for Ukrainian Carpathians. Due to our focus on specific land
uses and relative risk assessment, we adopt a proxy to represent the spatial coverage of agricultural areas within
each SU. Specifically, we consider Group 2, denoted as “Agricultural Areas” and subgroup 3.2.1, identified as
“Natural Grasslands” from CLC 2018 database. The monetary valuations of agricultural areas across Europe are
derived from the Land prices and rents (APRI‐LPRC) database, meticulously curated by the statistical office of
the European Union ‐ EUROSTAT (Eurostat, 2012). This comprehensive database serves as a reliable source of
land prices expressed in euros per hectare (€/ha) for diverse regions and countries within Europe. By leveraging
this database an economic value for agricultural areas is defined for each SU. Unfortunately, the database does not
encompass certain countries such as Germany, Norway, Portugal, Austria, Iceland, and Switzerland. As a
consequence, “No Data” is encountered in our assessments for these countries. Nevertheless, previous regional
scale investigations have indicated that the influence of the agricultural area component in risk modeling is
significantly less compared to urban centers (Caleca et al., 2022). Considering this insight, the uncertainty arising
from the absence of land cover or land price data in these specific countries is deemed acceptable within the scope
of our analysis, especially because the present contribution serves mostly as a review and example basis. As a
result, for SUs with a complete description of agricultural areas, their exposure is quantified by multiplying the
market value (e/ha) and the corresponding surface extent (ha), resulting in an exposure value expressed in
euros (€).

An overview of the data we use to evaluate the exposure components for both human settlements and agricultural
areas, we refer the readers to Table 3.
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5.1.2. Population

Ultimately, we also make use of population density data. Notably, the time scale for which our susceptibility
model is valid and the time scale for which population density changes its spatial distribution is very different.
Therefore, formally defining a numerical life loss estimator is not possible. In fact, to match the two data and
estimate losses, one should model landslide dynamics (initiation and propagation) together with the spatio‐
temporal distribution of the people potentially affected (M. Rossi et al., 2019). This information for most of
Europe has been recently made available with a monthly resolution in time (for the reference year of 2011), and
with a spatial resolution of 1km2. This data set has been published by Batista e Silva et al. (2020) and highlights
differences in the distribution of population on a sub‐daily basis, showing patterns for both day and night. This is
the only regional scale data set with analogous characteristics, this being the reason for our choice (further
explanation will be provided in the following section).

5.2. European Risk

5.2.1. Risk of Human Settlements and Agricultural Areas

The landslide risk assessment relies on the theoretical framework outlined by Equation 2. We recall here that
when dealing with regional scale studies, it becomes necessary to incorporate certain assumptions into the
methodology. This is mainly attributable to the lack of data, which hinders an overall evaluation of risk com-
ponents at the large extent of the study area. Specifically, the characterization of the hazard component is
delineated by means of spatial probability of occurrence (susceptibility), owing to the intrinsic limitations pre-
cluding the quantification of its distinct temporal and intensity dimensions (Guzzetti et al., 2005). The inherent
impracticability of amassing comprehensive data pertaining to landslide kinematics, frequency, and magnitude at
a continental scale imposes the need for simplifying the hazard information to the available susceptibility.
Furthermore, an additional assumption is incorporated regarding the vulnerability assessment. To elaborate,
evaluating vulnerability is a complex task, even for site‐specific investigations, as it requires assessing the re-
action of exposed elements to the phenomenon (Z. Li et al., 2010; Tapsell et al., 2010) and its intensity (Promper
et al., 2015). These challenges are even more accentuated when dealing with regional scale analyses. As a result,
we hypothesize that in the event of a landslide, any element intersecting its trajectory would incur irreparable
damage, thereby implying a vulnerability value of 1, with the due uncertainty that such a hypothesis brings into
the analyses. As a result, Equation 2 can be re‐written to suit our analysis, specifically in relation to a singular SU,
as follows:

R =
S × (Ehs + Eaa)

ASU
, (4)

where R is the landslide‐induced risk expressed in euros per square meter (€/m2); S is the spatial probability of
occurrence of landslides (susceptibility); Ehs is the human settlements exposure (€); Eaa is the agricultural areas
exposure (€); ASU is the planimetric area (m2) of the reference SU.

The application of Equation 4 expresses risk in terms of expected economic losses across the European landscape,
on a continuous scale. Notably, we opt to conceptualize risk in terms of €/m2; this selection is made to facilitate
both comprehensive SU comparisons and disseminate insights concerning areas that might be predisposed to
experience more substantial damages.

Table 3
List of the Exposure Components and Database Employed for Their Assessment

Exposure component Input data Repository

Spatial distribution of human settlements GHS‐BUILT‐S Link‐GHSL

Spatial distribution of agricultural areas CORINE Land Cover 2018 Link‐CLC

Economic value (€/m2) of buildings Exposure model data for European seismic risk assessment Link‐EMD

Economic value (€/ha) of agricultural areas Land prices and rents (APRI_LPRC) Link‐APRI
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5.2.2. Population at Risk

For a continental‐scale study, population risk dynamics are currently largely unfeasible to estimate. However, one
can still obtain a general overview of the risk the population may be exposed to by exploiting the demographic
census and matching it against the landslide occurrence probabilities. In turn, this information may be used for
master planning purposes. Interestingly, if a landslide or a population of landslides would take place during the
day or night times, the risk pattern will inevitably assume very different spatial characteristics. The nighttime
mainly sees the population clustered in residential areas, whereas the daytime highlights a distribution clustered in
commercial and/or urban areas. Here, we try to capture and exemplify such differences by plotting two separate
maps, one where our European landslide susceptibility is spatially joined to the daytime population density and
one where the same is produced for the nighttime. This is done by taking the year 2011 as the reference period,
mainly due to reasons of data availability. The data set produced by Batista e Silva et al. (2020) offers a day and
night representation aggregated on a monthly basis. To summarize this information, here we take the annual mean
over day and night. Thus, rather than generating a formal life loss estimator, we produce an overview of the
potential population at risk during the two main phases of a daily cycle.

6. Results
6.1. European Susceptibility Overview

This section is divided into three main components. We initially present a summary of the covariate effects
estimated in our landslide susceptibility model (see, Section 6.1.1). Subsequently, we provide a summary of the
model performance (see, Section 6.1.2). And finally, we conclude the susceptibility overview by comparing two
(biased and unbiased) probabilistic maps (see, Section 6.1.3).

6.1.1. Covariate Effects

We present the estimated covariate effects expressed at the scale of the response. We recall here that one may
express covariate effects at the scale of the regression coefficients or directly in terms of occurrence probabilities.
We consider the latter to be slightly more readable, although the overall meaning is essentially the same. The
visual representation of such effects is reported in Figure 3. There, one can notice that the ordinates are expressed
as the logistic cumulative density of the respective regression coefficient's distribution. In other words, the
regression coefficients are transformed by taking their exponential divided by 1 + their exponential. We recall
here (see, Section 4.1) that other than ENμ and NNμ, all other covariates have been passed to the model as random
effects, either in a categorical form (as iid) or in an ordinal form (as splines). For reasons of conciseness, we limit
our interpretation focus to the covariates discussed below.

The categorical effects are displayed in Figures 3a and 3b. The former depicts the random intercepts estimated for
the countries responsible for compiling the landslide inventories. An in‐depth analysis of the outcome derived
from the application of these effects reveals a discernible trend, wherein the countries can be categorized into two
distinct groups. These are clearly shown to be clustered far above the 0.5 probability mark and far below the same.
Their respective countries are deemed highly susceptible to landsliding. For instance, Italy (ITA) and Switzerland
(SWI) are clear examples, with assigned marginal probabilities of 0.94 and 0.93, respectively. It is essential to
reiterate that the incorporation of random effects within our modeling framework facilitates the evaluation of the
completeness of the various landslide inventories at our disposal. Based on this consideration, it becomes evident
that the countries falling within the first group primarily correspond to those possessing comprehensive infor-
mation regarding the presence or absence of landslides at the national level. Other examples include Slovakia
(SLK), France (FRA), Austria (AUS) and the United Kingdom (UK). Conversely, the second group falls below
the 0.5 probability threshold, and lists countries with only available regional inventories or, in general, with
limited information on landslide occurrences. Notable members of this group encompass Slovenia (SLO), Greece
(GRE), Portugal (POR), Spain (SPA), Sweden (SWE), and Romania (ROM).

Another covariate we modeled with a random categorical effect is the lithology. The effects of lithological classes
on the probability of landslide occurrence are reported in Figure 3b. There, examining the resulting effects shows
that the class LIT19, or claystones and clays, underlays areas very prone to landslide occurrence, being estimated
with a marginal probability of approximately 0.8. This is an aspect of particularly relevance that has always
separated machine learning from statistical studies, as the second type offers a clear interpretation. For instance,
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here we can assume that such a strong and positive contribution to the overall susceptibility may be due to
claystones and clays having high water retention capabilities. In turn, this means they can absorb and retain water
for extended periods. When these materials become saturated, their weight increases significantly, potentially
bringing slopes to the brink of failure (Yalcin, 2007). Additionally, clay layers often have low permeability, which
hinders the rapid drainage of water. This can lead to increased pore water pressure within the slope, reducing the
effective stress and shear strength of the material and making the slope more prone to sliding. Another reason
supporting the positive influence of this lithological class lies in the tendency of claystones to lose strength due to
weathering. Notably, physical and chemical weathering can alter the mechanical properties of these layers leading
to a strength degradation (Alonso et al., 2010; Miščević & Vlastelica, 2014). Conversely, the effect of the lith-
ological class corresponding to plutonic rocks (LIT3) reveals a low marginal probability of landslide occurrence
(i.e., 0.29). This may be attributed to several geological and geotechnical characteristics that make these rocks
more stable compared to other lithological classes. First, plutonic rocks are typically hard and have low porosity.
This means they have high shear strength and are less prone to water infiltration. Their inherent strength and low
water retention properties make them relatively stable (Fell et al., 2012). Moreover, they often lack foliations and
weak planes that are present in sedimentary rocks and some metamorphic rocks, which can act as failure surfaces
during landslides. However, it is noteworthy that in non‐glaciated mountainous sectors under humid temperate
climates, plutonic rocks (especially granitoids) are often recognized as geological conditions highly prone to
shallow landsliding (Borrelli et al., 2018; Durgin, 1977; Ietto et al., 2016; Regmi et al., 2014). These conditions
are associated with discontinuous weathering profiles between soil and bedrock layers. Although the robustness
of plutonic rocks in the European mountain domains is well documented, the estimated low influence on landslide
susceptibility may also reflect their geological history, and climatic environment as well as their changes over
time.

In Figure 3c, the covariate’ effect related to the total length of infrastructures within each SU (IL) is reported. We
recall once more that this covariate, together with Zone was included in our modeling for the purpose of a bias‐
capture action (see, Section 4.1). Through the examination of the covariate in question, three discernible
trends can be extrapolated. First, there is a notable positive influence of the variable IL within the spatial range of

Figure 3. Marginal plots of the estimated covariates' effects: panels (a) and (b) show the effects of covariates modeled as random effects. Panel (c)–(k) report the
summary of ordinal nonlinear effects. Panel (l) highlights the linear effects. For the acronyms, we refer the reader to Table 2. Notably, the y‐axes are expressed at the
scale of probability of landslide occurrence (Susceptibility) rather than at the scale of regression coefficients.
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0–50 km. Second, this positive trend stabilizes within the interval of 50–150 km. Lastly, beyond the latter
boundary, there is a significant decline in the marginal probability, leading to 0. One plausible interpretation of
these observed patterns, considering the underlying hypothesis that the inclusion of IL aims to capture the bias
related to number of mapped events, is as follows: within SUs characterized by IL values falling within the range
of 0–150 km, there appears to be a potential overrepresentation of landslide occurrences, consequently leading to
an elevation in the likelihood of such events. Conversely, when IL exceeds the threshold of 150 km, the related
trend suggests the underrepresentation of mapped events, and it is reflected by the substantially diminished
probability of landslide occurrence. In former studies, this bias descriptor is commonly represented by the dis-
tance between the mapping unit and the nearest infrastructure (Stanley & Kirschbaum, 2017a); therefore, the
overrepresentation in the proximity of such structures is directly reflected in a very high predicted probability of
occurrence in those areas (Steger et al., 2021). Differently, in this work, the bias descriptor is represented by the
total spatial covering in the mapping unit. Consequently, a logical interpretation of the obtained trends would
imply that bias propagation in the estimated probabilities exhibits nearly continuous growth as the variable IL
undergoes variation (i.e., higher values of IL correspond to higher predicted probability). However, as described
above, our analysis reveals a distinct probabilistic trend. Upon inspection (see Figure 4), it becomes evident that
the potential bias propagation may primarily occur within the spatial interval of 0–150 km, which predominantly
encompasses more steep slopes. Conversely, areas characterized by IL values exceeding 150 km are mainly
associated with partially flat areas, which, from a geomorphic perspective, are less prone to trigger landslides, but
where infrastructure construction is easier to realize (higher values of IL).

Figure 4. Distribution of the mean slope steepness (SLμ) for Slope Units (SUs) with IL less than 150 km (light red curve) and SUs with IL greater than 150 km (light blue
curve). On the right side a detail of these conditions and the relative cross profile (bottom figure).
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Figure 3f reports the contribution of SLμ, which appears to follow an overall positive trend up to approximately
35°. Beyond this threshold, the likelihood of landslide events exhibits a decline. From a geomorphological point
of view, the results is reasonable as SUs exceeding a critical threshold of 35° are deemed excessively steep to
support the presence of potentially unstable soil columns. Notably, in light of this interpretation, we remind the
reader that most of the European data set we compiled lacks information on landslide types. As a result, we
hypothesize that phenomena such as rockfalls, which are more frequent in very steep areas, are less reported with
respect to other types.

6.1.2. Performance

The model performance is summarized in Figure 5. We recall here that the model has been challenged through
three different cross‐validation routines. Each of these has been further differentiated according to the presence of
the bias in the model or, by removing it (i.e., zeroing‐out the contributions of the zone and IL effects). Overall, we
observe that when bias propagation is ignored, the AUROCs tend to exhibit much higher values, almost to the
point of reaching a perfect prediction. This is already a hint that should make any user exposed to similar results
think twice about why this may be the case. One plausible explanation for this trend is that the model learns to
exploit dataset‐specific biases rather than uncovering the underlying general relationship. Here, we purposely
include such bias‐related covariates and remove their effect for an unbiased landslide susceptibility map. What we
note is that the apparent loss in predictive power brings the AUC among all biased cross‐validated models from
0.91 to 0.78 of all unbiased cross‐validated models. We stress once more that this 0.13 AUC performance drop is
purely apparent and its repercussions to the respective predictive maps will be presented in the subsequent section.
The most important information to convey is that even when removing the bias, the model does not drop to the
point of becoming non‐informative. On the contrary, according to the performance classification proposed by

Figure 5. AUROC values estimated for the purely random cross‐validation (a), domain‐oriented spatial cross‐validation (b)
and purely spatial cross‐validation (c). The AUROC values were estimated both ignoring and excluding the bias propagation
within the prediction.
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Hosmer Jr et al. (2013), a 0.78 of AUC corresponds to an acceptable classifier and is actually close to the excellent
class boundary. This should be the true predictive power one should consider when using the outcome of such a
model and when interpreting its susceptibility patterns.

6.1.3. Biased Versus Unbiased Probabilistic Maps

After showcasing the predictive power of our susceptibility model, in this section, we convert the model results
into maps. We choose to preserve the continuous spectrum of probabilities rather than classifying it into distinct
susceptibility levels. This is a choice we make to use probabilities later in support of the risk evaluation.
Therefore, the spatial representation of the model outputs still ranges from 0 to 1, where the former indicates non‐
susceptible conditions and the latter indicates SU prone to failure. However, to illustrate the issues related to the
inclusion of bias sources into susceptibility models, we opt to follow the same structure presented above in
Figure 5. In other words, we present both the biased and unbiased susceptibility maps (Figure 6). As it appears

Figure 6. Biased and unbiased landslide susceptibility maps. Zooms offer a comparison between the two different maps. The first row shows details of the biased map.
The bottom row displays the same locations for the unbiased map.
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quite clearly in the left panel as well as in the first row, where we report few dedicated zooms, the bias mainly
contributes to elevating/reducing the susceptibility patterns to the point of saturating the scale. For instance, the
left panel shows susceptibilities that follow the geographic distribution of administrative boundaries. This is an
artifact brought into the model by the various organizations responsible for landslide mapping. Specifically,
regions such as the Alpine and Apennine environments are ranked almost homogeneously with the highest
probabilities; however, when the effects of bias propagation are removed from the analysis, these mountainous
areas display a more heterogeneous distribution of landslide probabilities, which turns out to be more reliable
from a geomorphological perspective. Conversely, in regions where landslide data completeness is limited, such
as the Iberian Peninsula and the eastern sectors, landslide probabilities tend to be closer to zero. However,
following the removal of the effects of those variables that systematically describe the landslide data collection
bias, the modeled propensity of trigger landslide moves to higher values in those areas. The comparison between
the two different maps highlights even areas where there are no substantial changes or where they occur in a feeble
intensity, as in the case of Scandinavia and Iceland. Notably, analyzing the Scandinavian environment, we notice
that the Norwegian landscape experiences a weak decrease in the probabilities after the removal of data collection
bias. The same situation is further showcased in the series of zooms below. For instance, the first row appears
quite saturated in panels C (Iberian peninsula) and D (Alpine domain). There, almost no spatial variation can be
seen across SUs, with the former appearing mostly non‐susceptible and the latter being almost susceptible
everywhere. This effect comes from the completeness of the original inventory, and once removed in the row
below, geomorphologically reasonable patterns become evident.

Figure 7 further simplifies the identification of the most biased landscapes. There, it is possible to check the
distribution of susceptibility values for each of the 13 spatial domains under consideration, with and without bias.
Notably, within the Alps, Apennines, and Sardinia‐Corsica regions, the complete removal of the effects of those
variables responsible for the bias propagation led to a substantial decrease in the scores of the model outputs.
Similarly, albeit with a less pronounced effect, the Central‐West and East sectors exhibit a shift toward smaller
probability values. Conversely, the Carpathians, Dinarides ‐ Balkans, Iberian peninsula and Pyrenees present an
opposite trend, with a significant increase in the respective scores when the bias is removed. Nevertheless, the
mitigation of the influence of landslide data bias on model outputs does not always manifest as a conspicuous
modification in score distribution. This is the case of the British Isles, Iceland, Massif Central, and Scandinavia,
where the two distinct curves almost coincide, implying a minimal score distortion between the biased and un-
biased maps.

6.1.4. Comparison With Existing Products

This section provides a comparative analysis of our unbiased probabilistic landslide susceptibility map with
respect to existing products for the same study area. The objective of this comparison is to identify any common
patterns between our probabilistic map and others. We use as first‐order benchmarks the European landslide
susceptibility map presented by Wilde et al. (2018) and, as the second one, the global map developed by Stanley
and Kirschbaum (2017b). Notably, unlike our probabilistic methodology, these benchmark products have both
been obtained via heuristic approaches and, in doing so, the respective authors have based their analyses on a
gridded mapping unit. Specifically, the map from Wilde et al. (2018) has been originally expressed at a 200 m grid
resolution, whereas the one by Stanley and Kirschbaum (2017b) estimates susceptibility on a 1 km pixel size. To
facilitate the comparison, we had two options: either aggregate these products at the same level as our SUs, for
instance, by taking the maximum or the most frequent susceptibility class within one of our polygons. As an
alternative, we could avoid any aggregation and rather simply extract the respective grids, as long as they intersect
our regions of interest. To respect the status and official use of these products, we opted for the second option,
with the idea in mind of minimizing our interference and processing of the information they convey. As for our
product, we then followed a Jenks classification scheme (Jenks & Caspall, 1971; North, 2009) to bin our
continuous probability spectrum into five classes comparable to those of the two products under consideration.

The three resulting maps are presented in Figure 8. There, Panel A presents our output, while Panel B displays the
product of Wilde et al. (2018), and Panel C shows the product of Stanley and Kirschbaum (2017b). Interestingly,
all products highlight the Alps, Apennines, Pyrenees, and Carpathians as the most susceptible regions. However, a
notable distinction exists in the range of values because the other two maps essentially showcase grids belonging
either to moderate, high or very‐high susceptibility classes, with no presence of the other two. Conversely, our
probabilistic approach yields a more nuanced representation of landslide susceptibility across Europe, resulting in
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a more spatially varied distribution of susceptibility classes, although the Alps appear to be generally less sus-
ceptible compared to the other two.

The issue of saturation in the available susceptibility range is something worth discussing, as it affects many
susceptibility studies in the literature. In fact, these two products include also flat areas in their calculation. These
are trivial zones (Steger et al., 2021), where one does not need complex susceptibility models to know that no
landslides can take place because the physics of the process dictates that flat areas, for instance, are not susceptible
by definition. In turn, this has negative repercussions when building complex models simply because any model
simply learns to discriminate between flat and non‐flat terrains rather than learning internal characteristics unique
to the rough ones. The latter should be the target of any susceptibility model, through which a level of de‐saturation
of the probability range is obtained. As for situations where trivial areas are still part of the modeling procedure, the
results are evident in panels B and C, where all the mountainous landscapes are essentially estimated as sus-
ceptible, whereas in reality, this is not the case.

6.2. European Risk Overview

In the subsequent sections, we offer an overview of our landslide risk analysis. Initially, we provide a concise
summary regarding the findings of the exposure assessment framework (see, Section 6.2.1). Subsequently, we
present the results of the risk analysis through two distinct modes of representation: (a) the depiction of the spatial

Figure 7. Distribution of the biased and unbiased probabilities of landslide occurrence for each mountain region. The light‐red curve reflects the biased probabilities,
whereas the light‐blue reports the unbiased distribution.
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distribution of expected economic losses and (b) the delineation of different hotspots obtained by combining the
spatial patterns of the unbiased susceptibility together with the exposure of human settlements (see,
Section 6.2.2).

We also provide a cartographic representation of the population at risk by plotting two separate maps, one where
our European landslide susceptibility is spatially joined to the daytime population density and one where the same
is produced for the nighttime (see, Section 6.2.3). Lastly, in Section 6.2.4, we introduce and discuss the ad-
vantages associated with the dissemination of landslide risk information via WebApp.

6.2.1. Exposure

The spatial representation of economic values expressed in terms of euros (€) pertaining to human settlements and
agricultural areas are reported in Figure 9. We recall that the exposure of human settlements is defined by the
building footprint within each SU, whereas the one relative to the agricultural areas is computed on the basis of the
spatial distribution of specific land use classes (as described in Section 5.1). The exposure of human settlements
ranges from 0 to 126 Billion €, with a mean of 25 Million € and a standard deviation of 340 Million €. Overall, the
sum of economic exposure relative to human settlements across our showcase study is about 14 Trillion €. Upon
careful analysis of the map showing the economic values of buildings across the European landscape, we notice
that the highest values are mainly located in the areas corresponding to footslope and toeslope sectors, or
generally in areas close to floodplains. Notably, these regions coincide with the presence of major urban centers,
thereby increasing local economic exposure. Conversely, lower economic exposure patterns are placed in sectors
at elevated altitudes and steeper slopes, where the concentration of large human settlements is rare or even absent.

The economic exposure of agricultural areas ranges from 0 to 187 Million €. However, due to a lack of data
regarding the market values of the land uses for a few countries (e.g., Germany, Switzerland, Portugal, Norway) in
our input database (see, Section 5.1), we assign No Data to the corresponding mapping units, represented in gray
in the map. Aside from these missing values, the exposure of agricultural areas can be summarized with a mean of
1.5 Million €, and a standard deviation of 3.8 Million €, for a total of 562 Billion €.

Figure 8. Comparison between the unbiased landslide susceptibility map (panel (a)) derived from this work and two previous products (panels (b) and (c)). Panel
(b) depicts the landslide susceptibility map of Wilde et al. (2018), while panel (c) displays the global product of Stanley and Kirschbaum (2017b).
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The highest agricultural values are attributed to the Apennine chain or to the eastern sector of the Alps.
Furthermore, lower economic values appear to be mainly located in mapping units at elevated altitudes. This is
mostly due to agricultural practices being almost absent in the highest portions of the topographic profile.

By comparing the distribution of economic exposures for human settlements and agricultural areas, landslides
potentially threaten the first up to a few orders of magnitude higher than the second in terms of potential financial
losses. Specifically, looking at the respective mean values, we notice a difference of one order, which increases up
to two orders, when inspecting the comparison between the two total values across Europe. Obviously, the lack of
data in several countries partially contributes to such enormous discrepancy. Nevertheless, such difference is
acceptable when considering the different economic implications (see also, Caleca et al., 2022; Pellicani
et al., 2014).

6.2.2. Risk: Expected Economic Losses and Hotspots

In this section, we present the outcomes derived from the landslide risk modeling, shedding light on expected
economic losses and delineating risk hotspots throughout the European landscape.

Figure 10 displays the map translation of the results generated through the application of Equation 4 (see Sec-
tion 5.2.1). We recall the prohibitive challenge of defining the vulnerability across such a geographic extent.
Therefore, we assume that human settlements and agricultural areas would incur irreparable damages in the event
of a landslide. Returning to Figure 10, the depicted cartographic representation illustrates expected economic
losses in a continuous scale spanning from a minimum of 0 to a maximum of 8,383 €/m2. The distribution of these
outcomes is captured by a mean value of 1.04 €/m2, accompanied by a single standard deviation of 17.2 €/m2.
When excluding areas reporting zero, these values increase up to 5.53 €/m2 and 41.8 €/m2 for the mean and
standard deviation, respectively. The analysis of the right side of Figure 10 reveals that areas marked by high
expected economic losses are mainly located in the central and southern sectors of the European landscape. A
notable concentration of such values is observable in the Alpine and Apennine environments, as indicated by their
respective distributions. Conversely, the lowest scores are predominantly observed in the northern and eastern
sectors, delineated by the geographical domains of Dinarides‐Balkans, Iceland, and Scandinavia. Specifically, the

Figure 9. Exposure maps in terms of economic values (€) of human settlements (buildings) and agricultural areas (land use) respectively.
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latter regions exhibit a distribution centered mainly around a domain characterized by very low expected losses
(e.g., the logarithm of the potential losses is close to zero). Notably, by multiplying the potential loss per squared
meter for the relative extent of the SUs, possible damages range from 0 to 20 Billion €, with a total of approx-
imately 2.3 Trillion €. The sectors with the highest potential losses are predominantly situated in areas corre-
sponding to footslopes or toeslopes, in proximity to floodplains, and where the major human settlements are
located. Conversely, the lowest potential losses are associated with areas of higher elevations and specifically
with crests or upper slope positions. The second trend might be acceptable due to the limited presence of human
settlements. However, the first could be perceived as ambiguous by both geomorphologists and land use planners,
since higher economic loss values are associated with areas where the probability of landslide occurrence is
generally low. The ambiguity comes both from the inherent challenges in assessing expected economic losses at
this scale and the significant influence of human settlement exposure. The limitations primarily arise from the
difficulty of defining the vulnerability component, which may contribute to adjusting the degree of loss. Addi-
tionally, the role of large urban centers cannot be neglected, as larger settlements tend to expose greater economic
value, contributing to the marked increase in expected losses we report here.

To bypass this ambiguity in the landslide risk assessment, in Figure 11, we offer an alternative representation. We
opt to visualize the spatial distribution of landslide susceptibility and human settlement exposure together in a
map by means of a bivariate color scheme. This allows us to compare and emphasize SUs with a high probability
of landslide occurrence and high building exposure. To do so, we plot both the landslide susceptibility and
building exposure on a logarithmic scale, and further classify them into three discrete classes following the Jenks
method (Jenks & Caspall, 1971; North, 2009). The choice of a logarithmic scale is mainly to remove saturation
due to the heavy‐tailed risk distributions. Notably, this is a monotonic transformation and therefore, maintains the
relative proportion in the original scale. For the exposure component, we only showcase human settlement
exposure because of its predominant role compared to agricultural areas in our landslide risk assessment. In this
map, Alps and Apennines are mainly characterized by the presence of those areas where both the landslide
occurrence and building exposure are high (i.e., dark violet color). Conversely, areas including major urban
centers are depicted with a low probability of landsliding and high building exposure (i.e., blue color). We also
provide two details of such hotspots (Figures 11a and 11b) for a better visual inspection. From a geomorphic
perspective, the proposed classification scheme seems reasonable since SUs with buildings located in upper slope

Figure 10. The left panel shows the cartographic representation of expected economic losses across the European landscape. The right panel reports the distribution of
losses for each mountain domain on a logarithmic scale.
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positions are clustered in the hotspot “high susceptibility—high exposure” (Figure 11a). On the other hand,
mapping units close to floodplains are included within the class “low susceptibility—high exposure”
(Figure 11b). This plotting scheme, therefore, seems to be reliable for the landslide risk analysis framework.
Specifically, we notice a clear trend by analyzing the distribution of expected economic losses (Figure 11c)
among the different hotspots: as the level of landslide occurrence increases, the expected losses increase.

6.2.3. Population at Risk

Here, we report the outcomes of the analysis related to the population at risk. We recall that this contribution does
not provide a loss life estimator due to the challenge of modeling both the dynamics of landslides and the spatio‐
temporal distribution of people at a continental scale. Therefore, the analysis is essentially a spatial join between
our European landslide susceptibility and the yearly population density both for daytime and nighttime. The
cartographic representation of the population at risk is displayed in Figure 12. In the database of Batista e Silva
et al. (2020) from which population density is extrapolated, information for some countries is not available and
therefore not represented (e.g., Norway, Switzerland, Bosnia and Herzegovina, Albania, and Serbia). On the left
side, we show the yearly population at risk during the daytime. The representation is built upon a bivariate scheme

Figure 11. Landslide risk hotspots across the European landscape. Panels (a and b) present a detail of the spatial distribution of risk hotspots, where the 3D building
representation is acquired from Open Street Map (LINK‐3Dbuildings). Panel (c) shows the distribution of the expected economic losses, on a logarithmic scale, among
the different hotspot classes. L stands for “Low,” M for “Moderate,” and H for “High.” The first letter denotes the landslide susceptibility level, while the second letter
corresponds to the exposure level of human settlements.
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where the landslide occurrence probabilities and such population density are spatially combined. We notice that
the major concentration of people in high‐susceptibility areas is mostly distributed across the Alpine and
Appennine domains, with some hotspots in the Carpathians sectors. Conversely, the central sectors of the Eu-
ropean landscape are mainly represented as classes where the population density is particularly high but with a
low or medium probability of landslide occurrence. A possible explanation of this trend is that these sectors
mainly correspond to areas close to the major human settlements, where the people are particularly concentrated
and where the conditions do not promote landsliding. On the right side, we do not report the corresponding
representation for the nighttime for a simple reason: we notice a slight difference in the spatial patterns between
the population at risk during the daytime and nighttime. As a consequence, we opt to visualize the difference
between the two daily cycles joined with the landslide susceptibility via a bivariate scheme. In this way, we can
facilitate the visualization of changes in patterns between daytime and nighttime, providing a more informative
product. There, SUs where the population at risk for nighttime is greater than daytime (i.e., red colors), turn out to
be the majority across the landscape. The main reason might be that during the night, the population goes back to
residential areas located in mountainous areas. The opposite situation is shown during the day, with the population
clustering in industrial and commercial areas. These are mainly located in flat areas, which are not included in our
SUs. Overall, this scheme suggests that the population in highly susceptible zones is mainly distributed, as in the
case of human settlements, across the Alps and Apennines for both the daily cycles.

6.2.4. Enhancing Scientific Communication on Landslides: WebApp

In this section, we present our idea on how to enhance the sharing and communication of results derived from a
landslide risk analysis. In recent years, there has been a continual expansion in the evolution of innovative
interactive tools, such as WebGISs (Dahal & Lombardo, 2023). By leveraging this trend, we opt to share our

Figure 12. Cartographic representation of the population at risk. The left panel shows the spatial distribution of landslide susceptibility and yearly population density
during the daytime. The right panel displays the spatial distribution between landslide susceptibility and differences during daytime and nighttime in the yearly
population. Red colors indicate mapping units where the population of nighttime is greater than the one of daytime. The green colors display the opposite case. Both
maps are generated with a bivariate scheme. Slope Units without population are not displayed.
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results in a WebApp, which is accessible to the following link: https://pan‐european‐landslide‐risk.github.io/. The
WebApp is a client‐side web interface hosted through GitHub pages, where interactive functionalities are
developed using JavaScript combined with ArcGIS online. The platform presents common WebGIS function-
alities such as layer selection, zoom, panning, legend visualization, pop‐up, and spatial search. Users can interact
with the outcomes of our landslide susceptibility modeling and risk analysis, by selecting the corresponding layers
on the top of the interface. The application's structure can be divided into five control panels (Figure 13), whose
corresponding positions are consistent throughout the devices and browsers. The map display is the main element
and is capable of rendering 2D and 3D representations based on the user's choice. The 2D visualization is a normal
stacking of layers, such as the basemap and our risk data. Conversely, in the 3D mode, the map has a base
elevation layer on top of which any risk component can be displayed for a more realistic inspection. To avoid
visualization lag, the requests to load layers are dynamically sent to the server based on the zoom level and extent.
The description of each layer is reported in a specific panel to facilitate their understanding so that the platform
can be used as a stand‐alone application. The panels are also inter‐connected with each other via query functions
and automatically updated when users select a single layer. Notably, the map area presents common features of a
GIS environment, where users can select any element and visualize its attributes. For instance, the unbiased
susceptibility score or expected economic losses can be easily inspected for any SU. To promote the dissemi-
nation of these tools for landslide studies communication, we share the WebApp source code via GitHub (https://
github.com/Pan‐European‐landslide‐risk/pan‐european‐landslide‐risk.github.io).

7. Discussion
The sections below will list the pros and cons of the analytical procedure we followed as well as offering an
overview of risk dissemination platforms.

7.1. Supporting Arguments

The following sections will provide an overview of the strengths related to the two main components presented in
this work.

7.1.1. Susceptibility Considerations

Our product is as unbiased as possible. Landslide susceptibility applications that have included a bias‐removal
step have all been expressed at the regional or national scale at best. This is the case of Moreno, Lombardo,
et al. (2023) for a region in South Tyrol, or for the whole Austrian territory (see, Lima et al., 2021). The only

Figure 13. Overview of the WebApp interface and corresponding control panels.
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analogous case where a similar protocol is in place for continental susceptibility modeling is the study presented
by Lin et al. (2021). Therefore, what we present here is a unique case where at such a small scale, we produce the
best susceptibility estimates.

Oftentimes, landslide susceptibility studies at the continental scale make use of mapping units that are geo-
morphologically difficult to justify. For instance, the previous European susceptibility (see, Günther et al., 2014)
is expressed at a 1 km × 1 km resolution, even though the most recent one was improved up to 0.2 km × 0.2 km
(see, Wilde et al., 2018). The analogous case for South Asia has seen even a partition of the landscape with a 3 km
× 3 km (see, Titti et al., 2021). As for global susceptibility products, they are all expressed at a 1 km2 resolution
(Hong et al., 2007; Nadim et al., 2006; Stanley & Kirschbaum, 2017b).

This is a justifiable approach only for computation reasons. However, it is something that neglects the underlying
geomorphology. In fact, within a 1 km2, the landscape can host both peaks and valleys, limiting the model
inference and interpretation. Conversely, partitioning a given study area, even in the case of continental scales, by
means of a geomorphological mapping unit makes the interpretation and the resulting map much more insightful.
Here, we make use of SUs. Therefore, even if a SU would present a comparable extent of the 1 km2 or 9 km2

resolutions mentioned above, there would be no confusion as to why a given susceptibility value has been
assigned.

Notably, we could have also taken a different route in the way we constructed our model. A separate susceptibility
assessment could have been made for each mountain belt rather than putting together a single European model.
We would like to spend a few words on this consideration because we consider our European approach a strength
and a solution to most problems that would have arisen from a number of separate susceptibility cases. Spe-
cifically, splitting the whole European data set into a dozen of subsets would have led to a series of complications,
which we will list below.

First, the issues related to individual biases would have still been there, and actually, tailoring the analyses to local
products would have generated single models whose output would not be comparable to one another. Therefore,
the interpretation of the covariates' effects would have suffered from the split. In fact, a smaller data set would
have inflated the uncertainty of the marginal plots (see Figure 3). Therefore, splitting the data set would have
returned several slightly different covariates' effects whose coherence may have been difficult to read and
interpret. In our case, a single model ensures the reading of each contribution in a consistent manner.

Second, the probability would likely range from 0 to 1 in the case of rich inventories, whereas much less populated
inventories would have led to much narrower probability ranges, making the comparison hard. As a result,
considerations on the applicability of such a model would have also been largely limited. For instance, in our
current setting, a European model ensures European‐level considerations. However, single models would have
led to different performances and with those, one would be unable to discriminate areas of higher ultimate risk
from others.

7.1.2. Risk Considerations

The outcomes from our landslide risk analysis bring a new perspective to the current state of this topic. Notably, as
discussed in Section 2.4, most studies on landslide risk focus on specific sites (Agliardi et al., 2009; Ferlisi
et al., 2012; Lan et al., 2022) or operate at the catchment scale (Catani et al., 2005; Lu et al., 2014; Shano
et al., 2022), with only a limited number of contributions extending to regional (see, Crawford et al., 2022;
Nguyen & Kim, 2021) or national scales (see, Dorren et al., 2009; Gaprindashvili & Van Westen, 2016). This
work goes beyond such limits and provides a continental overview in which we quantify the possible economic
losses induced by landslides across the European landscape. The availability of new databases describing the
spatial distribution and relative economic values of exposed elements (Crowley et al., 2020; Scaini et al., 2023;
Schiavina et al., 2022) makes achievable the extension to such a geographic extent.

Similar to what we mentioned before in the susceptibility case, the analysis relies on a partition into geomor-
phological units, which even from the risk perspective improves reliability for both master planning and decision‐
making purposes. Most risk studies at a small scale are based on regular grids (Erener & Düzgün, 2013), inev-
itably leading to ambiguous results and associated decisions. For instance, in a coarse grid partition, users cannot
determine the direction of the potential landslide path or define whether human settlements might be under threat.
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Overall, our risk estimates provide a valuable initial step in identifying sectors at risk by offering a broad overview
of possible economic losses across various regions. While this macro‐level assessment isn't designed for direct
site‐specific applications, it may underscore priority sectors that could benefit from further detailed risk analysis.
In other words, our landslide risk estimates are not designed for planning mitigation measures or allocating funds,
but rather as a guide to prioritize areas for detailed, site‐specific investigations. Additionally, expressing risk in
€/m2 offers a straightforward index for evaluating potential losses, which stakeholders can use to identify areas
for deeper investigation.

The delineation of risk hotspots we propose in Figure 11 proves to be a powerful tool for facilitating the
comprehension of the outcomes as well as the identification of which areas might be more inclined to suffer
losses. This representation scheme allows us to bypass the noteworthy role expressed by exposure on this scale of
analysis. Consequently, we provide a more reliable product from both a geomorphic and risk user perspective.

In this contribution, we go beyond conventional approaches to evaluating the population at risk. Notably, we offer
a cartographic representation at a sub‐daily scale (day and night). Therefore, our assessment introduces a dynamic
component, treating the population as a mobile element. This choice represents a novelty since the population is
generally treated as static in both small (see, Jaedicke et al., 2014) and large‐scale studies (see, Garcia et al., 2016).

7.2. Opposing Arguments

The following sections will provide an overview of the limitations related to the two main components presented
in this work.

7.2.1. Susceptibility Limitations

Our model output follows the traditional definition of landslide susceptibility. In other words, the probability of
landslide occurrence is the outcome of a pure spatial model. In turn, this implies that the obtained probability
values for each SU are assumed to be stationary in time. This is a strong and very “old‐school” notion, which has
been challenged in a number of recent contributions where the susceptibility dynamically varies on a temporal
basis (Fang et al., 2023; Samia et al., 2017). Ideally, we would have also implemented a space‐time susceptibility
model here. However, the temporal information is not included in most of the European inventories. This is a
point to be raised as the community is discussing setting up standards for landslide inventory mappings for at least
a decade (Guzzetti et al., 2012; Tanyaş et al., 2017). Here, we stress once more the need for a common effort, this
time not only for susceptibility or hazard mapping but also to enable dynamic risk assessment practices.

A further limitation regards the target of our landslide susceptibility modeling. To obtain a detailed product, a
good practice should be modeling differently all landslide types (Loche et al., 2022; F. Huang et al., 2023; Trigila
et al., 2013). The reason behind this is that the triggering and predisposing conditions may have different effects
on different failure types. By modeling landslide types separately, one can account for the specific conditions that
lead to the respective instabilities. However, as mentioned above, this action is only possible if failure mecha-
nisms and associated evolution are part of the landslide inventory information. The majority of landslide in-
ventories we collected does not divide recorded events into different types. Therefore, our model essentially treats
SUs where rockfalls take place in the same way as it treats SUs where debris flows appear. As a result, one should
interpret the outcome in terms of generic instability and should assume that in the case of a multi‐type inventory,
an even better assessment and associated performance could be achieved. Therefore, in analogy to the space‐time
considerations, we also recommend here the inclusion of landslide types as part of a future inventory standard.

7.2.2. Risk Limitations

Two main limitations affect our analyses. The first one relates to the landslide hazard estimation. Here, we
approximated hazard by assuming it to be equal to the susceptibility. However, this is a strong assumption which
could be bypassed in the presence of consistent polygonal landslide inventories. In fact, at this scale, the landslide
intensity could be expressed as a function of landslide area or landslide area density per SU (Di Napoli, Tanyas,
et al., 2023; Fang et al., 2024). This information complements the susceptibility one rather than being its alter-
native. Specifically, a slope could probabilistically be able to release a large mass while not being susceptible. It is
also true the opposite that a SU could be probabilistically very likely to fail but with an expected negligible
moving mass. This is something we mention to highlight the need for a systematic hazard assessment that would
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touch upon all the three elements of its definition. This includes temporal aspects, as also mentioned above but
also the notion of intensity.

The second limitation also relates to the application of Equation 2. In fact, for the equation to be fulfilled, the
vulnerability component should be defined for the exposed elements. However, the vulnerability evaluation
represents a difficult task even for site‐specific studies (Singh et al., 2019), let alone for continental‐scale ap-
plications. This is due to the difficulty of assessing the response of exposed elements to a phenomenon of a certain
intensity. To date, it is impossible to estimate both of these vulnerability components across an area as large as the
European territory. This difficulty mainly lies in the availability of homogeneous databases for elements‐at‐risk as
well as the expected landslide intensity. Ideally, such information would support the evaluation of the structural
resistance of buildings (Z. Li et al., 2010). Here we bypassed this requirement by assuming vulnerability equal to
one, which would inevitably lead to an overestimation of the possible economic consequences in some cases.

The issues we referred to come from a missing landslide inventory standard in Europe and in many other
geographic contexts. This is somewhat mitigated in other continental communities such as the USA (e.g., Mirus
et al., 2020).

Rather than a limitation, we would also like to raise a point of discussion related to the dominance of the exposure
(a function of potential economical and life losses) on the risk estimates, compared to the role of the susceptibility
itself. In fact, we observed that the highest risk is typically associated with SUs that are located close to flat areas.
These are inevitably less susceptible compared to mountainous SUs, although when converting this risk infor-
mation into maps, the spatial pattern of the expected landslide losses is skewed towards areas with settlements.
This raises the question of whether the current landslide risk equation should feature a weighting system that
would express both susceptibility and exposure on the same scale. At the moment, this is not the case, which is
also the reason why a SU with a susceptibility equal to 0.1 associated with a potential loss of several billion Euros
displays a much higher risk than a SU with a susceptibility equal to 1.0 associated with a potential loss of few
million Euros. This is certainly reasonable but it is also something to reflect on as a community when producing
continental risk maps, because the control of the exposure appears so strong that it almost saturates the scale to the
point of making the susceptibility contribution negligible.

7.3. Interactive Risk Communication: The Rise of WebGIS

In recent years, the sharing and communication of findings resulting from landslide studies has constantly
increased thanks to the availability of new digital tools. Among these, the development of WebGIS has revo-
lutionized the way researchers and organizations share the outcome of their works, providing interactive plat-
forms for any user (e.g., stakeholders or scientists) to access, visualize and download data. WebGIS represents a
powerful fusion of research data and user‐friendly interfaces accessible through web browsers. However, the
majority of developed WebGIS systems are primarily designed for the purpose of sharing information about
landslide locations rather than susceptibility, hazard or risk. Various landslide inventories can, in fact, be accessed
through these WebGIS platforms. One notable example of the early use of such a tool is outlined in the work of
Salvati et al. (2009). The authors designed the platform to effectively disseminate information regarding historical
landslides and floods in the region of Umbria, central Italy. Similarly, the Italian Landslide Inventory (IFFI) is
accessible through the IdroGEO platform (Iadanza et al., 2021). Another illustration of WebGIS platforms as a
repository is demonstrated by the NASA's Landslide Viewer. This platform facilitates the visualization of data
sourced from the Cooperative Open Online Landslide Repository (COOLR) (Juang et al., 2019). The data set
encompasses citizen science landslide reports, data from the Global Landslide Catalog (Kirschbaum et al., 2010),
and other pertinent landslide catalog information. Additionally, similar tools have been developed through the
years and made their way into the standard systems of several countries and organizations around the globe: for
example, the Bhuvan platform in India (Link‐BHUVAN), the GeoSure platform in the UK (Link‐GeoSure), the
U.S. Geological Survey's landslide inventory (Link‐USGS), the NVE Atlas in Norway (Link‐NVE), or the
SIMMA platform in Colombia (Link‐SIMMA).

A further use of WebGIS is related to the framework of landslide early warning systems. For instance, B. Ahmed
et al. (2018) proposes the development of an early warning system directly accessible in WebGIS. This system is
connected to an online weather application programming interface, through which precipitation data is stream-
lined and used to predict landslide occurrences. In a similar way, WebGIS platforms are also used at the site scale
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by combining near‐real‐time sensors and predefined rainfall threshold for automatic and continuous monitoring
purposes (J. Huang et al., 2015).

Beyond this level, WebGIS is still in the process of consolidating its role in the dissemination of landslide sci-
entific results to the public. For instance, WebGIS platforms can be used to convey the results of data‐driven
models for regional and national scale applications. This can be found in a few cases, for static (Dahal &
Lombardo, 2023) and dynamic (M. Ahmed et al., 2023) susceptibility results.

However, no landslide risk information is shared yet through WebGIS, with the only exception being the National
Risk Index (NRI) in the USA developed by FEMA (Zuzak et al., 2022). And yet, these platforms could constitute
a transparent interface for anyone to be informed about landslide risk, ideally with estimates associated to specific
mapping units. In fact, a WebGIS environment could help stakeholders, researchers, and the general public to
navigate through spatial data layers representing various components of landslide risk: from the occurrence
location to the susceptibility, hazard, exposure, vulnerability and potential triggers.

With respect to the specific point of raising awareness, here we would like to share some more in‐depth re-
flections. In fact, public awareness of landslides in general is very limited despite the fact that portals with
reference data sets are multifold. Specific to the European case, EU institutions such as JRC offer various
visualization tools on several hazards, yet the public interest is still very limited. The potential use we see of our
product, differently from others, is that we plot risk; thus, the public could be potentially drawn into querying
whether their property may be under threat or not and the extent of the threat in terms of economic losses. Another
potential aspect that we see of value is the frequent occurrence of geohazards witnessed in recent years. This could
be an additional reason for the public to access portals as our own to make informed decisions for the future. For
instance, buyers could check risk products to guide their investments, whereas insurance companies could
reevaluate their premiums. Irrespective of such considerations, it is important to note that the FAIR principles
(link‐here), dictate that scientists would openly share their outcome. However, there are different ways of sharing
and as a result, different ways of receiving such outcomes. For instance, a citizen may not understand if we share
our products in vector or raster formats but will probably be able to grasp the meaning of our work if the content is
placed in an interactive platform. This is also a fundamental reason why we opted for such a data‐sharing option,
to raise awareness while also maximizing the reach of our scientific efforts.

8. Concluding Remarks
This contribution starts with an overview of the requirements and limitations associated with landslide risk
analysis. The existing literature reveals that the majority of risk studies are focused on specific sites, with few
exceptions addressing regional or national scales. This trend is attributed to various methodological and data
limitations. In light of these considerations, this work develops on a hybrid basis, mixing elements of literature
review with original research. The review component identifies limitations faced at different spatial scales of
analysis, highlighting that many of these are associated with the assessment of landslide hazard and the
vulnerability of exposed elements in their completeness. These challenges arise from the lack of suitable data,
particularly in the context of regional‐scale studies.

On the original research front, the study provides a practical case at the European level, in which we quantify the
possible economic consequences and present an overview of the population at risk during two sub‐daily cycles.
To do so, we faced issues regarding cross‐national differences in landslide mapping. The analytical protocol,
therefore, included a bias‐removal landslide susceptibility assessment and associated mapping, which was later
combined with economic and population data. Such a procedure is built upon a few assumptions: (a) susceptibility
is considered a proxy of hazard, (b) all the exposed elements would be affected and suffer irreparable damages.

By leveraging these aspects, a number of future improvements can already be envisioned. To complete the
landslide hazard assessment, it is necessary to model its temporal and intensity components. The first might be
achievable by implementing automated mapping protocols that would geo‐tag landslides not only in their spatial
location but also in their temporal one. As a result, recent space‐time models could further produce dynamic
occurrence probability and associated intensity maps. The same is valid for the risk, with improvements that could
pass by a better assessment of the exposed elements as well as a dynamic risk perception. For instance, infor-
mation on the typology of different constructions might lead to defining a structural resistance, which combined
with the intensity component, would allow an assessment of a reference vulnerability value. However, given the
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lack of data and standards across European countries, it is currently impossible to implement these extensions for
a comprehensive and consistent risk assessment.

Aside from these aspects, we believe that our findings represent a reasonable initial outlook on the likelihood of
landslides and associated losses at the continental level. Our risk estimates offer valuable insights for identifying
areas that could face potential economic losses. However, these results are not intended for direct applications,
such as fund allocation or mitigation planning. Instead, our approach serves as a preliminary guide, highlighting
areas where more detailed risk assessments might be useful. Therefore, we hope that this contribution may
represent a starting point for the European community and member states to unify their landslide database,
including more notions on the kinematics and frequency of events as well as more detailed and homogeneous
databases on exposed elements. Achieving some of these requirements may ultimately lead to a better under-
standing of the landslide risk and its dynamics, thus improving societal resilience.

Finally, we stress again the importance of facilitating user access to data from these studies. To achieve this, we
utilize an innovative tool in the form of a WebApp, where we share our findings in the hope of stimulating
analogous interactive environments for stakeholders, governments and the public to access relevant information
and raise awareness about the threat of landslides.

This was done taking Europe as a pilot, but analogous considerations and potential improvements could become a
standard for global landslide risk assessment studies.

Data Availability Statement
Individual landslide inventories can be accessed or requested using the links provided in Table 1. References and
repository of covariates included in the landslide susceptibility modeling are reported in Sections 3.2.1 and 3.2.2.
The complete set of codes developed for this contribution can be accessed at Caleca, Dahal, et al. (2024). Notably,
the data and codes for reproducing the landslide susceptibility modeling are available at the following GitHub
repository: Pan‐European_Landslide_Susceptibility_modeling. The results of the landslide risk analysis can be
inspected through the WebApp (https://pan‐european‐landslide‐risk.github.io/). The plots are generated using
either an R or Python environment. The maps are created using Esri ArcGIS Pro 3.1.1 (www.esri.com).
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