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A B S T R A C T

The integration of hydrogen technologies with renewable energy sources, such as hydropower, enhances the
potential of green hydrogen production while maintaining electricity generation. This paper presents a method
for optimally sizing a hydrogen system within a hydropower plant, enabling the cogeneration of green hydrogen
and electricity. A decision-support tool based on particle swarm optimisation is developed to balance technical
and economic factors, including hydrogen demand, water reserves, electrolyser efficiency, installation costs, and
energy-market prices. The approach is applied to a case-study hydropower plant, utilising excess hydropower
and photovoltaic electricity to produce hydrogen. The tool successfully optimises multiple objectives, such as
income maximisation and hydrogen production targets, demonstrating its potential for integrating hydrogen
systems into renewable energy frameworks. This work highlights a viable pathway for advancing the adoption of
hydrogen technologies in sustainable energy systems.

1. Introduction

In response to climate change and the push for sustainability in the
renewable-energy sector, significant efforts are underway to research
and develop alternative energy sources and fuels. Among these, “green”
hydrogen production has emerged as a priority for the European Union,
which aims for Member States to collectively produce and import 20
million tonnes of hydrogen by 2030 [1]. Hydrogen is poised to play a
crucial role in the decarbonisation of global energy systems, but its
sustainability is heavily influenced by production methods. Advances in
hydrogen system (HS) technology over the past decade have made the
production of green hydrogen more feasible, with improvements in
durability, flexibility, safety, and maintenance requirements. When
powered by renewable energy sources, HSs generate green hydrogen
with zero CO2 emissions [2]. The renewables industry has experienced
substantial growth [3–5] driven by increased production efficiency,
reduced costs, and the emergence of new market players [6]. Hydro-
power, combined with HSs, can play a central role in decarbonising
society. Hydropower plants (HPPs) are characterised as stable and
reliable sources of electric energy. Leveraging their consistent water
flow, these plants offer an opportunity for green-hydrogen production
during regular operation because HPPs can provide excess, dispatchable
electricity to produce it [7]. Utilising the excess (i.e., wasted) hydro

energy in HPPs is an emerging strategy [8] and experts estimate that
additional technological approaches can significantly increase hydro-
power annual energy generation [9]. Some studies have already
demonstrated the potential to enhance the capacity utilisation of HPPs
by generating and storing green hydrogen from excess hydro energy
during off-peak periods and periods of high-water inflow, such as the
rainy season [10]. Additionally, integrating HSs with photovoltaic (PV)
fields and HPPs allows for the efficient use of excess energy [11], further
contributing to grid stability and renewable energy storage.

Therefore, cogeneration of electricity and hydrogen in a HPP is the
subject of intensive research. The authors in Ref. [10] consider that two
fundamental approaches can be employed to estimate the potential for
green hydrogen production from hydropower. The first approach as-
sumes that a certain percentage of the available hydropower potential is
dedicated to the green hydrogen production. The second approach,
which is also used in our article, assumes the hydrogen production based
on the excess electricity that would otherwise be curtailed or underu-
tilised due to prescribed timetable, decreased demand or increased
water inflows during the rainy season in run-of-river HPPs. Recent
studies employing this second approach have shown that the hydrogen
production from excess hydropower meets the principles of the circular
economy [12] and is a significant opportunity for profit increase [13].

Despite the progress, challenges persist, particularly in optimising/
sizing HS design and ensuring strong economic returns [14,15].
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Although scaling up production is expected to reduce costs [16], the
impact of capital expenditures (CapEx) and operational expenditures
(OpEx) on total production costs remains complex. This has created the
need for advanced decision-support tools to assist in the design, analysis,
and optimisation of HSs [17–19]. These tools enable developers to make
informed decisions about hydrogen infrastructure, considering the
technical, economic, and environmental impacts [20].

A brief overview of relevant literature shows that decision-support
tools have become critical in designing and optimising HSs, helping
stakeholders evaluate technical, economic, environmental factors
[17–21] and they address key considerations such as component selec-
tion, scalability, techno-economic analyses, and environmental impacts.
The development of decision-support tools for HS sizing is progressing
rapidly, benefiting from advanced modelling techniques such as
multi-criteria decision analysis (MCDA) [22], optimisation algorithms
[23,24], and machine learning (ML) [25]. These tools are designed to
address the complexities of HS design, including interactions between
components and scales. Furthermore, there is growing recognition of the
importance of integrating HSs with other energy systems, such as elec-
tricity and natural-gas grids. This has led to the development of hybrid
energy system design tools [26–29] and other system optimisation ap-
proaches [30–32]. However, significant challenges remain, including
long-term modelling accuracy, cost reduction, and accounting for policy
and market changes. While these tools are becoming more sophisticated,
their real-world application is still in its infancy, requiring further im-
provements in usability, accessibility, and scalability.

The article’s key novelty is the use of the particle swarm optimisation
method (PSO) for the proper sizing of the HS in a HPP with available
surplus hydropower for the cogeneration of electricity and hydrogen.
The developed decision-support tool can improve the design of the HS
for green-hydrogen production in HPPs. By using real data on water
accumulation and integrating the production process, hydrogen tech-
nology modelling and an advanced optimisation method, the tool can
assist with HS design and a techno-economic evaluation of its operation
before any implementation. Innovations in decision-support tools, such
as the application of PSO method, presented in the article, enable more
accurate sizing of critical HS components such as electrolysers and
hydrogen storage. By addressing technical, economic, and environ-
mental challenges, the developed tool provides a pathway for more
effective deployment of HSs.

The article is structured as follows: The Introduction highlights the
importance of utilising surplus water energy for the production of green
hydrogen and indicates the possibilities of optimising its production
with the appropriate sizing of the HS. TheMethodology introduces a PSO-
based approach for optimising cost and efficiency, applied to a real-
world case study. The Results demonstrate sizing improvements, while
the Discussion and Conclusions validate the tool’s effectiveness and sug-
gest future research directions.

2. Methodology

2.1. Problem formulation

Modelling and simulation involve defining the mathematical models
of the key components of the HS, including the HPP model, the elec-
trolyser model, the hydrogen-storage model, the PV field model, the HS
remaining-useful-life (RUL) model, and the economic model. Since an
analytical calculation of the optimal parameters for such a system is not
feasible, a computer simulation of the system’s operation is employed.
This approach allows for the evaluation of results and enables PSO-
based automatic searches for the optimal HS parameters.

When designing a cogeneration system for electricity and hydrogen
production in a HPP setting, several critical factors must be considered
to meet the primary goal of fulfilling the prescribed electricity produc-
tion timetable while generating green hydrogen from excess hydro en-
ergy. The sizing of a HS that operates only during periods of excess hydro
energy requires a thorough evaluation of the hydrogen demand, the
water-accumulation levels, the type and efficiency of the electrolyser,
the hydrogen-storage capacity, and the integration of the system’s
components [33].

The design of a HS also involves selecting the appropriate compo-
nents and balancing the costs, as the CapEx and OpEx expenses increase
with the system’s size and capacity. To ensure economic viability,
minimising these costs is essential, as they directly influence the prof-
itability of hydrogen production.

Our previous publications [34,35] introduced first attempts to
explore the cogeneration of electricity and hydrogen in a HPP case-study
environment. In Ref. [36] we proved that utilising excess hydro energy
can improve the profitability of HPPs and support applications such as
energy storage, grid stability, and hydrogen production. In Ref. [37] we
described the integration of a HS into the regular operation of a
run-of-river HPP to produce green hydrogen from excess hydro energy.
This document proposes a method for optimising the
hydrogen-production equipment, considering operational constraints,
equipment costs, and market prices for electricity and hydrogen. A
techno-economic model is presented, which is incorporated into a
decision-support tool for sizing the HS.

A decision-support tool can be instrumental in optimising HS sizing
by considering both the technical factors, such as the HPP’s power
output, the water-inflow dynamics, the electricity-consumption pat-
terns, and the anticipated hydrogen demand. On the economic side, it
considers factors like hydrogen-production costs, electricity and
hydrogen market prices, and the potential revenue from sales. The
developed tool relies on a real-data-based mathematical model that
represents the entire system, including the process model for both the
HPP and HS, an economic model, and a control system for coordinating
hydrogen production [36]. The system model in Fig. 1 represents an
integrated system for hydrogen production, combining key components
for water flow management, energy generation (HPP and PV), and HS
optimisation. For description of system model parameters refer to
Table 1.

The key interactions between the sub-models and parameters include
the system optimising energy utilisation by directing excess electricity
from the HPP and PV field towards hydrogen production. Additionally,
the economic and operational models ensure the cost-effective and
efficient integration of hydrogen generation with renewable energy
sources. Furthermore, the control system and the RUL model maintain
system stability and enhance component longevity by dynamically
monitoring performance and adjusting operations as required.

For a mathematical simulation, a comprehensive model of the entire
process is required to enable the numerical simulation on a computer,
eliminating the need for a real physical process. The simulation model
mimics the real system and calculates the operational results, such as
mass flows, energy flows, and financial flows, as they would occur in an
actual system. The mathematical model evaluates the system’s

Abbreviations:

HS hydrogen system
HPP hydropower plant
CapEx capital expenditures
OpEx operational expenditures
MCDA multi-criteria decision analysis
ML machine learning
P2G power-to-gas
PV photovoltaic
RUL remaining useful life
PSO particle swarm optimisation
HSCE Hydrogen-System-Configuration Explorer
HSCO Hydrogen-System-Configuration Optimiser

D.J. Jovan et al. International Journal of Hydrogen Energy 102 (2025) 513–522 

514 



performance over a selected time period. Different variants of the HS,
with varying technical parameters, can be tested through this simulation
process. The developed HPP model relates upper and lower water levels,
water-flow rate, and generated electrical power. The water-
accumulation, mass-balance model connects the input/output flow
rates with the water levels in the reservoir. The model of the PV system
estimates the electrical power generation based on the size of the plant
and the solar irradiance data [37]. The model of the electrolyser links
the input electric power to the hydrogen mass flow and the thermal
power, factoring in the electrochemical and compression losses. The
hydrogen-storage model relates hydrogen flow rates to the amount of

hydrogen stored, expressed in terms of mass, thermal energy, and
pressure. The hydrogen-compression model connects the flow rate and
pressure to the electrical power consumed during compression. The RUL
model estimates the RUL based on age, usage and system on/off cycles.
Lastly, the economic model assesses the system’s financial cash flows
and calculates actual hydrogen production costs.

Once developed and verified, the decision-support tool can be used
for tasks such as designing a system, optimised for different cogenera-
tion scenarios, determining optimal component sizes, and evaluating the
economic impact of various operational strategies. By simulating these
scenarios, the tool helps to reduce the investment costs, lowers the
hydrogen-production expenses, and enhances the financial sustainabil-
ity of the HS investments.

As described above, the underlying model provides numerous
physical and economic outputs and aggregated residuals, that can be
used in optimisation. By including desired residuals in the optimisation
cost function, the tool finds the HS setup with best-fitting parameters.
Moreover, for detailed operation inspection, the tool provides the time-
plots of operational parameters for the designed setup over a selected
time period.

The next section details the description and application of this HS-
sizing tool in the context of a case-study HPP.

2.2. Hydrogen-System-Configuration Optimiser

In our previous work [37] we introduced a design-support tool called
the Hydrogen-System-Configuration Explorer (HSCE), which estimates
near-optimal parameters for the installation of a HS in a given case-study
HPP. The HSCE employs a series of simulation runs over a defined range
of process parameters, enabling efficient and transparent sizing of the
HS’s main components. This method belongs to a class of exhaustive
(also called brute-force) optimisation methods, which systematically
explore all the potential combinations of parameters in search of the best
solution.

Fig. 1. Block scheme of the entire system model used in optimisation procedure.

Table 1
Description of model’s main parameters.

Parameters Parameter description Units

QIN Water inflow m3/h
QOUT Water outflow m3/h
QTURB Water-turbine flow m3/h
QBP Water-bypass flow m3/h
QH2 Hydrogen-production flow rate kg/h
QH2_OUT_DEM Demanded hydrogen-output flow kg/h
QH2_OUT_ACT Actual hydrogen-output flow kg/h
h Head m
hUWL Upper water level m.a.s.l.
PTT_DEM Demanded generated power according to timetable MW
PTT_ACT Actual generated power according to timetable MW
PGC Hydrogen generation and compression power MW
PPV Power generated by PV field MW
PGRID Power delivered to grid MW
ηSYS HS’s operating efficiency %
JS Solar irradiance W/m2

pH2 Current pressure in the hydrogen storage tank bar
CFEL Positive cash flow generated by selling electrical energy €/h
CFH2 Positive cash flow generated by selling hydrogen €/h
CFCOST Negative cash flow incurred by HS CapEx and OpEx €/h
RUL The remaining useful life of the HS h
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While the HSCE has proved to be a valuable tool for design, insight
and decision-making, several features can be improved.

• Due to the parameter-space discretisation, the accuracy of the indi-
cated optimal solution is limited and sometimes more accurate re-
sults are needed.

• Only a limited number of parameters subjected to optimisation can
be included in the simulation to keep the computation effort
acceptable. If the number of optimised parameters is increased, the
number of parameter combinations increases progressively and so
does the computational burden and the simulation time.

• In the case when a parameter that is not the subject of the optimi-
sation is changed, the whole set of simulations must be repeated,
which is time consuming and can in some cases represent a
drawback.

To overcome these challenges and to refine our search strategy we
introduce an alternative system-design tool called the Hydrogen-System-
Configuration Optimiser (HSCO). This tool is based on one of the heuristic
optimisation methods, specifically the PSO method [38–40]. PSO was
selected due to its intuitive algorithm, which can be easily understood
by engineers without specialised expertise in computational optimisa-
tion. Alternative methods, such as genetic algorithms, simulated
annealing and many others [41], were also considered, but PSO stood
out because of its simplicity and effectiveness.

In general, the mathematical optimisation problem is the problem of
finding the best solution for the defined objective function f(x) from all
feasible solutions. This means that the optimisation method searches for
the parameter vector x, which gives the minimum (or maximum)
function evaluation of f(x), so that the assumed constraints of the vector
x are not violated. Objective functions are related to one or more goals,
e.g., minimisation of cost or energy consumption or maximisation of
financial outcome, while constraints are related to physical or virtually
imposed constraints.

Note that in presented case, f(x) is not an analytical function of the
parameter vector x. For a given vector of parameters x, the function f(x)
is evaluated by performing a real-data simulation run of the complete
process over the desired time interval (e.g., 1 year) and then calculating
the value of desired objective function f(x). In our case, various objec-
tive functions are possible, and they represent different technical or
economic key-performance indicators of the HS’s operation.

2.3. Particle-swarm optimisation algorithm

The PSO algorithm can find the optimal solution (either local or
global) with a relatively small number of system operation simulations
[42]. It consists of a set of proposed solutions (particles) with a random
initial position. Each particle represents an instance of parameter vector
x. The algorithm solves an optimisation problem by using a population
(a swarm) of candidate solutions (particles) and by moving these par-
ticles around in the search space according to simple mathematical
formula over the particle’s position and velocity.

The algorithm involves two equations, commonly referred to in the
literature as the velocity and position equations. In both, i represents the
index of an individual particle and n represents the number of current
iterations.

The velocity equation (see Eq. (1)) [43], is used to update the velocity
of each particle in the n-th iteration by using the computed values of the
individual-particle (pbesti) and global (gbest) best solutions and its
current position xi(n). The velocity equation in fact represents an
increment from the current position xi(n) to the new position xi(n+1).

vi(n+ 1)=w•vi(n)+ c1•r1 •
(
pbesti(n) − xi(n)

)
+ c2 • r2

•
(
gbest(n) − xi(n)

)
(1)

In Eq. (1), c1 is the self-adjustment weight, which determines the in-
fluence of a single particle, and c2 is the social adjustment weight, which
determines the influence of the entire swarm. These are acceleration
parameters, compounded with user-defined gains r1 and r2, which range
from 0 to 1. These parameters control the balance between refining the
particle’s own search result and recognising the swarm’s search result.
The parameterw is an inertia parameter and takes a value between 0 and
1, determining the extent to which the particle retains its previous
velocity.

The position equation (see Eq. (2)) [43], is used for updating each
particle’s position using the calculated velocity from Eq. (1):

xi(n+ 1)=xi(n) + vi(n+1) (2)

Each particle’s movement in PSO is influenced by its local best-
known position, but it is also guided towards the best-known positions
in the search space, which are updated as better positions are found by
other particles. Fig. 2 illustrates the shift of an individual particle in one
iteration towards the global solution.

As the number of iterations increases, the convergence rate towards
the best-known position improves. Optimisation is complete when the
solution is located at a point that appears to be a local or global mini-
mum. In multimodal optimisation, PSO balances exploration and
exploitation to navigate complex landscapes and avoid local minima.
The global minimum is the best solution found by the entire swarm,
while the local minimum is the best solution found by an individual
particle in its vicinity. PSO strives to balance exploration (seeking the
global minimum) and exploitation (refining local minimum solutions)
through interactions and updates based on both individual and neigh-
bour best positions.

In our case the PSO algorithm was implemented in MATLAB using
the Optimisation Toolbox and the fmincon function to perform the mini-
misation process, taking into account the constraints. An automation
script was also developed (optim_script, [44]), which starts the simula-
tion of the entire system model for a given set of system parameters,
calculates the selected residuals and enables the automatic search for the
optimum of the selected objective function. The PSO algorithm’s
design-specific parameters (e.g., population and control) require proper
tuning to impact behaviour and performance.

The essential steps of the whole iterative optimisation procedure are
shown in Fig. 3.

2.4. Case-study HPP

The described HSCE was used for sizing the HS of one of the Slove-
nian HPPs [37]. The case-study involves a 50-MW run-of-river-type

Fig. 2. Schematic individual particle shift in n-th iteration for two-dimensional
x [30].
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HPP, which is the last in a cascade of five HPPs, and features a
low-capacity water reservoir of approximately 3,400,000 cubic meters.
This HPP supplies electricity according to a pre-set timetable defined by
the national system operator. The timetable is based on various factors,
including models of the production capacity, forecasted consumption,

current water levels, river-flow conditions, weather forecasts, and the
system operator’s strategy. The inherent uncertainty in these model
inputs affects the timetable, necessitating a small reserve of water po-
tential for exploitation. Consequently, some hydropower remains un-
used, leading to higher water accumulation in the reservoir.
Periodically, this excess hydropower can be harnessed for electricity
generation that is used for hydrogen production.

A specialised control algorithm was developed to transform the
excess hydropower into the electricity required for the HS’s operation
[36]. The HS’s load depends on the current water accumulation and the
pressure in the hydrogen-storage tank. The calculated, assigned elec-
trical power for the HS allows the electrolyser to operate most of the
time in the range 20–80 % of its nominal power, as the electrolyser
operates most efficiently in this range. The HS is only shut down in cases
of very low water accumulation in the reservoir or when the
hydrogen-storage tank is full. Using this operational strategy naturally
results in a reduction of water accumulation in the HPP reservoir, as
shown in Fig. 4.

Additionally, the case-study HPP is equipped with a PV field with a
nominal capacity of 6 MW. If more hydrogen production is required or if
there is a need to maintain high water levels in the reservoir, some of the
electricity from the PV field can be used to support the HS’s operations.

An agreement between the administration of the HPP and the local
city administration stipulates that the green hydrogen produced will be
used to power hydrogen-fuelled suburban buses. A 12-m-long hydrogen-
powered bus consumes approximately 9 kg of hydrogen per 100 km.
With an average daily travel distance of 400 km per bus, the daily green
hydrogen production from the case-study HPP would be sufficient to fuel
four such buses each day.

2.5. Optimised parameters and objective functions

The parameters that are the subject of the optimisation represent the
components of vector x; (x = [PEL_SYS, PPV_INST, VSTOR]), where each
element corresponds to a specific system variable. The range of each
parameter, which determines the limits of the optimisation process, is
provided in Table 2. These ranges define the possible values each

Fig. 3. Graphical presentation of the optim_script.

Fig. 4. Average annual volume of water accumulation in case-study HPP reservoir for the example based on 0.75-MW HS and 20 m3 storage tank: (a) without HS
operation and (b) with HS operation.

Table 2
List of optimised parameters and their constraints.

Parameter Description Range Units

PEL_SYS Nominal power of the HS [0.25 … 1.5] MW
PPV_INST Nominal power of the PV field [0 … 6] MW
VSTOR Volume of the hydrogen-storage tank [10 … 80] m3
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component of the vector x can take during the optimisation process to
achieve the desired outcomes.

In the following section, three examples of objective functions are
defined to address the technical and economic key performance in-
dicators. It should be noted that various other forms of objective func-
tions can be employed depending on the specific priorities set during the
design of the HS and related techno-economic targets (such as e-flows,
denivelation minimisation, HS utilisation rate, etc.). The choice of
objective function allows for flexibility in addressing different perfor-
mance targets, such as minimising costs, maximising energy efficiency,
or balancing supply and demand. This adaptability ensures that the HS
can be tailored to meet specific operational or financial objectives.

To streamline the computational complexity, the simplified system
model was employed, focusing on key characteristics such as mass and
energy balances and system efficiencies. The HPP and electrolyser
models are static, while the water-accumulation and hydrogen-storage
models incorporate dynamic elements, allowing for a consideration of
the mass and energy flows. The most critical inputs to the system model
are the electrical power demand according to the timetable PTT_DEM, the
hydrogen demand QH2_OUT_DEM, the water inflow to the water accumu-
lation QIN and the solar radiation JS.

For all the scenarios, the hydrogen selling price (SPH2) is set at 8
€/kg, with the maximum tank pressure capped at 350 bar. The actual
costs of hydrogen production are estimated based on the technological
equipment used. The hydrogen production target for the first scenario
was set at a maximum of 320 kg per day.

3. Results

3.1. Optimisation of income

As the first scenario, the objective function is defined as the annual
income from the hydrogen production (J1 = – IncomeH2):

J1 = − IncomeH2 = −

∫tend

0

ṁIN(t) • (SPH2(t) − PCH2(t)) • dt (3)

A negative value for IncomeH2 is applied in the optimisation process,
as the selectedMATLAB procedure uses minimisation criteria by default.
By minimising a negative income value, the algorithm effectively max-
imises the income based on the parameter constraints defined in Table 2.

The solution to this optimisation problem provides the optimal
configuration of the HS that results in the highest annual income
generated from hydrogen production in the case-study HPP.

During the iterative optimisation process, key output parameters are
monitored and displayed, as shown in Table 3, to track progress and
evaluate the performance of different configurations.

The optimisation results show that the optimal configuration for the
highest annual income, taking into account the installation costs of the
HS and the current operating regime of the case-study HPP, is as follows
(see Table 4):

Under these conditions, the annual hydrogen production reaches
76,601 kg, with a corresponding income of 349,290 €/y and a utilisation
rate for the HS of 75.01 %. It is important to know that in this case the
average hydrogen consumption is approximately 210 kg/d, meaning the
targeted hydrogen demand of 320 kg/d is not met, though this is not
penalised. Additionally, the maximum income does not necessarily

equate to the maximum production of hydrogen, but rather reflects the
optimal balance between minimising the system costs and maximising
the revenue from hydrogen sales.

Best objective function value and its search is presented in Fig. 5(a).
The term Stall iteration refers to an iteration where the particles were
moved, but the best solution of the best particle was not better than the
current best global solution. Fig. 5(b) shows the “ranges of parameters”,
which is a characteristic plot of the PSO algorithm and illustrates the
convergence of the optimised parameters during the iterations. As
mentioned earlier, in each iteration a number of parameter vectors
(particles) are shifted in search of the optimal solution. Ideally, after a
number of iterations, all the particles should converge to the same global
optimal solution, if it exists for a given optimisation problem.

In this case, Fig. 5(b) contains three plots, as three parameters are
being optimised (PEL_SYS, PPV_INST, VSTOR). Each plot shows the range of a
particular parameter, defined as the difference between the current
maximum and minimum values of that parameter across all the parti-
cles. Initially, these ranges are large, as the parameter vectors (particles)
are randomly distributed over the entire parameter space. Over the
course of the iterations, if the parameters converge towards a global
optimum, zero indicating that the optimum has been found. The y-axes
of the plots are represented on a logarithmic scale to effectively repre-
sent the wide potential ranges of parameters.

3.2. Optimisation of hydrogen System’s size to achieve targeted hydrogen
production

In the next scenario of optimal sizing for the HS components, the goal
is to determine the optimal size of the HS equipment that meets a pre-
defined annual target for hydrogen production. Please note, that in this
scenario the costs of PV field and HS’s installation are not considered.
The corresponding objective function can be defined as:

J2 = f(x)=
(
QH2 OUT DEM • 365 [d] − mH2 PROD

)2 (4)

where in our case the predefined hydrogen-production target
(QH2_OUT_DEM) was set at a maximum of 160 kg of hydrogen per day.

The optimisation results indicate that the (local) optimal configu-
ration for achieving the targeted annual hydrogen production, while
respecting only the current operating regime of the case-study HPP, is as
follows (see Table 5):

In this configuration, the hydrogen production reaches the pre-
defined hydrogen production of 58,400 kg/y (160 kg/d). The detailed
results of the optimisation process are presented Fig. 6.

However, the corresponding income in this scenario is negative
(− 94,120 €/y), primarily due to the high costs of the necessary HS
equipment, the high installation costs of the PV field, and the low tar-
geted daily volume of hydrogen production. The reason for this is the
selected criterion function, which does not consider the economic aspect
of the operation. To address this problem, additional criteria should be
integrated into the objective function, which balances both the technical
performance and the economic feasibility. This integration will be
explored further in the next Subsection 3.3, where economic consider-
ations are added to optimise the overall system performance.

In our case, another possibility to reach the targeted hydrogen pro-
duction of 160 kg of hydrogen per day with positive yearly income can
be achieved without using the excess energy from the PV field, relying
solely on the excess hydro energy. In this scenario the optimisation

Table 3
Selected important output parameters of the model.

Parameter Parameter Description Units

mH2_PROD Annual mass of produced hydrogen kg/y
PCH2 Production cost of hydrogen €/kg
c Utilisation rate of the HS %
IncomeH2 Income from the production of hydrogen €/kg

Table 4
PSO algorithm results for J1 objective function.

Parameter Parameter Description PSO result Units

PEL_SYS HS’s maximum power 0.9060 MW
PPV_INST PV’s nominal (installed) power 0 MW
VSTOR Volume of the hydrogen-storage tank 28.0098 m3
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results indicate that the optimal configuration for achieving the targeted
annual hydrogen production is as follows (see Table 6):

In the configuration excluding the PV field, annual hydrogen pro-
duction is maintained at 58,400 kg/y (160 kg/d), with the utilisation
rate of the HS at 79.64 %. This configuration results in a positive annual
income (213,785 €/y). However, the irregular availability of excess
hydro energy for system operation necessitates the use of a larger
electrolyser and a larger hydrogen-storage tank.

Generally, the parameter PPV_INST is an optimised parameter. How-
ever, in this case, we have constrained both its upper and lower limits to
0, thereby excluding it from the optimisation process and fixing its value
at 0 MW. The results are shown in Fig. 7.

3.3. Multi-objective optimisation

To balance the objectives of achieving both profitability and targeted
hydrogen production the two objective functions are now combined into

a new objective function. This is done by creating a linear combination
of the two objective functions (see Eq. (5)), with each function being
assigned its own weight (k1, k2). These weights allow for the prioriti-
sation of one objective over the other, if needed.

J3 = − k1 •

(
IncomeH2

IncomeH2 MAX

)

+ k2 •

(
mH2 PROD − QH2 OUT DEM • 365 [d]

QH2 OUT DEM • 365 [d]

)2

(5)

To ensure that both objectives have equal impact on the overall
optimisation, each objective function undergoes normalisation. This
process ensures proper scaling, preventing discrepancies in units or
magnitudes from distorting the results. Using normalisation, both
profitability and hydrogen production are given a balanced influence,
ensuring neither demand outweighs the other in the optimisation
process.

In the equation the hydrogen-production target (QH2_OUT_DEM) is set
as 160 kg per day, while the maximum annual income from hydrogen

Fig. 5. (a) Values of the objective function J1. (b) Parameter ranges: the top graph shows the maximum power of the HS, the centre graph the nominal power of the
PV field, and the bottom graph the volume of the storage tank.

Table 5
PSO algorithm results for J2 objective function.

Parameter Parameter Description PSO result Units

PEL_SYS HS’s maximum power 0.3551 MW
PPV_INST PV’s nominal (installed) power 6 MW
VSTOR Volume of the hydrogen-storage tank 35.2141 m3

Fig. 6. (a) Values of the objective function J2. (b) Parameter ranges: the top graph shows the maximum power of the HS, the centre graph the nominal power of the
PV field, and the bottom graph the volume of the storage tank.

Table 6
PSO algorithm results for J2 objective function.

Parameter Parameter Description Result Units

PEL_SYS HS’s maximum power 0.4414 MW
PPV_INST PV’s nominal (installed) power 0 MW
VSTOR Volume of the hydrogen-storage tank 58.2813 m3
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production (IncomeH2_MAX) is set as 425,000 €. The PSO algorithm is then
applied with varying coefficients k1 and k2 to find the optimal balance
between hydrogen production and profitability.

Table 7 presents the results of the PSO algorithm for different com-
binations of these coefficients, highlighting how the balance between
maximising income and meeting production requirements can shift
depending on the chosen weighting factors. This approach allows fine-
tuning of the system design based on the relative importance of eco-
nomic performance versus production targets.

The target hydrogen production in this scenario is 160 kg per day,
which is equivalent to 58,400 kg per year. This value can be compared to
the mass of produced hydrogen (mH2_PROD) in Table 7 to assess how well
the second objective function was fulfilled. As seen in the table, when
the second objective function is strongly prioritised (with k1 = 0.1 and
k2 = 0.9), the target value is most closely achieved.

When hydrogen demand is doubled to 320 kg/d, the possibility of
exploiting electrical energy from the PV field becomes meaningful.
Table 8 lists the PSO algorithm results for different coefficients k1 and k2.
It is assumed that all the produced hydrogen is sold at a set price, not just
the amount required to meet demand.

4. Discussion

Hydrogen is a promising energy carrier and is widely regarded as a
key driver for the long-term green transition. However, current pro-
duction methods, which rely heavily on the steam reforming of natural
gas, do not align with long-term climate and energy goals. In contrast,
green hydrogen produced through water electrolysis powered by
renewable electricity offers high added value. This CO2-emission-free
process can play a crucial role in reducing carbon emissions, reducing
local pollution, enhancing energy independence, and supporting sus-
tainable development goals.

Given that HPPs are some of the most reliable sources of green
electricity, incorporating also energy buffer, exploring the potential for
cogenerating green hydrogen within these facilities is a logical step.
However, such an upgrade requires the adoption of new technologies,

where factors such as installation costs, optimal component sizing, and
operational profitability are not yet fully assessed. In general, green-
hydrogen production requires substantial new infrastructure to scale,
and considerable investments in the distribution value chain.

So far, the focus was primarily on the development of the necessary
equipment for a HS, while the economic aspects of its proper sizing in
various environments have been on the side-line. Despite significant
progress in optimal HS sizing, several challenges remain. One of the
primary challenges is the integration of optimisation tools with real-time
data and dynamic system conditions, which is crucial for an accurate
and adaptive optimisation. Additionally, the complexity of HSs, with
their multiple interacting components and scales, poses difficulties when
creating comprehensive and scalable optimisation models.

Another challenge is the need for standardised methodologies and
tools that can be widely adopted across different regions and applica-
tions. The diversity of hydrogen technologies and the varying maturity
levels of these technologies make it difficult to develop universal opti-
misation tools. Moreover, the uncertainty related to future hydrogen
demand, market conditions, and policy regulations adds complexity to
the optimisation process.

This article demonstrates that the developed decision-support tool
based on a PSO algorithm can enhance the design process of HSs. The
simulations performed with this tool offer a comprehensive overview of
various dimensioning options, aiding in more informed decision-
making.

However, the PSO algorithm has some limitations. It can sometimes
fall into a local optimum (premature convergence), especially in high-
dimensional spaces, and so does not always guarantee a global opti-
mum. Additionally, it exhibits a relatively slow rate of convergence
during its iterations, and the simulation process can thus be time
consuming.

Another drawback of presented case study is the use of fixed elec-
tricity and hydrogen prices in the applied economic model. Namely, the
prices on the energy market are driven by multiple factors, leading to
constant fluctuations. In this article, the prices of the energy sources are
considered to be fixed during the simulation period, however, the model

Fig. 7. (a) Values of the objective function J2. (b) Parameter ranges: the top graph shows the maximum power of the HS, the centre graph the nominal power of the
PV field, and the bottom graph the volume of the storage tank.

Table 7
PSO algorithm results for J3 objective function, changing various coefficients k1 and k2, with a target hydrogen production (QH2_OUT_DEM) of 160 kg per day.

Variables k1 k2 Results

PEL_SYS [MW] PPV_INST [MW] VSTOR_MAX [m3] IncomeH2 [€/y] mH2_PROD [kg/y]

 0.75 0.25 0.7352 0 19.2448 398,768 95,642
 0.50 0.50 0.6534 0 17.2494 392,050 83,529
 0.25 0.75 0.5119 0 14.1594 264,148 66,926
 0.10 0.90 0.4643 0 12.5328 296,324 59,235
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can use varying prices provided they are available as input data.
The future of HS optimisation lies in the continued development of

advanced modelling techniques, the integration of artificial intelligence
and machine learning predominantly in generating useful input data and
predictions (price, weather), and the enhancement of decision-support
tools. These advances will enable more accurate, scalable, and flexible
optimisation solutions, capable of addressing the evolving needs of the
hydrogen economy. Collaborative platforms and open-source tools are
also expected to play an important role in optimal HS sizing. By fostering
transparency and collaboration among researchers, industry players,
and policymakers, these platforms can accelerate innovation and the
adoption of best practices in HS design and operation.

5. Conclusions

The article introduces an approach to sizing a HS within a HPP, that
would enable cogeneration of a limited amount of green hydrogen
alongside regular production of electricity. The described HS demon-
strates a novel approach for converting excess hydropower from a
Slovenian HPP into green hydrogen. Through a specialised control al-
gorithm, the system effectively operates the electrolyser within its
optimal efficiency range, leveraging both hydropower and, optionally,
solar energy. Optimisation analyses reveal trade-offs between max-
imising hydrogen production and profitability, with configurations
influenced by parameters like electrolyser power, hydrogen-storage
volume, and solar-field capacity. Multi-objective optimisation high-
lights the flexibility of the system to balance economic and technical
goals. The results underscore the potential for integrating renewable
energy sources to enhance the sustainability and financial viability of
green hydrogen production.
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