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Abstract
In this study, we present a robust conservative time-staggered scheme for
variable density flow. This pressure correction scheme uses the compressible
Navier–Stokes equations and is implemented in the collocated finite-volume
open-source computational fluid dynamics solver code_saturne. The Helmholtz
equation is solved for the pressure increment, taking the thermodynamic pres-
sure into account and avoiding the acoustic time step limitation. The internal
energy equation is used and completed by a source term derived from the dis-
crete kinetic energy equation, thus enforcing total energy conservation and
consistency for irregular solutions. A numerical analysis providing conditions
ensuring the positivity of the thermodynamic variables is proposed. The scheme
is verified and validated against analytical and experimental test cases. Its ability
to reproduce the pressure variation while conserving the mass is demonstrated.
Its conservative property and time convergence order are also verified. An irreg-
ular shock solution is studied, emphasizing the importance of the source term
in the internal energy equation. Finally, the scheme is validated against ref-
erence numerical results on a two-dimensional natural convection cavity and
experimental data on a three-dimensional ventilation test case. The compari-
son against experimental data is made using first-and second-order turbulent
simulations.
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1 INTRODUCTION

Simulating variable density flow at all Mach numbers is an active field of research and is useful in many industrial domains
such as combustion,1 indoor air flow,2 and power generation industries.3,4 When the flow Mach number tends to zero, the
compressible Navier–Stokes equations converge toward the incompressible ones.5 This is not easily achieved in numerical
simulations as an incompressible formulation of the equations does not reproduce well compressible effects and com-
pressible solvers can perform poorly when the Mach number decreases.6 In the latter context, the low-Mach set of the
Navier–Stokes equations are often used to describe flow motion, where the acoustic waves propagate at an infinite speed
and are not considered in the simulation. Nevertheless, if one wants to consider its effects on the flow, the compressible
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Navier–Stokes equations are used. In this case, an additional numerical constraint appears, limiting the simulation time
step related to sound celerity. This can be very inconvenient for slow-speed flow simulations. Thus, significant attention
was given to designing time schemes for computational fluid dynamics (CFD) able to cover both regimes, while compro-
mising the preservation of accurate numerical results and reducing the total computational calculation time. In that scope,
one solution is the use of implicit time integrators, which may not be simple to implement due to the complexity of the
system to solve. An alternative method related to different time scale problems is the implicit treatment of some terms of
the system while keeping the remaining explicit. This semi implicit (or implicit explicit) approach allows the development
of stabler schemes by reducing the time step constraint related to the fast time scale. In the context of incompressible and
compressible flow, different all speed semi-implicit schemes based on the asymptotic preserving method have been pro-
posed in the last decades,7-11 which inspired some features of the presented scheme, notably the incompressible limit of
the pressure equation. Moreover, the present scheme belongs to the pressure correction methods, which are time march-
ing techniques widely used in CFD. First introduced in the late 60’s12,13 for incompressible flow (see Reference 14 for
a review of the different variants), they were extended for compressible flow15,16 followed by many numerical schemes,
mostly using finite volume methods. Among them, one can highlight the essentially implicit17-20 algorithms which differ
from the semi-implicit ones (such as the SIMPLE21 method and its derivatives) where a prediction of the momentum is
first performed, followed by a correction step for the pressure, momentum, and velocity.22-26 Furthermore, several recent
work addressed a strategy of using high-order schemes to capture unsteady turbulent flow phenomena. In 1965, Harlow
and Welch27 introduced a staggered grid arrangement for a second-order finite-difference scheme for incompressible flow
using the Crank–Nicolson scheme.28 Pierce and Moin29 extended the previous scheme to variable-density flow using the
low Mach assumption. An extended version of this algorithm was proposed by the same authors,30 where a Helmholtz
equation was used instead of a Poisson equation in the correction step, avoiding the acoustic Courant–Friedrichs–Lewy
(CFL) number limitation. The latter used the enthalpy equation to compute the temperature and was specially designed
for low speed flow, with no presence of shocks. Solving a Helmholtz equation to correct the pressure was also shown to
be relevant for an atmospheric flow solver by Benacchio and Klein31 and for a low Mach number kinetic energy conser-
vation scheme by Moureau et al.32 High-order low and all Mach number schemes remain very popular. Desjardins et al.33

proposed a high order version of Pierce’s low Mach finite differences staggered time-stepping, using the Poisson equation
in the correction step. The combination of semi-implicit asymptotic preserving and Runge–Kutta methods34-36 led also to
high-order all Mach number schemes.10,37 Note that boundary conditions, specially in incompressible pressure correction
methods, can affect its time convergence order.14 This is beyond the scope of the current study.

In this manuscript, we present a conservative second-order time scheme for variable density flow using the compress-
ible Navier–Stokes equations. The finite difference scheme introduced by Pierce and Moin29 with a staggered variable
arrangement in time is extended on different grounds using the collocated finite-volume discretization38 for regular and
discontinuous solutions. Three major features of the new scheme are highlighted. First, it includes the effect of the ther-
modynamic pressure in the correction step by solving a Helmholtz equation. Therefore, the acoustic waves are treated
implicitly and are thus separated from advection, which removes the acoustic CFL restriction on the time step. Moreover,
the internal energy equation is used to compute the temperature. First introduced by Herbin et al.26 for an Euler pressure
correction scheme, this choice of equation allows the third feature, a numerical analysis, to be made, ensuring the tem-
perature, pressure and density positivity under certain constraints detailed later. Since computing shock solutions using
the internal energy equation yields an incorrect velocity field,3,39 a correction term based on the discrete kinetic energy
equation similar to that used by Herbin et al.26 is added to the internal energy equation. This term, derived here for the
sub-iterative time-staggered scheme, preserves the sum of the internal and kinetic energy to ensure the conservation of
the total energy, thus implying a good reproducibility of the numerical shock velocities.

The proposed algorithm, from now on called compressible pressure correction (CPC) scheme, is implemented in
the open-source CFD solver code_saturne,40 which is used extensively in the industry for nuclear thermal-hydraulic
applications,41 atmospheric modeling,42,43 ventilation, wave interactions,44 and combustion.45

The remainder of this paper is organized as follows. We first introduce the set of the continuous equations and tur-
bulence models used. The discrete spatial and temporal schemes are then described and a numerical analysis to ensure
the thermodynamic fields positivity is performed. Finally, the CPC scheme properties are verified on analytical test cases
and their numerical results are compared with the existing code_saturneincompressible second-order variable density
(incompressible pressure correction (IPC)) time scheme for reactive flow, by Ma et al.46 and compressible scheme by Colas
et al.,47 which uses an isentropic pressure correction step. This is first done with a pressure-cooker-like system, showing
that the scheme takes into account the correct pressure variation while preserving the systems’ global mass, and then by
transporting a scalar through an one-dimensional tube in order to verify both mass and momentum conservation and the
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time scheme convergence order. Its consistency related to irregular solutions is then tested with a shock tube configura-
tion. Finally, the model is validated on a natural convection and a ventilation case, emphasizing the presented scheme’s
ability and robustness to provide accurate results in the industrial context.

2 GOVERNING EQUATIONS AND TIME SCHEME

2.1 Governing equations

Fluid motion, when studied with the continuum hypothesis in a bounded space Ω, is described by the Navier–Stokes
compressible equations supplemented with scalars Y transport equations and an equation of state. Considering an ideal
gas of density 𝜌, velocity u, momentum q ≔ 𝜌u, internal energy e, temperature T, viscosity 𝜇, heat capacities cv and cp,
thermal conductivity 𝜆, and scalar diffusion coefficient K, the equations read:

(a) 𝜕𝜌

𝜕t
+ div

(
q
)
= 0,

(b)
𝜕q

𝜕t
+ div

(
u ⊗ q

)
= −∇p + div

(
𝜏

)
+ f ,

(c) 𝜕 (𝜌 e)
𝜕t

+ div
(

eq
)
= −pdiv

(
u
)
+ 𝜏 ∶ ∇u + div

(
𝜆∇T

)
,

(d) 𝜕 (𝜌 Y )
𝜕t

+ div
(

Yq
)
= div

(
K∇Y

)
,

(e) T =  (𝜌, e) = 𝛾 − 1
Ra

e, p = (𝜌, e) = 𝜌RaT. (1)

f is the field of volume force (e.g. gravity force 𝜌g), 𝜏 = 𝜇
(
∇ u + ∇ uT

)
+

(
𝜅 − 2

3
𝜇

)
div (u)I, is the shear stress tensor. 𝜅

is the volume viscosity, which is usually neglected and is therefore omitted hereafter in this article. 𝛾 = cp∕cv is the fluid
heat capacity ratio, and Ra = R∕Ma is the specific gas constant. Possible additional source terms were not considered in
the aforementioned equations.

2.2 Turbulence modeling

Two turbulence approaches are used in this study. The first is the Reynolds Averaged Navier–Stokes equations (RANS)
which decomposes the fluid variables into a mean and a fluctuating part using the Reynolds average operator (.). A flow
variable 𝜓 is written as 𝜓 = 𝜓 + 𝜓 ′. For compressible and low compressible flow, the density weighted Favre average
operator is used instead (i.e., 𝜓̃ = 𝜌𝜓∕𝜌, 𝜓 = 𝜓̃ + 𝜓 ′′).

The second approach is the large eddy simulation (LES), where a spatial filter is applied on the Navier Stokes equations;
one part of the turbulence spectrum is solved whereas the other is modeled. 𝜓 being a variable, the filtering operation 𝜓
is defined as 𝜓 = ∫ ∞−∞G(x − 𝜉)𝜓(𝜉)d𝜉, where G is the LES filter function. Similar to the RANS method, the Favre filter is
defined as 𝜓̃ = 𝜌𝜓∕𝜌. For both turbulent approaches, the averaged Navier–Stokes equations read:

(a) 𝜕𝜌

𝜕t
+ div

(
q
)
= 0,

(b)
𝜕q

𝜕t
+ div

(
ũ ⊗ q

)
= −∇p + div

(
𝜇

[
∇ũ + ∇ũT − 2

3
div ũ I

])
− div

(
𝜏

T

)
+ f ,

(c)
𝜕

(
𝜌 ẽ

)

𝜕t
+ div

(
ẽ ⊗ q

)
= −pdiv

(
ũ
)
+ div

(
𝜆∇T̃

)
+ div

(
𝜆∇T′′

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

(1∗)

− cvdiv
(
𝜌u′′T′′

)
+ 𝜏 ∶ ∇ũ + 𝜏 ∶ ∇u′′

⏟⏞⏟⏞⏟

(2∗)

+ 𝜏′′ ∶ ∇ũ
⏟⏞⏟⏞⏟

(3∗)

,

(d)
𝜕

(
𝜌 Ỹ

)

𝜕t
+ div

(
Ỹ ⊗ q

)
= div

(
K∇Ỹ

)
+ div

(
K∇Y ′′

)
,

(e) p = 𝜌RaT̃,

(2)
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AMINO et al. 1967

where q = 𝜌ũ and f is the source term. The term (1*) can be neglected considering ΔT̃ >> ΔT′′, which is true for nearly
all flows. The same is considered for the scalar transport equation. Terms (2*) and (3*) can also be neglected by assuming
a flow below the hypersonic regime and that |𝜏| >> |𝜏′′|. The tensor 𝜏

T
is defined according to the operator applied to

the balance equations. For the RANS approach, 𝜏
T
= 𝜌R, with R = 𝜌u′′i u′′j ∕𝜌 being the Reynolds stress tensor. If the filter

operator is used, 𝜏
T

is the subgrid stress tensor defined as 𝜏sgs
≔ 𝜌(ũiuj − ũiũj). In both RANS and LES simulations, a

closure for 𝜏
T

is required. The averaged temperature equation also presents a new term corresponding to the turbulent

heat flux u′′T′′ which also requires a closure (e.g., the simple gradient diffusion hypothesis or the generalized gradient
diffusion hypothesis).

In the present study, RANS calculations were computed using the k − 𝜀48 model or differential Reynolds stress models
(DRAM). The first is an eddy viscosity model, which transports the turbulent kinetic energy k and its dissipation rate
𝜀 over the flow. The second model solves the Reynolds stress tensor R transport equations. In the latter, the following
closures are used: the Shir model49 is used to close the Reynolds stress tensor equation turbulent diffusive term, and the
SSG50 closure is used to model the velocity-pressure gradient correlation. Finally, the dynamic Smagorinsky model51 was
used to close the LES equations, completed with Lilly’s52 minimization resolution. For the sake of simplicity, equations
are written without the average and filter operators from now on.

2.3 Space and time discretization

The space domain Ω is meshed with a collection of polyhedral cells c of volume Ωc. Two neighboring cells c and c̃ share
a polygonal face f of the normal surface vector Sf oriented from c to c̃, as shown in Figure 1.

Mean space values over a cell Ωc and averaged values over a face f of (.) are denoted by:

(.)c ≔
1
Ωc ∫c

(.)dΩ, (.)f ≔
1
Sf ∫f

(.)dS. (3)

Sf is the cell measure and the surface. Note that face values are computed using special schemes, which are beyond the
scope of this work (see40 for more details). The mean time value over the time interval [tn

, tn+1] is denoted by

(.)|n+1
n ≔

1
Δt∫

tn+1

tn
(.)dt, (4)

where Δt is the interval measure. Moreover, the time values at time tn and tn+1 are written with the superscript (.)n and
(.)n+1, respectively. The time interval Δt|n+1

n is then tn+1 − tn.

F I G U R E 1 Labeling information used for a mesh. xc and xc̃ are the barycenters of cells c and c̃, respectively. xf is the barycenter of the
face f separating the two cells. [Colour figure can be viewed at wileyonlinelibrary.com]
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1968 AMINO et al.

In the present numerical scheme, the time stepping is defined by the parameter 𝜃, bounded in [0, 1]. We con-
sider the cases where 𝜃 = 1 (implicit Euler, 1st order time interpolation of (.)|n+1

n ) and 𝜃 = 1∕2 (Crank Nicolson,
2nd order time interpolation of (.)|n+1

n ). A field 𝜓 time interpolation Θ
(
𝜓

n
, 𝜓

n+1) between times n and n + 1 is
defined as:

Θ
(
𝜓

n
, 𝜓

n+1)
≔ (1 − 𝜃)𝜓n + 𝜃𝜓n+1

.

The dual time interval around time n is denoted by [n − 1 + 𝜃,n + 𝜃], and is of length:

Δt|n+𝜃
n−1+𝜃 ≔ Θ

(
Δt|n

n−1, Δt|n+1
n

)
,

From the above expressions, the extensive quantities such as the cell mass Mc, cell momentum Q
c

and face mass flux Ṁf
are defined as follows:

Mc ≔
∫c
𝜌dΩ, Q

c
≔

∫c
𝜌udΩ, Ṁf ≔

∫f
q ⋅ dS = q

f
⋅ Sf .

Finally, discrete spatial operators (denoted by capital letters) are defined. The discrete operator divergence of a
face-averaged field 𝜓

f
is as follows:

Divc

(
𝜓

f

)
≔

1
Ωc

∑
f∈c

𝜓
f
⋅ Sf =

(
div (𝜓)

)
c
, (5)

where c is the ensemble of all the planar polygonal faces of the cell c, and Sf is the outward surface vector. The discrete
cell gradient operator of a field 𝜓 is also defined as the divergence of the tensor 𝜓I:

Gradc

(
𝜓f

)
≔

1
Ωc

∑
f∈c

𝜓f Sf =
(

div (𝜓I)
)

c
. (6)

Finally, the discrete Laplacian operator of a given scalar 𝜓 with coefficient of diffusion K uses the two points flux
approximation (TPFA) (see References 53 and 54 for more details) and is defined as:

Lapc (K, 𝜓) ≔
1
Ωc

∑
f∈c

K∇f𝜓 ⋅ Sf , ∇f𝜓 =
𝜓c̃ − 𝜓c

dcc̃
. (7)

Remark 1. The mass balance is selected to be performed between time steps n and n + 1. Therefore, since they are linked
by the equation of state, scalar mass fractions Y , temperature T and density 𝜌 are stored in the same space and time
locations. The mass balance implies that the mass fluxes denoted by q

f
⋅ Sf are stored in the time interval [n,n + 1] and on

the mesh faces. Note that the time interval [n,n + 1] is the dual space of time n + 1
2
. Therefore, the momentum equation is

solved between times n − 1
2

and n + 1
2

when 𝜃 = 1∕2. Figure 2 shows the time locations of the different scheme variables.
When 𝜃 = 1∕2, the velocity location is at the center of the time interval [n,n + 1], whereas other fields are evaluated at
times n and n + 1, respectively.

2.4 Time scheme

The equations to be solved are nonlinear. Here, an iterative process is proposed with inner-iterations denoted by
the superscript k, starting at 1. It is based on an approach that combines prediction and correction steps, which is
often used in incompressible schemes. Moreover, one has to distinguish the thermodynamic pressure, located with the
other thermodynamic variables (denoted as pn for the time tn), and the mechanical pressure which applies a force
on the momentum during the time interval [n − 1 + 𝜃,n + 𝜃] (denoted by p|n+𝜃

n−1+𝜃). Their relation is given later in
Equation (14).
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AMINO et al. 1969

(A) (B)

F I G U R E 2 Time variables localization for the two 𝜃 values [Colour figure can be viewed at wileyonlinelibrary.com]

Three major constraints are considered while designing the proposed scheme.

1. At each step, the instantaneous density must be in coherence with the convective mass flux;
2. To maintain the scheme conservation property, when adding the prediction and correction equations (Equations 10

and 11), unsteady terms of the predicted velocity ũk should disappear;
3. The densities of the prediction and correction step are centered at the time step n when 𝜃 = 1∕2.

For a sake of clarity, the time step Δt is supposed constant from now on. The reader may find the scheme equations
for a variable time step in Appendix C.

Time integration

for n ∈ [0,N − 1]

• Initialisation: for k = 1, the cell c initial values are

𝜌
n,0
c = 𝜌n−1

c , 𝜌
n+1,0
c = 𝜌n

c , q
f

||||
n+1,0

n
⋅ Sf = q

f

||||
n

n−1
⋅ Sf , p|n+𝜃,0

n−1+𝜃 = pn
.

As a side note, at any iteration, the mass flux should verify the following mass balance equation:

Divc

(
q

f

||||
n+1,k

n

)
= −

(
𝜌

n+1,k
c − 𝜌n,k

c

)

Δt
.
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1970 AMINO et al.

Subiterations for k ∈ [1,M − 1]

• Buoyant scalars step: scalars Y n+1,k
c and the temperature Tn+1,k

c are computed by solving in the interval [n,n + 1]:

(a):
𝜌

n+1,k−1
c Y n+1,k

c − 𝜌n,k−1
c Y n

c

Δt
+ Divc

(⟨
Θ

(
Y n
, Y n+1,k)⟩

f q
f

||||
n+1,k−1

n

)
= Lapc

(
K,Θ

(
Y n
, Y n+1,k))

, for scalars,

(b): cv

[
𝜌

n+1,k−1
c Tn+1,k

c − 𝜌n,k−1
c Tn

c

Δt
+ Divc

(⟨
Θ

(
Tn
, Tn+1,k)⟩

f q
f

||||
n+1,k−1

n

)]
= 𝜇(S2

c )n+𝜃,k−1 + Γu2∕2
c

|||
n+1,k−1

n

+ Lapc
(
𝜆,Θ

(
Tn
, Tn+1,k)) − Divc

(⟨
Θ

(
pn
, pn+1,k−1) un+𝜃,k−1⟩

f

)
+ un+𝜃,k−1

c ⋅ ∇c p|n+𝜃,k−1
n−1+𝜃 , for temperature. (8)

Note that the term pdiv (u), implemented as div (pu) − u ⋅ ∇(p), is calculated using an upwind scheme. Different spatial
discretizations can be used for the convection equation term (see Reference 40 for more details). Further, for the first
subiteration, 𝜌n,k−1 is 𝜌n−1 and 𝜌n+1,k−1 is 𝜌n; thus, the density variation (𝜌n − 𝜌n−1) is balanced by the mass flux q

f
|||

n

n−1

term. Γu2∕2
c

|||
n+1,k−1

n
is a corrective source term derived from the discrete kinetic energy equation based on Reference 26

and is derived here for the present sub-iterative scheme:

Γu2∕2
c

|||
n+1,k−1

n
=

⎡
⎢⎢⎢⎣
1 −

Θ
(
𝜌

n
c , 𝜌

n+1,k−2
c

)

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)
⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
Θ

(
𝜌

n−1
c , 𝜌

n
c
) |un−1+𝜃

c |2

2Δt
− Divc

⎛
⎜⎜⎜⎝

|||
⟨
Θ

(
un−1+𝜃

, ũk−1)⟩
f
|||
2

2
q

f

||||
n+𝜃,k−2

n−1+𝜃

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

−
Θ

(
𝜌

n
c , 𝜌

n+1,k−2
c

)

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)Divc

⎛
⎜⎜⎜⎜⎝

||||
⟨
Θ

(
un−1+𝜃

, ũk−1
)⟩

f
− uk−1

c

||||
2

2
q

f

||||
n+𝜃,k−2

n−1+𝜃

⎞
⎟⎟⎟⎟⎠

+
Θ

(
𝜌

n
c , 𝜌

n+1,k−2
c

)

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)Θ (
𝜌

n−1
c , 𝜌

n
c
) [|uk−1

c − un−1+𝜃
c |2]

2Δt
. (9)

All face values
⟨
Θ

(
un−1+𝜃

, ũk−1)⟩
f were obtained using the same convective scheme as that used for the convection

term during the prediction equation (Equation 10). This corrective term allows the total energy to be conserved in
the given interval, leading to consistent solutions even in the presence of irregularities. The derivation is given in
Appendix A.

• An intermediate density is calculated with the equation of state*

𝜌c
k = 𝜚

(
pn+1,k−1

c ,Tn+1,k
c

)

=
pn+1,k−1

c

RaTn+1,k
c

, for ideal gases.

This new density is not balanced by any mass flux. The mass conservation is insured in the correction step.
• Prediction step: An intermediate velocity ũk is computed by solving the momentum equation in the time interval
[n − 1 + 𝜃,n + 𝜃]:

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)
ũk

c − Θ
(
𝜌

n−1
c , 𝜌

n,k−1
c

)
un−1+𝜃

c

Δt
+ Divc

(⟨
Θ

(
un−1+𝜃

, ũk)⟩
f ⊗ q

f

||||
n+𝜃,k−1

n−1+𝜃

)

= −Gradc

(⟨
p|n+𝜃,k−1

n−1+𝜃

⟩
f

)
+ Divc

(
𝜏

k
f

)
+ f

c
|||

n+𝜃,k−1

n−1+𝜃
. (10)

The mass flux q
f

||||
n+𝜃,k−1

n−1+𝜃 f
is defined by q

f

||||
n+𝜃,k−1

n−1+𝜃
= Θ

(
q

f

||||
n

n−1
, q

f

||||
n+1,k−1

n

)
. Note that the cell pressure gradient

and external volume force are taken at the same time interval; if they are in a partial balance, no parasite velocities
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AMINO et al. 1971

are created. Similar to the temperature equation, face terms ⟨.⟩f related to the material convection can be evaluated
through different convective schemes available in code_saturne.40 The face pressure is computed using a centered
interpolation.

• Correction step: During this stage, the pressure increment 𝜙k = p|||
n+𝜃,k

n−1+𝜃
− p|||

n+𝜃,k−1

n−1+𝜃
is computed and used to correct the

velocity un+𝜃,k. The following system is solved on [n,n + 1]:

⎧
⎪⎪⎨⎪⎪⎩

Θ
(
𝜌

n
c , 𝜌

n+1,k
c

)
un+𝜃,k

c − Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)
ũk

c

Δt
+ ∇f𝜙

k = 𝛿f k
c
, with 𝛿f k

c
= f

c
|||

n+𝜃,k

n−1+𝜃
− f

c
|||

n+𝜃,k−1

n−1+𝜃
,

Divc

(
q

f

||||
n+1,k

n

)
+
𝜌

n+1,k
c − 𝜌n

c

Δt
= 0,

(11)

where, by definition:

q
f

||||
n+1,k

n
=

⟨
Θ

(
𝜌

n
, 𝜌

n+1,k) un+𝜃,k⟩
f =

⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk⟩
f − Δt

(
∇f𝜙

k − 𝛿f k
c

)
, (12)

which verifies the mass balance with
𝜌

n+1,k
c − 𝜌n

c

Δt
, and whose field face values are calculated using a centered scheme.

Combining the equations in (11) and using the Rhie and Chow55 filter leads to a Helmholtz equation for the cell
thermodynamic pressure pn+1,k

c :

𝜌
n+1,k
c − 𝜌n

c

Δt
− 𝜃Lapc

(
Δt, pn+1,k) = −Divc

(⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk + Δt
(
∇p|n+𝜃,k−1

n−1+𝜃 + 𝛿f k
)⟩

f

)

+ (1 − 𝜃)Lapc
(
Δt, p|n−1+𝜃

n−2+𝜃
)
. (13)

The pressure pn+1,k
c is linked to 𝜙k

c through:

𝜙
k
c = Θ

(
pc|n−1+𝜃

n−2+𝜃, pn+1,k
c

)
− pc|n+𝜃,k−1

n−1+𝜃 . (14)

The density 𝜌n+1,k
c reads:

𝜌
n+1,k
c = 𝜌c

k +
(

pn+1,k
c − pn+1,k−1

c

)(
𝜕𝜚

𝜕p
|||T

(
Tn+1,k

c , pn+1,k−1
c

))
,

=
pn+1,k

c

RaTn+1,k
c

, for ideal gases. (15)

Note that the update of density performed in the first line of (15) makes the scheme conservative in space and time
for mass, which is an important property for nonregular solutions. From a generic point of view, the density 𝜌n+1,k

in equation (15) might not satisfy the equation of state (contrary to what was done in step 6 of Reference 30). In the
case of an ideal gas, the first line of (15) reduces to the second line of (15). The sub-iterative process for the time step

ends when the error 𝜖k =
√∑Ncell

c=1Ωc
|||u

n+𝜃,k
c − un+𝜃,k−1

c
|||
2

is below a fixed value 𝜖0. The scheme main steps, showing the
primary variables solved and their related equations are summarized in Algorithm 1.

2.5 Properties of the scheme

In this section, we present the different Courant and Fourier like sufficient conditions to ensure the temperature, pressure
and density positivity. An upwind convective scheme was used to evaluate the face field values. The proofs of the CPC
scheme Properties 1–3 summarized in this section are given in Appendix B.
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1972 AMINO et al.

Algorithm 1. Time scheme main steps

1: First time step initialization
2: Time loop
3: for n = 0, N-1 do
4: Initialization of variables at the first sub-iteration k = 1
5: for k = 0, M-1 do
6: Compute scalars and temperature Y n+1,k

c ,Tn+1,k
c , Eq (8)

7: Update of the density 𝜌c with Tn+1,k
c

8: Compute the predicted velocity uc
k
, Eq (10)

9: Correction step: compute 𝜙k
c → pc|n+𝜃

n−1+𝜃, Eq (13)
10: Correct the thermodynamic pressure pn+1,k

c , Eq (14)
11: Correct the density 𝜌n+1,k

c , Eq (15)
12: Correct the velocity un+𝜃,k

c , Eq (12)
13: if 𝜖k

≤ 𝜖0 then
14: Break the for loop
15: else
16: Compute the kinetic energy source term Γu2∕2

c
|||

n+1

n
, Eq (9)

17: end if
18: end for
19: end for

Property 1 (Positivity of the temperature). Assume an upwind convective scheme and initial conditions for all cells;
𝜌

0
c , T0

c and p0
c are positive; and an ideal gas with 𝛾 > 1. Assume that the corrective source term Γu2∕2

c is positive. Then, the
temperature Tn+1,k

c will remain positive for all cells, provided that the time step Δt complies with the CFL (Equations 16
and 17) conditions and the Fourier Equation (18) condition.

CFL+T1
< 1 where CFL+T1

≔ (1 − 𝜃) Δt
Mn

c

∑
f∈c

Ṁ+
f
|||

n+1,k−1

n
. (16)

CFL+T2
< 1 where CFL+T2

≔

Δt
Mn

c

∑
f∈c

[
𝜃(𝛾 − 1)

Tn+1,k−1
c

Tn
c

+ (1 − 𝜃)𝛾

]
Ṁ+

f
|||

n+1,k−1

n
−
Δt(𝛾 − 1)un+𝜃,k−1

c ⋅ ∇c p|n+𝜃,k−1
n−1+𝜃

pn
c

. (17)

Fo+T < 1 where Fo+T ≔
𝜆c(1 − 𝜃)Δt

cvMn
c

∑
f∈c

|Sf |. (18)

Property 2 (Positivity of the pressure). Assume an upwind scheme and initial conditions for all cells, 𝜌0
c T0

c and p0
c and

an ideal gas with 𝛾 > 1. Then, the pressure pn+1,k
c will remain positive for all cells provided that the time step Δt complies

with the CFL condition (19).

CFL+p < 1 where CFL+p ≔
Δt
Mn

c

∑
f∈c

a𝜙f . (19)

where

a𝜙f =
⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk + Δt∇p|n+𝜃,k−1
n−1+𝜃

⟩
f
⋅ Sf − (1 − 𝜃)Δt∇f p|n−1+𝜃

n−2+𝜃 ⋅ Sf

Property 3 (Positivity of density). Assume an upwind scheme, initial conditions for all cells; 𝜌0
c , T0

c and p0
c are positive;

and an ideal gas with 𝛾 > 1, then the density 𝜌n+1,k
c will remain positive if the conditions (16), (17), (18), and (19) are

respected.

Property 4 (Scheme low Mach number limit). By defining the sound speed 1
c2 =

𝜕𝜚

𝜕p
|||S
≈ 𝜕𝜚

𝜕p
|||T

, the Helmholtz Equation

(13) can be rewritten as
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AMINO et al. 1973

pn+1,k
c − pn+1,k−1

c

c2 Δt
− 𝜃Lapc

(
Δt, pn+1,k) = − 𝜌̃

k
c − 𝜌n

c

Δt
− Divc

(⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk + Δt
(
∇p|n+𝜃,k−1

n−1+𝜃 + 𝛿f k
)⟩

f

)

+ (1 − 𝜃)Lapc
(
Δt, p|n−1+𝜃

n−2+𝜃
)
. (20)

By introducing the Mach number Ma =
uref

c
with uref as a characteristic velocity, the order of magnitude of the first

term on the left-hand side is Ma2 𝛿P
𝜌ref u2

ref

𝜌ref

Δt
. In the limit of the zero-Mach number, this term is negligible compared with

the first term on the right-hand side. The Helmholtz equation becomes a Poisson equation, similar to the one used for
incompressible flow with variable density.40

3 SCHEME VERIFICATION AND VALIDATION

The CPC scheme is verified on analytical test cases and validated on reference numerical and experimental cases. Note
that for all simulations, a constant time step was used and the density follows the ideal gas law.

3.1 Pressure cooker like system

This verification case is designed to test the time scheme ability to take into account pressure variations while conserving
the global mass of the system, composed of a single computational cell of [1 × 1 × 1] m3. Two faces are heated while
others present adiabatic boundary conditions as displayed on Figure 3. Two different cases are considered where the
boundary conditions change. First, a Neumann boundary condition on the heated walls is considered and then a Dirichlet
boundary condition is tested. The initial system temperature and density are set as T0 = 300 K and 𝜌0 = 1.177 kg m−3 for
both cases. For a field 𝜓 , the numerical 𝜓c and analytical 𝜓ex results are compared through the mean square relative error
Lerr

2 (𝜓) over the cell c of volume Ωc:

Lerr
2 (𝜓) ≔

√√√√√
1
Ωtot

∑
c (𝜓c − 𝜓ex)2Ωc

1
Ωtot

∑
c 𝜓

2
0Ωc

. (21)

The system analytical temperature expressions for the Neumann (N) and Dirichlet (D) cases are:

TN(t) = T0

(
1 + t

𝜏1

)
, TD(t) =

(
T0 − Tp

)
e−

t
𝜏2 + Tp, (22)

where 𝜏1 =
Ωtot 𝜌0 cv T0

S Qi
, 𝜏2 =

Ωtot 𝜌0 cv

S h
and Qi = 5 W m−2. Here, Ωtot is the total cell volume, cv is the heat capacity,

and S is the total heated wall surface. Tp = 313 K denotes the wall temperature. The interior air heat transfer coefficient
h = 30 W m−2 K−1 remains constant and the time step is set as Δt = 1 s, with a single inner-iteration.

F I G U R E 3 Sketch of the system [Colour figure can be viewed at wileyonlinelibrary.com]
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1974 AMINO et al.

The CPC scheme results are compared with the analytical and IPC scheme results. Figure 4 shows the L2 error
norm for the different fields over time; the presented algorithm takes into account the pressure variation while
the cell is heated (Figure 4, black lines) whereas the IPC scheme, which uses the Poisson equation in the cor-
rection step, leads to more important and increasing errors (red lines). Moreover, the errors are below the solver
precision for all variables, fixed as 10−8. Note that the increasing behavior of all errors can be explained as an
accumulation of truncation errors. Figure 5 shows the pressure L2 error at t = 0.8𝜏2 s for the Dirichlet boundary con-
dition study. It is verified that the first and second order time convergence rate are obtained when 𝜃 = 1 and 1∕2,
respectively.

3.2 1D convection verification case

This test case is designed to verify the scheme conservation of the mass and momentum over time as well as its time
convergence order while transporting a scalar for a flow of constant velocity. The one-dimensional domain has a length
L of 40 m and a 40 cells Cartesian mesh is used. The constant velocity flow is considered laminar and viscous terms are
disabled. The temperature inlet boundary condition is varied over time as follows:

Tin = 473 K if t ∈ [10, 20[, Tin = 300 K otherwise.

The inlet velocity is set as U0 = 1 m s−1 and the initial density as 𝜌0 = 1.177 kg m−3. The outlet pressure is set to the
reference value p0 and all other walls are considered as symmetries. Mass and momentum balances are then performed

F I G U R E 4 L2 error norm of the density, temperature, and pressure for the Neumann boundary condition case. ( ) IPC46

code_saturne scheme. (–) presented scheme [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Dirichlet boundary condition case. L2 error for the pressure at t = 0.8𝜏2 for a first-order implicit Euler (𝜃 = 1) and Crank
Nicolson (𝜃 = 1∕2) time scheme

 10970363, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5116 by Jozef Stefan Institute, W

iley O
nline L

ibrary on [07/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


AMINO et al. 1975

over the entire system and normalized by their initial values for each time step as follows:

I𝜌 =
∫Ω 𝜌

ndΩ + ∫ tn

t=0 ∫𝜕Ω 𝜌udSxdt
∫Ω 𝜌0dΩ

, Iq =
∫Ω (𝜌u)n−𝜃dΩ + ∫ tn−𝜃

t=0 ∫𝜕Ω (𝜌uu + p) dSxdt
∫Ω 𝜌0u0dΩ

. (23)

The conservation of both quantities is tested for 𝜃 = 1 and 𝜃 = 1∕2. For each time step, set asΔt = 0.3 s, 5 inner-iterations
are performed. The results of this study (Figures 6 and 7) show that the variation of mass and momentum relative to their
initial values are below 10−7 for both simulations, validating their conservation.

A second study was conducted to verify the CPC scheme time convergence rate while transporting a passive scalar.
The latter is initialized following two different profiles:

Y (x, 0) = Y0 exp(−(x∕L − 5)2) and Y (x, 0) = Y0 tanh(x∕L − 5),

where Y0 = 1 denotes the initial constant. The source and diffusive terms being disabled, an exact solution for the scalar
can be derived from its transport equation and compared to the numerical solution through its L2 error norm:

𝜕Y
𝜕t
+ U0

𝜕Y
𝜕x

= 0 → Y (x, t) = Y (x − U0t, 0), (24)

where U0 is the inlet velocity set as 0.1 m s−1.

F I G U R E 6 Mass conservation for the (left) Euler implicit scheme (𝜃 = 1) and the (right) Crank Nicolson scheme (𝜃 = 1∕2) [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Momentum conservation for the (left) Euler implicit scheme (𝜃 = 1) and the (right) Crank Nicolson scheme (𝜃 = 1∕2)
[Colour figure can be viewed at wileyonlinelibrary.com]
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1976 AMINO et al.

At the fixed time t = 45 s, the scalar L2 error norm was studied following the spatial grid refinement at the constant
Courant number CFL = ΔtU0

Δx
= 0.05 and for different convective schemes (see Reference 40 for a detailed description of

code_saturne convective schemes). Four inner-iterations are performed for each time step. Results (Figure 8) show that
the scheme converges to the first order when using the upwind scheme for both test cases. When using the centered and
second order linear upwind (SOLU)56 convective schemes, a similar behavior was observed related to the second order.
This 1D convective setup provided results that were able to ensure the conservation of mass and momentum by the CPC
scheme. Its convergence rate while transporting a scalar was also verified through two scalar profiles and different spatial
convective schemes.

3.3 Shock tube

Two one-dimensional Riemann problems are considered to verify the scheme accuracy for flows with shock and rarefac-
tion waves. First, a double symmetric rarefaction wave expansion is studied and then a more irregular configuration (Sod
shock tube57). The simulations are carried out on grids with 2m × 800 cells, 0 ≤ m ≤ 5. The initial conditions are given
in Table 1. The computational domain is a tube of length L = 400 m extending from x = −L∕2 to x = L∕2, the interface
being located at x = 0. Symmetry conditions are imposed on all boundary faces of the computational domain except at
the two end faces of the tube, which are set to be outlets. For each case, the fields L1 error norm (related to the Rie-
mann problem exact solution 𝜓e, Equation (25)) time convergence rate 𝛼(Lerr

1 (𝜓)) is studied for both 𝜃 values and for two
fluid-velocity based CFL numbers (CFL = 0.04 and CFL = 1.00). They are calculated using Equation (25) and the data
from the two most refined meshes for each configuration. Independently of the time step, results are achieved with 3
inner-iterations.

Lerr
1 (𝜓) =

∑Nc
c=1|Ωc| |𝜓e(xc) − 𝜓c|
∑Nc

c=1|Ωc| |𝜓e(xc)|
, 𝛼(Lerr

1 (𝜓)) =
|||L

err
1 (𝜓)

|||m=5
− Lerr

1 (𝜓)
|||m=4

|||
12800

. (25)

F I G U R E 8 Scalar L2 error norm following the grid refinement for three different convective schemes for the (left) Gaussian scalar
initialization and (right) tanh scalar initialization [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Initial states for the two one-dimensional Riemann problems used

Test 𝝆L(kg m−3) uL(m s−1) pL(Pa) 𝝆R(kg m−3) uR(m s−1) pR(Pa)

DSE 1 −100 100,000 1 100 100,000

SOD 1 0 100,000 0.125 0 10,000

 10970363, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5116 by Jozef Stefan Institute, W

iley O
nline L

ibrary on [07/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


AMINO et al. 1977

3.3.1 Double symmetric expansion case

For all fields, the simulation results convergence rates are close to 0.8 for the CFL = 0.04 simulations (Figure 9, and
Table 2). A slight improvement can be observed when 𝜃 = 1∕2. For the cases with CFL = 1.00, the theta value seems to
have a more important impact on the numerical results: again, the convergence rates are higher (close to 1) when using the
time staggered scheme. Figure 10 shows the simulation fields at t = 0.3s, for a mesh composed of 3200 cells. The different
fields are in agreement with the analytical solution. This confirms the scheme accuracy related to regular solutions.

3.3.2 Sod case

This test case is used to show the importance of adding the source term Γu2∕2 to the internal energy equation. Based on
the numerical results (Figure 11), one can notice that without the source term, even if the pressure, velocity and density
values are close to the exact solution, the correct temperature plateau value is incorrect (Figure 11, blue lines). When
using the source term (Figure 11, red lines), the temperature plateau value is well reached by the simulation, leading to
consistent numerical results.

Table 3 shows the fields L1 error convergence rate that are represented in Figure 12 and 13. For irregular solutions,
it is known that even second order schemes used for compressible flows do not exhibit second order accuracy. The con-
vergence rates are around 0.5 for the density and temperature and around 1.0 for the pressure and velocity. They can
be actually comparable and in agreement with the convergence rates available in the literature for compressible flow
solvers.3,26,47 Similarly to the previous case, when using the staggered scheme (𝜃 = 1∕2), the overall L1 error for all fields
is less important than the one obtained with 𝜃 = 1.

Finally, Figure 14 shows that for the SOD configuration, the CFL like conditions presented in Section 2.5 are respected
and below the speed-based CFL number for both calculations.

3.4 Heated cavity: 2-D natural convection

This natural convection validation case presented in Reference 58 and studied in References 59-62 focuses on the heat
transfer in a steady flow driven by buoyancy effects at Ra = 106. The corresponding 2-D system of characteristic length

(A) (B) (C) (D)

F I G U R E 9 L1 error convergence for the DSE case using an upwind convective scheme for two values of CFL and 𝜃

T A B L E 2 L1 convergence rates for the DSE case

CFL 𝜽 𝝆 rate u rate p rate T rate

0.04 1.00 0.83 0.83 0.83 0.83

0.04 0.50 0.88 0.88 0.87 0.89

1.00 1.00 0.49 0.73 0.74 0.58

1.00 0.50 0.88 0.91 0.91 0.85
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1978 AMINO et al.

F I G U R E 10 Double symmetric expansion wave results at t = 0.3 s using a 3200 mesh and for 𝜃 = 1 (–) exact solution ( ) simulation
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 SOD case results at t = 0.3 s for 𝜃 = 1 using a 3200 cells mesh (–) exact solution ( ) simulation using the source term
Γu2∕2 ( ) simulation without the source term Γu2∕2[Colour figure can be viewed at wileyonlinelibrary.com]
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AMINO et al. 1979

T A B L E 3 Convergence rate for the SOD case

CFL 𝜽 Convective scheme 𝝆 rate u rate p rate T rate

0.04 1 Upwind 0.60 0.88 0.86 0.54

0.04 0.5 Upwind 0.59 0.86 0.85 0.53

1.00 1 Upwind 0.65 0.89 0.82 0.54

1.00 0.5 Upwind 0.59 0.90 0.85 0.53

0.04 1 Centered 0.61 0.96 0.92 0.53

0.04 0.5 Centered 0.60 0.95 0.95 0.54

1.00 1 Centered 0.64 0.89 0.82 0.56

1.00 0.5 Centered 0.56 0.90 0.89 0.51

(A) (B) (C) (D)

F I G U R E 12 L1 error convergence for the SOD case using an upwind convective scheme for two values of CFL and 𝜃

(A) (B) (C) (D)

F I G U R E 13 L1 error convergence for the SOD case using a centered convective scheme for two values of CFL and 𝜃

F I G U R E 14 CFLx numbers for the SOD case for two different velocity based CFL simulations with 𝜃 = 1. Left frame: CFL = 0.04. Right
frame: CFL = 1.0
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1980 AMINO et al.

L = 0.4603 m is illustrated on the Figure 17. The flow is driven by the lateral walls temperature difference. The mean
Nusselt number Nu = 1

L
∫

y=L
y=0 Nu(y)dy evaluated on the cold and hot walls are compared to their referenced values,

with:

Nu(y) = L
(Th − Tc)

𝜆

𝜆0

𝜕T
𝜕x

|||w
(y), Ra = Pr

g𝜌2
0(Th − Tc)L3

T0𝜇
2
0

.

The flow dimensionless variables are: p̂ = p∕p0, û = u∕U0, v̂ = v∕U0, T̂ = (T − Tc)∕(Th − Tc), where U0 = 𝛼0∕L, with 𝛼0 =
𝜆0∕(𝜌0Cp).

The initial conditions are p0 = 10.1325 × 104 Pa and T0 = 600 K. The boundary conditions are Th = 960 K and Tc =
240 K on the side walls. Other walls are considered adiabatic. The following fluid properties are constant: 𝜇0 = 1.68 ×
10−5 kg m−1 s−1 and 𝜆0 = 𝜇0𝛾R∕((1 − 𝛾)Pr), with Pr = 0.71 and R = 287 J kg−1 K−1. All simulations are performed with
𝜃 = 1 and 3 subiterations. A sensitivity mesh study is realized and shown in Figure 15B. Beyond 740 × 740 cells, the
Nusselt number have negligible variation. Thus, only results obtained with this mesh (Figure 16B) are discussed. The
corresponding time step used is Δt = 0.0025 s. The steady state is reached after approximately 10 s of simulations

(A) (B)

F I G U R E 15 (A) Relative domain-averaged quantities 𝜓∕𝜓0 over time (B) Nusselt number over the nonadiabatic walls for different
mesh refinements; the hot and cold walls are represented by red and black lines, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

F I G U R E 16 (A) Nusselt number profiles for the hot and cold walls compared to the IPC46 scheme and that of Reference 60. (B)
740×740 cells hexahedral mesh used for the presented results [Colour figure can be viewed at wileyonlinelibrary.com]
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AMINO et al. 1981

F I G U R E 17 Left: sketch of the system. Centre: steady state dimensionless temperature t̂ iso-contours. Right: steady state
dimensionless temperature t̂ iso-contours, reference from Reference 60

T A B L E 4 Comparison between the mean Nusselt numbers and total pressure ratio with the reference values from Reference 58. Results
from the mesh simulation of a converged 740 × 740 cells

Present CPC scheme IPC scheme46 Reference 58

Nuw 9.7 8.86 8.86

p̂ 1.000 0.856 0.856

F I G U R E 18 Distribution of the velocity on the centerlines of the convective cavity compared to Reference 60 [Colour figure can be
viewed at wileyonlinelibrary.com]

(Figure 15A). Note that the mean cavity density remains constant over time, while the other thermodynamic fields con-
verge to their steady solutions. Figure 17 compares some temperature iso-contours over the cavity for the presented
algorithm to the reference results,60 which are very similar. Table 4 compares the CPC and IPC schemes steady results
against Reference 58. The pressure variation is well reproduced by the CPC algorithm in the heated cavity, where its mean
value reaches the expected reference value of 0.856. This is not the case for the IPC scheme due to the lack of pressure
variation. Moreover, the mean Nusselt numbers of both walls are in agreement with their expected values of 8.86 (see
Figure 16A) for the Nusselt number profiles over the two given walls). This is directly linked to the correct shape of the
vertical and horizontal velocity profiles over the cavity, as shown in Figure 18. As observed in the pressure cooker test
case (3.1), the present comparison clearly shows that the thermodynamic pressure variation and wall heat fluxes are well
reproduced.

In conclusion, the simulation results show that the proposed scheme can be as accurate as other numerical
methods,59,61-63 which are known to predict correct natural convection solutions.
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1982 AMINO et al.

4 LOCK EXCHANGE CASE

This case focuses on a two dimensional gravity current flow in a lock exchange configuration. The system is a rectangu-
lar cavity of height 2L and width 30L, with L = 1 m the half-height of the cavity (see Figure 19 for the system sketch).
The temperature difference ΔT = 2 K between the heavy and light fluids, respectively at Tc (on the right) and Th (on
the left), drives the flow. The top and bottom walls have the no slip condition and others boundaries are treated as
symmetries.

The Grashof number describing the flow is Gr = g𝛽ΔTL3

𝜈2 = 1.25.106, and the dimensionless time is denoted by t+ = tU
L

,
where U =

√
𝛽ΔTgL and 𝛽 = 2∕(Th + Tc). An LES simulation is performed using a mesh with 768 × 91 cells based on

the reference paper,64 with Δt = 0.017 s. 2 inner-iterations where used and 𝜃 = 1∕2. The numerical density iso contours
(10 contours linearly separated from the minimum and maximum densities) at t+ = 10 and 20 are compared with the 2D
DNS reference results.64

The results presented in Figure 20 show a good agreement between the CPC scheme LES simulation and the reference
DNS density iso contours, where symmetric structures can be observed induced by the buoyant flow effects.

F I G U R E 19 Sketch of the lock exchange system

F I G U R E 20 Lock exchange system density iso contours at two values of t+
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AMINO et al. 1983

This emphasizes the ability of the proposed algorithm to reproduce different types of flows, from the compressible to
the incompressible limit. Note that this type of flow could not be correctly reproduced by an isentropic pressure correction
compressible scheme.

5 LES SIMULATION ON A 3-D VENTILATED ROOM

Finally, the CPC scheme is tested on a more complex validation case, the MINIBAT65 configuration, whose 3-D flow is
driven by a turbulent axisymmetrical jet. The numerical results were compared with the experimental data.66 Even if
the 3.1 × 3.1 × 2.5 m3 system geometry (shown in Figure 21) appears simple, several studies have shown the difficulty in
predicting the flow mean and instantaneous quantities.67,68 Two RANS simulations, using the k − 𝜀 and Rij approaches
were compared to a LES simulation. A radial interpolation on the velocity, temperature, and turbulent kinetic energy at

F I G U R E 21 Location of the horizontal and vertical line segments where the numerical and experimental results are compared [Colour
figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 22 (A) Interpolated velocity field for the inlet boundary condition (B) hexahedral mesh used for the simulations [Colour
figure can be viewed at wileyonlinelibrary.com]

 10970363, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5116 by Jozef Stefan Institute, W

iley O
nline L

ibrary on [07/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1984 AMINO et al.

T A B L E 5 Wall boundary conditions

Wall South North East West Ceiling Floor

Temperature (K) 295.6 295.6 295.5 295.5 295.6 295.7

F I G U R E 23 Profiles of the velocity magnitude at the horizontal line segments for different turbulent simulations [Colour figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 24 Profiles of the velocity magnitude at the vertical line segments for different turbulent simulations [Colour figure can be
viewed at wileyonlinelibrary.com]
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AMINO et al. 1985

the inlet faces based on the experimental data is performed. The mean inlet velocity and temperature are Vin = 2.96 m s−1

and Tin = 294.95 K. The resulting 2-D inlet interpolated velocity field is shown in Figure 22A. One can see that as a direct
consequence of the experimental inlet duct, the flow deviates along the x axis, making the jet nonsymmetric. The no-slip
wall Dirichlet boundary conditions are listed in Table 5.

More information about the configuration and its experiment conditions can be found in References 66 and 65. A
hexahedral mesh composed of 7.5 million cells was used for the simulations (Figure 22B); for RANS computations, 𝜃 = 1
and for the LES simulation, 𝜃 = 1∕2. Two inner-iterations are performed for each time step, fixed to Δt = 0.0025 s. Once
a statistical steady state was reached in LES, the main fields were averaged for 30 s. The velocity magnitude and diagonal

F I G U R E 25 (A–C) Horizontal and (D–F) vertical Rii profiles at y = 0.9 m. Legend: (•) Experimental data, ( ) k − 𝜀, ( ) Rij − 𝜀
(SSG), ( ) LES [Colour figure can be viewed at wileyonlinelibrary.com]

 10970363, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5116 by Jozef Stefan Institute, W

iley O
nline L

ibrary on [07/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


1986 AMINO et al.

F I G U R E 26 (A–C) Horizontal and (D–F) vertical Rii profiles at y = 1.5 m. Legend: (•) Experimental data, ( ) k − 𝜀, ( ) Rij − 𝜀
(SSG), ( ) LES [Colour figure can be viewed at wileyonlinelibrary.com]

terms of the Reynolds stress tensor were compared with the experimental values at the different horizontal and vertical
line segments presented in Figure 21.

Figure 23 shows the horizontal velocity magnitude profiles as the distance from the jet inlet increases. Near the jet,
both numerical and experimental profiles are in agreement and few differences between the different turbulent simu-
lations are observed, which is expected as the fields are interpolated in the inlet. As the axial distance increases, the jet
diffusion seems to be over-evaluated by the CPC numerical scheme, for all turbulent approaches. Moreover, the sim-
ulations globally do not accurately reproduce the observed jet shift. Similarly, the vertical velocity profiles, shown in
Figure 24 present an overestimation of the jet diffusion, even if the velocity profile shapes are similar to that from the
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AMINO et al. 1987

experiment. However, the LES simulation leads to more accurate results for higher y values, where a light shift can be
observed.

The instantaneous quantities are presented in Figures 25 and 26 for y = 0.9 and 1.5 m, respectively. At the y = 0.9 m
line segment, all k − 𝜀, Rij and LES simulations provided horizontal and vertical results close to the experimental ones.
More precisely, one can perceive that the k − 𝜀 simulation is in agreement with the experimental results for the Reynolds
stress tensor R11 and R33 components, whereas the Rij simulation is more precise for the axial component R22. The LES
profiles present peaks close the experimental ones for all Rii components. The Rij simulation profiles have the expected
shapes but globally underestimate the tensor components. For y = 1.5 m, the shift present in the mean velocity magnitude
profiles can be noticed, especially for the LES simulation. Moreover, the Rij and LES simulations show profiles more in
agreement with the experimental data compared to the k − 𝜀 one. Although some error still exist, the cause of which
remains to be investigated, the different simulations were able to predict the instantaneous flow quantities with more
accuracy than the mean ones. Indeed, even for a consequent distance from the jet inlet, the diagonal Reynolds stress tensor
terms were well predicted. Globally, the LES simulation led to the most convincing results; the shapes of the numerical
profiles were in agreement with the experimental and the peaks amplitude were correctly reproduced for the two different
jet zones. This test case demonstrates the CPC scheme compatibility with both RANS and LES approaches.

6 CONCLUSIONS

A second-order accurate conservative time scheme for variable-density flow was developed as an extension of the work of
Pierce et al.69 A staggered time variable arrangement is used but for the finite volume discretization. A Helmholtz equation
is solved in the correction step. This allows the thermodynamic pressure variation to be considered while avoiding a
time-step restriction linked to the acoustic waves. Further, the use of the internal energy equation supplemented with
a kinetic energy-based source term, presented by Herbin et al.,26 was extended for the proposed sub-iterative algorithm
architecture. Hence, the shock solutions were well reproduced by simulations. After implementation on the CFD solver
code_saturne, the time scheme accuracy and properties were verified and validated against the analytical solutions and
experimental values of various compressible and incompressible flows.

First, we showed that the scheme can accurately consider pressure variations while conserving the mass. The sec-
ond order accuracy was then achieved, and the conservation of mass and momentum were ensured in a one-dimensional
convection test case. Moreover, the proposed method provided consistent solutions for regular and irregular shock
problems, even for a material velocity-based Courant number. Two new CFL-like conditions to ensure the positiv-
ity of the pressure, temperature and density were provided and shown to be less constraining than the classical
CFL condition. For the validation process, a natural convection benchmark case was used, where the scheme pro-
vided results in agreement with the reference. A comparison between the presented time algorithm and one using
a Poisson equation in the correction step emphasized the importance of considering the thermodynamical pressure
during this crucial scheme step in order to reproduce such phenomena correctly. Finally, RANS and LES turbulent
simulations were performed on a 3D ventilation geometry, emphasizing the potential of the scheme for industrial
problems.

Further work will focus on the extension of the presented algorithm to variable fluid properties, more generic
equations of state and applications on more complex industrial applications. In addition, new tests should be conducted
at other different Mach number cases.
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ENDNOTE
∗Hereafter, the equation of state T(𝜌, e) is assumed to be invertible to provide e(𝜌,T). Combined with p(𝜌, e), the resulting equation of state for
pressure—p(𝜌,T)—is also assumed to be invertible to provide 𝜚(T, p) and 𝜕𝜚

𝜕p
|||T

.
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APPENDIX A. KINETIC ENERGY DISCRETE EQUATION

In this section, the source term Γu2∕2
c

|||
n+1,k

n
expression is detailed. To do so, the discrete kinetic energy equation was written.

The following methodology, based on Reference 26, extends the utilization of a source term in the internal energy equation
to time-staggered schemes using sub-iterations. The time scheme architecture implies that the source term used in the
buoyant step in the temperature equation at time step n + 1, k + 1 is calculated after the corrective step at time step n + 1, k.
Thus, for the sake of simplicity, we consider k > 1 and the Euler equations for this section. The mass flux at a given face
is denoted by Ṁf = q

f
⋅ Sf and its positive and negative face contributions Ṁ+

f = max(Ṁf , 0) and Ṁ−
f = min(Ṁf , 0). The

momentum equation is solved between the time steps [n − 1 + 𝜃;n + 𝜃, k]:

Ωc

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)
ũk

c − Θ
(
𝜌

n−1
c , 𝜌

n,k−1
c

)
un−1+𝜃

c

Δt
+

∑
f∈c

⟨
Θ

(
un−1+𝜃

, ũk
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(A1)

The mass equation between the time steps [n − 1 + 𝜃;n + 𝜃, k − 1] is multiplied by ũk
c :

Ωcũk
c
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(A1)–(A2) reads:
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Multiplying equation (A3) by ũk
c and using (a − b)a = a2 − b2

2
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2
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Then, the mass equation between the time steps [n − 1 + 𝜃;n + 𝜃, k − 1], multiplied by 1
2
|ũk

c |2 is added to (A4),
leading to
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The simplified momentum equation is used to replace Gradc
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ũk

c

Δt
+ ΩcGradc

(⟨
p|n+𝜃,k−1

n−1+𝜃

⟩
f

)
. (A6)

Taking the square of this and multiplying by Δt
2
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By replacing Ωcũk
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n−1+𝜃 in (A5) and multiplying it by
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The discrete kinetic energy equation is then written as:
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c |2 − |ũk
c − un−1+𝜃

c |2
]

2Δt

− Θ
(

Mn−1
c , Mn,k−1

c

) |un−1+𝜃
c |2

2Δt
+

∑
f∈c

|||
⟨
Θ

(
un−1+𝜃

, ũk)⟩
f
|||
2

2
Ṁf ||n+𝜃,k−1

n−1+𝜃

+
Θ

(
Mn

c , Mn+1,k−1
c

)

Θ
(

Mn
c , Mn+1,k

c

)
∑
f∈c

⎡
⎢⎢⎢⎢⎣

||||
⟨
Θ

(
un−1+𝜃

, ũk
)⟩

f
− ũk

c

||||
2

2
−

|||
⟨
Θ

(
un−1+𝜃

, ũk)⟩
f
|||
2

2

⎤
⎥⎥⎥⎦

Ṁf ||n+𝜃,k−1
n−1+𝜃 . (A10)

Two terms compose this discrete equations’ right hand side: the kinetic energy dissipation into heat, Γu2∕2
c

|||
n+𝜃,k

n−1+𝜃
and

the second-order term Γp
c
||n+𝜃,k

n−1+𝜃 , defined by Equation (A9) and not taken into account in the source term for the
sake of implementation and because its value tends to zero as the spatial discretization is refined, as explained in
Reference 26.

APPENDIX B. PROPERTIES OF THE SCHEME

B.1 Positivity of the internal energy
The discretized internal energy equation used to calculate the temperature was recalled for k > 1:

cv

[
Mn

c
Tn+1,k

c − Tn
c

Δt
+

∑
f∈c

(⟨
Θ

(
Tn
, Tn+1,k)⟩

f − Tn+1,k
c

)
Ṁf ||n+1,k−1

n

]
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AMINO et al. 1993

+
∑
f∈c

𝜆|Sf |
Θ

(
Tn

c , Tn+1,k
c

)
− Θ

(
Tn

c̃ , Tn+1,k
c̃

)

dcc̃
= Ωc𝜇(S2

c )n+𝜃 + Γ
u2∕2
c

|||
n+1,k−1

n

−
∑
f∈⌋

⟨
Θ

(
pn
, pn+1,k−1) un+𝜃,k−1⟩

f ⋅ Sf + Ωcun+𝜃,k−1
c ⋅ ∇c p|n+𝜃,k−1

n−1+𝜃 . (B1)

The equation (B1) yields a linear system AX = B, where X = (Tc)c∈{1,… ,Ncell}. Considering a convective upwind scheme,
the diagonal matrix A coefficients are, ∀c ∈ {1, … ,Ncell}:

Acc = cv
Mn

c

Δt
+ cv

[∑
f∈c

𝜃 Ṁ+
f
|||

n+1,k−1

n
− Ṁf ||n+1,k−1

n

]
+

[∑
f∈c

𝜃

|Sf |𝜆c

d cc̃

]
. (B2)

To ensure that these terms are positive and considering the upwind convective scheme, the following sufficient CFL-like
condition is defined:

CFL+T1
< 1, where CFL+T1

≔ (1 − 𝜃) Δt
Mn

c

∑
f∈c

Ṁ+
f
|||

n+1,k−1

n
. (B3)

∀c, c̃,∈ {1, … ,Ncell} with c ≠ c̃, the off-diagonal coefficients are

Acc̃ = 𝜃 Ṁ−
f
|||

n+1,k−1

n
. (B4)

Remark 2. If the initial temperatures for all cells are positive, d > 0, cv, 𝜆, Ra, and Δt are positive and the condition (B3)
is respected, all diagonal terms of the matrix A are strictly positive. Moreover, all off-diagonal coefficients are negative or
null. The diagonal terms are strictly larger than the sum of the modulus of off-diagonal terms. Therefore, A is diagonal
dominant and a M-matrix. If for all cells c, Bc is strictly positive, then the solution of the linear system X is positive.

The right hand side coefficients are:

Bc = cv
Mn

c Tn
c

Δt
+ 𝜇cΩn

c (S2
c )n+1 −

∑
f∈⌋

cv(1 − 𝜃)Tn
f Ṁf ||n+1,k−1

n + Ωcun+𝜃,k−1
c ⋅ ∇c p|n+𝜃,k−1

n−1+𝜃 −
∑
f∈⌋

[
|Sf |𝜆c(1 − 𝜃)

(Tn
c − Tn

c̃ )
dcc̃

]

− Ra
∑
f∈c

[
Θ

(
Tn

c , Tn+1,k−1
c

)
Ṁ+

f
|||

n+1,k−1

n
+ Θ

(
Tn

c̃ , Tn+1,k−1
c̃

)
Ṁ−

f
|||

n+1,k−1

n

]
.

By treating the convective and diffusive terms separately, the RHS coefficients are strictly positive if the following CFL
and Fourier-like conditions are verified:

CFL+T2
< 1, where CFL+T2

≔

Δt
Mn

c

∑
f∈c

[
𝜃(𝛾 − 1)

Tn+1,k−1
c

Tn
c

+ (1 − 𝜃)𝛾

]
Ṁ+

f
|||

n+1,k−1

n
−
Δt(𝛾 − 1)un+𝜃,k−1

c ⋅ ∇c p|n+𝜃,k−1
n−1+𝜃

pn
c

. (B5)

Fo+T < 1, where Fo+T ≔
𝜆c(1 − 𝜃)Δt

cvMn
c

∑
f∈⌋

|Sf |. (B6)

B.1.1 Positivity of the pressure and density
The Helmholtz equation to solve the pressure increment for an ideal gas is recalled:

Ωcpn+1,k
c

ΔtRaTn+1,k
c

− 𝜃Δt
∑
f∈c

∇f pn+1,k
c ⋅ Sf =

(𝜌n
c − 𝜌̃c)Ωn

c

Δt
−

∑
f∈c

⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk + Δt∇c p|n+𝜃,k−1
n−1+𝜃

⟩
f
⋅ Sf

+ (1 − 𝜃)Δt
∑
f∈c

∇f p|n−1+𝜃
n−2+𝜃 ⋅ Sf +

Ωcpn+1,k−1
c

ΔtRaTn+1,k
c

. (B7)
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Equation (B7) yields a linear system AX = B, where X = (pn+1,k
c )c∈{1,… ,Ncell}. The diagonal matrix A coefficients are, ∀c ∈

{1, … ,Ncell}:

Acc =
Ωc

ΔtRaTn+1,k
c

+ 𝜃Δt
∑
f∈c

|Sf |
dcc̃

. (B8)

∀c, c̃,∈ {1, … ,Ncell} with c ≠ c̃, the off-diagonal coefficients are

Acc̃ = −𝜃 Δt
|Sf |
dcc̃

. (B9)

Remark 3. If the initial temperature for all cells is positive, d > 0, cv, 𝜆, Ra, and Δt are positive, all the diagonal terms of
the matrix A are strictly positive. Moreover, all off-diagonal coefficients are negative or null. Moreover, the diagonal terms
are strictly larger than the sum of the modulus of off-diagonal terms. Therefore, A is diagonal dominant and a M-matrix.
If for all cells c, Bc is strictly positive, then the solution of the linear system X is positive.

The right hand side terms Bc are strictly positive if:

𝜌
n
cΩn

c

Δt
−

∑
f∈c

⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk + Δt∇p|n+𝜃,k−1
n−1+𝜃

⟩
f
⋅ Sf + (1 − 𝜃)Δt

∑
f∈c

∇f p|n−1+𝜃
n−2+𝜃 ⋅ Sf > 0, (B10)

⇔ CFL+p < 1, where CFL+p ≔
Δt
𝜌

n
cΩn

c

∑
f∈c

a𝜙f , (B11)

and

a𝜙f =
⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk + Δt∇p|n+𝜃,k−1
n−1+𝜃

⟩
f
⋅ Sf − (1 − 𝜃)Δt∇f p|n−1+𝜃

n−2+𝜃 ⋅ Sf .

APPENDIX C. VARIABLE TIME STEP

In case of variable time step, some equations presented in Section 2.4 change. In the initialization step, q
f

||||
n+1,0

n
⋅ Sf =

Δt|n
n−1

Δt|n+1
n

q
f

||||
n

n−1
⋅ Sf . In the buoyant step, the discretized equations read:

(a):
𝜌

n+1,k−1
c Y n+1,k

c − 𝜌n,k−1
c Y n

c

Δt|n+1
n

+ Divc

(⟨
Θ

(
Y n
, Y n+1,k)⟩

f q
f

||||
n+1,k−1

n

)
= Lapc

(
K,Θ

(
Y n
, Y n+1,k))

, for scalars,

(b): cv

[
𝜌

n+1,k−1
c Tn+1,k

c − 𝜌n,k−1
c Tn

c

Δt|n+1
n

+ Divc

(⟨
Θ

(
Tn
, Tn+1,k)⟩

f q
f

||||
n+1,k−1

n

)]
= Ωc𝜇(S2

c )n+𝜃 + Γ
u2∕2
c

|||
n+1,k−1

n

+ Lapc
(
𝜆,Θ

(
Tn
, Tn+1,k)) − Divc

(⟨
Θ

(
pn
, pn+1,k−1) un+𝜃,k−1⟩

f

)
+ Ωcun+𝜃,k−1

c ⋅ ∇c p|n+𝜃,k−1
n−1+𝜃 , for temperature. (C1)

The corresponding kinetic energy source terms expression is modified as well:

Δt|n+1
n

Δt|n+𝜃
n−1+𝜃

Γu2∕2
c

|||
n+1,k−1

n
=

⎡
⎢⎢⎢⎣
1 −

Θ
(
𝜌

n
c , 𝜌

n+1,k−2
c

)

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)
⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
Θ

(
𝜌

n−1
c , 𝜌

n
c
) |un−1+𝜃

c |2

2Δt|n+𝜃
n−1+𝜃

− Divc

⎛
⎜⎜⎜⎝

|||
⟨
Θ

(
un−1+𝜃

, ũk−1)⟩
f
|||
2

2
q

f

||||
n+𝜃,k−2

n−1+𝜃

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

−
Θ

(
𝜌

n
c , 𝜌

n+1,k−2
c

)

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)Divc

⎛
⎜⎜⎜⎜⎝

||||
⟨
Θ

(
un−1+𝜃

, ũk−1
)⟩

f
− uk−1

c

||||
2

2
q

f

||||
n+𝜃,k−2

n−1+𝜃

⎞
⎟⎟⎟⎟⎠
+
Θ

(
𝜌

n
c , 𝜌

n+1,k−2
c

)

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)Θ (
𝜌

n−1
c , 𝜌

n
c
) [|uk−1

c − un−1+𝜃
c |2]

2Δt|n+𝜃
n−1+𝜃

.

(C2)
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The mass flux q
f

||||
n+𝜃,k−1

n−1+𝜃 f
is defined by q

f

||||
n+𝜃,k−1

n−1+𝜃
= Θ

(
Δt|n

n−1
Δt|n+𝜃

n−1+𝜃
q

f

||||
n

n−1
,

Δt|n+1
n

Δt|n+𝜃
n−1+𝜃

q
f

||||
n+1,k−1

n

)
. The prediction step reads:

Θ
(
𝜌

n
c , 𝜌

n+1,k−1
c

)
ũk

c − Θ
(
𝜌

n−1
c , 𝜌

n,k−1
c

)
un−1+𝜃

c

Δt|n+𝜃
n−1+𝜃

+ Divc

(⟨
Θ

(
un−1+𝜃

, ũk)⟩
f ⊗ q

f

||||
n+𝜃,k−1

n−1+𝜃

)
= −Gradc

(⟨
p|n+𝜃,k−1

n−1+𝜃

⟩
f

)

+Divc

(
𝜏

k
f

)
+ f

c
|||

n+𝜃,k−1

n−1+𝜃
.

(C3)

Moreover, the Helmholtz equation (13) turns into:

𝜌
n+1,k
c − 𝜌n

c

Δt|n+1
n

− 𝜃Lapc
(
𝜏|n+𝜃

n−1+𝜃, p
n+1,k) = − Divc

(⟨
Θ

(
𝜌

n
, 𝜌

n+1,k−1) ũk + Δt|n+𝜃
n−1+𝜃

(
∇p|n+𝜃,k−1

n−1+𝜃 + 𝛿f k
)⟩

f

)

+ (1 − 𝜃)Lapc

(
Δt|n+1

n

Δt|n
n−1

𝜏|n+𝜃
n−1+𝜃, p|n−1+𝜃

n−2+𝜃

)
. (C4)

where
(

1 − (1 − 𝜃)
(

1 −
Δt|n+1

n

Δt|n
n−1

))
𝜏|n+𝜃

n−1+𝜃 = Δt|n+𝜃
n−1+𝜃 . Finally, the expression (14) becomes:

𝜙
k
c =

Θ
(
Δt|n+1

n

Δt|n
n−1

pc|n−1+𝜃
n−2+𝜃, pn+1,k

c

)

(
1 − (1 − 𝜃)

(
1 −

Δt|n+1
n

Δt|n
n−1

)) − pc|n+𝜃,k−1
n−1+𝜃 . (C5)
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