
����������
�������

Citation: Zajec, B.; Cizelj, L.; Končar,
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Abstract: Subcooled flow boiling was experimentally investigated in a horizontal annulus with a
temperature-controlled boiling surface and transparent outer pipe facilitating visualization. Boiling
occurs on a copper tube with a diameter of 12 mm in an annulus with a 2 mm gap. Refrigerant R245fa
is used as a working fluid. The focus of this study is to explore the effect of heat flux variation on the
boiling flow patterns at approximately constant inlet flow conditions of the working fluid (fixed mass
flux and inlet fluid temperature). Subcooled flow boiling is recorded by a high-speed camera, images
are analyzed by a neural network to determine the bubble size distributions and their variation with
the heat flux. The experimental setup being a part of the laboratory THELMA (Thermal Hydraulics
experimental Laboratory for Multiphase Applications) at the Reactor Engineering Division of Jožef
Stefan Institute, analysis methods and measurement results are presented and discussed.

Keywords: subcooled boiling; annulus; flow visualization; bubble size distribution; neural network
image analysis

1. Introduction

Flow boiling is a heat transfer mechanism allowing high surface heat flux at low
temperature differences. As such, it is used in many systems, from air conditioners [1],
power electronics cooling [2] and large power systems such as thermal power plants
and nuclear reactors [3]. Despite its wide use and long history of research, accurate
predictions still rely on many experimentally based correlations, developed for specific
fluids, geometries, flow orientations, surface types, pressures, etc. Similarly, accurate
numerical simulations of general two-phase flows are computationally very expensive
and despite the progress in computational power, they still require some modeling by
constitutional relations. For a better understanding of the underlying phenomena, the
development of new models and for validation of simulations, experimental data are of
crucial importance. Besides heat transfer and pressure drop predictions, bubble size, bubble
departure frequency, vapor (i.e., void fraction) distribution are also important quantities
to consider.

Traditionally, bubble diameters and void fractions were reported as integral or time-
averaged values at certain locations [4–6], with little or no information on the distribution
of bubble sizes. Several authors report the departure, maximum and characteristic bubble
sizes, both from experimental [7–9] and numerical points of view [10,11].

With the advancement of high-speed imaging techniques and analysis methods with
a concurrent increase in computational power, the interest for detailed analysis of these
quantities has increased.

Golobič and Zupančič [12,13] measured local wall-temperature and heat flux distribu-
tions by fast IR thermography in pool boiling of water. Similar measurements were recently
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performed in flow boiling in semi-annular geometry by Scheiff et al. [14]. They observed
flow boiling through the outer glass tube with a high-speed camera and measured IR
bubble footprints on the boiling surface made of thin electrically-heated metal foil. Among
other results, they reported that bubble diameters follow a normal distribution.

Although several authors have measured and described bubble size distributions
in narrow tubes and channels, only a few papers describe these data in annular geome-
tries. Zeitoun et al. [15] investigated bubble behavior in subcooled boiling of water in
a vertical annulus with an inner tube diameter of 12.7 mm and 6.3 mm gap size. They
used high-speed imaging and image processing to determine the mean bubble diameter
after departure. Lee et al. [16] measured radial profiles of local void fractions in a vertical
annulus in subcooled boiling of water with a 19 mm inner tube and 9.3 mm gap size. Two
point-conductivity probes were used for local void fraction measurements.

To the authors’ knowledge, the paper by Ugandhar et al. [17] is the only one reporting
experimental results of the distribution of bubble sizes in a horizontal annulus. They have
studied the effect of pressure on bubble size distribution in a horizontal annulus (6.5 mm
gap) with boiling water as a working fluid. A high-speed camera was used and automated
image processing was performed. All mentioned experiments used electric resistance
heating (heat flux control) of the boiling surface.

In this paper, bubble distributions in a horizontal annulus with a 12.5 mm water-heated
internal tube and a 2 mm gap are measured. Refrigerant R245fa (pentafluoropropane) is
used as a working fluid and a high-speed camera with semi-automatic neural network
image processing is used to determine the bubble size distributions and their change
with the heat flux. This is the first attempt to measure the bubble size distributions in
temperature-controlled boiling within a horizontal annulus.

2. Experimental Setup

The main part of the experimental setup (Figure 1) is a water-heated horizontal annular
test section, thoroughly described in our previous works [18–20]. Boiling occurs on the
outer surface of the inner copper tube with a diameter of 12 mm and a total heated length
of 585 mm. The annular gap between the copper tube and the outer glass tube is 2 mm. The
outer surface of the copper tube is polished with sandpaper grit 400 to provide a uniform
distribution of the nucleation sites. Boiling is observed with a high-speed camera through
a borosilicate glass tube.
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The test section is designed as a concentric tube heat exchanger (Figure 2), which
allows a temperature-controlled flow boiling. Hot water flowing inside the copper tube
transfers heat to the refrigerant flow (R245fa) in the annulus, which starts to boil on the
outer surface of the copper tube at relatively low temperatures (30 ◦C at 1.8 bar) [21]. The
finned structure inside the copper tube provides strong heat transfer enhancement with a
homogeneous radial distribution and allows local temperature measurements along the
tube axis. As the wall heat flux depends on the temperature difference between the heating
water and the boiling refrigerant, no thermal runaway is possible if the critical heat flux
value is reached. Both co-current and counter-current operations are possible in the test
section. We have used co-current operation (refrigerant and water flowing in the same
direction) to achieve the maximum temperature difference between water and refrigerant
in the inlet region.
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both inlet thermocouples in the inlet tubes is approximate as they are located further on the inlet lines.

Measurement equipment is listed in Table 1. Thermocouples in contact with the heat-
ing water, positioned 21 ± 0.5 mm apart, measure the local temperature of the water. Two
thermocouples at the water and refrigerant inlets are used to measure the inlet temperature
of the liquid and two additional two-junction thermopiles are used to measure temperature
difference toward the outlet. Thermocouples inside the test section are primarily used for
the calculation of surface heat flux in the test section and were therefore cross-calibrated
in a steady-state temperature situation with only water flowing through the test section
to lower systematic errors. All thermocouples on the test section are referenced to the
Kaye-170e artificial triple point of water.

Table 1. Measurement equipment and its nominal uncertainty.

Quantity Instrument Nominal Range Uncertainty

Abs. pressure WIKA P-30 1–6 bar ±0.1%
Pressure drop WIKA DPT-10 1–300 mbar ±0.1%

Inlet temperature T-type thermocouple 10–70 ◦C ±0.5 ◦C
Inlet/outlet ∆T Two-junction thermopile 0–100 ◦C <0.1 ◦C
Test section temperatures T-type thermocouple 10–70 ◦C ±0.1 ◦C

Mass flow rate, water Coriolis flow meter 0.01–300 kg/h ±0.5%
Mass flow rate, R245fa Coriolis flow meter 0.01–300 kg/h ±0.5%

Two Micro Motion Emerson Coriolis flow meters are used for direct measurements of
water and refrigerant mass flow rate. From these values, the mass flux (i.e., mass flow area
density) can be determined based on the cross-section area of the annulus. For absolute
pressure and pressure drop, WIKA membrane sensors are used (see Table 1).

National Instruments PXIe500 with LabVIEW software was used for temperature,
pressure and mass flow rate data acquisition.
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As shown in Figure 3, the test section is supplied with refrigerant through a closed
loop. The refrigerant flows from the pump, through the Coriolis mass flow meter and
preheater, to the test section where it boils and returns to the condenser. Two adjacent water
loops provide heating and cooling water for the heat exchangers and heating of the test
section. Temperature-controlled pressurizer, connected to the main refrigerant loop right
after the pump, controls the overall system pressure. The pressurizer is a closed vessel
containing a large water–refrigerant heat exchanger to control the saturation temperature
in the system. The Lauda thermal bath controls the pressurizer temperature.
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Figure 3. Schematic of the experimental loop with refrigerant loop (black) and adjacent heating loop
(red), cooling loop (blue) and pressurizer loop with Lauda bath (yellow).

For the visualization of the flow, a separate system is used. Phantom v1212 12-bit
grayscale high-speed camera is used with a 100 mm macro lens, enabling the observation
area of approx. 3.6 × 1.6 cm on the test section. The high-speed camera is a part of the
LaVision PIV system with a built-in frame grabber and triggering functions. To reduce
shadows and reflections in the recording, an even and diffuse lighting has to be used. In
addition, the camera aperture needs to be closed as much as possible to achieve a large
depth of focus, requiring the use of high-power lighting. For this task, a U-shaped light
(Figure 4) was constructed from LED strips. High-power 20 W/m daylight color LED strips
with a luminosity of approx. 2500 lumen/m were used. With this setup, the test section is
mostly uniformly illuminated, with the notable exception of the direction directly from the
camera view (darker line present in the middle of flow patterns depicted in Figure 5).
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Figure 5. Boiling patterns at the same refrigerant inlet conditions (mass flux of 300 kg/m2s) and
different heating water temperatures, corresponding to different heating power (heat fluxes) on the
test section. Please see the video representation of Video S1 in Supplementary Materials.

3. Experimental Procedure

Experiments were performed at two instances of constant refrigerant inlet conditions
and at different temperatures of the heating water, to study the effect of heating power and
therefore the heat flux separately from other possible effects.

For all cases considered in this study (see Table 2), the inlet water mass flow rate was
kept constant at 25 kg/h with observed variations of ±2%. Pressurizer temperature was set
at 30 ± 0.5 ◦C, which maintained stable inlet pressure in the range between 1.8 and 2 bar
for all cases. Refrigerant inlet temperature was set to 27 ◦C. Two sets of measurements
were performed, one at refrigerant mass flux 150 kg/m2s and the other at 300 kg/m2s
(again with an observed variation of approx. ±2%), as presented in Table 2. The water
temperature was varied from 40 ◦C to 68 ◦C. The heating power was determined in the
region between the inlet thermocouple and the representative thermocouple in the test
section, giving a heating power proportional to the average heat flux for the observed area.
The observed variation of the heating power in the measurement interval was 2–4% and
was within the experimental uncertainty for all cases. Heat losses on the test section were
estimated in a separate numerical study (based on [22]) and are approximately 3–5 W for
all considered experimental cases.

Table 2. Experimental cases. Uncertainties stated in the first row apply to the whole column.

Name Water Inlet T (◦C) Refrigerant Mass
Flux (kg/m2s) Heating Power (W)

150–40 40 ± 0.5 150 ± 3 36 ± 5
150–48 49 150 96
150–55 55 150 141

300–40 40 300 ± 6 56
300–49 49 300 118
300–58 58 300 206
300–68 68 300 325

For each case, the steady-state of the system was first established. After that, the data
were collected for 20 min resulting in time-averaged values of heating power that are given
in Table 2. Immediately after the heating power measurement, high-speed recording of
boiling flow patterns was also performed for 10 s with 200 frames/s, yielding 2000 flow
images. These were deemed sufficient to capture the flow patterns, as discussed in the next
chapter. After each recording of boiling flow patterns, the heating water flow was turned off,
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stopping the boiling and an image of the test section with the single-phase flow background
was recorded at the same camera position, zoom and aperture settings, to facilitate post-
processing of images. Flow recordings at the same refrigerant mass flux of 300 kg/m2s, but
at different heating power, are presented in Figure 5. With careful inspection of the images,
it seems that the number of observed bubbles is increasing with increasing heating power
and the number of bubbles per unit of surface area is also increasing. Similarly, individual
larger bubbles also appear at higher heating power whereas they are not present at the
lower heating power.

4. Image Processing

The boiling patterns at different heating power (Figure 5) are clearly different and
both the number of bubbles and their size seems to change. A more objective quantification
is attempted by analyzing the differences in bubble size distributions. As the only available
method of detailed flow characterization in our experiment is visualization with a high-
speed camera, the bubbles in the recordings needed to be detected and characterized,
providing their location and size (radius or both axes of the ellipse). To present circular
and elliptical bubbles in the same distribution, an equivalent radius of the sphere was
calculated for each bubble based on its volume. Since the bubbles are observed in a
single planar perspective, the third dimension of the bubble is approximated by assuming
spherical or spheroid (rotational ellipsoid) shapes. Zeitoun and Shoukri [15] have taken a
similar approach.

Apart from manual bubble tagging, several different algorithms were tested for auto-
mated image processing, some in our previous studies [19]. Simple brightness or shape
detection algorithms proved to be unsuccessful. Due to the annular geometry, the free-
flowing bubbles in the image appeared darker than the background, while the bubbles with
the copper pipe in the background appeared lighter. Larger bubbles also act as spherical
lenses, containing basically an image of the whole test section in a single bubble. Such
bubbles, containing both bright and dark parts, could not be detected properly with bright-
ness patterns, regardless of the logic of shape or edge detection. As it was difficult to
propose a mathematical description for such bubbles, a neural network scheme was pro-
posed. An artificial neural network is a computation method with many connected nodes,
mimicking the function of biological neural networks. Its main advantage is that it can
be trained on general examples of input data and then used to recognize new, previously
non-characterized input data, without constructing a full mathematical description of the
problem. While being a robust method useful in many different areas, a crucial step in
neural network algorithms is the preparation of input and training data.

To detect bubbles with a neural network, a relatively simple algorithm (Figure 6) was
proposed. First, a square window with pixel size a is chosen, representing a bounding box
of the bubble with dimeter a. This window is then dragged across the flow image, starting
at the top corner, and moving forward by one or two pixels in each iteration. After the
end of the row, the window is moved a step downward and again swept across the whole
image width, until the whole image is scanned. In this way, a large number of largely
overlapping windows are acquired. Each window is then cut out of the image, resized to
a standard size, and fed into the neural network as an array of brightness values of each
pixel in the window. The task for the neural network is to determine whether the bubble is
inside the window, whether it is centered and sufficiently large to fill the whole window
(more than 90% of it). If these conditions are met, the network should detect the window
as valid (with a bubble inside), and in all other cases, the window should be marked as
invalid (no bubble inside). Once the bubble is known, the bubble diameter and center can
be easily calculated. This procedure is then repeated for differently sized windows, from
the largest to the smallest.
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For the training of the neural network, a similar window-dragging scheme was used.
The bubbles were first manually marked in the image by providing a center and diameter
for each bubble. Differently sized windows were then dragged across the image, and unless
there was only one bubble inside the window and its diameter was not at least 90% of the
window size, the window was fed into the neural network as an invalid window. Such
operation produced approximately one million different inputs to the neural network from
a single image with marked bubbles. Using the trial and error procedure, we have found
that training the neural network based on a single flow image was the most successful.
Training with multiple images decreased recognition efficiency as most of the bubbles were
missed. Such behavior is likely a consequence of a too-large learning parameter value used
in the simple back-propagation learning scheme and the predominant number of invalid
windows (without bubbles) used in the learning process.

To improve detection accuracy, several preprocessing steps were used. In the first
step, the empty background image was removed. Background subtraction was performed
by dividing each pixel value ximg (12-bit brightness) by the brightness of the pixel in the
background image xbg. Since brightness deviations could be present in both ways, the
following equation for x f inal was used:

x f inal =

√∣∣∣1 − ximg/xbg

∣∣∣ (1)

Square root scaling was found to effectively highlight weak shades of bubbles while not
adding excessive amounts of noise. Other power functions could also be used depending
on the contrast in the image.

Based on the experience of neural networks for hand-written number recognition
from the MNIST database [23], a fully-connected neural network with 625 input neurons,
two hidden layers of 20 neurons and two output neurons for one-hot representation of
true/false was chosen. Similar to MNIST handwriting recognition, the entire bubble image
(25 × 25 pixels = 625 inputs) is used as the input to the neural network. Both input and
hidden layer sizes were chosen arbitrarily and so far, no analysis of the other optimal
configuration has been performed. Due to its simplicity, the proposed bubble detection
scheme is not very computationally efficient and it is possible to process about 4 images per
hour on a personal computer. As can be seen in Figure 7, the detection scheme misses some
bubbles (predominantly larger ones) and occasionally also gives false positives, which
requires additional manual inspection and processing of the results, adding and removing
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some bubbles manually. However, the time needed for the manual inspection of detected
bubbles is much shorter than manually marking all bubbles, which reduces the time of
the whole process by about five times. As manual inspection was required and the neural
network worked best for medium-sized bubbles, a window size range (reducing from
25 px to 4 px) was chosen and bubbles outside this range were manually marked. Elliptical
bubbles not recognized by the neural network were also manually marked.
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About 10 images from each set of 2000 images were used to calculate the bubble
distribution. Convergence analysis has shown that if the images in the time frame between
0.2 s and 0.5 s are considered, approximately 5 images (depending on the case) already
provide sufficient bubble statistics and the bubble size distributions no longer change
significantly if more images are analyzed. In a future analysis, a faster (optimized) detection
method could process a much larger number of images, and since the same bubbles appear
in several subsequent images, the detection accuracy should also be improved.

After the calculation of each distribution, uncertainty values shown on each bar
were calculated by the Monte Carlo method. Random noise was added to the radii of all
detected bubbles in an attempt to mimic possible errors in manual marking and neural
network misses. Histograms were calculated in each iteration of the method and the largest
variation of each column was used as a measure of its uncertainty. In addition to providing
an estimate of uncertainty, this actually smooths out distributions and reduces the impact
of bin size on final results.

5. Results and Discussion

The most general result that can be derived from the processed image data is the total
void volume in the test section. Figure 8 shows how the total void volume changes with
heating power. The blue curve represents the measurements at a refrigerant mass flux
of 150 kg/m2s and the red curve at 300 kg/m2s. As expected, the total void volume in
the test section increases with increasing heating power, regardless of the mass flux of the
refrigerant. After a large initial increase in the total void volume, the curves seem to flatten
out as if the total amount of void is reaching its saturated value, which is different for
each case.
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Figure 8. The total void volume present in the test section as a function of heating power and
refrigerant mass flux.

As image processing provides much more detailed information about the void distri-
bution, the following figures show the void volume distributed over different bubble sizes.
Bubble size distributions resulting from image analysis are shown as histograms of the
total void volume as a function of equivalent bubble radius. In this way, the bubble sizes
with a meaningful contribution to the total void in the test section can be determined. All
distributions are normalized per image frame, indicating a time-averaged value of vapor in
the test section at any given time.

The distributions in Figure 9 show two different behaviors of the boiling flow. At
150 kg/m2s the distributions in higher heating power cases are quite scattered and without
a pronounced peak. The distributions at 300 kg/m2s on the other hand, clearly show a
single peak, regardless of the heating power at which they were measured. One notable
difference is also the fact that at a lower refrigerant mass flux, somewhat larger bubbles are
observed (1.4 mm vs 1.2 mm) and they represent a larger part of the total volume.
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and (b) 300 kg/m2s.

To further analyze the differences between the cases, normalized distributions are
shown in Figures 10 and 11, representing the relative fractions of the void volume in the test
section assigned to each bubble size. For low refrigerant mass flux (150 kg/m2s, Figure 10),
the distribution at a low heating power of 36 W shows two separate peaks at bubble radii
of around 0.15 mm and 0.5 mm, while the distribution at 141 W is more spread out and
without distinct peaks.
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Somewhat different flow behavior is observed at the higher mass flux of 300 kg/m2s
(Figure 11). Single-peaked distributions are observed in all cases, regardless of the heat-
ing power. For cases with a heating power of 56 W (300–40) and 118 W (300–49), the
distributions appear to be approximately normal. The distributions for higher heating
power cases at 206 W (300–58) and 325 W (300–68) are somewhat extended toward larger
bubbles. It could be expected, that a further increase of the heating power would lead to
the appearance of a more pronounced second peak. However, the current design of the
experiment does not allow further increase of the heating power, as the existing plastic
heating water supply pipes cannot withstand water temperatures above 70 ◦C.

The observed non-Gaussian distributions at 206 W and 325 W are most likely a
consequence of bubbles merging. At low mass fluxes, bubbles quickly rise to the top part of
the test section where larger bubbles can be formed. At higher mass fluxes, larger bubbles
are no longer observed for two main reasons. First, the merging of bubbles is less probable
at higher mass flux due to the higher fluid velocity, which carries the bubbles away from
the surface. Second, due to the higher velocity, the bubbles formed at the bottom travel a
longer way and leave the observation window before reaching the top. Downstream of
the observation window, the bubbles may still merge at the top to form larger bubbles,
but the local distributions change accordingly. The long tail of the distribution at the
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higher heating power can be explained by the higher evaporation and larger number of
bubbles at the surface. As a bubble moves through the liquid, it captures surrounding
bubbles and is growing faster, both due to the ever-increasing cross-section and due to the
increasing velocity.

The observed tail in the distribution likely represents bubbles at different stages
of growth. Since bubble merging depends on both the liquid velocity and the amount
of vapor, the distributions change with mass flux and heating power, as presented in
Figures 10 and 11.

6. Conclusions

The effect of heat flux on bubble size distributions in a water-heated test section with a
narrow annular gap was investigated through the changing of the heating power at the test
section. At constant refrigerant conditions and different heat fluxes, qualitatively different
behavior was observed at low (150 kg/m2s) and high refrigerant mass flux (300 kg/m2s).
The results at lower refrigerant mass flux have shown that the increased heat flux shifts the
bubble size distributions from bimodal (two-peak) to a more dispersed distribution. At
higher refrigerant mass fluxes, a different pattern is observed and single peak distributions
prevail. Only at the highest heat fluxes, some larger bubbles appear but without pronounced
peaks in distributions.

To speed up the bubble recognition procedure, a neural network was successfully
applied for partly-automated bubble recognition. In its current state, manual inspection
of the result and marking of the larger bubbles is required, but the process is still much
faster than manual analysis of the entire image. We expect that a more advanced neural
network-based recognition method should increase the speed and accuracy of detection and
completely eliminate the need for manual inspection of results. With faster processing, even
more images could be processed to smooth out distributions and reduce their uncertainties.
Additional work to improve the accuracy of automated bubble detection and additional
experimental investigation at different boiling conditions is needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15062187/s1. Video S1: Boiling at 300 kg/m2s and different
heating power levels (video version of Figure 5).
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20. Zajec, B.; Cizelj, L.; Končar, B. Effect of Heat Flux on Distribution of Vapour Volume Fraction and Bubble Size Distribution at Flow
Boiling in Horizontal Annulus. In Proceedings of the NENE 2021 30th International Conference Nuclear Energy for New Europe,
Bled, Slovenia, 6–9 September 2021. Available online: https://www.djs.si/nene2021/proceedings/pdf/NENE2021_603.pdf
(accessed on 10 March 2022).

21. William, E.; James, A., Jr.; Chickos, S. Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook; Linstrom, P.J., Mallard,
W.G., Eds.; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD,
USA, 2022.
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