
Communications in Algebra

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/lagb20

Generalized derivations of current Lie algebras

Dominik Benkovič & Daniel Eremita

To cite this article: Dominik Benkovič & Daniel Eremita (2024) Generalized derivations
of current Lie algebras, Communications in Algebra, 52:11, 4603-4611, DOI:
10.1080/00927872.2024.2354423

To link to this article:  https://doi.org/10.1080/00927872.2024.2354423

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 10 Jun 2024.

Submit your article to this journal 

Article views: 435

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lagb20

https://www.tandfonline.com/journals/lagb20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2024.2354423
https://doi.org/10.1080/00927872.2024.2354423
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00927872.2024.2354423?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00927872.2024.2354423?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2024.2354423&domain=pdf&date_stamp=10%20Jun%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2024.2354423&domain=pdf&date_stamp=10%20Jun%202024
https://www.tandfonline.com/action/journalInformation?journalCode=lagb20


COMMUNICATIONS IN ALGEBRA®
2024, VOL. 52, NO. 11, 4603–4611
https://doi.org/10.1080/00927872.2024.2354423

Generalized derivations of current Lie algebras
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ABSTRACT
Let L be a Lie algebra and let A be an associative commutative algebra with
unity, both over the same field F. We consider the following question. Is every
generalized derivation (resp. quasiderivation) of L ⊗ A the sum of a derivation
and amap from the centroid of L ⊗ A, if the same holds true for L?
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1. Introduction

Let L be a Lie algebra over a field F. A linear map d : L → L is called a derivation if d(
[
x, y

]
) =[

d(x), y
]+[

x, d(y)
]
for all x, y ∈ L. As usual, we denote the set of all derivations of L byDer(L). Obviously,

Der(L) is a Lie subalgebra of the general linear algebra gl(L). There are several generalizations of the
notion of a derivation. In this paper we consider generalized derivations and quasiderivations of Lie
algebras as defined by Leger and Luks in [6]. Let f : L → L be a linear map. If there exist linear maps
g, h : L → L such that [

f (x), y
] + [

x, g(y)
] = h

([
x, y

])
for all x, y ∈ L, then f is called a generalized derivation. In case there exists a linear map h : L → L such
that [

f (x), y
] + [

x, f (y)
] = h

([
x, y

])
for all x, y ∈ L, then f is said to be a quasiderivation. By GDer(L)we shall denote the set of all generalized
derivations of L and by QDer(L) the set of all quasiderivations of L. Obviously, QDer(L) and GDer(L)
are Lie subalgebras of gl(L) such that

Der(L) ⊆ QDer(L) ⊆ GDer(L) ⊆ gl(L).
Yet another Lie subalgebra of gl(L) is the centroid of L, which is defined as

Cent(L) = {
γ ∈ gl(L) | γ ([x, y]) = [x, γ (y)] for all x, y ∈ L

}
.

For each map γ ∈ Cent(L) we have
[γ (x), y] + [x, γ (y)] = 2γ ([x, y])
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for all x, y ∈ L. Thus, Cent(L) ⊆ QDer(L) and so

Der(L) + Cent(L) ⊆ QDer(L).

In several cases this is a strict inclusion. However, for some Lie algebras we have

Der(L) + Cent(L) = QDer(L) (1.1)

or even

Der(L) + Cent(L) = GDer(L). (1.2)

Let us mention that Leger and Luks [6, Corollary 4.16] proved that (1.1) holds true for each centerless
Lie algebra L generated by special weight spaces. Examples of Lie algebras satisfying (1.2) can be found in
Brešar’s paper [1], where the structure of near-derivations was described for certain Lie algebras arising
from associative ones. Note that the notion of a near-derivation, which was introduced in [1], is even
more general than the notion of a generalized derivation.

Suppose that L and A are algebras over a field F, where L is a Lie algebra and A is an associative
commutative algebra with unity. The tensor product algebra L ⊗F A (or shortly L ⊗ A) is also a Lie
algebra over F, which is called a current Lie algebra. Recall that the Lie product on L ⊗ A is defined as a
bilinear map such that

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab

for any simple tensors x ⊗ a, y ⊗ b ∈ L ⊗ A.
The aim of this paper is to consider the following two questions.

(a) Does L ⊗ A satisfy (1.1), if L satisfies (1.1)?
(b) Does L ⊗ A satisfy (1.2), if L satisfies (1.2)?

Our research was motivated by [6] and by Brešar’s papers [2, 3], where the study of functional
identities on tensor products of algebras was initiated.

2. The results

Let L be a Lie algebra over a field F. Recall that the center

Z(L) := {
x ∈ L | [x, y] = 0 for all y ∈ L

}
and the derived algebra

[L, L] := Span(
{[x, y] | x, y ∈ L

}
)

are ideals of L. If Z(L) = {0}, we say that L is centerless. For any subset S of L the set

ZL(S) := {x ∈ L | [x, s] = 0 for all s ∈ S}
is called the annihilator of S in L. If I is an ideal of L then ZL(I) is also an ideal of L. Thus, ZL([L, L]) is
an ideal of L and

Z(L) = ZL(L) ⊆ ZL([L, L]).
Note that for any centerless Lie algebra L the sum Der(L) + Cent(L) = Der(L) ⊕ Cent(L) is a direct

sumof vector spaces. Recall that a Lie algebra L is prime, if L has no nonzero ideals I, J such that [I, J] = 0.
Clearly, all prime Lie algebras are centerless. A Lie algebra is said to be perfect if [L, L] = L. Let us state
our main result on the form of quasiderivations of a current Lie algebra L ⊗ A.

Theorem 2.1. Let L ⊗ A be a current Lie algebra over a field F, where L is centerless and char(F) �= 2.
Suppose that L is either perfect or prime. IfQDer(L) = Der(L)⊕Cent(L), then QDer(L⊗A) = Der(L⊗
A) ⊕ Cent(L ⊗ A).
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Another aim of this paper is to obtain a similar result for generalized derivations. Recall that the
notion of a quasicentroid QCent(L) of a Lie algebra L was defined in [6] as

QCent(L) = {
f ∈ gl(L) | [f (x), y] = [x, f (y)] for all x, y ∈ L

}
.

Obviously, Cent(L) ⊆ QCent(L) and

GDer(L) = QDer(L) + QCent(L) (2.1)

(see [6, Proposition 3.3]). Note that each commuting linear map f : L → L (i.e.
[
f (x), x

] = 0 for all
x ∈ L) belongs to QCent(L). Moreover, if char(F) �= 2 then QCent(L) coincides with the set of all
commuting linear maps of L.

Let L be a centerless Lie algebra over a field F with char(F) �= 2. Suppose that L is either perfect or
prime. Then ZL([L, L]) = 0 and hence the result of Brešar and Zhao [4, Corollary 3.3] implies that the set
of all commuting linear maps of L coincides with Cent(L). Thus, QCent(L) = Cent(L) ⊆ QDer(L) and
hence (2.1) implies GDer(L) = QDer(L). Since ZL([L, L]) = 0 it follows that ZL⊗A([L ⊗ A, L ⊗ A]) = 0
and so GDer(L ⊗ A) = QDer(L ⊗ A) as well. Hence, Theorem 2.1 implies the following corollary.

Corollary 2.2. Let L ⊗ A be a current Lie algebra over a field F, where L is centerless and char(F) �= 2.
Suppose that L is either perfect or prime. Then GDer(L) = Der(L) ⊕ Cent(L) implies GDer(L ⊗ A) =
Der(L ⊗ A) ⊕ Cent(L ⊗ A).

If L ⊗ A is a current Lie algebra, where A is finite dimensional, then we obtain the same conclusion
assuming only that L is centerless.

Theorem 2.3. Let L ⊗ A be a current Lie algebra over a field F with char(F) �= 2. Suppose that L is
centerless and A is finite dimensional.

(i) If GenDer(L) = Der(L) ⊕ Cent(L), then GenDer(L ⊗ A) = Der(L ⊗ A) ⊕ Cent(L ⊗ A).
(ii) IfQDer(L) = Der(L) ⊕ Cent(L), then QDer(L ⊗ A) = Der(L ⊗ A) ⊕ Cent(L ⊗ A).

The proofs of Theorems 2.1 and 2.3 are given in the next section.

3. The proofs

Let L andA be algebras over a field F, where L is a Lie algebra andA is an associative commutative algebra
with unity. Pick a basis B = {bi|i ∈ I} ofA. Hence every element in L⊗A can be written uniquely in the
form xi1 ⊗ bi1 + xi2 ⊗ bi2 + · · · + xin ⊗ bin where n ≥ 1 and xi ∈ L.

Let f : L⊗A → L⊗A be a linear map. For any element x ∈ L there exist unique elements fi (x) ∈ L,
i ∈ I, such that

f (x ⊗ 1) =
∑
i∈I

fi(x) ⊗ bi, (3.1)

where fi(x) = 0 for all but finitely many i ∈ I. For each i ∈ I the map fi : L → L defined by fi : x 	→ fi(x)
is obviously linear. Let fB : L ⊗ A → L ⊗ A be a linear map such that

fB(x ⊗ a) =
∑
i∈I

fi(x) ⊗ abi (3.2)

for each simple tensor x⊗a ∈ L⊗A. Obviously, fB is well-defined since for each x ∈ Lwe have fi(x) �= 0
for only finitely many elements i ∈ I. Note that f (x ⊗ 1) = fB(x ⊗ 1) for all x ∈ L.

The following proposition shows that certain properties of a linear map f are inherited to the map fB .

Proposition 3.1. Let L ⊗ A be a current Lie algebra over a field F. For any basis B of A the following
assertions hold true:
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(i) If f ∈ GenDer(L ⊗ A), then fB ∈ GenDer(L ⊗ A).
(ii) If f ∈ QDer(L ⊗ A), then fB ∈ QDer(L ⊗ A).

Proof. First, suppose that f ∈ GenDer(L⊗ A). Then there exist linear maps g, h : L⊗ A → L⊗ A such
that [

f (x), y
] + [

x, g(y)
] = h

([
x, y

])
(3.3)

for all x, y ∈ L ⊗ A. Pick any basis B = {bi|i ∈ I} of A. Then according to (3.2) the linear maps gB, hB :
L ⊗ A → L ⊗ A are given by

gB(x ⊗ a) =
∑
i∈I

gi(x) ⊗ abi and hB(x ⊗ a) =
∑
i∈I

hi(x) ⊗ abi (3.4)

for any simple tensor x ⊗ a ∈ L ⊗ A. In order to prove that fB ∈ GenDer(L ⊗ A), let us show that[
fB(x), y

] + [
x, gB(y)

] = hB
([
x, y

])
(3.5)

for all x, y ∈ L ⊗ A. Setting simple tensors x ⊗ 1, y ⊗ 1 in (3.3) and using
[
x ⊗ 1, y ⊗ 1

] = [
x, y

] ⊗ 1,
we get

h
([
x, y

] ⊗ 1
) = [

f (x ⊗ 1), y ⊗ 1
] + [

x ⊗ 1, g(y ⊗ 1)
]
.

According to (3.2) this identity can be rewritten as

∑
i∈I

hi(
[
x, y

]
) ⊗ bi =

[∑
i∈I

fi(x) ⊗ bi, y ⊗ 1

]
+

[
x ⊗ 1,

∑
i∈I

gi(y) ⊗ bi

]

=
∑
i∈I

[
fi(x), y

] ⊗ bi +
∑
i∈I

[
x, gi(y)

] ⊗ bi

and consequently ∑
i∈I

( [
fi(x), y

] + [
x, gi(y)

] − hi(
[
x, y

]
)
) ⊗ bi = 0.

for all x, y ∈ L. Thus, for any i ∈ I we have[
fi(x), y

] + [
x, gi(y)

] = hi(
[
x, y

]
) (3.6)

for all x, y ∈ L. Using (3.6) we obtain

hB
([
x ⊗ a, y ⊗ b

]) = hB
([
x, y

] ⊗ ab
) =

∑
i∈I

hi(
[
x, y

]
) ⊗ abbi

=
∑
i∈I

(
[
fi(x), y

] + [
x, gi(y)

]
) ⊗ abbi

=
∑
i∈I

[
fi(x), y

] ⊗ abbi +
∑
i∈I

[
x, gi(y)

] ⊗ abbi

=
∑
i∈I

[
fi(x) ⊗ abi, y ⊗ b

] +
∑
i∈I

[
x ⊗ a, gi(y) ⊗ bbi

]

=
[∑

i∈I
fi(x) ⊗ abi, y ⊗ b

]
+

[
x ⊗ a,

∑
i∈I

gi(y) ⊗ bbi

]

= [
fB(x ⊗ a), y ⊗ b

] + [
x ⊗ a, gB(y ⊗ b)

]
.

for all simple tensors x⊗a, y⊗b ∈ L⊗A. Since fB , gB , and hB are linear maps it follows that (3.5) holds
true. Thus, fB ∈ GenDer(L ⊗ A) and so the proof of (i) is complete.

Note that (ii) can be proved analogously by setting f = g in the arguments above.
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Lemma 3.2. Let L ⊗ A be a current Lie algebra over a field F and let B = {bi|i ∈ I} be a basis of A.
Suppose that

{
fi : L → L|i ∈ I

}
is a family of linear maps such that for any x ∈ L we have fi(x) �= 0 for

only finitely many elements i ∈ I. Let a linear map fB : L ⊗ A → L ⊗ A be defined as in (3.2).

(i) If fi ∈ Der(L) for all i ∈ I, then fB ∈ Der(L ⊗ A).
(ii) If fi ∈ Cent(L) for all i ∈ I, then fB ∈ Cent(L ⊗ A).

Proof. (i) Suppose that fi ∈ Der(L) for all i ∈ I. Thus, for each i ∈ I[
fi(x), y

] + [
x, fi(y)

] = fi(
[
x, y

]
)

for all x, y ∈ L. For any simple tensors x ⊗ a, y ⊗ b ∈ L ⊗ A we have

fB
([
x ⊗ a, y ⊗ b

]) = fB
([
x, y

] ⊗ ab
) =

∑
i∈I

fi(
[
x, y

]
) ⊗ abbi

=
∑
i∈I

( [
fi(x), y

] + [
x, fi(y)

] ) ⊗ abbi

=
∑
i∈I

[
fi(x), y

] ⊗ abbi +
∑
i∈I

[
x, fi(y)

] ⊗ abbi

=
∑
i∈I

[
fi(x) ⊗ abi, y ⊗ b

] +
∑
i∈I

[
x ⊗ a, fi(y) ⊗ bbi

]

=
[∑

i∈I
fi(x) ⊗ abi, y ⊗ b

]
+

[
x ⊗ a,

∑
i∈I

fi(y) ⊗ bbi

]

= [
fB(x ⊗ a), y ⊗ b

] + [
x ⊗ a, fB(y ⊗ b)

]
.

Since fB is linear it follows that fB ∈ Der(L ⊗ A).
(ii) Let’s assume that fi ∈ Cent(L) for all i ∈ I. Thus, for each i ∈ I[

fi(x), y
] = fi(

[
x, y

]
)

for all x, y ∈ L. For any simple tensors x ⊗ a, y ⊗ b ∈ L ⊗ A we have

fB
([
x ⊗ a, y ⊗ b

]) = fB
([
x, y

] ⊗ ab
) =

∑
i∈I

fi(
[
x, y

]
) ⊗ abbi

=
∑
i∈I

[
fi(x), y

] ⊗ abbi

=
∑
i∈I

[
fi(x) ⊗ abi, y ⊗ b

]

=
[∑

i∈I
fi(x) ⊗ abi, y ⊗ b

]

= [
fB(x ⊗ a), y ⊗ b

]
.

Since fB is linear it follows that fB ∈ Cent(L ⊗ A).

Lemma 3.3. Let L ⊗ A be a current Lie algebra over a field F and let B = {bi|i ∈ I} be a basis of A.
Suppose that L is perfect or L is prime. Furthermore, assume that QDer(L) = Der(L) ⊕ Cent(L). If
f ∈ QDer (L ⊗ A), then fB ∈ Der(L ⊗ A) ⊕ Cent(L ⊗ A).

Proof. Let us pick an arbitrary quasi-derivation f ∈ QDer(L ⊗ A). Then there exists a linear map h :
L ⊗ A → L ⊗ A such that [

f (x), y
] + [

x, f (y)
] = h

([
x, y

])
(3.7)
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for all x, y ∈ L ⊗ A. Recall that there exist families of linear maps
{
fi : L → L|i ∈ I

}
and {hi : L →

L|i ∈ I} such that
f (x ⊗ 1) =

∑
i∈I

fi(x) ⊗ bi and h(x ⊗ 1) =
∑
i∈I

hi(x) ⊗ bi

for all x ∈ L, where for each x ∈ L we have fi(x) �= 0 for only finitely many elements i ∈ I and hi(x) �= 0
for only finitely many elements i ∈ I (see (3.1)). Similarly as in the proof of Proposition 3.1 we see that
for any i ∈ I we get [

fi(x), y
] + [

x, fi(y)
] = hi(

[
x, y

]
) (3.8)

for all x, y ∈ L. Hence, each fi is a quasi-derivation of L. Consequently, our assumption implies fi ∈
Der(L) ⊕ Cent(L) for all i ∈ I. Thus, for each i ∈ I there exist maps di ∈ Der(L) and γi ∈ Cent(L) such
that fi = di + γi. Hence, (3.8) can be rewritten as

hi(
[
x, y

]
) = [

di (x) + γi (x) , y
] + [

x, di
(
y
) + γi

(
y
)]

(3.9)
= [

di (x) , y
] + [

x, di
(
y
)] + [

γi (x) , y
] + [

x, γi
(
y
)]

= di
([
x, y

]) + γi
([
x, y

]) + γi
([
x, y

])
= fi

([
x, y

]) + γi
([
x, y

])
for all x, y ∈ L and i ∈ I.

First, suppose that L is perfect. Since [L, L] = L it follows from (3.9) that γi (x) = hi (x) − fi (x) for
all x ∈ L and i ∈ I. Hence, for each x ∈ L we have γi (x) = 0 for all but finitely many elements i ∈ I and
consequently di (x) = fi (x) − γi (x) = 0 for all but finitely many elements i ∈ I.

Next, suppose thatL is prime.According to (3.9) we see that for each pair x, y ∈ Lwehave γi
([
x, y

]) =
0 for all but finitely many elements i ∈ I. Without loss of generality, we may assume that L is nonzero.
Since L is prime it follows that [L, L] �= {0}. Hence, there exist elements x0, y0 ∈ L such that

[
x0, y0

] �= 0.
Since L is torsion free Cent(L)-module (see [5, Theorem 1.1]) and since γi

([
x0, y0

]) = 0 for all but
finitely many elements i ∈ I it follows that γi = 0 for all but finitely many elements i ∈ I. Consequently,
for each x ∈ L also di (x) = fi (x) − γi (x) = 0 for all but finitely many elements i ∈ I.

Let dB, γB : L ⊗ A → L ⊗ A be linear maps such that

dB(x ⊗ a) =
∑
i∈I

di(x) ⊗ abi and γB(x ⊗ a) =
∑
i∈I

γi(x) ⊗ abi (3.10)

for each simple tensor x ⊗ a ∈ L ⊗ A. Obviously, dB and γB are well-defined, since in case L is perfect
or prime, both sums in (3.10) are finite. Namely, for any x ∈ L in both cases di(x) = 0 for all but finitely
many elements i ∈ I and γi(x) = 0 for all but finitely many elements i ∈ I. Now, Lemma 3.2 implies that
dB ∈ Der(L ⊗ A) and γB ∈ Cent(L ⊗ A). We can now conclude that

fB(x ⊗ a) =
∑
i∈I

fi(x) ⊗ abi =
∑
i∈I

(di (x) + γi (x)) ⊗ abi

=
∑
i∈I

di (x) ⊗ abi +
∑
i∈I

γi (x) ⊗ abi

= dB(x ⊗ a) + γB(x ⊗ a)

for each simple tensor x ⊗ a ∈ L ⊗ A. Since fB , dB , and γB are linear maps it follows fB = dB + γB ∈
Der(L ⊗ A) ⊕ Cent(L ⊗ A).

If we assume that A is a finite dimensional algebra in Lemma 3.3, then we can drop the assumption of
L being perfect or prime. Namely, in this case both sums in (3.10) are finite and so the maps dB and γB
are well-defined. Thus, using similar arguments as in the proof of Lemma 3.3 we obtain the following
proposition.



COMMUNICATIONS IN ALGEBRA® 4609

Proposition 3.4. Let L ⊗ A be a current Lie algebra over a field F and let B be a basis of A. Suppose that
dimF A < ∞.

(i) If f ∈ GenDer(L⊗A) and GenDer(L) = Der(L) ⊕Cent(L), then fB ∈ Der(L⊗A) ⊕Cent(L⊗A).
(ii) If f ∈ QDer (L ⊗ A) and QDer(L) = Der(L) ⊕ Cent(L), then fB ∈ Der(L ⊗ A) ⊕ Cent(L ⊗ A).

Recall that a map f : L → L is commuting if
[
f (x), x

] = 0 for all x ∈ L. The following lemma, which
will be used in the proof of Theorem 2.3, follows directly from [6, Proposition 5.26].

Lemma 3.5. Let L be a centerless Lie algebra over a field F with char(F) �= 2. If a quasi-derivation
f ∈ QDer(L) is commuting, then f ∈ Cent(L).

Now, we can prove our main results, Theorems 2.1 and 2.3.

Proof of Theorem 2.1. Suppose that QDer(L) = Der(L) ⊕ Cent(L). Pick any basis B = {bi|i ∈ I} of A.
Let f ∈ QDer (L ⊗ A) be an arbitrary quasi-derivation. According to Proposition 3.1 the map fB is a
quasi-derivation of L ⊗ A. Moreover, Lemma 3.3 implies that fB ∈ Der(L ⊗ A) ⊕ Cent(L ⊗ A). Let
F = f − fB . Obviously, F ∈ QDer (L ⊗ A) and F(x⊗ 1) = f (x⊗ 1) − fB(x⊗ 1) = 0 for all x ∈ L. Since
F is a quasi-derivation there exists a linear map H : L ⊗ A → L ⊗ A such that[

F(x), y
] + [

x, F(y)
] = H

([
x, y

])
(3.11)

for all x, y ∈ L ⊗ A. For each simple tensor x ⊗ a ∈ L ⊗ A there exist unique elements Fi (x ⊗ a) ∈ L,
i ∈ I, such that

F(x ⊗ a) =
∑
i∈I

Fi(x ⊗ a) ⊗ bi,

where Fi(x ⊗ a) �= 0 for only finitely many i ∈ I. For each a ∈ A and each i ∈ I we define a map
Fa,i : L → L by Fa,i : x 	→ Fi(x ⊗ a), which is obviously linear. First, we shall show that Fa,i ∈ Cent(L)
for any a ∈ A and any i ∈ I. Let us fix an arbitrary a ∈ A. Setting simple tensors x⊗a and x⊗1 in (3.11)
and using F(x ⊗ 1) = 0 we obtain

[F(x ⊗ a), x ⊗ 1] = H ([x ⊗ a, x ⊗ 1]) = H ([x, x] ⊗ a) = 0

for all x ∈ L. Hence,

0 = [F(x ⊗ a), x ⊗ 1] =
[∑

i∈I
Fi(x ⊗ a) ⊗ bi, x ⊗ 1

]

=
∑
i∈I

[
Fa,i(x), x

] ⊗ bi

for all x ∈ L. Consequently,
[
Fa,i(x), x

] = 0 for all x ∈ L and all i ∈ I. Thus, for each a ∈ A and each
i ∈ I the map Fa,i is commuting. According to our assumption L is perfect and centerless or L is prime.
In both cases it follows that ZL ([L, L]) = {0}. Hence, [4, Corollary 3.3] yields that Fa,i ∈ Cent(L) for all
i ∈ I, a ∈ A. Next, we claim that F ∈ Der(L⊗A). Namely, setting simple tensors x⊗ a in y⊗ b in (3.11)
we get

H
([
x ⊗ a, y ⊗ b

]) = [
F(x ⊗ a), y ⊗ b

] + [
x ⊗ a, F(y ⊗ b)

]
. (3.12)

On the other hand, since
[
x ⊗ a, y ⊗ b

] = [
x ⊗ ab, y ⊗ 1

]
and F

(
y ⊗ 1

) = 0, we obtain

H
([
x ⊗ a, y ⊗ b

]) = [
F (x ⊗ ab) , y ⊗ 1

] =
[∑

i∈I
Fab,i(x) ⊗ bi, y ⊗ 1

]
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for all x, y ∈ L and a, b ∈ A. Since Fab,i ∈ Cent(L) it follows

H
([
x ⊗ a, y ⊗ b

]) =
∑
i∈I

[
Fab,i(x), y

] ⊗ bi =
∑
i∈I

Fab,i(
[
x, y

]
) ⊗ bi = F

([
x, y

] ⊗ ab
)

for all x, y ∈ L and a, b ∈ A. Hence,

H
([
x ⊗ a, y ⊗ b

]) = F
([
x ⊗ a, y ⊗ b

])
(3.13)

for all x ⊗ a, y ⊗ b ∈ L ⊗ A. Consequently, (3.12) can be rewritten as

F
([
x ⊗ a, y ⊗ b

]) = [
F(x ⊗ a), y ⊗ b

] + [
x ⊗ a, F(y ⊗ b)

]
for all x ⊗ a, y ⊗ b ∈ L ⊗ A. Since F is linear it follows that F ∈ Der(L ⊗ A). We can now conclude that

f = fB + F,

where fB ∈ Der(L⊗A) ⊕Cent(L⊗A) and F ∈ Der(L⊗A). Thus, f ∈ Der(L⊗A) ⊕Cent(L⊗A) and
so the proof is complete.

Proof of Theorem 2.3. In order to prove (i) let us assume that GenDer(L) = Der(L)⊕Cent(L). Pick any
basis B = {bi|i ∈ I} of A. Here, I = {1, 2, . . . , n}, since A is finite dimensional. Let f ∈ GenDer(L ⊗ A).
Then there exist linear maps g, h : L ⊗ A → L ⊗ A such that[

f (x), y
] + [

x, g(y)
] = h

([
x, y

])
(3.14)

for all x, y ∈ L ⊗ A. Proposition 3.1 implies fB ∈ GenDer (L ⊗ A). Moreover,[
fB(x), y

] + [
x, gB(y)

] = hB
([
x, y

])
(3.15)

for all x, y ∈ L ⊗ A (see the proof of Proposition 3.1). According to Proposition 3.4 we know that
fB ∈ Der(L ⊗ A) ⊕ Cent(L ⊗ A). Let us define the following maps: F = f − fB , G = g − gB, and
H = h − hB. Obviously, F, G, and H are linear maps. Using (3.14) and (3.15) we get[

F(x), y
] + [

x,G(y)
] = H

([
x, y

])
(3.16)

for all x, y ∈ L⊗A. Moreover, F(x⊗1) = 0 = G(x⊗1) for all x ∈ L. For each simple tensor x⊗a ∈ L⊗A
there exist unique elements Fi (x ⊗ a) ,Gi (x ⊗ a) ,Hi (x ⊗ a) ∈ L, i ∈ I, such that

F(x ⊗ a) =
∑
i∈I

Fi(x ⊗ a) ⊗ bi, (3.17)

G(x ⊗ a) =
∑
i∈I

Gi(x ⊗ a) ⊗ bi,

H(x ⊗ a) =
∑
i∈I

Hi(x ⊗ a) ⊗ bi.

For each a ∈ A and each i ∈ I we define maps Fa,i,Ga,i,Ha,i : L → L by Fa,i : x 	→ Fi(x ⊗ a),
Ga,i : x 	→ Gi(x ⊗ a), and Ha,i : x 	→ Hi(x ⊗ a). It is easy to see that Fa,i,Ga,i,Ha,i are linear maps. Our
aim is to prove that F is a derivation. First, let us prove that Fa,i ∈ Cent(L) for all a ∈ A and i ∈ I. Since
G(y ⊗ 1) = 0 it follows from (3.16) that[

F(x ⊗ a), y ⊗ 1
] = H

([
x ⊗ a, y ⊗ 1

]) = H
([
x, y

] ⊗ a
)

(3.18)

for all x, y ∈ L and a ∈ A. Fix an arbitrary element a ∈ A. Using (3.17) we can rewrite (3.18) as

0 = [
F(x ⊗ a), y ⊗ 1

] − H
([
x, y

] ⊗ a
)

=
[∑

i∈I
Fi(x ⊗ a) ⊗ bi, y ⊗ 1

]
−

∑
i∈I

Hi([x, y] ⊗ a) ⊗ bi
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=
∑
i∈I

( [
Fi,a(x), y

] − Hi,a(
[
x, y

]
)
) ⊗ bi

for all x, y ∈ L. Hence, [
Fa,i(x), y

] = Ha,i(
[
x, y

]
) (3.19)

for all x, y ∈ L. Consequently,
[
Fa,i(x), x

] = 0 for all x ∈ L. Thus, Fa,i is a commuting linear map for
each a ∈ A and each i ∈ I. By interchanging the roles of x and y in (3.19) and using

[
x, y

] = − [
y, x

]
we

get
[
x, Fa,i(y)

] = Ha,i(
[
x, y

]
) and so[

Fa,i(x), y
] + [

x, Fa,i(y)
] = 2Ha,i(

[
x, y

]
)

for all x, y ∈ L. This means that Fa,i ∈ QDer(L) and hence Lemma 3.5 yields that Fi,a ∈ Cent(L) for each
a ∈ A and each i ∈ I. Next, we shall prove that F = G. Namely, since G(y ⊗ 1) = 0 = F (x ⊗ 1) we see
that (3.16) yields [

F(x ⊗ a), y ⊗ 1
] = H

([
x ⊗ a, y ⊗ 1

]) = H
([
x ⊗ 1, y ⊗ a

])
= [

x ⊗ 1,G(y ⊗ a)
]

for all x, y ∈ L and a ∈ A. Fix an arbitrary a ∈ A. Using (3.17) we can rewrite the last identity as

0 =
[∑

i∈I
Fa,i(x) ⊗ bi, y ⊗ 1

]
−

[
x ⊗ 1,

∑
i∈I

Ga,i(y) ⊗ bi

]

=
∑
i∈I

[
Fa,i(x), y

] ⊗ bi −
∑
i∈I

[
x,Ga,i(y)

] ⊗ bi

=
∑
i∈I

( [
Fa,i(x), y

] − [
x,Ga,i(y)

] ) ⊗ bi

for all x, y ∈ L. Consequently, for each i ∈ I we have[
Fa,i(x), y

] = [
x,Ga,i(y)

]
for all x, y ∈ L. Since Fa,i ∈ Cent(L) it follows[

x,Ga,i(y)
] = [

Fa,i(x), y
] = Fa,i(

[
x, y

]
) = [

x, Fa,i(y)
]

and hence
[
x,Ga,i(y) − Fa,i(y)

] = 0 for all x, y ∈ L and i ∈ I. Thus, Ga,i(y)−Fa,i(y) belongs to the center
of L for all y ∈ L and i ∈ I. Since L is centerless it now follows that Ga,i = Fa,i for all i ∈ I and all a ∈ A.
Accordingly, (3.17) implies F(x ⊗ a) = G(x ⊗ a) for each simple tensor x ⊗ a ∈ L ⊗ A. However, since
F and G are linear it follows F = G. By using the same arguments as in the proof of Theorem 2.1 we can
now show that F is a derivation. Thus, since f = fB + F, where fB ∈ Der(L ⊗ A) ⊕ Cent(L ⊗ A) and
F ∈ Der(L ⊗ A), it follows that f ∈ Der(L ⊗ A) ⊕ Cent(L ⊗ A). The proof of (i) is now complete.

Note that (ii) can be proved analogously by setting f = g in the arguments above.

Remark. According to Theorem 2.3 one might conjecture that Theorem 2.1 holds true even without the
assumption that a Lie algebra L is either perfect or prime. Unfortunately, we were not able to prove nor
disprove this conjecture.
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