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Abstract 

High altitude imposes several extreme constraints on life, such as low oxygen pressure and high levels of ultraviolet radiation, which 
require specialized adaptations. Many studies have focused on how endothermic vertebrates respond to these challenging environ-
ments, but there is still uncertainty on how ectotherms adapt to these conditions. Here, we used whole-genome sequencing of low- 
altitude (100–600 m) and high-altitude (3,550 m) populations of the wide-ranging Tenerife lizard Gallotia galloti to uncover signatures 
of selection for altitudinal adaptation. The studied populations show reduced differentiation, sharing similar patterns of genetic 
variation. Selective sweep mapping suggests that signatures of adaptation to high altitude are not widespread across the genome, 
clustering in a relatively small number of genomic regions. One of these regions contains BMPER, a gene involved with vascular 
remodeling, and that has been associated with hypoxia-induced angiogenic response. By genotyping samples across 2 altitudinal 
transects, we show that allele frequency changes at this locus are not gradual, but rather show a well-defined shift above ca. 1,900 
m. Transcript and protein structure analyses on this gene suggest that putative selection likely acts on noncoding variation. These 
results underline how low oxygen pressure generates the most consistent selective constraint in high-altitude environments, to 
which vertebrates with vastly contrasting physiological profiles need to adapt in the context of ongoing climate change.
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Lay Summary 

Animals that inhabit high-altitude areas face a variety of extreme conditions that are not felt closer to sea level, including low avail-
ability of oxygen, high levels of ultraviolet radiation, and low temperatures, to which they are adapted. For endothermic vertebrates, 
like mammals and birds, multiple studies have revealed how genetic changes can promote this adaptive process. A classic example 
is that of human populations in Tibet, which possess a high frequency of genetic variants that enable them to cope with the reduced 
oxygen availability in the Tibetan plateau. In contrast, ectotherms such as reptiles and amphibians have received far less research 
attention, so the mechanisms that mediate their responses to high altitudes are largely unknown. To fill this gap, we studied the 
genome of a unique species—the Tenerife lizard that is endemic to the Canary Islands. Its distribution ranges across a steep altitudi-
nal gradient in the island of Tenerife, where it can be found from sea level all the way to the summit of the Teide volcano, at ca. 3,700 
m. By comparing all the genetic information from low-altitude and high-altitude populations, we found only a reduced number of 
regions of the genome that show evidence of having undergone natural selection at high altitudes. Among these, the genomic region 
containing the gene BMPER (implicated in blood vessel formation and whose expression is changed by low oxygen conditions) shows 
a strong pattern of selection, in particular changes in the predominant genetic variants in populations living above 1,900 m. These 
results underline how low oxygen availability is a key factor that controls the evolution of animals living at high altitudes and that 
the complex and multifaceted responses to these environments may require the integration of genetic and nongenetic mechanisms.
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Introduction
High-altitude habitats are among the harshest environments for 
living organisms. Temperature means and extremes, high ultra-
violet radiation, and low oxygen pressure are strongly divergent 
from those prevailing in lowland areas (Blumthaler et al., 1997; 
Jørgensen & Fath, 2008). These abiotic characteristics drive adap-
tation in highland plant and animal populations at any latitude 
(Monge & León-Velarde, 1991; Halbritter et al., 2018; Simonson 
et al., 2010; Storz & Scott, 2019; Wang et al., 2021). In addition 
to this natural challenge, ongoing anthropogenic environmen-
tal disturbances that include climate change (Jørgensen & Fath, 
2008; Thornton et al., 2014) have the potential to interact with the 
constraints placed by high altitude, not only for altitudinal spe-
cialists but also for lowland species that are forced to shift their 
distribution upwards to remain under similar climatic conditions 
(Jiang et al., 2021). Coping with these multiple stressors requires a 
suite of behavioral and physiological adaptations, including opti-
mization of the respiratory process, thermal or hydric regulation, 
or differentiation of gut microbiota as a response to a changed 
diet (González-Morales et al., 2021; Howald & Hoppeler, 2003; 
Quagliariello et al., 2019; S’khifa et al., 2022; Sannolo et al., 2020; 
Solano et al., 2016; Souchet et al., 2020; Storz & Scott, 2019; Žagar 
et al., 2022).

Multiple studies have found links between specific genes and 
adaptation to altitude in terrestrial vertebrates. For example, 
alleles of the gene Endothelial PAS Domain Protein 1 (EPAS1) have 
been repeatedly implicated in adaptation to altitude in mammals 
(e.g., Hendrickson, 2013; Huerta-Sánchez et al., 2014; Liu et al., 
2019; Schweizer et al., 2019; Yang et al., 2017a). In these species, 
EPAS1 regulates hemoglobin concentration and angiogenesis as 
responses to low atmospheric oxygen pressure. Several other 
genes have also been associated with altitudinal adaptation, 
mostly hypoxia-related (e.g., Chiou et al., 2022; Witt & Huerta-
Sanchez, 2019), but also with metabolism and cold resistance 
(Cheviron et al., 2008; Velotta et al., 2020), skeletal development 
(Qu et al., 2013; Wang et al., 2014) and DNA repair (Li et al., 2018; 
Yang et al., 2014; Zhang et al., 2016) showing the complex nature 
of adaptation to an environmental context consisting of multiple 
variables and constraints.

Ectothermic vertebrates have limited homeostatic mecha-
nisms and are therefore more likely to be directly exposed to tem-
perature or precipitation fluctuations (Angilletta, 2009), which are 
highly dependent on altitude. This makes them important mod-
els for understanding how apparently vulnerable species may 
respond to the challenges of environmental change (Paaijmans 
et al., 2013; Sinervo et al., 2010). The genetic mechanisms associ-
ated with altitudinal adaptation in ectotherms remain, however, 
poorly understood. Comparative genomics (Li et al., 2018; Sun 
et al., 2018) and transcriptomic (Yang et al., 2016, 2017b) studies 
suggest varied roles for genes involved with DNA repair, energy 
metabolism, and response to hypoxia. Most recently, this inter-
play of selection on multiple functions has been suggested in an 
interspecific study on the Mongolian racerunner (Eremias argus), 
in which high-altitude populations showed evidence of selective 
sweeps around genes associated with energy metabolism, DNA 
damage repair, and hypoxia response pathways (Li et al., 2023).

The Tenerife lizard, Gallotia galloti (Figure 1A), is ideally placed 
to answer questions on the evolution of altitudinal adaptation 
in ectotherms. Populations inhabiting the southern slope of the 
island are found continuously from the sea level all the way 
to the summit of the island’s volcanic cone at 3,700 m (Fariña 
et al., 2011). The volcanic cone itself starts at an altitude of 

approximately 2,300 m and grew in the period between 170,000 
and 30,000 years ago, with its last volcanic eruption occurring 
nearly 1,300 years ago (Carracedo et al., 2007). This eruptive his-
tory, together with recent glaciation (ca. 30,000 years ago) that 
likely covered high altitudes with permanent snow, suggests a 
relatively recent colonization of G. gallotia at the volcano sum-
mit. The continuous distribution of these southern populations 
(which belong to a single evolutionary lineage, Brown et al., 2016) 
along an extreme altitudinal gradient offers a unique opportu-
nity to study how ectotherms adapt to environmental variation 
without confounding factors such as population substructure or 
genetic drift.

Here, we used whole-genome sequencing to study adaptation 
to extreme altitudinal environments in G. galloti. We assembled 
a reference genome of this species using linked-read sequenc-
ing and re-sequenced DNA pools of high- and low-altitude pop-
ulations to examine patterns of genetic variation and scan the 
genome for evidence of selection to high-altitude environments. 
Our main objective was to unravel regions of the genome with 
evidence of selection to high-altitude relative to low-altitude pop-
ulations and assess potential links to genes with relevant func-
tions for coping with the constraints of high-altitude conditions.

Methods
Fully detailed and referenced methods are given as Supplementary 
material.

Field sampling
Samples of G. galloti were collected in two field missions held 
between July and August of 2017 and 2018 on the island of 
Tenerife spread across the altitudinal range on the southern 
part of the island (n = 147; 10 populations; Figure 1B and C; 
Supplementary Table S1). An additional individual from Parque 
Nacional del Teide (28.255, −16.621; 2,300 m elevation) was col-
lected for reference genome assembly (Figure 1B and C). Lizards 
were caught either by pitfall traps using tomato and banana as 
bait or by noose. Tail tips were recovered as tissue for subsequent 
DNA extraction, and following physiological testing (Serén et al., 
2023), the lizards were released in the same location of trapping.

Reference genome assembly
Chromium linked-reads (10X Genomics) were used to assem-
ble a reference genome (Weisenfeld et al., 2017). Muscle tissue 
from a male was sent to the Genomics Services Laboratory of the 
HudsonAlpha Institute for Biotechnology for Chromium library 
preparation and sequencing (NovaSeq, Illumina). To assemble the 
genome, we used Supernova v2.1.1 (Weisenfeld et al., 2017) with 
default options (raw coverage of 69.28X). Descriptive statistics 
were computed using the script assemblathon_stats.pl (Bradnam et 
al., 2013), and genome completeness was assessed using BUSCO 
v5.3.2 (Simão et al., 2015) with the tetrapoda_odb10 database. For 
comparison, we extracted sequences of five other lacertid species 
belonging to different genera (Podarcis muralis, Zootoca vivipara, 
Lacerta agilis, L. bilineata, and L. viridis) and computed the same 
summary statistics.

The assembly was annotated using GenSAS v6.0 (Humann et 
al., 2019). A consensus library of repeats was built by combining 
RepeatModeler v2.0.1 (Flynn et al., 2020) and RepeatMasker v4.1.1 
(Smit et al., 2013). Gene prediction was performed using Augustus 
v3.3.1 (Stanke et al., 2006) with default options and using the 
chicken (Gallus gallus) to model gene structure. Gene set refine-
ment was done with PASA v2.11.0 (Haas et al., 2008). Functional 
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annotation of the consensus gene models was done via BLAST 
against the SwissProt database.

Whole-genome re-sequencing, read filtering and 
mapping
Pool-sequencing of three low-altitude (GR, SA, P) and one high- 
altitude (CT) population was used for population genomics. DNA 
from several individuals was extracted and pooled by popula-
tion (CT, n = 14; GR, n = 16; SA, n = 12; P, n = 12) in equimolar con-
centrations for genomic library preparation with a Nextera XT 
Kit (Illumina). Sequencing was performed at Novogene UK in a 
NovaSeq instrument (Illumina) using 2 × 150 bp reads.

Reads were evaluated using FastQC v0.11.8 (https://www.bio-
informatics.babraham.ac.uk/projects/fastqc), and low-quality 
bases and adapters were trimmed with Trimmomatic v.039 (Bolger 
et al., 2014). Reads were then mapped to our de novo assembly 
with BWA-MEM (Li, 2013) using default settings, and PCR dupli-
cates were removed using Picard (http://broadinstitute.github.io/
picard). Mapping statistics were calculated using SAMtools v.0.1.19 
(Danecek et al., 2021) and custom scripts.

Population genomics
Population genetic statistics were calculated based on allele 
count data. Differentiation between populations was assessed 
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Figure 1. The continuous distribution along an extreme altitudinal gradient of the Tenerife lizard (Gallotia galloti). (A) The male of the Tenerife lizard 
(Photo by R.M.P.). (B) Geographical location of the Canary Islands archipelago and a close-up of the Tenerife Island with sampling sites. (C) Location 
of sampling sites along a topographic profile of the south side of the island of Tenerife. For panels (B) and (C), locations used for whole-genome pool 
sequencing are marked in blue (with dark characters); additional locations with samples genotyped for candidate loci are marked in green (with 
white characters); the location of the sample used for the genome assembly is marked with a yellow star.
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through the fixation index (FST) using PoPoolation2 v.1.201 (Kofler 
et al., 2011a) in nonoverlapping windows of 100 kb, restricting to 
positions with a minimum coverage of seven, maximum cover-
age of 100, minimum count of the minor allele of three to con-
sider a position as a SNP, and excluding windows for which less 
than 20% of the window met the coverage criteria. Nucleotide 
diversity (π, Nei, 1987) and Tajima’s D (Tajima, 1989) were also 
calculated using PoPoolation v1.1.2 (Kofler et al., 2011b). For π 
and D, calculations were performed in nonoverlapping windows 
of 100 kb, restricting to positions with a minimum coverage of 
seven, maximum coverage of 100, and minimum count of the 
minor allele of two to consider a position as a SNP and excluding 
windows for which less than 20% of the window met the cover-
age criteria.

Selective sweep mapping
To detect regions of the genome under selection in high- 
altitude populations, the reads from the three low-altitude 
pools were merged to increase the overall depth of coverage. 
Then, several statistics were calculated to explicitly compare 
patterns of variation in high-altitude and the merged low- 
altitude pools: differentiation (FST), reductions in nucleotide 
diversity (π-ratio: πlow-altitude/πhigh-altitude), and deviations from 
neutrality ΔD (Dlow-altitude − Dhigh-altitude) (following Gazda et al., 
2018). By setting the comparisons this way, the results were 
polarized to highlight recent selective sweeps in high- altitude 
populations. The window size was set to 50 kb and ran in 
steps of 12.5 kb.

These three statistics capture different properties of sequence 
data under selection, so combining them should increase the 
robustness of inference on selection. To do this, a de- correlated 
composite of multiple signals was implemented (DCMS; Ma et 
al., 2015), following the procedure in Gazda et al. (2018). The 
top 0.1% of DCMS were considered to hold stronger evidence of 
selection. For each of the two most conspicuous DCMS outli-
ers (on scaffold12 and scaffold17, see Results section), we iden-
tified one single-nucleotide polymorphism (SNP) with high 
allele frequency change and designed primers to genotype the 
full dataset of samples (two altitudinal transects) using Sanger 
sequencing.

Functional analyses of variants and protein 
structure
We annotated individual variants in regions of interest using 
SnpEff v5.1 (Cingolani et al., 2012) to check for mutations with 
known functional impact (missense, frameshift, splice-site, non-
sense), and manually inspected alignments using IGV v2.12.3 
(Thorvaldsdóttir et al., 2013). Since three missense variants of 
interest were identified in the gene BMPER, coinciding with the 
genomic region with the strongest evidence for selection (see 
Results section), this locus was characterized in more detail. We 
extracted BMPER transcript sequences from 27 squamate spe-
cies and chicken from NCBI’s “Gene” portal and aligned these 
with MUSCLE v3.8.425 (Edgar, 2004), available through AliView 
v1.28 (Larsson, 2014). Protein homology modeling was per-
formed using the SWISS-MODEL web server (Guex et al., 2009; 
Waterhouse et al., 2018). To assess the functional impact of mis-
sense mutations we calculated GRAVY scores (grand average 
of hydropathy) for the “reference” and “alternative” amino acid 
sequences using Sequence Manipulation Suite v2 (Stothard, 2000), 
and modeled changes in protein stability (ΔΔG) using DDMut 
(Zhou et al., 2023).

Results
Assembly and annotation of the Gallotia galloti 
genome
The genome assembly yielded a 1.18 Gb reference with a scaffold 
N50 of 58.15 Mb and contig N50 of 698.5 kb (Supplementary Table 
S2). This represents a near-chromosome assembly as the karyo-
type of this species has 20 chromosome pairs (Cano et al., 1984), 
and the 20 largest scaffolds in our assembly were all larger than 
14 Mb each and corresponded to 85.4% of the total genome size 
(Supplementary Figure S1). The assembly was highly complete 
(93.7% of complete single-copy orthologs), and the annotation 
identified 18,713 protein-coding sequences (78.3% of complete 
single-copy orthologs in the annotation). When compared to a 
selection of other published lacertid genomes (Supplementary 
Figure S1), assembly scaffolding compares well to chromosome- 
level assemblies of P. muralis, Z. vivipara, and L. agilis, and contigu-
ity was comparable to assemblies based on long-read sequencing 
like P. muralis. The genome completeness of our de novo assembly 
was comparable to all other genomes tested.

Reduced genetic differentiation between high 
and low-altitude populations
Re-sequencing of the four populations yielded a total of 
632,659,131 short reads (Supplementary Table S3). After mapping 
and duplicate removal, an average of 14.6X coverage per pool was 
obtained, and these reads mapped to the reference genome with 
high mapping rates (~99%). We started analyses of these data by 
examining global patterns of genetic variation. Pairwise values 
of FST between the four populations, based on a total of 7,944,720 
SNP, showed moderate differentiation between populations (FST 
between 0.072 and 0.100; Figure 2A). Importantly, no geograph-
ical pattern of stronger differentiation associated with altitude 
was recovered. Nucleotide diversity was similar across all pop-
ulations (π between 0.69% and 0.66%; Figure 2B). Patterns of D 
showed a common tendency towards negative values in all popu-
lations, albeit showing some variability between them (Figure 2C). 
Additionally, the high-altitude population displayed a tendency 
towards more negative D values (possibly an effect of a recent 
population expansion after a bottleneck).

Signatures of selection for high-altitude 
adaptation
Genetic differentiation across the genome between low and 
high-altitude populations was reduced for most regions of the 
genome, as suggested in the global analyses (Supplementary 
Figure S2). As some of the few exceptions, two genomic regions 
with moderate differentiation were identified on scaffold12 
(FST = 0.137) and scaffold17 (FST = 0.175) (Figure 3A). Results 
for π-ratio and ΔD also suggested overall reduced selection in 
high-altitude populations (Supplementary Figure S3). Outliers 
were few and had little overlap with the relative outliers of the FST 
scan, with the notable exceptions of the same two regions in scaf-
fold12 (π-ratio = 1.944; ΔD = 0.347) and scaffold17 (π-ratio = 1.858; 
ΔD = 0.823). The correlation between the three statistics was weak 
(Spearman’s correlation ρ; FST-π = 0.174; FST-D = 0.042; π-D = 0.142; 
p < 0.001 for the three comparisons). The integration of these 
three statistics into DCMS data gave further support for a sce-
nario of reduced overall selection, with few outliers relative to 
the genomic background (Figure 3B). Considering the top 0.1% 
windows (n = 91) as the genomic regions with the best evidence 
of selection, these were grouped into 13 intervals (Supplementary 
Table S4). The two intervals in scaffold12 (18 windows, 20% of the 
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outliers) and scaffold17 (31 windows, 34% of the outliers) were 
the two most marked outliers in this analysis.

Individual genotyping along two altitudinal transects did not 
confirm an association for scaffold17; allele frequencies were 
variable between populations but with no altitudinal pattern 
(Spearman’s correlation: ρ = −0.024, P = 0.947; Supplementary 
Figure S4). The genomic association could be an artifact driven 
by the particular populations that were used in those analyses. 
For scaffold12, we confirmed a significant correlation between 
allele frequencies and altitude (Spearman’s correlation: ρ = 0.841, 
P = 0.002; Figure 4A). The pattern of association was not linear but 
rather driven by a steep cline in allele frequency occurring between 
populations at 1,350 m and 1,900 m (below and above the inter-
val, populations showed similar patterns of allele frequency). The 
outlier at the terminal end of scaffold12 is likely to be in synteny 

with the outlier at the terminal end of scaffold40, based on the P. 
muralis assembly (Andrade et al., 2019). These regions contained 
the genes BMPER, FANCD2OS, NSPR1 (scaffold12), and COP1 (scaf-
fold40), with no other genes within a 100 kb range (Figure 4B). 
Differentiation was particularly important within the open reading 
frame of BMPER. BMPER is a regulator of bone morphogenetic pro-
teins (BMPs) in endothelial tissues, fine-tuning the activity of BMPs 
in angiogenesis (Heinke et al., 2008), likely including the known 
role of BMPs in vascular remodeling as a response to pulmonary 
hypertension typical of chronic hypoxia (Frank et al., 2005).

Coding variation at the BMPER locus is likely not 
implicated in adaptation
Within the scaffold12 outlier, we identified 15 highly differentiated 
(ΔAF ≥ 0.5) intronic and intergenic variants (ΔAF = 0.500–0.624); 
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four other highly differentiated noncoding variants were found in 
the syntenic scaffold40 outlier (ΔAF = 0.520–0.600). Additionally, 
we identified three missense variants overlapping BMPER with 
moderate allele frequency differences between high and low- 
altitude populations (ΔAF = 0.102–0.215), which raises the pos-
sibility of a role for protein-coding variation in adaptation. An 
alignment of our annotated G. galloti BMPER coding sequence 
(2,538 bp, 14 exons) to BMPER transcripts from 27 other squamate 
genomes (plus a chicken transcript) suggests that two of these 
three missense variants reside within an exon, which is a poten-
tial annotation artifact (Supplementary Figure S5). Specifically, 
this exon did not have a homologous exon in any other species, 
and a protein structural model of the corresponding amino acid 
sequence had lower support (best model GMQE = 0.67; MolProbity 
Score = 2.18; template A0A6P9B210.1.A, BMPER of Pantherophis 
guttatus; Supplementary Figure S5) when compared to a sec-
ond model of a translated coding sequence without this exon 
(best model GMQE = 0.82; MolProbity Score = 1.10; template 
A0A6P9B210.1.A, BMPER of P. guttatus; Supplementary Figure S5).

The remaining missense mutation (ΔAF = 0.102) was located 
in the predicted final exon of the G. galloti BMPER. GRAVY scores 
between the reference (threonine) and alternative (alanine) alleles 
indicated that the alternative amino acid sequence is slightly 
more hydrophilic (GRAVYref = −0.36715; GRAVYalt = −0.36733). 
Modeling of protein stability change between the two alleles indi-
cated a trend for destabilization in the alternative allele (ΔΔGStability 

ref→alt = −0.03 kcal/mol). However, for both statistics, the magnitude 
of the differences between reference and alternate alleles is very 
small. Supporting this, a model of the protein structure with the 
alternative allele had identical GMQE and MolProbity scores as 
the model based on the reference. The reduced protein structural 

differences between alleles, together with the modest ΔAF of this 
mutation, argue against coding variation as a mechanism pro-
moting adaptation through this locus.

Discussion
Hypoxic conditions are among the most physiologically demand-
ing abiotic constraints in high-altitude habitats (reviewed in 
Pamenter et al., 2020). Our discovery of a strong selection signal 
overlapping a gene linked to responses to hypoxia is further evi-
dence of the essential role these functions play in the colonization 
and survival of organisms at high altitudes. This is no surprise: 
above 2,000 m, atmospheric oxygen pressure drops to less than 
80% of the normal sea level pressure and lower than 65% above 
3,500 m (Chavala, 2018). When exposed to reduced O2 availability, 
animals from low altitudes can alter their phenotype by increas-
ing pulmonary ventilation, hemoglobin concentration, and heart 
rate (Banchero, 1987; Storz & Scott, 2019). However, although 
plastic responses can short-term counteract hypoxia, prolonged 
hypoxic conditions (chronic hypoxia) induce serious pathologies 
that are often driven by some of these plastic responses them-
selves, such as high-altitude pulmonary edema and pulmonary 
hypertension (Storz & Scott, 2019).

BMPER, a regulator of vascular cell growth and proliferation, 
is thus an excellent candidate to mediate adaptation to evade 
chronic hypoxia in G. galloti populations living at high altitudes. 
This is an endothelial regulator of BMPs, which in turn are 
essential tissue “architects.” In mammals, BMPER is expressed 
in skin, heart, and lung tissue, where it is essential for BMP4-
mediated angiogenesis (Heinke et al., 2008). BMP4 itself has also 
been shown to be upregulated in lung tissue during hypoxia to 
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promote proliferation and remodeling of arterial smooth muscle 
(Frank et al., 2005; Wu et al., 2014), and BMP receptors have been 
shown to be implicated in pulmonary hypertension pathogenesis 
(Takahashi et al., 2007). Our genotyping of an SNP in this candi-
date region indicated that allele frequency changes in this locus 
show an abrupt shift for populations at altitudes between 1,350 
and 1,900 m. Interestingly, Vinegar and Hillyard (1972) described 
that, in populations of the lizard Sceloporus occidentalis sampled 
across an altitudinal gradient between ca. 150 and 2,100 m in 
Arizona, oxygen-carrying capacity did not change linearly with 
altitude. Rather, this phenotype was similar within low-altitude 
and within high-altitude populations but with a significant shift 
in the 1,200–1,800 m range (although in other lizards, hemato-
logical variables may not vary predictably with altitude, e.g., 
González-Morales et al., 2017, 2023). Altogether, these results 
suggest that selection for increasing respiratory capacity may 
be common across ectotherms living in high altitudes and that 
in G. gallotia this can be partially explained by selection on the 
vascular remodeling gene BMPER, likely mediated by noncoding 
variants that regulate the expression of this gene. Other genes 
within our candidate regions, such as ENO1 (associated with 
resistance to hypoxia in pancreatic cancer cells; Wang et al., 2019) 
or TPBG (regulates the angiogenic activity of pericytes; Spencer et 
al., 2019) may play additional roles, but without further detailed 
physiological testing, genotyping, and functional genomic stud-
ies, their roles are less clear.

Our study provides evidence for altitudinal adaptation in 
an ectotherm, in line with previous findings in endotherms 
that hypoxia acts as the most demanding selection pressure in 
high-altitude environments. However, there are a variety of other 
abiotic stressors in these environments, such as UV, temperature, 
and water availability differences, for which we did not find obvi-
ous candidates. For example, increased UV exposure should (in 
principle) drive selection for increased pigmentation, but we did 
not find melanin or DNA repair genes in our outliers. This may 
occur because lizards actively regulate UV exposure, something 
that has been recently recognized (Conley & Lattanzio, 2022). It 
is, therefore, possible that high-altitude populations of G. galloti 
are able to respond through a combination of genetic adaptation, 
phenotypic plasticity in morphology (shifts in growth), behavior 
(behavioral thermoregulation and UV-regulation), physiology 
(hydroregulation, metabolic rates), or other mechanisms (Bels & 
Russell, 2019; Muñoz, 2021; Serén et al., 2023). This is consistent 
with previous findings in this species (Gilbert et al., 2024; Serén et 
al., 2023). Genetic adaptation and phenotypic plasticity thus likely 
play complex and interdependent roles in mediating responses to 
high abiotic stress in ectotherms.
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