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Franc Forstnerič1,2 · Yuta Kusakabe3

Received: 3 September 2024 / Revised: 3 September 2024 / Accepted: 9 November 2024 /
Published online: 28 November 2024
© The Author(s) 2024

Abstract
Let (E, h) be a semipositive hermitian holomorphic line bundle on a compact complex
manifold X with dim X > 1. Assume that for each point x ∈ X there exists a
divisor D ∈ |E | in the complete linear system determined by E whose complement
X \ D is a Stein neighbourhood of x with the density property. Then, the disc bundle
�h(E) = {e ∈ E : |e|h < 1} is an Oka manifold while Dh(E) = {e ∈ E : |e|h > 1}
is a Kobayashi hyperbolic domain. In particular, the zero section of E admits a basis of
Oka neighbourhoods {|e|h < c} with c > 0. We show that this holds if X is a rational
homogeneous manifold of dimension > 1. This class of manifolds includes complex
projective spaces, Grassmannians, and flag manifolds. This phenomenon contributes
to the heuristic principle that Oka properties are related to metric positivity of complex
manifolds.

Mathematics Subject Classification Primary 32Q56; Secondary 32E10 · 32L05 ·
32Q10

1 Introduction

A complex manifold Y is called an Oka manifold if holomorphic maps S → Y
from any Stein manifold S satisfy the Oka principle with approximation on compact
holomorphically convex subsets of S and interpolation on closed complex subvarieties
of S; see [14, Definition 5.4.1 and Theorem 5.4.4]. This is a central holomorphic
flexibility notion in complex geometry, and it is of major interest to find new examples
of Oka manifolds. A complex manifold Y is an Oka-1 manifold [2] if these properties
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hold formaps S → Y fromany openRiemann surface S. Every complex homogeneous
manifold is Oka (see Grauert [20] and [14, Proposition 5.6.1]). Many further examples
were given by Gromov [28] and others; see the surveys in [14, 16].

In this paper, we describe a new phenomenon in Oka theory, relating the Oka
property of tubes in hermitian holomorphic line bundles on compact Oka manifolds
to the curvature properties of the metric. We show in particular that disc bundles
in many Griffiths semipositive holomorphic line bundles are Oka manifolds. This
holds for semipositive ample line bundles on projective spaces (see Theorem 1.1),
Grassmannians (see Proposition 4.4), their products (see Corollary 4.9), and on any
rational homogeneous manifold of dimension > 1 (see Theorem 4.10). Our main
result, Theorem 1.5, establishes this phenomenon for any polarised manifold (X , E)

with the polarised density property, see Definition 1.7. An important ingredient in the
proofs are the recent results of the second named author [38], who found large classes
of Oka manifolds given as complements of closed holomorphically convex sets in
Stein manifolds with the density property.

Let π : E → X be a holomorphic line bundle on a connected compact complex
manifold X , and let h be a hermitian metric on E . Denote by |e|h the norm of e ∈ E .
We are interested in conditions on X and the hermitian line bundle (E, h)which ensure
that the disc bundle

�h(E) = {e ∈ E : |e|h < 1} (1.1)

is an Oka manifold. In particular, when does the zero section E(0) = {e ∈ E :
|e|h = 0} admit a basis of open Oka neighbourhoods? It turns out that these ques-
tions are related to semipositivity of the metric h, hence to the existence of nontrivial
holomorphic sections X → E .

We begin with some immediate observations. The total space E is Oka if and only if
the base X is Oka [14, Theorem 5.6.5]. Since �h(E) admits a holomorphic retraction
onto the zero section E(0) ∼= X , if �h(E) is Oka then X is Oka [14, Proposition
5.6.8]. For any c > 0 the disc bundle �h,c(E) = {|e|h < c} is biholomorphic to
�h(E) by a dilation in the fibres, so an affirmative answer to the first question implies
the same for the second one. The answers to both questions are negative for any
hermitian metric h on the trivial line bundle E = X × C. In this case, �h(E) is
contained in X × c� for some c > 0, where � ⊂ C is the unit disc. This manifold
admits a bounded plurisubharmonic function coming from c� which is nonconstant
on every open subset, so it cannot contain anyOka domain [14, Proposition 7.1.9]. The
same argument applies to trivial vector bundles of higher rank on a compact complex
manifold.

A more subtle analysis is tied to the curvature of the metric h, which determines
the geometric shape of the disc bundle (1.1). The curvature of h is the (1, 1)-form on
X given by

i�h = −i ∂∂ log h = −1

2
ddc log h, i = √−1
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(see (2.3)). A hermitian holomorphic line bundle (E, h) is positive if i�h is a positive
(1, 1)-form, and semipositive if i�h ≥ 0. A holomorphic line bundle E is positive if it
admits a hermitian metric with positive curvature. The disc bundle�h(E) is a Hartogs
domain in E , and the Levi form of its boundary is the hermitian form determined by
ddc log h (see Proposition 2.3). Hence, the metric negativity i�h < 0 at x0 ∈ X is
equivalent to �h(E) being strongly pseudoconvex over a neighbourhood of x0, so it
is not Oka. (Indeed, a domain with a strongly pseudoconvex boundary point admits
a nonconstant bounded plurisubharmonic function, hence it cannot be Oka; see [14,
Proposition 7.1.9].) If on the other hand i�h ≥ 0 then �h(E) is pseudoconcave, and
we will show that it is an Oka manifold in many cases of interest.

We begin by considering line bundles on the simplest compact Oka manifolds,
the projective spaces CP

n . The isomorphism classes of holomorphic line bundles on a
complex space X are in bijective correspondence with the elements of the Picard group
Pic(X) = H1(X ,O∗). For projective spaces, Pic(CP

n) ∼= Z is a free cyclic group
generated by the hyperplane section bundle OCPn (1) (see Griffiths and Harris [27] or
Wells [52]). It is customary to write OCPn (k) for the k-th tensor power of OCPn (1).
The dual U = OCPn (−1) of OCPn (1) is the universal bundle; see [52, p. 17, Example
2.6]. The line bundle OCPn (k) is positive resp. negative according to whether k > 0
or k < 0. It admits a hermitian metric whose curvature is k-times the Fubini–Study
form on CP

n (see Example 2.4).

Theorem 1.1 Given a positive holomorphic line bundle E = OCPn (k) on CP
n (n ≥

1, k ≥ 1) and a semipositive hermitian metric h on E (i.e., i�h ≥ 0), the following
assertions hold.

(a) The punctured disc bundle �∗
h(E) = {e ∈ E : 0 < |e|h < 1} is an Oka manifold,

and the disc bundle �h(E) = {e ∈ E : |e|h < 1} is an Oka-1 manifold.
(b) If n ≥ 2 or E = OCPn (1) then the disc bundle �h(E) is an Oka manifold.
(c) The domain Dh(E) = E \ �h(E) = {e ∈ E : |e|h > 1} is Kobayashi hyperbolic

and has pseudoconvex boundary bDh(E) = {|e|h = 1}.
For a negative holomorphic line bundle E = OCPn (k) (n ≥ 1, k ≤ −1) and a
seminegative hermitian metric h on E (i�h ≤ 0), the following assertions hold.

(a’) The domain �∗
h(E) is Kobayashi hyperbolic and pseudoconvex along {|e|h = 1}.

(b’) The domain Dh(E) = E \ �h(E) is Oka.

These results hold if the metric h is continuous and semipositive (resp. seminegative)
in the weak sense. They also hold for the restrictions of these bundles to any affine
Euclidean chart in CP

n.

With (E, h) as in part (b) of the theorem, the circle bundle {e ∈ E : |e|h = 1}
splits E into a relatively compact Oka domain {|e|h < 1} and a hyperbolic domain
{|e|h > 1}. A phenomenon of this type was first observed by Forstnerič and Wold
[19] who showed that, under a mild assumption on an unbounded closed convex set
K ⊂ C

n (n > 1), its interior K̊ is Kobayashi hyperbolic while its complement Cn \K
is an Oka domain.

Note that the natural projection �h(E) → CP
n in Theorem 1.1 is a holomorphic

submersion and a topological fibre bundle, its base and total space are Oka manifolds
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in case (b), yet its fibres are Kobayashi hyperbolic. In particular, it is not an Oka
map (see Definition 2.8) since the fibres of an Oka map are Oka manifolds (see [16,
Proposition 3.14]).We now show that this phenomenon does not occur in holomorphic
fibre bundles.

Proposition 1.2 If E → X is a holomorphic fibre bundle on a connected complex
manifold X whose fibre Y is Kobayashi hyperbolic with dim Y > 0, then E is not an
Oka manifold.

Proof Let π : ˜X → X be the universal covering. The pullback bundle π∗E → ˜X has
the same fibre Y . Since Y is hyperbolic, there are no nontrivial holomorphic maps to
its holomorphic automorphism group Aut(Y ) (see Kobayashi [33, Theorem 5.4.5]), so
this is a flat bundle. Since ˜X is simply connected, it follows that the bundle π∗E → ˜X
is trivial, isomorphic to ˜X × Y (see Royden [46, Corollary 1]). This manifold is not
Oka due to the hyperbolic factor Y . Since the natural map π∗E → E is a holomorphic
covering map and the class of Oka manifolds is invariant under such maps (see [14,
Proposition 5.6.3]), E is not Oka. 
�

Theorem 1.1 is proved in Sect. 3; here is an outline. If E = OCPn (k) with k > 0,
then for any hermitian metric h on E the restriction of the disc bundle �h(E) to any
affine Euclidean chart in CP

n is a Hartogs domain � in C
n+1 whose radius grows at

least linearly (see Example 2.4). If h is semipositive then � is pseudoconcave (see
Proposition 2.3 (iii’)). By Proposition 3.1, such a domain is Oka if n ≥ 2. This result
and the localization theorem for Oka manifolds [36, Theorem 1.4] are the key to the
proof of part (b). Part (a) is seen by an explicit analysis of the hyperplane section
bundle OCPn (1), using that complements of compact polynomially convex sets in
C
n+1 (n ∈ N) are Oka (see Kusakabe [38, Corollary 1.3]), and that the relevant

properties of these tubes are preserved under tensor powers (see Proposition 2.1 and
Corollary 2.2). When passing to the hermitian dual bundle (E∗, h∗), positivity and
negativity get reversed and the punctured disc bundle �∗

h(E) is biholomorphic to the
outer tube Dh∗(E∗) = {h∗ > 1} of the dual bundle, which gives part (b’). Parts (c)
and (a’) follow from Grauert’s result on blowing down exceptional varieties [21, Satz
1, p. 341]; see Remark 1.10.

We now proceed towards our main results. Recall that a holomorphic vector field
on a complex manifold X is said to be complete if its flow exists for all complex values
of time, so it forms a complex one-parameter group of holomorphic automorphisms
of X . The following class of complex manifolds was introduced by Varolin [51]; see
also [14, Definition 4.10.1].

Definition 1.3 A complex manifold X has the density property if every holomorphic
vector field on X can be approximated uniformly on compacts by sums and commu-
tators of complete holomorphic vector fields on X .

Every Stein manifold X with the density property has infinite dimensional auto-
morphism group (hence dim X > 1), and it is an elliptic Oka manifold (see [14,
Proposition 5.6.23]). The fact that the Euclidean spaces C

n , n > 1, have the density
property was discovered by Andersén and Lempert [4]. Most complex Lie groups and
complex homogeneous manifolds have the density property. Surveys can be found in
[14, Chapter 4], [17], and [39].
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Theorem 1.4 Assume that X is a compact complex submanifold of CP
n such that for

the affine charts Ui ∼= C
n covering CP

n the Stein manifold X ∩ Ui has the density
property for every i = 0, . . . , n. Let E ∼= OCPn (k) with k ≥ 1 be a positive holomor-
phic line bundle on CP

n endowed with a hermitian metric h satisfying i�h |T X ≥ 0.
Then the disc bundle �h(E)|X = {e ∈ E |X : |e|h < 1} is an Oka manifold while
Dh(E)|X = {e ∈ E |X : |e|h > 1} is a Kobayashi hyperbolic domain in E |X with
pseudoconvex boundary {e ∈ E |X : |e|h = 1}.

An example satisfying Theorem 1.4 is the hyperquadric

X = {[z0 : z1 : · · · : zn] ∈ CP
n : z20 + z21 + · · · + z2n = 0

}

, n ≥ 3. (1.2)

The intersection of X with any affine chart Ui = {zi 
= 0} is the complexified sphere
inC

n , which is a Danielewski manifold and has the density property (see Kaliman and
Kutzschebauch [31]). This null quadric plays a major role in the theory of minimal
surfaces; see [3]. Another example is the Plücker embedding of a Grassmannian of
dimension > 1; see Example 4.3.

Denote by |E | the complete linear system of divisors on X associated to a holo-
morphic line bundle E → X (see e.g. [27]). The divisors in |E | are the zero sets with
multiplicities of nontrivial holomorphic sections of E .We shall often identify a divisor
with its support, neglecting the multiplicities. The following is our main result.

Theorem 1.5 Let E be a holomorphic line bundle on a compact complex manifold X.
Assume that for each point x ∈ X there exists a divisor D ∈ |E | whose complement
X \ D is a Stein neighbourhood of x with the density property. Given a semipositive
hermitian metric h on E, the disc bundle �h(E) (1.1) is an Oka manifold while
Dh(E) = E \�h(E) is a Kobayashi hyperbolic domain with pseudoconvex boundary
bDh(E) = {|e|h = 1}. In particular, the zero section of E admits a basis of Oka
neighbourhoods �h,c(E) = {|e|h < c} with c > 0.

Aholomorphic line bundle E on a compact complexmanifold X is called basepoint-
free if the intersectionof the divisors in |E | is empty. If this holds, there is a holomorphic
map � : X → CP

n for some n ∈ N (see (3.3)) such that E is isomorphic to the
pullback �∗OCPn (1) of the hyperplane section bundle (see [29, Theorem II.7.1]).
Hence, E admits a semipositive hermitian metric obtained by pulling back a positive
metric on OCPn (1) (see Example 2.4). This gives the following metric-free corollary
to Theorem 1.5.

Corollary 1.6 Let E be a holomorphic line bundle on a compact complex manifold X.
If for each point x ∈ X there exists a divisor D ∈ |E | whose complement is a Stein
neighbourhood of x with the density property, then the zero section of E admits a basis
of Oka neighbourhoods.

Theorems 1.4 and 1.5 are proved in Sect. 3. In Sect. 4 we give several examples.
To this end, we recall the following notions. A holomorphic line bundle E on a com-
pact complex manifold X is called ample if some positive tensor power E⊗k is very
ample, meaning that holomorphic sections of E⊗k provide an embedding of X into
a projective space. The Kodaira embedding theorem [35] implies that a positive line
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bundle is ample. Conversely, every ample line bundle admits a hermitian metric that
makes it a positive line bundle. A polarised manifold is a pair (X , E) of a compact
complex manifold X and an ample line bundle E on X . Note that such X is necessarily
projective, and every projective manifold admits an ample line bundle.

Definition 1.7 (a) A polarised manifold (X , E) has the polarised density property if
for each point x ∈ X there exists a divisor D ∈ |E | whose complement X \ D is
a Stein neighbourhood of x with the density property.

(b) A compact projective manifold X has the polarised density property if (X , E) has
the polarised density property for every ample line bundle E on X .

It is easily seen that for a polarised manifold (X , E) and a divisor D ∈ |E |, the
complement X\D is an affinemanifold, hence Stein. ASteinmanifoldwith the density
property is an Oka manifold (see [14, Proposition 5.6.23]). Hence, if (X , E) has the
polarised density property, then X is an Oka manifold by the localization theorem [36,
Theorem 1.4].

By Proposition 4.1, every holomorphic line bundle satisfying the condition of The-
orem 1.5 is ample. Hence, Theorem 1.5 can equivalently be stated as follows.

Theorem 1.8 If (X , E) is a polarised manifold with the polarised density property,
then for any semipositive hermitian metric h on E the disc bundle �h(E) (1.1) is an
Oka manifold while the domain Dh(E) = E \ �h(E) is Kobayashi hyperbolic.

Theorem1.1 says that the projective spaceCP
n of dimensionn > 1has the polarised

density property. In Sect. 4 we prove the following further results on this topic.

• If (X , E) has the polarised density property then so does (X , E⊗k) for every k > 1
(see Proposition 4.2).

• Every complex Grassmannian (or a product of Grassmannians) of dimension > 1
has the polarised density property (see Proposition 4.4 and Corollary 4.9).

• If the polarised manifolds (X1, E1) and (X2, E2) have the polarised density
property then so does their exterior tensor product (X1 × X2, E1 � E2) (see
Proposition 4.5).

• If (X , E) has the polarised density property, then (X×CP
n, E�OCPn (k)) (n, k >

0) also has the polarised density property (see Proposition 4.6).
• Recall that a rational manifold is a projective manifold birationally isomorphic to
a projective space. If X1, . . . , Xm (m ≥ 2) are rational manifolds such that every
Xi with dim Xi > 1 has the polarised density property, then their product X =
X1 × X2 ×· · ·× Xm also has the polarised density property (see Proposition 4.8).

• Every rational homogeneous manifold of dimension > 1 has the polarised density
property (see Theorem 4.10).

So far we have only discussed line bundles. One may ask what can be said about the
Oka properties of (semi) positive hermitian vector bundles (E, h) of rank > 1 on an
Oka manifold X . In particular, when is the tube {e ∈ E : |e|h < 1} Oka? Its boundary
{|e|h = 1} is strongly pseudoconvex in the fibre direction and pseudoconcave in the
remaining directions; see [12, Proposition 6.2]. We are not aware of any example of an
Oka domainwhose boundary fails to be pseudoconcave. For the same reason,we do not
know anything about these questions if the hermitian metric has mixed signature. On
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the other hand, we obtain the following analogue of Theorem 1.1 (b’) for any Griffiths
seminegative hermitian vector bundle (see Griffiths [24, 26] and Definition 2.5) of
rank > 1, possibly trivial, on an Oka manifold.

Theorem 1.9 If (E, h) is aGriffiths seminegative hermitianholomorphic vector bundle
of rank > 1 on a (not necessarily compact) Oka manifold X, then Dh(E) = {e ∈ E :
|e|h > 1} is an Oka domain with pseudoconcave boundary bDh(E) = {e ∈ E :
|e|h = 1}.
Remark 1.10 If (E, h) is a Griffiths seminegative holomorphic vector bundle on a
complex manifold X , then the function φ(e) = |e|2h is plurisubharmonic on E (see
Proposition 2.6 and Remark 2.7). If in addition the metric h is Griffiths negative then
φ is strongly plurisubharmonic on E \ E(0). In the latter case, with X compact, the
zero section E(0) ∼= X is the maximal compact complex submanifold of E , which
can be blown down to a point (see Grauert [21, Satz 1, p. 341]). This gives a Stein
space ˜E , which is typically singular at the blown-down point, such that the image
of the tube {|e|h < c} is a relatively compact domain in ˜E for any c > 0, and
the tube {0 < |e|h̃ < 1} ⊂ E is Kobayashi hyperbolic for any hermitian metric
h̃ on E . If in addition X is Kobayashi hyperbolic, then every tube {|e|h < c} is also
Kobayashi hyperbolic, so the zero section E(0) admits a basis ofKobayashi hyperbolic
neighbourhoods.

Remark 1.11 The proofs of Theorems 1.1, 1.4, 1.5, and 1.9, given in Sect. 3, show that
these results also hold for continuous hermitian metrics. Indeed, the basic relationship
between semipositivity or seminegativity of the hermitian metric and the eigenvalues
of the Levi form of the norm function remains in place (see Remark 2.7).

As an application of our results, we show in Section 5 that the Oka properties of
tube domains in holomorphic vector bundles E → X on a compact complex manifold
X imply the existence of holomorphic maps S → E from any Stein manifold S with
dim S < dim E having the cluster set either in the zero section E(0) (when E is a
positive line bundle; see Theorem 5.2) or at infinity (when E is a Griffiths negative
vector bundle; see Theorem 5.1).

Our results contribute to the heuristic principle that Oka properties are related to
metric positivity of complex manifolds while holomorphic rigidity properties, such as
Kobayashi hyperbolicity, are related to metric negativity. Examples of this principle
are discussed in [16, Sect. 11]; let us recall the most important ones and mention some
new ones.

Beginning on the rigidity side, a hermitian manifold with holomorphic sectional
curvature bounded above by a negative constant is Kobayashi hyperbolic; see Grauert
andReckziegel [22], whose result generalizes theAhlfors–Schwarz lemma [1], and the
results by Wu and Yau [53, 54], Tosatti and Yang [49], Diverio and Trapani [10], and
Broder and Stanfield [8], among others. Furthermore, every compact complex mani-
fold of Kodaira general type is volume hyperbolic [34], and hence no such manifold
is Oka.

On the flexibility side, it is known that every compact Kähler manifold with semi-
positive holomorphic bisectional curvature is an Oka manifold; see [16, Theorem
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5272 F. Forstnerič, Y. Kusakabe

11.4], which follows from the classification of such manifolds by Mori [44] and Siu
and Yau [47] (for positive bisectional curvature, when they are projective spaces) and
Mok [43] in the semipositive case. As for not necessarily Kähler metrics, if (X , h)

is a compact connected hermitian manifold whose holomorphic bisectional curvature
is semipositive everywhere and positive at a point, then X is a projective space (see
Ustinovskiy [50, Corollary 0.3]), which is Oka. Every compact Kähler manifold with
positive holomorphic sectional curvature is rationally connected and projective (see
Yang [55]). It is conjectured that every such manifold is an Oka-1 manifold (see [2,
Conjecture 9.1]). A result of Matsumura [42, Theorem 1.3] implies that a projective
manifold with semipositive holomorphic sectional curvature is the total space of a
holomorphic fibre bundle over an Oka manifold with a projective rationally connected
fibre enjoying the corresponding semipositivity. By [14, Theorem 5.6.5] the problem
whether every such manifold is Oka reduces to the rationally connected case. Hence,
the main problem is to better understand the relationship between (semi) positivity
of holomorphic sectional curvature and the Oka property for rationally connected
projective manifolds.

2 Preliminaries

In this section, we recall the necessary notions and tools, and we prepare some results
which will be used in the proofs given in the following section.

A holomorphic line bundle E → X is given on some open covering {Ui }i of X by
a 1-cocycle of nonvanishing holomorphic functions φi, j : Ui, j = Ui ∩ Uj → C

∗. A
point (x, t) ∈ Uj × C with x ∈ Ui, j is identified in E with (x, φi, j (x)t) ∈ Ui × C.
A holomorphic section f : X → E is given by a 1-cochain fi ∈ O(Ui ) satisfying
fi = φi, j f j on Ui, j . A hermitian metric h on E is given on any holomorphic line
bundle chart (x, t) ∈ Ui × C by h(x, t) = hi (x)|t |2, where the positive functions
hi : Ui → (0,+∞) satisfy the compatibility conditions

hi (x)|φi, j (x)|2 = h j (x) for x ∈ Ui, j . (2.1)

The curvature of the metric h is the (1, 1)-form on X given on each chart Ui by

�h = −∂∂ log hi = −∂∂ log h = i

2
ddc log h. (2.2)

(The second equality holds since ∂∂ log |t |2 = 0 on t 
= 0.) The bundle (E, h) is said
to be positive (resp. negative) if the real (1, 1)-form

i�h = −i ∂∂ log h = −1

2
ddc log h (2.3)

on X is positive (resp. negative). Similarlywe define semipositivity and seminegativity.
It is obvious that the restriction of a (semi) positive line bundle E → X to a complex
submanifold Y ⊂ X is (semi) positive. If (E ′, h′) is another hermitian holomorphic
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line bundle on X given on the same open covering {Ui }i by the 1-cocyle φ′
i, j , then the

tensor product line bundle E ⊗ E ′ is given by the 1-cocycle φi, jφ
′
i, j ∈ O(Ui, j , C

∗).
If f and f ′ are holomorphic section of E and E ′, respectively, given by 1-cochains
fi , f ′

i ∈ O(Ui ), then f ⊗ f ′ is a holomorphic section of E⊗E ′ given by the 1-cochain
fi f ′

i ∈ O(Ui ). If a hermitian metric h′ on E ′ is given by functions h′
i : Ui → (0,∞),

then the product metric h ⊗ h′ on E ⊗ E ′ is defined by the collection hi h′
i : Ui →

(0,∞). From (2.2) we see that

�h⊗h′ = �h + �h′ .

Hence, the product of semipositive metrics is semipositive, and is positive if one of the
metrics is positive. For k ∈ Z we denote by E⊗k the k-th tensor power of E , given by
the 1-cocycle φk

i, j . If h is a hermitian metric on E given by functions hi (x) (2.1), then

the metric h⊗k on E⊗k is given by the functions hi (x)k for x ∈ Ui . The hermitian dual
bundle (E∗, h∗) is naturally isomorphic to (E−1, h−1), where we omitted the tensor
product sign. From (2.2) we see that

�h⊗k = k �h for all k ∈ Z.

Conversely, if E = L⊗k (k 
= 0) and h is a hermitian metric on E given in charts
Ui ⊂ X by positive functions hi , then h = h̃⊗k where h̃ is a hermitian metric on the
line bundle L defined by the collection of functions h̃i = h1/ki : Ui → (0,∞).

Proposition 2.1 Let (E, h) be a hermitian holomorphic line bundle on a complex
manifold X.

(i) For every k ∈ N there is a surjective fibre preserving holomorphic map 	k : E →
E⊗k such that	k(E(0)) = E⊗k(0) and themaps	k : �∗

h(E) → �∗
h⊗k (E

⊗k) and

	k : Dh(E) → Dh⊗k (E⊗k) are unbranched k-sheeted holomorphic coverings.
(ii) The punctured disc bundle �∗

h(E) is fibrewise biholomorphic to the outer tube
Dh∗(E∗) = {h∗ > 1} in the dual bundle (E∗, h∗).

Proof If E → X is given by a 1-cocyle φi, j ∈ O∗(Ui, j ), then E⊗k is given by the
1-cocyle φk

i, j . Denote by �i, j (x, t j ) = (x, φi, j (x)t j ) the transition maps in E and

by �k
i, j (x, t j ) = (x, φi, j (x)k t j ) the associated transition maps in E⊗k . We define the

map	k on any chartUi ×C by	k(x, ti ) = (x, tki ). Since ti = φi, j (x)t j for x ∈ Ui, j ,
we have that

(	k ◦ �i, j )(x, t j ) = 	k(x, φi, j (x)t j ) = (x, φi, j (x)
k tkj ) = (�k

i, j ◦ 	k)(x, t j ),

showing that 	k : E → E⊗k is a well-defined k-sheeted covering projection which is
branched along E(0), and	k : E \E(0) → E⊗k \E⊗k(0) is an unbranched k-sheeted
covering. From the definition of the metric h⊗k on E⊗k it follows that	k : �∗

h(E) →
�∗

h⊗k (E
⊗k) and 	k : Dh(E) → Dh⊗k (E⊗k) are unbranched holomorphic coverings.

This proves (i).
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Part (ii) is seen as follows. Compactifying each fibre Ex ∼= C (x ∈ X) with the
point at infinity yields a holomorphic fibre bundle ̂E → X with fibre CP

1 having a
well-defined ∞-section E(∞) ∼= X . Set ˜E = ̂E \ E(0) → X . If t ∈ C is a coordinate
on a fibre Ex then u = t−1 is a coordinate on ˜Ex , and the transition functions between
the u-coordinates are φ−1

i, j = 1/φi, j . Hence, (˜E, h−1) is a hermitian holomorphic line

bundle on X , with the zero section ˜E(0) = E(∞), which is naturally isomorphic to
the dual line bundle (E∗, h∗). Under this identification, the identity map on ̂E induces
a fibre preserving biholomorphism

I : E \ E(0) → E∗ \ E∗(0) (2.4)

mapping �∗
h(E) onto Dh∗(E∗) = {h∗ > 1} and Dh(E) onto �∗

h∗(E∗). 
�
Corollary 2.2 Let (E, h) be a hermitian holomorphic line bundle on a complex mani-
fold X.

(i) If the punctured disc bundle �∗
h⊗k (E

⊗k) is Oka for some k ∈ N then it is Oka for

all k ∈ N, and in such case the disc bundle �h⊗k (E⊗k) is Oka-1 for all k ∈ N.
(ii) �∗

h(E) is Oka (resp. hyperbolic) if and only if Dh∗(E∗) is Oka (resp. hyperbolic).

Proof All claims except the second statement in part (i) follow from Proposition 2.1
and the fact that both the class of Oka manifolds and the class of hyperbolic manifolds
are invariant under covering projections. If �∗

h(E) is Oka, it is the image of a strongly
dominating holomorphic map C

n+1 → �∗
h(E) with n = dim X (see [15]). Thus, the

disc bundle �h(E) is densely dominable by C
n+1, and hence an Oka-1 manifold by

[2, Corollary 2.5 (b)]. 
�
Recall that a real function f of class C 2 on a complex manifold X is plurisubhar-

monic if ddc f ≥ 0, and is strongly plurisubharmonic if ddc f > 0. Both conditions
generalize to upper semicontinuous functions with values in [−∞,+∞) (see Grauert
and Remmert [23]). The curvature formula (2.3) for a hermitian metric h leads to the
following observation, which we record for reference. See also Proposition 2.6 for
vector bundles of higher rank.

Proposition 2.3 Let h be a hermitian metric of class C 2 on a holomorphic line bundle
E → X. The following conditions are equivalent.

(i) The curvature of h is seminegative: i�h ≤ 0.
(ii) The function log h is plurisubharmonic on E.
(iii) The disc bundle �h(E) = {h < 1} is pseudoconvex along b�h(E) = {h = 1}.
Furthermore, if i�h < 0 then h is strongly plurisubharmonic on E \ E(0). Likewise,
the following conditions are equivalent.

(i’) The curvature of h is semipositive: i�h ≥ 0.
(ii’) The function − log h is plurisubharmonic on E \ E(0).
(iii’) The disc bundle�h(E) = {h < 1} is pseudoconcave along b�h(E) = {h = 1}.
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Proof The equivalence (i)⇔ (ii) is an immediate consequence of the curvature formula
(2.3). Assume now that U is a Stein domain in X such that E |U ∼= U × C is a trivial
line bundle. On this chart we have h(x, t) = ξ(x)|t |2 for some positive C 2 function ξ

on U , and

�h(E)|U = {(x, t) ∈ U × C : h(x, t) < 1} = {(x, t) ∈ U × C : |t |2elog ξ(x) < 1}
(2.5)

is aHartogs domain inU×C. If log h is plurisubharmonic (condition (ii) holds) then so
is h, and hence�h(E)|U is pseudoconvex. The converse is also well-known and easily
seen: if theHartogs domain (2.5) is pseudoconvex then log ξ is plurisubharmonic onU ,
and hence log h is plurisubharmonic on E |U . This proves (ii) ⇔ (iii). If i�h < 0 then
log ξ and hence ξ are strongly plurisubharmonic, so h is strongly plurisubharmonic
on E \ E(0). The equivalences (i’) ⇔ (ii’) ⇔ (iii’) are proved in the same way and
we leave out the details. 
�
Example 2.4 (Special hermitian line bundles on projective spaces) Let z =
(z0, z1, . . . , zn) be Euclidean coordinates on C

n+1 and [z] = [z0 : z1 : · · · : zn]
the associated homogeneous coordinates on CP

n . On the affine chart Ui = {[z] ∈
CP

n : zi 
= 0} ∼= C
n (i = 0, 1, . . . , n) we have the affine coordinates zi =

(z0/zi , . . . , zn/zi ), where the term zi/zi = 1 omitted. Fix k ∈ Z and define a hermitian
metric h on E = OCPn (k) by

h([z], t) = |t |2
(1 + |zi |2)k = |zi |2k

|z|2k |t |2 for [z] ∈ Ui and t ∈ C. (2.6)

The transition functions onOCPn (k) are φi, j ([z]) = (z j/zi )k (see [52, p. 18]). In view
of (2.1) we see that h = h̃⊗k , where h̃ is the metric on OCPn (1) given by (2.6) with
k = 1. It follows from (2.3) and (2.6) that i�h = k i ∂∂ log

(|z|2), which is k-times
the Fubini–Study form on CP

n . Identifying Ui with C
n , the disc tube of the bundle

E = OCPn (k) with the metric (2.6), restricted to Ui , is given by

�h(E)|Ui = {

(z, t) ∈ C
n × C : |t | < (1 + |z|2)k/2}. (2.7)

This is a Hartogs domain whose radius is of order |z|k as |z| → ∞. Since any two
hermitian metrics on E are comparable, the disc bundle of any hermitian metric on E
grows at this rate.

We now recall the notions of Griffiths (semi) positivity and Griffiths (semi) nega-
tivity of a hermitian holomorphic vector bundle (E, h) of arbitrary rank r ≥ 1 on a
complexmanifold X of dimension n (see Griffiths [24, 26]). The hermitianmetric h on
E is given in any local frame (e1, · · · , er ) by a hermitian matrix function h = (hλμ)

with

hλμ(x) = (eμ(x), eλ(x))h for λ,μ = 1, . . . , r .
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Its connection matrix θh and the curvature form�h are given in any local holomorphic
frame by

θh = h−1∂h, �h = ∂ θh = −h−1∂∂h + h−1∂h ∧ h−1∂h.

(See [9, Chapter V] or [52, Chapter III].) For a line bundle, these equal θh =
h−1∂h = ∂ log h and �h = −∂∂ log h (cf. (2.2)). In local holomorphic coordinates
z = (z1, . . . , zn) on X and a local frame (e1, . . . , er ) on E , we can identify the
curvature tensor

i�h =
∑

i, j=1,...,n
λ,μ=1,...,r

ci jλμdzi ∧ dz̄ j · e∗
λ ⊗ eμ

with the hermitian form on T X ⊗ E given by

˜�h(ξ ⊗ v) =
∑

i, j=1,...,n
λ,μ=1,...,r

ci jλμξi ξ̄ jvλv̄μ.

The following notions are due to Griffiths [24, 26]; see also [5] and [9, Chapter VII].

Definition 2.5 Let E → X be a holomorphic vector bundle. A hermitian metric h
on E is Griffiths semipositive (resp. Griffiths seminegative) if ˜�h(ξ ⊗ v) ≥ 0 (resp.
˜�h(ξ ⊗ v) ≤ 0) for all ξ ∈ Tx X and v ∈ Ex (x ∈ X ). If there is strict inequality for
all ξ ∈ Tx X \ {0} and v ∈ Ex \ {0} (x ∈ X ) then the metric is Griffiths positive (resp.
Griffiths negative).

For line bundles, Griffiths positivity (resp. negativity) coincides with the previous
definition. The following proposition explains the connection between Griffiths sem-
inegativity of a hermitian metric and plurisubharmonicity of the associated squared
norm function.

Proposition 2.6 For a hermitian metric h on a holomorphic vector bundle E → X
the following conditions are equivalent:

(i) The metric h is Griffiths seminegative.
(ii) For any local holomorphic section u of E, the function |u|2h is plurisubharmonic.
(iii) For any local holomorphic section u of E, the function log |u|2h is plurisubhar-

monic.
(iv) The squared norm function φ(e) = |e|2h is plurisubharmonic on E.
(v) The function logφ(e) = log |e|2h is plurisubharmonic on E.

If h is Griffiths negative then the function φ in (iv) is strongly plurisubharmonic on
E \ E(0).

The equivalences between (i), (ii) and (iii) can be found in Raufi [45, Sect. 2]. The
equivalences (ii) ⇔ (iv) and (iii) ⇔ (v) are obvious. For the last statement, see [12,
Proposition 6.2].
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Remark 2.7 The conditions (ii) and (iii) in Proposition 2.6 are equivalent also for a
continuous hermitian metric on a holomorphic vector bundle, and they can be used
to define Griffiths seminegativity and semipositivity for a not necessarily smooth
hermitian metric (see [45, Definition 1.2 and Sect. 2]). The equivalences (ii) ⇔ (iv)
and (iii) ⇔ (v) are obvious in the continuous case as well. For a metric of class C 2,
the relationship between the eigenvalues of the curvature form and those of the Levi
form of the squared norm function can be found in Griffiths [25, p. 426]; see also the
summary in [12, Proposition 6.2]. In the notation used in the latter paper, Griffiths
seminegativity can be expressed by s(e) = 0 for every e ∈ E \ E(0).

In the final part of this section we recall some notions fromOka theory and a couple
of results which are frequently used in the sequel. We begin by recalling the notion
of Oka property of a holomorphic map and of Oka map; see [14, Definitions 7.4.1
and 7.4.7] where this is called the parametric Oka property with approximation and
interpolation, abbreviated POPAI.

Definition 2.8 A holomorphic map π : Y → Z of reduced complex spaces has the
Oka property if holomorphic maps f : X → Z from any Stein manifold X satisfy the
parametric h-principle for liftings F : X → Y with π ◦ F = f . The map π : Y → Z
is an Oka map if it satisfies the Oka property and is a topological (Serre) fibration.

More precisely, the Oka property of the map π : Y → Z means that every con-
tinuous lifting F0 : X → Y of a given holomorphic map f : X → Z is homotopic
through liftings of f to a holomorphic lifting F : X → Y . Furthermore, if F0 is
holomorphic on a compact O(X)-convex subset K ⊂ X and on a closed complex
subvariety X ′ ⊂ X , then the homotopy of liftings Ft : X → Y (t ∈ [0, 1]) can be
chosen such that everymap Ft is holomorphic on K∪X ′, it agrees with F0 on X ′, and it
approximates F0 uniformly on K and uniformly in the parameter t ∈ [0, 1]. The anal-
ogous conditions hold for any continuous family of holomorphic maps f p : X → Z
depending on a parameter p in a compact Hausdorff space.

For a holomorphic submersion π : Y → Z , the basic Oka property implies the
parametric Oka property (see [14, Theorem 7.4.3]). If π : Y → Z is an Oka map of
complex manifolds with Z connected then π is a surjective submersion, its fibres are
Oka manifolds (see [16, Proposition 3.14]), and Y is an Oka manifold if and only if
Z is an Oka manifold (see [16, Theorem 3.15]).

The following result is due to Kusakabe [38, Lemma 5.1]; see also [16, Proposition
3.18].

Proposition 2.9 Assume that for every point y in a complex manifold Y there exist
complex manifolds Z1, . . . , Zk and holomorphic submersions π j : Y → Z j ( j =
1, . . . , k) enjoying the Oka property such that TyY = ∑k

j=1 ker(dπ j )y . Then Y is an
Oka manifold.

An unbounded closed set S in a complex manifold Y is called holomorphically
convex (or O(Y )-convex) if S is the union of an increasing sequence of compact
O(Y )-convex sets.

Definition 2.10 (Definition 4.1 in [38]) Letπ : Y → Z be a holomorphic submersion.
A closed subset S of Y is called a family of compact holomorphically convex sets if the
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5278 F. Forstnerič, Y. Kusakabe

restriction π |S : S → Z is proper and each point of Z admits an open neighbourhood
U ⊂ Z such that the set S ∩ π−1(U ) is O(π−1(U ))-convex.

The following is a special case of [38, Theorem 4.2] which is used in this paper.
The notion of the density property was introduced in Definition 1.3.

Theorem 2.11 Let π : Y → Z be a holomorphic fibre bundle whose fibre is a Stein
manifold with the density property, and let S ⊂ Y be a family of compact holomor-
phically convex sets. Then the restriction π |Y\S : Y \ S → Z enjoys the Oka property.

In [38, Theorem 4.2] it is assumed that the map π : Y → Z is a holomorphic
submersion and each point of Z admits an open neighborhood U ⊂ Z such that
π−1(U ) is Stein and the restriction π−1(U ) → U enjoys the fibred density property.
When π : Y → Z is a holomorphic fibre bundle, the latter condition clearly holds if
the fibre is Stein and has the density property.

3 Proofs of themain results

In this section, we prove Theorems 1.1, 1.4, 1.5, and 1.9. We also obtain Theorem 3.3.

Proof of Theorem 1.1 Webegin by considering the hyperplane section bundleOCPn (1).
Its total space E can be identified with CP

n+1 \ {0}, where 0 ∈ C
n+1 is an affine chart

inCP
n+1, such that the zero section E(0) is the hyperplane at infinityCP

n+1\C
n+1 ∼=

CP
n and the fibres of the projection π : E → CP

n are the punctured complex lines
through the origin 0 ∈ C

n+1, with the added point at infinity. Let h be a semipositive
hermitian metric on E , i�h ≥ 0. Proposition 2.3 shows that the function 1/h is
plurisubharmonic on E \ E(0) = C

n+1 \ {0}. Clearly, this function tends to infinity at
E(0) and to 0 at the origin 0 ∈ C

n+1, so it extends to a plurisubharmonic exhaustion
function on C

n+1. Therefore, the set K = {1/h ≤ 1} = {h ≥ 1} is a compact
polynomially convex neighbourhood of the origin (see Stout [48, Theorem 1.3.11]).
Note that �∗

h(E) = C
n+1 \ K , which is Oka by [38, Corollary 1.3] (see also [18,

Theorem 1.2]), �h(E) = CP
n+1 \ K , which is Oka by [16, Corollary 5.2], and

Dh(E) = K̊ \ {0} is a bounded domain in C
n+1, hence Kobayashi hyperbolic. If H is

a complex hyperplane in CP
n+1 then CP

n+1 \ (H ∪ K ) is Oka by [19, Theorem 1.3].
This shows that for any affine chart C

n ∼= U ⊂ CP
n the disc bundle �h(E)|U is Oka.

This proves the theorem for E = OCPn (1).
For its dual bundle E∗ = U = OCPn (−1), the universal bundle on CP

n , parts (a’)
and (b’) of the theorem follow immediately from the results for E = OCPn (1) in view
of Proposition 2.1 (ii). Indeed, the total space of U is biholomorphic to C

n+1 blown
up at the origin, its zero section U(0) is the exceptional fibre over 0 ∈ C

n+1, the fibres
of the projection π : U → CP

n are the complex lines Cz for z ∈ C
n+1 \ {0}, and

U \ U(0) is biholomorphic to C
n+1 \ {0}. If h is a seminegative hermitian metric on

U then 1/h is a semipositive hermitian metric on E = CP
n+1 \ {0}, K = {h ≤ 1} is

a compact polynomially convex neighbourhood of the origin blown up at the origin,
the domain Dh(U) = {h > 1} = �∗

1/h(E) is Oka, and the domain �∗
h(U) = {0 <

h < 1} = {1/h > 1} = D1/h(E) is hyperbolic.
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For the tensor powers E⊗k = OCPn (k)with k > 1, parts (a) and (c) follow from the
already proved result for E = OCPn (1) by Corollary 2.2. Likewise, the proofs of (a’)
and (b’) forU

⊗k = OCPn (−k)with k > 1 follow from the case forU by Corollary 2.2.
It remains to prove part (b) for semipositive bundles (E, h) with E = OCPn (k)

when k ≥ 1 and n ≥ 2. The key to the proof is the following result of independent
interest. The main idea used in this proposition will also be applied in the proofs of
Theorems 1.4 and 1.5.

Proposition 3.1 Assume that φ is a positive continuous function on C
n (n ≥ 2) such

that logφ is plurisubharmonic, and there is a constant c > 0 such that φ(z) ≥ c |z|
holds for all z ∈ C

n. Then, the (pseudoconcave) Hartogs domain

� = {(z, t) ∈ C
n × C : |t | < φ(z)} (3.1)

is an Oka domain.

Proof Let T : C
n+1 = C

n × C → C denote the projection T (z, t) = t . Consider the
closed set

S = C
n+1 \ � = {(z, t) ∈ C

n × C : |t | ≥ φ(z)}
= {(z, t) ∈ C

n × C
∗ : logφ(z) − log |t | ≤ 0}.

Since log |t | is harmonic on t ∈ C
∗, the function ψ(z, t) = logφ(z) − log |t | is

plurisubharmonic on C
n × C

∗. Since φ is assumed to grow at least linearly near
infinity, the restricted projection T |S : S → C is proper. It follows that for every
r > 0 the set

Sr = {(z, t) ∈ S : |t | ≤ r} = {(z, t) ∈ C
n × C

∗ : ψ(z, t) ≤ 0, log |t | ≤ log r}
(3.2)

is compact and O(Cn × C
∗)-convex (see [48, Theorem 1.3.11]). Since the fibre of

the map T is C
n with n ≥ 2, which has the density property, Theorem 2.11 implies

that the restricted projection T : (Cn × C
∗) \ S → C

∗ has the Oka property. Since
S ∩ {t = 0} = ∅, the projection T : C

n+1 \ S → C has the Oka property as well
(see [37, Theorem 4.1], or use the localization principle for the Oka property of a
holomorphic submersion, given by [14, Theorem 7.4.4] and originally proved in [13,
Theorem 4.7]).

Since the function φ in (3.1) is assumed to grow at least linearly at infinity, we
have that � ∩ S = ∅ for every complex hyperplane � ⊂ C

n+1 sufficiently close to
�0 = {t = 0}, and there is a path�s (s ∈ [0, 1]) of such hyperplanes connecting�0 to
�. For any such�, the set Sr in (3.2) is alsoO(Cn+1\�)-convexby [16,CorollaryA.5].
As r → ∞ these sets exhaust S, so S is O(Cn+1 \ �)-convex. Let T� : C

n+1 → C

be a C-linear projection with (T�)−1(0) = �. If � is sufficiently close to �0 then
the restricted projection T� : S → C is still proper. Using again Theorem 2.11, we
infer that the projection T� : C

n+1 \ S → C has the Oka property. Applying this
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conclusion for two linearly independent projections and using Proposition 2.9, we see
that C

n+1 \ S = � is an Oka manifold. 
�
We continue with the proof of part (b) in Theorem 1.1. Let E be a positive holomor-

phic line bundle with a semipositive hermitian metric h on CP
n with n > 1. From the

equivalences (i’) ⇔ (ii’) ⇔ (iii’) in Proposition 2.3 and (2.5), we see that the restric-
tion of the disc bundle �h(E) to any affine chart C

n ∼= U ⊂ CP
n is a pseudoconcave

Hartogs domain of the form (3.1) with logφ plurisubharmonic.We have seen in Exam-
ple 2.4 that the function φ grows at least linearly near infinity. Hence, Proposition 3.1
implies that �h(E)|U is an Oka domain. Note that �h(E)|U is a Zariski open domain
in �h(E). Since charts of this kind cover �h(E), the localization theorem for Oka
manifolds (see [36, Theorem 1.4]) implies that �h(E) is Oka. 
�
Remark 3.2 The proof of Proposition 3.1 also gives the following more general result
related to [38, Theorem 1.6]. Recall that a closed subset S of a Stein manifold X
is said to be O(X)-convex if it is exhausted by an increasing sequence of compact
O(X)-convex sets.

Theorem 3.3 Let S be a closed subset of C
n × C

∗ (n ≥ 2) which is O(Cn × C
∗)-

convex. Assume that for every complex hyperplane C
n ∼= � ⊂ C

n+1 close enough to
�0 = C

n × {0} we have that � ∩ S = ∅. Then, C
n+1 \ S is an Oka domain.

The hypothesis that the condition � ∩ S = ∅ for all hyperplanes � close to �0 is
equivalent to asking that the projective closures of�0 and S do not intersect at infinity.
For closed subsets S of Euclidean spaces of dimension ≥ 3, Theorem 3.3 generalizes
[19, Theorem 1.1] due to Forstnerič and Wold. Indeed, the holomorphic convexity
hypothesis on the set S in the latter result (where it is called E) is strictly stronger
than the one in Theorem 3.3. However, Theorem 3.3 does not apply to subsets of C

2,
while the cited result [19, Theorem 1.1] does.

Proof of Theorem 1.4 Let Cn ∼= Ui ⊂ CP
n for i = 0, . . . , n be affine Euclidean charts

covering CP
n such that the Stein manifold Xi = X ∩ Ui has the density property

for every i . By the localization theorem [36, Theorem 1.4], it suffices to prove that
the restricted bundle �h(E)|Xi is Oka for every i . There is a standard trivialization
E |Ui

∼= Ui × C, and the bundle �h(E)|Ui = {(z, t) : |t | < φ(z)} is a Hartogs domain
of the form (3.1) with the function φ : Ui → (0,∞) growing at least linearly near
infinity (see Example 2.4). Hence,

�i := �h(E)|Xi = {(x, t) ∈ Xi × C : |t | < φ(x)}.

Since i�h ≥ 0 on X , �i is pseudoconcave (see the equivalence (i’) ⇔ (iii’) in
Proposition 2.3) and logφ is plurisubharmonic on Xi . Hence, the closed set

Si = E |Xi \ �i = {(x, t) ∈ Xi × C : |t | ≥ φ(x)}

is holomorphically convex in Xi ×C
∗ (see the proof of Proposition 3.1). Let T : Xi ×

C → C denote the projection onto the second factor, T (x, t) = t . These properties
imply that the restricted projection T |Si : Si → C is proper, and Si is a family of
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compact holomorphically convex sets in Xi with respect to T (see Definition 2.10).
Since Xi is a Stein manifold with the density property, Theorem 2.11 implies that
the restricted projection T : (Xi × C) \ Si = �i → C has the Oka property. We
now apply the same argument with tilted projections T� : Ui × C → C defined by
affine hyperplanes � ⊂ Ui × C ∼= C

n+1 sufficiently close to �0 = Ui × {0}. Such
a hyperplane � is the graph of a C-linear function t = ξ(x) of x ∈ Ui ∼= C

n , and
� ∩ (Xi × C) = {(x, t) : x ∈ Xi , t = ξ(x)}. The fibres of the restricted projection
T� : Xi ×C → C are parallel translates of�∩ (Xi ×C) in the vertical t-direction, so
this projection is a (trivial) holomorphic fibre bundle with fibre Xi . Since φ grows at
least linearly near infinity, the projection T� : Si → C is proper if� is close enough to
�0. For such�, the same argument as before shows that T� : (Xi ×C)\Si = �i → C

has the Oka property. Clearly, finitely many such projections satisfy the hypotheses in
Proposition 2.9, and hence �i is an Oka domain for every for i = 0, . . . , n.

Since �h(E)|X = ⋃n
i=0 �i and every �i is Zariski open in �h(E)|X , it follows

from the localization theorem [36, Theorem 1.4] that �h(E)|X is Oka. The fact that
the exterior tube Dh(E)|X is Kobayashi hyperbolic is seen as in the proof of Theorem
1.1 (c). 
�
Proof of Theorem 1.5 By the assumption, there are holomorphic sections s0, . . . , sn :
X → E such that Xi = {x ∈ X : si (x) 
= 0} is a Stein manifold with the density
property for every i = 0, 1, . . . , n and

⋃n
i=0 Xi = X . Consider the holomorphic map

� : X → CP
n given by

�(x) = [s0(x) : s1(x) : · · · : sn(x)] ∈ CP
n, x ∈ X . (3.3)

(The map� is well-defined since si (x) are elements of the 1-dimensional vector space
Ex ∼= C and at least one of them is nonzero for every x .) Note that � maps Xi =
{si 
= 0} to the complement of the standard i-th hyperplane CP

n−1 ∼= Hi ⊂ CP
n , and

�−1(CP
n \ Hi ) = Xi . It follows that E is isomorphic to �∗OCPn (1), the pullback

of the hyperplane section bundle (see [29, Theorem II.7.1]). For completeness, we
include a simple argument. Let π∗ : E∗ → X be the dual bundle of π : E → X ,
and denote by 〈e∗, e〉 the natural pairing of elements e ∈ E and e∗ ∈ E∗ over the
same base point π(e) = π∗(e∗) ∈ X . Let U → CP

n be the universal bundle. We can
identify U with C

n+1 blown up at the origin so that the zero section U(0) ∼= CP
n is

the exceptional fibre over 0 ∈ C
n+1 and the fibres of the projection U → CP

n are the
complex lines in C

n+1 through the origin. The holomorphic map ˜� : E∗ → C
n+1

given by

˜�(e∗) = (〈e∗, si (x)〉
)n
i=0, e∗ ∈ E∗, x = π∗(e∗) ∈ X

maps E∗
x isomorphically onto the complex line in C

n+1 determined by the point
�(x) ∈ CP

n , so it gives a line bundle isomorphism E∗ ∼= �∗
U. It follows that

E ∼= �∗
U

∗ = �∗OCPn (1).
The proof can now be completed as in Theorem 1.4. The restricted bundle

E |Xi
∼= Xi × C admits a trivialization induced via the map � (3.3) by the stan-

dard trivialization of OCPn (1) over Ui = CP
n \ Hi ∼= C

n . In this trivialization,
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�h(E)|Xi is a pseudoconcave Hartogs domain of the form (3.1) in Xi × C. The same
argument as in the proof of Theorem 1.4, using the Oka property of tilted projections
(Xi ×C)\�h(E)|Xi → C which come from linear projections C

n ×C → C close to
the standard projection onto the second factor, shows that �h(E)|Xi is Oka for every
i = 0, . . . , n. By the localization theorem, it follows that �h(E) is Oka. 
�
Proof of Theorem 1.9 Let π : E → X denote the vector bundle projection and set
S = {e ∈ E : |e|h ≤ 1}. Assuming that rank E = r > 1 and the hermitian metric h
is Griffiths seminegative, we wish to prove that the exterior tube Dh(E) = E \ S =
{e ∈ E : |e|h > 1} is an Oka manifold. Condition (iv) in Proposition 2.6 shows that
the squared norm function φ(e) = |e|2h is plurisubharmonic on E . Hence, for each
holomorphic chart ψ : U → B

n from an open set U ⊂ X onto the unit ball B
n ⊂ C

n

(n = dim X) and each 0 < ρ < 1, the compact set {e ∈ S|U : |ψ ◦ π(e)| ≤ ρ} is
defined by plurisubharmonic functions in the Stein manifold E |U , so it is O(E |U )-
convex (see Stout [48, Theorem 1.3.11]). Since E → X is a holomorphic vector
bundle of rank r ≥ 2, its fibre C

r has the density property [4]. Hence, Theorem 2.11
implies that the projection π : Dh(E) = E \ S → X has the Oka property (see
Definition 2.8). Since it is also a topological fibre bundle, it is an Oka map. As X is
an Oka manifold, it follows that Dh(E) is an Oka manifold (see [16, Theorem 3.15]
saying that, if Y → X is an Okamap of complexmanifolds, then Y is an Okamanifold
if and only if X is an Oka manifold). 
�

4 Examples of line bundles satisfying Theorem 1.5

In this section, we give examples and obtain functorial properties of the class of
polarised manifolds with the polarised density property (see Definition 1.7).

We first show that every holomorphic line bundle satisfying the condition in Theo-
rem 1.5 is ample, and hence it is natural to restrict ourselves to the polarised situation
from the beginning.

Proposition 4.1 Let E be a holomorphic line bundle on a compact complex manifold
X. Assume that for each point x ∈ X there exists a divisor D ∈ |E |whose complement
X \ D is a Stein neighbourhood of x. Then E is ample.

Proof By the assumption, there are finitely many section s0, s1, . . . , sn : X → E
whose divisors Di = {si = 0} have empty intersection and the domain X \ Di =
{si 
= 0} is Stein for every i = 0, 1, . . . , n. Consider the holomorphic map � =
[s0 : · · · : sn] : X → CP

n (3.3). We have seen in the proof of Theorem 1.5 that E
is isomorphic to the pullback �∗OCPn (1) of the hyperplane section bundle (cf. [29,
Theorem II.7.1]). Given a point z = [z0 : · · · : zn] ∈ CP

n , choose i ∈ {0, . . . , n}
such that zi 
= 0 and note that �−1(z) is a closed complex subvariety of X contained
in the Stein domain X \ Di . Since a Stein manifold does not contain any compact
complex subvariety of positive dimension, �−1(z) is a finite set (or empty), so � is a
finite holomorphic map. It follows that the line bundle E ∼= �∗OCPn (1) is ample (see
Lazarsfeld [41, proof of Theorem 1.2.13]). 
�
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Proposition 4.2 If a polarised manifold (X , E) has the polarised density property,
then so does every positive tensor power (X , E⊗k) for k > 0.

Proof If the line bundle E is given on an open cover {Ui } of X by a 1-cocycle φi, j ,
then a holomorphic section f : X → E is given by a collection of holomorphic
functions fi : Ui → C satisfying fi = φi, j f j on Ui, j . Since the bundle E⊗k is given
by the 1-cocycle φk

i, j , the collection f ki defines a holomorphic section f ⊗k of E⊗k .

Evidently, { f = 0} = { f ⊗k = 0}. By the assumption there are holomorphic sections
s0, . . . , sn : X → E such that for every i = 0, 1, . . . , n the domain Xi = {si 
= 0} is
a Stein manifold with the density property and

⋃n
i=0 Xi = X . Hence, for any integer

k ≥ 1 the collection s⊗k
0 , . . . , s⊗k

n of sections of E⊗k shows that (X , E⊗k) has the
polarised density property. 
�
Example 4.3 (Line bundles on Grassmannians) Given integers 1 ≤ m < n we denote
by Gm,n the Grassmann manifold of complex m-dimensional subspaces of C

n . Note
that G1,n = CP

n−1. These manifolds are complex homogeneous, and hence Oka.
The Plücker embedding P : Gm,n ↪→ CP

N , with N = (n
m

) − 1, sends an m-plane
span(v1, . . . , vm) ∈ Gm,n (where v1, . . . , vm ∈ C

n are linearly independent vectors)
to the complex line in C

N+1 given by the vector v1 ∧ · · · ∧ vm ∈ �m(Cn) ∼= C
N+1.

The intersection of the submanifold X = P(Gm,n) ⊂ CP
N with an affine chart

C
N ∼= U ⊂ CP

N is biholomorphic to C
m(n−m), which has the density property if

m(n−m) = dimGm,n > 1. It follows that the pullback P∗OCPN (1) of the hyperplane
section bundle on CP

N to Gm,n has the polarised density property and Theorem 1.4
applies to it. Every holomorphic line bundle onGm,n is obtained from a line bundle on
CP

N , and the pullback map P∗ : Pic(CP
N ) → Pic(Gm,n) is a group isomorphism;

hence, Pic(Gm,n) ∼= Z (see [7, Example 1.1.4 (3)] or [11, Lemma 11.1]). The pullback
of the universal bundle U = OCPN (−1) is isomorphic to the determinant bundle of
the universal bundle on Gm,n , and it generates Pic(Gm,n). Write OGm,n (k) for the
(−k)-th tensor power of this generator. Thus, OGm,n (1) = P∗OCPN (1). A line bundle
E → Gm,n is positive (resp. negative) if E ∼= OGm,n (k) for some k > 0 (resp. k < 0).
The above observation for OGm,n (1) and Proposition 4.2 imply the following.

Proposition 4.4 Every Grassmannian of dimension > 1 has the polarised density
property.

To state the next result, consider a pair of polarised manifolds (X1, E1) and
(X2, E2). Let πi : X1 × X2 → Xi for i = 1, 2 denote the standard projections.
Then, π∗

i Ei is a holomorphic line bundle on X1 × X2 for i = 1, 2. Their tensor
product

E = E1 � E2 := (π∗
1 E1) ⊗ (π∗

2 E2) → X1 × X2

is called the external tensor product of E1 and E2. A pair of holomorphic sections
fi ∈ H0(Xi , Ei ) for i = 1, 2 defines a holomorphic section f1 � f2 ∈ H0(X1 ×
X2, E1 � E2) by trivially extending both line bundles and sections to X1 × X2 and
taking their tensor product. Similarly, for a pair of semipositive hermitian metrics hi
on Ei for i = 1, 2, the semipositive hermitian metric h = h1 � h2 on E1 � E2 is
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5284 F. Forstnerič, Y. Kusakabe

defined in an obvious manner by considering hi as a hermitian metric on π∗
i Ei . Note

that the restriction of E = E1 � E2 to X1 × {x2} (x2 ∈ X2) is isomorphic to E1, and
analogously for the second factor. Clearly, this operation extends to any finite number
of line bundles Ei → Xi , i = 1, . . . ,m.

Proposition 4.5 If the polarised manifolds (X1, E1) and (X2, E2) have the polarised
density property, then the product (X1 × X2, E1 � E2) also has the polarised density
property.

Proof Let f1, . . . , fn ∈ H0(X1, E1) and g1, . . . , gm ∈ H0(X2, E2) be holomorphic
sections of the respective line bundles which satisfy the definition of the polarised den-
sity property. As explained above, wemay consider both bundles and their section to be
definedon X = X1×X2. Consider the collection of sections fi�g j ∈ H0(X , E1�E2)

for i = 1, . . . , n and j = 1, . . . ,m. For any pair of indices i, j in the given range, the
set

Ui, j := { fi g j 
= 0} = {x1 ∈ X1 : fi (x1) 
= 0} × {x2 ∈ X2 : gi (x2) 
= 0}

is the product of Steinmanifoldswith the density property, so it is Steinwith the density
property (see Varolin [51, p. 136, I.1]). Since the sets Ui, j cover X , the proposition
follows. 
�
Proposition 4.6 If the polarised manifold (X , E) has the polarised density property,
then (X×CP

n, E�OCPn (k)) (n > 0, k > 0) also has the polarised density property.
The same is true for (X × Gm,n, E � OGm,n (k)) with 1 ≤ m < n and k > 0.

Proof Since every projective space is also a Grassmannian, it suffices to consider
the second case. If dimGm,n > 1, this follows from Propositions 4.4 and 4.5. If
dimGm,n = 1 then Gm,n = CP

1. We follow the proof of Proposition 4.5 and use that
if X is a Stein manifold with the density property then X × C also has the density
property (see Varolin [51, p. 136, I.2]). 
�
Remark 4.7 Assuming that holomorphic line bundles E1 and E2 on a projective man-
ifold X have the polarised density property, we do not know whether their tensor
product E1 ⊗ E2 has the polarised density property. Indeed, given nontrivial sections
f : X → E1 and g : X → E2, the zero set of the section f ⊗ g : X → E1 ⊗ E2 is
{ f = 0} ∪ {g = 0}, and its complement is { f 
= 0} ∩ {g 
= 0}. This manifold need
not have the density property even if both { f 
= 0} and {g 
= 0} are Stein manifolds
with the density property.

Recall that a projective manifold is said to be rational if it is birationally isomorphic
to a projective space. Every rational curve is isomorphic toCP

1. Ischebeck [30] proved
that if Y is a rational manifold (in particular, if Y is a projective space or a complex
Grassmannian) then Pic(X × Y ) = Pic(X) × Pic(Y ), so we get all holomorphic line
bundles on X × Y as external tensor products of lines bundles on X and Y .

Proposition 4.8 If X1, . . . , Xm (m ≥ 2) are rationalmanifolds such that every Xi with
dim Xi > 1 has the polarised density property, then their product X1× X2×· · ·× Xm

also has the polarised density property.
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Proof It suffices to prove the result for m = 2 and apply induction. By Ischebeck [30]
we have that Pic(X) = Pic(X1)×Pic(X2) and each group Pic(Xi ) is discrete. Let E be
an ample line bundle on X1×X2. Then the restriction of E to each factor Xi (i = 1, 2)
is an ample line bundle Ei and E ∼= E1�E2. If dim X1 > 1 and dim X2 > 1 then both
E1 and E2 have the polarised density property by the assumption, and the conclusion
follows from Proposition 4.5. If dim X1 > 1 and dim X2 = 1 then X2 ∼= CP

1,
E2 = OCP1(k) for some k > 0, and the conclusion follows from Proposition 4.6. The
same argument applies if dim X1 = 1 and dim X2 > 1. In the remaining case, both
X1 and X1 are isomorphic to CP

1 and Ei ∼= OCP1(ki ) for some ki > 0 (i = 1, 2).
Fixing a point p = (p1, p2) ∈ X = CP

1 × CP
1 we can find a pair of holomorphic

sections fi : CP
1 → Ei (i = 1, 2) such that pi ∈ Ui = { fi 
= 0} ∼= C. Thus, f1 f2

is a section of E ∼= E1 � E2, and the set {(x1, x2) ∈ X : f1(x1) f2(x2) 
= 0} is a
neighbourhood of p isomorphic to C

2, which has the density property. This shows
that X has the polarised density property. 
�

Since every complex Grassmannian is a rational manifold, we have the following
corollary to Propositions 4.4 and 4.8.

Corollary 4.9 If X = X1 × · · · × Xm is a product of complex Grassmannians and
dim X > 1, then X has the polarised density property.

We have the following generalization of Proposition 4.4. This also implies the
polarised density property of any hyperquadric (1.2) of dimension > 1.

Theorem 4.10 Every rational homogeneous manifold of dimension > 1 has the
polarised density property.

Proof By the Borel–Remmert theorem [6], a rational homogeneous manifold X is a
(generalized) flag manifold, i.e., X = G/P where G is a semisimple algebraic group
and P is a parabolic subgroup ofG. Its Picard group Pic(X) is discrete and is generated
by the classes of the Schubert divisors D1, . . . , Dm , and every ample line bundle E
on X can be written as

E ∼= [D1]⊗k1 ⊗ · · · ⊗ [Dm]⊗km

with positive numbers k1, . . . , km . (See Kishimoto et al. [32, Sect. 1.3] and the ref-
erences therein, in particular Brion [7, Proposition 1.4.1]. In the special case when
P is a maximal parabolic subgroup of G, the Picard group Pic(X) ∼= Z is generated
by a single divisor. This is the case e.g. for Grassmannians, see Example 4.3.) By
the Bruhat decomposition (also called the Schubert decomposition), the complement
of the union of the Schubert divisors (which is the unique top dimensional cell in
the Schubert decomposition of the flag manifold) is isomorphic to the affine space of
dimension dim X > 1, which has the density property. (See e.g. [40, Sect. 3.3], and
in particular Remark 3.3.0.2 ibid.) Thus the support of the divisor

D = k1D1 + · · · + kmDm ∈ |E |

has a Stein complement X \D with the density property. Since X is homogeneous and
the Picard group Pic(X) is discrete, for each point x ∈ X there exists a holomorphic
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automorphism ϕ of X such that the pullback line bundle ϕ∗E is isomorphic to E and
the divisor ϕ∗D ∈ |ϕ∗E | = |E | does not contain x . Therefore, the bundle E → X
satisfies the polarised density property. 
�

In conclusion, we pose the following open problems.

Problem 4.11 Let X be a projective Oka manifold of dimension > 1 and E be an
ample holomorphic line bundle on X.

(a) Is there a hermitian metric h on E such that the disc bundle �h(E) is an Oka
manifold?

(b) Does this hold for every semipositive hermitian metric on E?
(c) Does this hold if X is Zariski locally isomorphic to C

n with n > 1?

At present, we do not know any example of a compact complex manifold of dimen-
sion > 1 with the polarised density property which is not rational homogeneous.

5 Holomorphic maps from Steinmanifolds to vector bundles

Assume that (E, h) is a hermitian holomorphic vector bundle on a compact Oka
manifold X . In this section, we combine the results obtained in this paper with those
of Drinovec Drnovšek and Forstnerič [12] to find holomorphic maps S → E from
Stein manifolds S with dim S < dim E which are either proper or have their boundary
cluster set contained in the zero section of E . The former case occurs when (E, h) is
Griffiths negative and the exterior tube

Dh(E) = {e ∈ E : |e|h > 1}. (5.1)

is Oka. This holds in particular if rank E > 1 (see Theorem 1.9) or if (E, h) is
a negative line bundle on CP

n (see Theorem 1.1 (b’)). The latter case occurs when
(E, h) is a positive line bundlewithOka disc bundle�h(E) = {h < 1} (1.1); sufficient
conditions are given by Theorems 1.1, 1.4, 1.5, and 1.9. We begin with the former
case.

Theorem 5.1 Let (E, h) be a Griffiths negative hermitian holomorphic vector bundle
on a compact complex manifold X (see Definition 2.5). Assume that S is a Stein
manifold with dim S < dim E, K ⊂ S is a compact O(S)-convex subset, and f0 :
S → E is a continuous map which is holomorphic on a neighbourhood of K and
satisfies f0(S \ K̊ ) ⊂ E \ E(0). If the domain Dh(E) (5.1) is Oka, then we can
approximate f0 uniformly on K by proper holomorphic maps f : S → E homotopic
to f0. Furthermore, if 2 dim S < dim E then f can be chosen an embedding, and if
2 dim S ≤ dim E then f can be chosen an immersion.

With (E, h) as in the theorem, the domain Dh(E) (5.1) is Oka if E is a line bundle
on X = CP

n (see Theorem 1.1 (b’)), or if rank E > 1 and X is an Oka manifold
(see Theorem 1.9), so the result applies in these cases. If Dh(E) is Oka then for every
t > 0 the domain

Dh,t = {e ∈ E : |e|h > t} (5.2)

123



Oka tubes in holomorphic line bundles 5287

is Oka as well, since it is biholomorphic to Dh(E) = Dh,1(E) by a fibre dilation.

Proof Choose a normal exhaustion B0 � B1 � · · · ⊂ ⋃∞
i=0 Bi = S by relatively

compact, smoothly bounded, strongly pseudoconvex domains such that K ⊂ B0 and
the givenmap f0 is holomorphic on a neighbourhood of B0. Also, choose an increasing
sequence 0 < t0 < t1 < · · · with limi→∞ ti = +∞. Since the hermitian metric h is
Griffiths negative, the function

φ : E → [0,+∞), φ(e) = |e|2h (e ∈ E) (5.3)

is strongly plurisubharmonic in E \E(0) (see Proposition 2.6). Clearly, φ is an exhaus-
tion function on E without critical points in E \ E(0).

Recall that dim S < dim E and f0(S \ K̊ ) ⊂ E \ E(0) by the assumption. By
[12, Theorem 1.1] we can approximate f0 uniformly on K by a holomorphic map
f̃0 : B0 → E , which is homotopic to f0 through a family of maps sending B0 \ K̊ to
E \ E(0), such that f̃0(bB0) ⊂ Dh,t0(E) (see (5.2)). The homotopy condition allows
us to extend f̃0 to a continuous map f̃0 : S → E satisfying f̃0(S \ B0) ⊂ Dh,t0(E),
and the given homotopy from f0 to f̃0 on B0 extends to a homotopy between these
two maps on all of S sending S \ B0 to E \ E(0).

Since the tube Dh,t0(E) is biholomorphic to Dh(E), and hence Oka, we can apply
the Oka principle in [16, Theorem 1.3] to approximate f̃0 uniformly on B0 by a
holomorphic map f1 : S → E , homotopic to f̃0 by a homotopy as above, such that
f1(S \ B0) ⊂ Dh,t0(E).
We now repeat the same procedure with the map f1. First, we approximate f1 on

B0 by a holomorphic map f̃1 : B1 → E such that f̃1(B1 \ B0) ⊂ Dh,t0(E) and
f̃1(bB1) ⊂ Dh,t1(E). Next, we extend f̃1 to a continuous map f̃1 : S → E \ E(0)
which agrees with the given holomorphic map f̃1 on a neighbourhood of B1 and
satisfies f̃1(S \ B1) ⊂ Dh,t1(E). Since the tube Dh,t1(E) is Oka, we can apply [16,
Theorem 1.3] to approximate f̃1 uniformly on B1 by a holomorphic map f2 : S → E
such that f2(S \ B1) ⊂ Dh,t1(E). By the same argument as in the first step, there is a
homotopy connecting f1 to f2 sending S \ K̊ to E \ E(0).

Continuing inductively, we find a sequence of holomorphic maps fi : S → E for
i = 1, 2, . . . such that the following conditions hold for every i ≥ 1:

(i) fi approximates fi−1 as closely as desired on Bi−1.
(ii) fi (S \ Bi−1) ⊂ Dh,ti−1(E).
(iii) fi is homotopic to fi−1 through a homotopy sending S \ K̊ to E \ E(0).

Assuming aswemay that the approximation is close enough at every step, the sequence
fi converges uniformly on compacts in S to a proper holomorphic map f : S → E
homotopic to the initial map f0. (Condition (iii) is only needed to keep the induction
going.) The additions in the last sentence of the theorem follow by using the well-
known general position argument. We leave the obvious details to the reader. 
�

Assuming that (E, h) is a hermitian line bundle on X , we have seen in Sect. 2 that
the tube Dh(E) (5.2) is fibrewise biholomorphic to the punctured disc bundle�∗

h∗(E∗)
in the hermitian dual bundle (E∗, h∗), and the section E(∞) in the associated CP

1-
bundle ̂E → X corresponds to the zero section E∗(0) of the dual bundle. Hence,
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Theorem 5.1 implies an analogous result for maps S → E∗ \ E∗(0) whose cluster
set lies in the zero section E∗(0). However, we can prove a stronger result in this
direction, allowing the initial map S → E∗ to intersect the zero section is a compact
set. To state the result, we recall the following notion.

A sequence (x j ) j∈N in a topological space X is said to be divergent if for every
compact set K ⊂ X there is j0 ∈ N such that x j ∈ X \ K for all j ≥ j0. Given a
continuous map f : X → Y of topological space with X noncompact, its cluster set
is

C( f ) =
{

y ∈ Y : there is a divergent sequence x j ∈ X with lim
j→∞ f (x j ) = y

}

.

(If X is compact then C( f ) = ∅.) We have the following result for maps from Stein
manifolds to positive hermitian line bundles on compact Oka manifolds.

Theorem 5.2 Assume that (E, h) is a positive hermitian holomorphic line bundle on
a compact complex manifold X such that the disc bundle �h(E) is Oka. Given a
Stein manifold S with dim S ≤ dim X, a compact O(S)-convex set K ⊂ S, and a
continuous map f0 : S → E which is holomorphic on a neighbourhood of K and
satisfies f0(K ) ⊂ �h(E), f0 can be approximated uniformly on K by holomorphic
maps f : S → �h(E) homotopic to f0 such that C( f ) ⊂ E(0). If in addition
2 dim S ≤ dim X then f can be chosen an injective immersion.

Proof Since the bundle (E, h) is positive, the function σ = 1/h : E → [0,+∞] is
strongly plurisubharmonic on E \ E(0) (see Proposition 2.3). Furthermore, dσ 
= 0
on E \ E(0), and for any pair of numbers 0 < a < b the set

Ea,b = {e ∈ E : a ≤ σ(e) ≤ b} (5.4)

is compact. Let U ⊂ S be an open Stein domain containing K and f0 : S → E be
a continuous map which is holomorphic on U . Choose a smoothly bounded strongly
pseudoconvex domain B0 ⊂ S such that K ⊂ B0 ⊂ B̄0 ⊂ U and B̄0 is O(S)-convex.
Recall that X , and hence E , are Oka manifolds. By the transversality theorem for
holomorphic maps of Stein manifold to Oka manifolds (see [14, Corollary 8.8.7]), we
may assume that the map f0 : U → E is transverse to the zero section E(0). Hence,
the set

V0 = {x ∈ U : f0(x) ∈ E(0)}

is a closed complex subvariety ofU which does not contain any connected component
ofU . The set K ∪(B̄0∩V0) isO(S)-convex. Let c0 > 0 be chosen such that f0(B0) ⊂
{σ > c0}. Pick numbers c1 > c0 and ε > 0. Choose a compact O(S)-convex set
K ′ ⊂ U such that

K ∪ (B̄0 ∩ V0) ⊂ K̊ ′ and σ ◦ f0 > c1 + 1 on bB0 ∩ K ′. (5.5)

123



Oka tubes in holomorphic line bundles 5289

The second condition holds if K ′ is a sufficiently small neighbourhoodof K∪(B̄0∩V0).
Set K0 = K ′ ∩ B̄0. We claim that there is a holomorphic map g : B̄0 → E satisfying
the following conditions for a fixed Riemannian distance function dist on E :

(i) dist(g(x), f0(x)) < ε for all x ∈ K0.
(ii) σ(g(x)) > σ( f0(x)) − ε for all x ∈ B̄0 \ K0.
(iii) σ ◦ g > c1 on bB0.
(iv) g is homotopic to f0 on B̄0.

In the special case when V0 = ∅ and K0 is a compact subset of D, a map g with these
properties is given by [12, Lemma 5.3], which is the main inductive step in [12, proof
of Theorem 1.1]. In the case at hand, the compact set K0 ⊂ B̄0 may intersect bB0,
but we have that σ ◦ f0 > c1 + 1 on bB0 ∩ K0 by condition (5.5). Hence, to ensure
condition (iii), it suffices to apply [12, Lemma 5.2] finitely many times for points in
the compact set {x ∈ bB0 \ K0 : σ( f0(x)) ≤ c1 + 1}. (The cited lemma amounts to
lifting a small piece of f0(bB0) to a higher level set of σ by a prescribed amount, while
at the same time approximating f0 on K0 (condition (i)). This lifting procedure uses
modifications involving local peak functions and gluing, and it is designed in such a
way that condition (ii) can be fulfilled. Condition (iv) is built into the construction as
well. The fact that the function σ equals +∞ on E(0) is irrelevant in this proof since
the compact set K0 contains V0 ∩ B̄0 in its relative interior, and σ is only used on
B̄0 \ K0.)

By approximation, we may assume that g is holomorphic on a neighbourhood of
B̄0, and we can extend it to a continuous map g : S → E homotopic to f0. We now
use the hypothesis that the disc bundle �h(E) is an Oka manifold. Hence, the tube

�c1 = E(0) ∪ {σ > c1} = �h,1/c1(E)

is Oka as well. By the Oka principle in [16, Theorem 1.3] we can approximate g
uniformly on B0 by a holomorphic map f1 : S → E , homotopic to g, such that

f1(S \ B0) ⊂ �c1 .

Pick an arbitrary smoothly bounded strongly pseudoconvex domain B1 ⊂ S such that
B0 ⊂ B1 and B1 is O(S)-convex.

Continuing inductively, we obtain a normal exhaustion of S by an increasing
sequence of smoothly bounded, strongly pseudoconvex domains B0 � B1 � · · · ⊂
⋃∞

i=0 Bi = S, a sequence of continuous maps fi : S → E (i = 0, 1, . . .), and an
increasing sequence 0 < c0 < c1 < c2 < · · · with limi→∞ ci = +∞ such that for
every i = 1, 2, . . . the map fi is holomorphic on B̄i , it approximates fi−1 on B̄i−1,
and it maps Bi \ Bi−1 to �ci = �h,1/ci (E). Assuming as we may that the approxima-
tion is close enough at every step, the limit map f = limi→∞ fi : X → E exists, it
approximates f0 on K and is homotopic to it, and it satisfies C( f ) ⊂ E(0). We leave
the obvious details of this induction to the reader. If 2 dim S ≤ dim X then we can
additionally use the general position argument at every step of the induction to ensure
that the map f is an injective immersion. 
�
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18. Forstnerič, F., Wold, E.F.: Holomorphic families of Fatou-Bieberbach domains and applications to Oka

manifolds. Math. Res. Lett. 27(6), 1697–1706 (2020)
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