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Abstract

In this paper we provide conditions under which a geodesic circle on a hyperbolic surface
admits arbitrarily small geodesically convex neighborhoods. This implies that persistent
homology using selective Rips complexes detects the length and the position of such a loop
via persistent homology in dimensions one, two, or three. In particular, if a surface has aunique
systole, then the systole can always be detected with persistent homology. The existential
results of the paper are complemented by the corresponding quantitative treatments which
explain the choice of parameters of selective Rips complexes as well as conditions, under
which the detection occurs via the standard Rips complexes. In particular, if a surface has a
unique systole, then the parameters depend on the first spectral gap in the length spectrum.

Keywords Simple closed geodesic - Rips complex - Persistent homology - Hyperbolic
surface - Systole

Mathematics Subject Classification 55N31 - 57R19 - 55U05 - 57N65 - 52A55

1 Introduction

Persistent homology is a well established tool in theoretical and applied topology. It encodes
topological and geometric information when combined with the Rips complexes on suffi-
ciently tame metric spaces. While the encoding of the homology of an underlying space is
well understood as it happens at small scales, the precise nature of the geometric information
carried by persistent homology is generally not well understood. The few cases in which
certain interpretative results on persistent homology are known include the one-dimensional
persistent homology of geodesic spaces (it encodes the shortest homology base by [18, 19]),
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Fig.1 A scheme of the two-dimensional footprint detection as described by Theorem 6.1
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Fig.2 A scheme of the three-dimensional footprint detection as described by Theorem 6.3
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parts of persistent homology of ellipses [2] and regular polygons [3], persistent homology
of contracting subsets [22], and the complete homotopy type of the Rips filtration of a circle
[1].

Especially [1] is of great interest: it demonstrates that the Rips complexes of a circle attain
the homotopy types of odd-dimensional spheres and thus a one-dimensional geometric object
(aloop) generates higher-dimensional algebraic objects in persistent homology. This idea has
led to [21] in which a theory for the detection of parts of the persistent homology of a subset
within the persistent homology of the ambient space (we refer to such parts as footprints) is
presented. In particular, it turns out that under specific conditions, a portion of the persistent
homology of a loop in a space can be observed in the persistent homology of the space itself.
While this part consists of odd-dimensional homology elements when the underlying loop
is a geodesic circle y (i.e., a circle equipped with a geodesic metric, see Preliminaries below
for more details), it turns out that an additional two-dimensional homology element may
also be generated from the geometric position of y when y is not a member of a shortest
homology base. This two-dimensional element as detected in [21] requires somehow generous
conditions on the neighborhood of y. To rectify this shortcoming, selective Rips complexes
were introduced in [23] (see also [13, 16]) as a modification of Rips complexes that facilitates
the mentioned two-dimensional footprint under fairly general conditions. The main result of
[23] states that each geodesic circle, which is a locally shortest loop and admits an arbitrarily
small geodesically convex neighborhood, can be detected either with one- or two-dimensional
persistent homology using appropriate selective Rips complexes.

In this paper we recast the results of [21] and [23] into the setting of complete orientable
hyperbolic surfaces: we provide simple conditions under which geodesic circles induce a
two-dimensional (Theorem 6.1) or a three-dimensional (Theorem 6.3) footprint in per-
sistent homology. It turns out that the somewhat technical conditions of the two mentioned
paper can be deduced from the existence of sufficiently large geodesic charts. For a scheme
of our results see Figs. 1 and 2. The technical results leading to such a connection include the
existence of geodesically convex neighborhoods and an introduction of DC isolated loops.
The parameters of the results are also quantified (after Theorem 6.1), leading to specific
bounds on parameters of required selective Rips complexes and settings in which the detec-
tion takes place with classical Rips complexes. In particular, when the systole of a surface
is unique, we can deduce that the parameters of the selective Rips complexes depend on the
first spectral gap in the length spectrum.
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The paper consists of two distinct parts. The first part is a treatment of geometrical prop-
erties in the context of differential geometry. It contains Preliminaries in Sect. 2, Retractible
neighborhoods in Sect. 3 and the existence of geodesically convex neighborhoods in Sect. 4.
The second part contains the applications to persistent homology. Section 5 contains prelim-
inaries and adaptations of results on persistent homology to our setting. In Sect. 6 the results
of the previous sections are combined to draw the main conclusions of the paper.

2 Preliminaries on differential geometry

Our objects of interest will be orientable smooth hyperbolic (i.e., having potentially non-
constant negative Gaussian curvature: K < 0) surfaces equipped with a Riemannian metric.
We will assume that the surfaces are complete. In particular, the geodesics are defined for
all times, and as a consequence, every pair of points x, y on a surface with d(x, y) = £ is
connected by a shortest geodesic of length £. We should point out that the term “geodesics”
in this paper refers to locally shortest paths as is common in the context of differential
geometry [6, 9], which is prevalent in this paper. In contrast, term “geodesics” or “geodesic
segment” in some related works of more general metric context [5, 7, 12, 18, 19, 21, 23]
refers to isometric embeddings of intervals. Such paths (and their traces) will be referred to
as shortest geodesic in this paper. A subset A of a surface S is geodesically convex if for
each pair of points x, y € A each shortest geodesic between them lies in A.

Given ¢ > 0let S! denote a circle equipped with a geodesic metric (meaning the distance
between any two points on SC1 is the length of a shortest segment between the points) of
circumference c. A geodesic circle on a surface S is an isometric embedding of SC1 into S
for some ¢ > 0. We will frequently identify a geodesic circle with its trace. Loop o C Sisa
bottleneck loop if there exists a neighborhood of « in which « is the shortest representative of
its free homotopy class. The equator on a sphere is a geodesic circle which is not a bottleneck
loop. It is not hard to construct a bottleneck loop, which is not a geodesic circle.

2.1 Variations of Arc Length

(see [9, p.238 and p.339] for some background)

It is well known that small perturbations of closed geodesics increase the length of the
perturbed path in our setting (i.e., in smooth orientable hyperbolic surfaces), which implies
that geodesic circles are automatically bottleneck loops. While the formal statement of this
fact for our purposes could be deduced from Theorem 3.1, we recall the argument for the
illustrative purposes.

Let y(s) : [0, L] — S be a naturally parametrized smooth loop. A variation is a smooth
map

h:[0,L] X (—&,e) > S
(s,t) — h(s,t)

such that 4(s,0) = y(s) and h(0,7) = h(L,t) (and the coincidence also holds for all
derivatives). Denote by

oh
Vis) = E(S’ 0)
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the variational vector field. One can associate h to V by h(s, 1) = exp, () (tV). Let

L1dn
L(1) = /
0

—(s,t)| d
aS(s) s

be the length of the variation. Then

L
£0) = —/ A(s) - V(s)ds
0

where A(s) D oh (this is zero for a geodesic) and

= ds os
Y L{ID

Here the variational vector field V (s) is orthogonal to y’(s). As each loop (and its length) in
S can be approximated by a smooth loop, we obtain the following result.

2

— K(s) |V(s)|2) ds.

Theorem 2.1 Let y (s) be a simple closed geodesic on S. If the Gaussian curvature satisfies
K (s) < 0 along the curve then y is a bottleneck loop.

Proof By the discussion above £'(0) = 0 along y and there exists ¥ > 0 such that £”(0) > «
on some tubular neighborhood of y . Hence every nontrivial variation strictly increases length.
O

Remark The converse does not hold in general, that is, if every variation increases length it

does not necessarily mean that K (s) is negative, see Fig. 3. Suppose that K (s) = coss — 1

2
and let V(s) = f(s)(y'(s) x n). Then the above integral for the second derivative is

2
/ <f/(s)2 — (coss — 1) f(s)Z) ds.
0 2

Write f(s) = ap + ZZO:1 (ay, cos(ns) + b, sin(ns)) using the Fourier series and the integral
equals

1 - 1
2mag (500 - al) + Zn (n2 + 5) (a; +b7)

n=1
2 2 2 2 2 2
=m(ap —ar)” + 74 —l—nz_] b1 (n + E) b, +,,E_2ﬂ <n + 5) a,.

The minimal value (zero) is clearly attained when all a;, b; = 0, so for every nontrivial
variation the integral is strictly larger than zero even though K (s) is not strictly negative.

2.2 Geodesic coordinates

(see [17, p.242] for more details on the topic)

Let S be an orientable surface and let y (v) be a naturally parametrized simple closed
geodesic on S. Let A(v) be a vector field along y, perpendicular to y and |A(v)| = 1. Let
o (u,v) = 'y (u) be the resulting parametrization of the surface, see Theorem 2.2.
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Fig.3 The indicated geodesics is
still a bottleneck loop, despite the
Gaussian curvature along it not
being strictly negative

RRN

\Q

Fig.4 Geodesic coordinates - R

Theorem 2.2 (See [17, Proposition 9.5.1] for a proof) The parametrization o (u, v) = T'y(u)
is a chart for S in a neighbourhood of any point (0, v) with the first fundamental form given

by
1 0
0 Gu,v)|’

where G is a smooth function such that G(0, v) = 1 and G,(0, v) = 0 (Fig. 4).

To summarize, the parametrization I'y, () is such that u = const. and v = const. form an
orthogonal system of curves, with I", (0) is a geodesic curve and I'y, (1) is a geodesic curve
and the first fundamental form is given by

1 0 )
|:0 G(u, v)] with G(0,v) =1 G,(0,v) =0.

Theorem 2.2 describes geodesic coordinates along y at any point of a geodesic y. When
y is a closed geodesic of length £ on an orientable surface, we can combine these into a
consistent geodesic coordinates along y. In particular, there is a width ¢ > 0 and a smooth
embedding
H:(—¢e,¢&) x[0,€]/o~e > S
H:(u,v)— Hu,v),

such that H (u, v) = I'y(u). Map H will represent such geodesic coordinates throughout the
paper and will also be referred to as geodesic chart.
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3 Retractable neighborhood

The main goal of this section is to formalize the following phenomenon: given a path « in a
geodesic chart around a closed geodesic y, sliding « “perpendicularly” towards y results in
ever shorter paths, see Fig. 5. This is done by Theorem 3.1:

(1) First for paths « “parallel” (in terms of geodesic coordinates) to y .
(2) Then for general paths «.
(3) Finally for sliding o towards a parallel to y.

Theorem 3.1 Let S be an orientable surface, let y (v) be a naturally parameterized simple
closed geodesic of length £ on S, and assume the Gaussian curvature K of S is negative on
y. Choose € > 0 such that the Gaussian curvature is negative on the g-geodesic chart of y

H:(—¢,8) x[0,£]/o~¢ = S
H: (u,v) — H(u,v)

Then the following conclusions hold:

(1) Forany a < b € [0, €] the length of the curve H(uy,v), v € [a, b] is strictly smaller
then the length of the curve H(uz, v), v € [a, b] for |u1| < |uz|.

(2) Denote by k;(u,v) = H((1 — t)u,v) the deformation retraction of the (image of
the) geodesic chart onto y. Let H(u(t),v(t)), © € la,b] be a curve on S. Then
%K[(M(‘L’), v(t)) < O, i.e. the length of the curve k;(u(t), v(t)) is decreasing as t
increases from 0 to 1.

(3) Choose0 < § < e. Let H(u(t), v(t)), T € la, b] be a curve on S with u(t) > 8. Define
v (u, v) = H((1 — Hu(r) + 18, v(7)). Then %, (u(z), v(r)) <0, i.e. the length of the
curve v;(u(t), v(t)) is decreasing as t increases from 0 to 1.

Proof (1) In geodesic coordinates (see Theorem 2.2 for the properties that will be used
throughout this argument) the Gaussian curvature is expressed as

Gi
3 1 <Gu> B 1 Guu\/a_zﬁ
- 2/ \VG/), 2JG |G| ’
by the Brioschi formula. This implies that G, (0,v) > 0. Since G,(0,v) = 0 by the
construction of geodesic coordinates, we get that G, (u, v) > 0 foru > 0 and G, (4, v) <0
for u < 0. In particular G (u, v) > 1 for |u| > 0. The curve H (ug, v), v € [a, b] has length
equal to

b
L(ug) :/ vV G (ug, v) dv.

Since L' (ug) = fab % dv, L(u) is decreasing for negative u and increasing for positive
u and this means that the length of the curve H (u1, v), v € [a, b] is strictly smaller then the
length of the curve H (u3, v), v € [a, b] for 0 < u; < uj (and similarly for ur > u; > 0).

(2) The length of the curve is

b
L(t) = / VI =2/ ()2 + G((1 — Hu(z), v(T))v' (1) dt.
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Fig.5 Sliding a path « towards y results in ever shorter paths

The derivative
AL /h =201 = ' (@2 + G (1 = Du(), v(0) )V () (- u(®)
e Ja 2,/( = 02/ (@2 + G((1 - Du(r), v(0)

dt

is always negative, since —2(1 — Hu' (1)? is clearly negative and G, is positive for positive
u and negative for negative u. So as t flows from 0 — 1, L(¢) decreases. The proposed
deformation retraction «; (u, v) = H((1 — t)u, v) indeed shortens all paths (Fig.5).

(3) The proof is mostly the same as that of (2). ]

Remark The theorem above deals with the case where K is negative. However, a version of
the theorem for non-positive K can be proved in the same manner: we could replace negative
curvature by non-positive curvature and change all strict inequalities (except for ¢ > 0, of
course) to non-strict inequalities.

4 Geodesic convexity of neighborhoods

In this section we consider the existence of small geodesically convex neighborhoods of
geodesic circles. We will first discuss why some of the assumptions are necessary for such a
statement.

If there is no condition on the Gaussian curvature then the geodesic chart H (in particular,
its image) is not geodesically convex in general. For example, think about the equator on a
sphere, which has no small geodesically convex neighborhood. Even if K < 0 everywhere,
a geodesic chart is not necessarily geodesically convex at all widths €. We demonstrate this
fact on the surface in Fig.6, which has K < 0 everywhere. Choose a geodesic circle y
circumventing any of the visible holes on the said surface. Clearly there are geodesic charts
of y, that are not geodesically convex.

Furthermore, not every simple closed geodesic is geodesically convex as Fig.7 shows,
and the same goes for its small neighborhoods.

Now that the required conditions are established, we proceed by proving the existence of
geodesically convex neighborhoods provided a wide enough geodesic chart exists.
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Fig.6 Scherk’s singly periodic
surface, also called the
Scherk-tower

Fig.7 Closed geodesic which is
not geodesically convex and
hence not a geodesic circle
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Theorem 4.1 Let S be a complete orientable surface with K < 0 and let y be a naturally
parametrized simple closed geodesic of length £. Suppose that

H (=D, D) x [0, £]/o~¢) C S
¢

D—
is a geodesic chart around y, where D > £/4. Then for each § < T4’ neighborhood
£
H ((—8,8) x [0, £])) is geodesically convex. Furthermore, for each §' < DT4, neighbor-
hood H ([—8’, 8’1 x [0, 6])) is geodesically convex.

Proof The situation is depicted in Fig.8. Choose p,q € H ((—38,8) x [0, £])) and let o be
a shortest geodesic between them. Assume « does not lie entirely in H ((—§, 8) x [0, £])).
We analyse the situation by considering two separate cases:

(1) Assume « liesin H ((—D, D) x [0, £]). Using case (3) of Theorem 3.1 we can slide the
part of « lying outside H ((—§, 8) x [0, £])) inside H ((—46, §) x [0, £])) while keeping
endpoints p, ¢ intact and decreasing the length of the path. The result is a path between
p and g which is shorter than «, a contradiction.

(2) Assume « does not lie in H ((—D, D) x [0, £]), see Fig.9. On one hand this means «
starts at p, has to reach the complement of H ((—D, D) x [0, £]) (which is at distance at
least £/4 + § from p) and then has to reach ¢ again (meaning it has to traverse a distance
at least £/4 4 § from p again), resulting in a lower bound ¢/2 + 2§ for the length of «.
On the other hand we can construct a different path from p to ¢ using y. Start at p and
follow a geodesic towards y (of length less than §) to reach Py € y. In a similar fashion
initiate a new path segment by starting at ¢ and follow a geodesic towards y (of length
less than §) to reach Qg € y. Connect Py and Qg by a path along y of length at most
£/2. Concatenating these three paths we obtain a path from p to g of length less than
£/2 + 24. This contradicts the lower bound of the previous paragraph.

We conclude that « lies entirely in H ((—38, §) x [0, £])).
The statement for closed neighborhoods can be proved in the same way. O

Remark 4.2 Theorem 4.1 is stated for the case K < 0 as this is one of the assumptions of our
eventual applications to persistent homology, and the proof of case (1) follows fairly easily.
However, Theorem 4.1 as stated also holds when K < 0. In order to prove it we only need
to modify case (1) of the corresponding proof as follows.

Assume « = H(u(t),v()): [0,1] — S lies in H ((—D, D) x [0, £]). Without
the loss of generality we may assume that p = H(§,v,) = Hu(0),v(0)),q =
H($,vy), H(u(l),v(l)) for some § < D, and u(t) > 6,Vt € (0, 1). The length of «
equals

1
L :/ Va2 + Gu(t), v(t)) - v2dt.
=0

By the same reasoning the length of the projection of « onto H ([, §] x [0, £]) equals
1
L, = / G(8,v(t)) - v2dt.
=0
By the assumptions:

(1) u’ is non-zero at some interval as u(¢) > 8, Vt € (0, 1), and
2) G(u(r),v()) = G(S,v(t)) as G(0,v) = 1 and G, (u, v) > 0 for u > O (see part (1) of
the proof of Theorem 3.1).
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Fig.8 Setup of Theorem 4.1

Fig. 9 A sketch of a part of the proof of Theorem 4.1. If a shortest geodesic between p and ¢ reaches the
complement of H ((—D, D) x [0, £]) as depicted on the left, then there exists a shorter path between the two
points (on right) along y

As a consequence, L1 > L.

The conditions of Theorem 4.1 contain the size of a geodesic chart. Throughout the rest
of this section we explain how this condition may be dropped in the case of unique shortest
closed geodesics on a surface.

We first recall the Cartan-Hadamard Theorem in Riemannian geometry.

Theorem 4.3 Let S be a complete surface with K < 0 and p € K. Then the map
ep,:TpS§—>8& peSs
is a universal covering projection.

Theorem 4.4 Let S be a complete orientable surface with K < 0 and let y be a simple
contractible loop. Then y bounds a simple region (diffeomorphic to disc) in S.

Proof Let y be a simple contractible loop. Then the lift to the universal covering space is
also a simple loop y. By the Jordan-Schonflies Theorem y bounds a simple region D.

We now intend to prove that the covering projection restricted to D is injective. For each
non-trivial deck transformation g on the universal cover we have y Ng(y) = @ as y is simple.
Furthermore, if g(D) C D, then g would have a fixed point (any point of the (), .y 8" (D) # @
is a fixed point by a standard argument), a contradiction. Hence D N g(D) = ¢ and thus the
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covering projection is injective on D. Consequently, the image of D by the covering projection
is a homeomorphic image of D, whose boundary (in S) is y. O

The (unmarked) length spectrum of a manifold is the collection of lengths of all closed
geodesics. Each compact complete hyperbolic manifold has a discrete length spectrum. For
a proof see, for example, [4, Lemma 3.1 and Remark 3.2]. Each shortest closed geodesic in a
manifold is called systole. Each systole is a geodesic circle. The length of a systole is hence
the first value of the length spectrum.

Proposition 4.5 combined with Remark 4.6 states that if the systole of a hyperbolic surface
is unique, a choice of D as in Theorem 4.1 can be made.

Proposition 4.5 Let S be a compact complete orientable surface with K < 0. Assume a
closed loop y of length € is the unique systole of S and L > £ is the second value of
the length spectrum, i.e., each closed loop of length less than L is either contractible or
homotopic to y.

Then parameter D of Theorem 4.1 can be chosentobe D = L/2 — /4 > L/4, i.e.,

H (=D, D) x [0, £]/o~¢) C S
is a geodesic chart around y .

Remark 4.6 Before we embark on the proof of Proposition 4.5 we briefly explain why a
choice of L as assumed in Proposition 4.5 always exists if y does. As S is compact then,
as was mentioned before Proposition 4.5, the length spectrum of S is discrete and hence
L can be chosen to be the second value of the length spectrum (and use the fact that each
non-contractible loop has a representative as a closed geodesic). In particular, the pair ¢, L
represents the first spectral gap of the length spectrum.

Proof of Proposition 4.5 We need to prove that H is injective on (—D, D) x [0, £]. Assume
on the contrary, that there exists D’ < D such that there exist two geodesics which:

e start at points p, g € y;
e are perpendicular to y at these points;
e have their first point of intersection at z with d(z, y) = D’.

See Fig. 10 for a sketch of such a situation. The corresponding geodesic segments (from z
to p and ¢, and a shortest segment from p to ¢ along y) form a geodesic triangle 7 with
angles being 7 /2, 7/2 and a non-trivial angle. Triangle T as a loop is of length at most
D+ D+ £/2 < L hence T is contractible. By Theorem 4.4 T bounds a disc. By the
Gauss-Bonnet Theorem we get that [ p KdS > 0, a contradiction. O

5 Preliminaries on persistent homology and footprint detection

Persistent homology is a type of parameterized version of homology. Ever since its intro-
duction two decades ago the corresponding theory and applications witnessed intense
development that expanded onto other fields of mathematics and science. For a general
exposition on the topic see [10]. In this paper we will focus on a specific setting of hyperbolic
surfaces. On the other hand, our treatment will be slightly more general than the standard
approaches in persistent homology as we will not restrict our choice of coefficients to fields.
We proceed by briefly presenting our setting. For a similar setting see [18, 19, 21, 23].
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Fig. 10 A sketch of a part of the proof of Proposition 4.5: two geodesics perpendicular to y having z as the
first point of their intersection. Note that geodesics could also emerge from y in different directions

Let X be a metric space and fix a scale r > 0. The Rips complex Rips(X; r) is an abstract
simplicial complex with the vertex set X defined by the following rule: a finite 0 C X is a
simplex iff Diam(o) < r.

Definition 5.1 [23] Let Y be a metric space, r; < rp,n € N. Selective Rips complex
sRips(Y; r1, n, r2) is an abstract simplicial complex defined by the following rule: a finite
subset o C Y is a simplex iff the following two conditions hold:

(1) Diam(o) < ry;
(2) there exist subsets Uy, Uy, ..., U, C U of diameter less than r, such that c C Uy U
Uyu...uU,.

The collection of Rips complexes of X for all positive r > 0 can be assembled together
into the Rips filtration {Rips(X;r)},~0 of X consisting additionally of bonding maps
ir,rn: Rips(X;r;) — Rips(X; r2), which are natural inclusions (identities on vertices) for
all 1 < ry. Obtaining a filtration of selective Rips complexes we are required to make a more
specific choice of positive increasing functions ry(t) < rp(¢).

Persistent homology is obtained by applying the homology functor to any filtration. When
coefficients of a homology form a field the resulting persistent homology may under appro-
priate conditions (for example, if X is finite) be presented by a collection of intervals, which
give rise to two well-known visualizations of persistent homology: persistence diagram and
barcodes (see [10] for details).

5.1 Geodesic circles and persistent homology

We next present the known results which explain how geodesic circles in Riemannian man-
ifolds generate algebraic objects (footprints) in persistent homology in various dimensions.
Let y be a geodesic circle of length £ in a Riemannian surface X and fix coefficients G for
all homology groups in this section. Theorem 5.2 states that if y is a member of a shortest
homology base, then it induces a one-dimensional footprint which dies at |y|/3. In this case
it is the topological nature of y that induces the footprint and hence the name topological
footprint.
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Theorem 5.2 [18] (Generating 1-dimensional (topological) footprint) Let X be a compact
semi-locally simply connected geodesic space and let G be an Abelian group. If y is a member
of a shortest homology base, then for each r > 0 a discretization of y (called r-sample of y
in [18]) at scale r represents a homology class Q, € Hi(Rips(X; r); G) such that:

e For each ry < ry the inclusion Rips(X; ri) — Rips(X; r2) induced map maps Q,, to
Q,, and
« 0, #£0iffr < Iyl/3.

However, the focus of this paper is to also detect geodesic circles which are not contained
in any shortest homology base and to detect y via higher-dimensional homology.

In [21] a generic method for detecting y through higher dimensional persistent homology
is described. The result is inspired by [1], in which authors demonstrate that the homotopy
type of a circle via Rips complexes attains all odd dimensional spheres. It turns out that
this result may be used to prove that y C X sometimes induces odd-dimensional homology
elements in persistent homology of X via Rips filtration. Additionally, two-dimensional
elements may also appear when y is not a member of a shortest homology base. It turns out
that these two-dimensional elements appear under very weak assumptions if selective Rips
complexes are used [23].

We continue by providing technical prerequisites, details and adjustments of these two
results as we will later combine them with the results of the previous sections.

5.2 Detection via selective Rips complexes

We start with detection results via selective Rips complexes as described in [23]. Despite being
chronologically more recent than the approach via deformation contractions described in the
following subsection, we describe this setting first due to its simplicity. Broadly speaking, it
turns out that each y which is a geodesic circle, a bottleneck loop and has arbitrarily small
convex neighborhood can be detected either with 1-dimensional persistent homology (in case
y isamember of a shortest homology base by [18]) or by a 2-dimensional persistent homology
via selective Rips complexes. In this case it is the geometric property of a neighborhood of
y that induces the footprint in the absence of a topological footprint and hence the name
geometric footprint.

Theorem 5.3 [23] (Generating 2-dimensional (geometric) footprint) Let X be a geodesic
locally compact, semi-locally simply connected space and let G be an Abelian group. Assume
o is a geodesic circle in X satisfying the following properties:

(1) « is a bottleneck loop;

(2) «is homologous to a non-trivial G-combination of loops B1, B2, - - ., Bk of length at most
|a|, none of which is homotopic to o or a™;

(3) « has arbitrarily small geodesically convex neighborhood.

Then there exist bounds By > |a|/3 and By > 0 such that for all increasing bijections
a>b:(0,00) — (0,00), and for all r > 0 such that By > a(r) > |a|/3 and By > b(r),
there exists a non-trivial

Q, € Hy(sRips(X; a(r), 2, b(r)); G)

satisfying the following properties:
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(1) Vr1 < ry with a(ri) > |a|/3 and b(r;) < B,Vi, we have irGl’rz(er) = Q,,, where
i,cl;,r2 : Ho(sRips(X; a(ry), 2, b(r1)); G) — Ha(sRips(X; a(r2), 2, b(r2)); G) is the nat-
ural inclusion induced map.

(2) Vq : a(q) < |a|/3 there exists no Qg with iy r(Qq) = Q.

5.3 Detection via Rips complexes

The second way of detection was described in [21] and works in a fairly general setting. For
our purposes we will adapt the results of [21] to our setting. We start by defining deformation
contractions, i.e., maps inducing homotopy equivalence on Rips complexes (observe relation
with retractable neighborhoods in Sect. 3, it will be employed later).

Definition 5.4 [14, 21] Let X be a metric space and A C X. A continuous map F: X x
[0,1] — X is called a deformation contraction (we will abbreviate it as DC and write

x 25 ayif:
(1) F(x,0)=x, F(x, 1) € A, F(a,1) =a,Vx € X,a € A, 1 € [0, 1], and
(2) d(F(x,t"), F(y.t") <d(F(x,1),F(y,1),Vx,y € X,t' > t.

If additionally d(F (x,t"), F(y,t")) < d(F(x, 1), F(y,t)) holds for all pairs (x, y) € (X \

A)x X andforallt’ > t,then F is called a strict deformation contraction (SDC or X % A).

Proposition 5.5 [21] Suppose X e A via a map F. Then the inclusions Rips(A; r) —
Rips(X; r) are homotopy equivalences for each r > 0.

A local property used in [21] to deduce detection of a loop is that of D C-isolation (defor-

mation contraction isolated). For our purposes a minor modification of this property DC will
be more useful.

Definition 5.6 Suppose 0 < D; < D;. Aloop y C S in a complete surface with K < 0

is DC (D, Dy)-isolated if the following conditions hold for closed geodesic neighborhoods
Ny = N(y, D1/2) and N; = N(Ny, D) of y:

(1) N is geodesically convex.
(2) Sliding along geodesics perpendicular to y towards y in a geodesic chart N (see Fig.5

and (2) of Theorem 3.1) induces N\ Int(N7) ~25 3N, and Ny 225 4, see Fig. 11.

Note that if y is /D\CT(Dl, Dy)-isolated then N(y,r) is geodesically convex for each
r < D, by Theorem 3.1.

Proposition 5.7 Let 0 < D < D, and suppose a loop y C S in a complete surface with
K <0 is/b\g(Dl, D»)-isolated. In this case the boundary d N1 consists of two simple closed
loops denoted by y', y", see Fig.11. For each p € y let p' and p” denote the points on y’
and y" respectively, which are closest to p, see Fig.12. Then the following two statements
hold:

(1) There exists D' > |y|/3 such that for each p,q € y with d(p,q) > |y|/3 we have
d(p'.q") > lyl/3+ D" andd(p",q") > ly|/3+ D"

(2) For eachr € (|y|/3, D') the inclusion induced maps Rips(y’; r) < Rips(N1; r) and
Rips(y”; r) < Rips(Ny; r)are homotopically trivial.
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Fig. 11 A DC-isolated loop y

p/

Fig. 12 A sketch the setting of Proposition 5.7

Proof (1) Map (p,q) — d(p’,q’) is continuous and (by Definition 5.6) does not attain
value |y|/3 on a compact domain {(p, q) € y;d(p,q) > |y|/3} hence it has a lower
bound above |y|/3. The same holds for " and the minimum of these two lower bounds
is D'.

(2) By Proposition 5.5 we have Rips(Ny; r) >~ Rips(y; r) with the homotopy equivalence
arising from our setting (see Definition 5.6) mapping p’ +> p. Thus Rips(y’; r) —
Rips(N1; r) is homotopic to a map Rips(y’; r) — Rips(y; r) mapping p’ — p. By
(1) the image of this map is actually contained in Rips(y; |y|/3), which is homotopy
equivalent to the circle by [1]. On the other hand, Rips(y; r) is homotopy equivalent to
a sphere of dimension at least three by [1], hence the map in question is nullhomotopic.

O

The property of being DC-isolated was used in [21] to deduce an appearance of odd-

dimensional homology elements. In a similar fashion we can prove a similar result for DC
isolated loops in our setting. In this case the combinatorics of Rips complexes from [1]
induces the footprint and hence the name combinatorial footprint.

Theorem 5.8 (Generating 3-dimensional (combinatorial) footprint via Rips complexes) Sup-

pose S is a complete orientable surface with K < 0, y is a DC(D, D) isolated geodesic
circle forsome D € (|y|/3,2|y|/5), and G is a group. Then there exists D' € (|y|/3, 2|y|/5)
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such that the inclusion y — X induces an inclusion
{GYrey1/3,01 = (H3Rips(y; r); G)lreqyi/3,0n) = (H3Rips(X;r); G)}rey1/3,0)-
In particular, for eachr € (|y|/3, D) there exists a non-trivial
Qr € H3(Rips(X;r); G)
such that:

(1) Vry < ry from (|y1/3, D') we have i9 (Qr) = Op,, where

r,r
i ., H3Rips(X; r1); G) — Hs(Rips(X; r2); G)

riry

is the natural inclusion induced map.
(2) Vq : a(g) < |y|/3 there exists no Q4 withiy ,(Qg4) = Q.
Proof Note that {G},cy3,p) = {H3(Rips(y:7); G)}re(yi/3,p) follows from [1] as
Rips(y; r) ~ 3, V¥r € (|y|/3, D). Choose D' as in Proposition 5.7.
We set a Mayer-Vietoris long exact sequence using the notation of Definition 5.6. For a

fixed r € (|y|/3, D) define

A = Rips(Na; r) >~ Rips(y;r),

B = Rips(S \ Int(Ny); r).
Note that
AN B =Rips(N; \ Int(N); r) ~ Rips(y'; ) URips(y”; r)

as y’ and y” are at distance more than r. Furthermore, observe > that each point of S\ Ny is
at distance at least D > r from each point of Ny due to N» = N Q\’l, D). As a result, each
subset of S of diameter less than r is contained either in No = N(Ny, D) or S \ Int(Ny),

implying
A U B = Rips(S; r).
From the Mayer-Vietoris sequence we extract the following exact subsequence:
H3;(ANB; G) - H3(A; G) ® H3(B; G) — H3zRips(X, r); G).

By (2) of Proposition 5.6 the first map is trivial, which implies that the second map is
an inclusion on H3(A; G) = H3(Rips(y; r); G). The formal conclusion follows from the
functoriality of the Mayer-Vietoris sequence. O

6 Final results

In this section we combine the geometric results of initial sections with the footprint detection
results of Sect. 5 to describe detection (footprints) of geodesic circles on hyperbolic surfaces.
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Fig. 13 A scheme of a geometric footprint detection
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6.1 Results with selective Rips complexes [two-dimensional footprint]

A scheme of the following result is provided in Fig. 13.

Theorem 6.1 Let S be a compact complete orientable surface with K < 0 andlety C S be
a geodesic circle. Assume either of the following holds:

(1) H({(—D, D) x [0,£]) C S is a geodesic chart around y, where D > |y|/4.
(2) Loop y is the unique systole of S.

Then at r = |y|/3 loop y induces

(i): A one-dimensional footprint in the sense of Theorem 5.2, or

(ii): A two-dimensional footprint in the following sense: there exists a filtration of selective
Rips complexes through which y induces a two-dimensional footprint in the sense of
Theorem 5.3.

Remark 6.2 Loops y may induce both a one- and a two-dimensional footprint in the sense
of Theorem 6.1 if it appears in a shortest homology base of H;(S; G) and is homologous
to a non-trivial G-combination of loops B1, B2, ..., Br of length at most |y |, none of which
is homotopic to y or y . In this case y is not a member of each shortest homology base of
Hi(S; G).

Proof If y is a member of a shortest homology base, conclusion (i) follows by Theorem 5.2.
If that is not the case, (ii) and the conclusion of Theorem 5.3 follow if y is a bottleneck
loop (which holds always by Theorem 2.1) and has arbitrarily small geodesically convex
neighborhood. The existence of the later follows either from Theorem 4.1 for assumption
(1), or from Proposition 4.5 for assumption (2). O

Quantification of Theorem 6.1: Concerning conclusion (ii) we discuss the parameters of
selective Rips complexes and conditions under which the induced two-dimensional footprint
can be detected with the usual Rips complexes.

Starting with assumption (1) we have a geodesic chart of width D. Theorem 4.1 implies
the existence of a geodesically convex geodesic chart of width T = D/2 — |y|/8. The
quantitative analysis of Theorem 5.3 in [23] implies that a selective Rips complex satisfies
conclusion (ii) if the following holds: for » > 0 at which a(r) = |y|/3 we need to have
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b(r) < T = D/2 — |y|/8 (recall notation of Theorem 5.3). In particular, the detection
occurs with Rips complexes when T > lv1/3,ie., D > 11|y|/12.

Continuing with assumption (2) we see that D = L/2 — |y|/4, where |g| and L are
the first two values of the length spectrum of S and thus L — |y| is the first spectral gap.
Consequently, a selective Rips complex satisfies conclusion (ii) if the following holds: for
r > 0 at which a(r) = |y|/3 we need to have b(r) < (L — |y|)/4, i.e., the upper bound is
the quarter of the first spectral gap. In particular, the detection occurs with Rips complexes
when (L — |y|)/4 > |y|/3,1.e., L > 7|y|/3. The ability of Rips complexes to detect y with
a two-dimensional footprint hence depends on the first spectral gap.

6.2 Results with Rips complexes [three-dimensional footprint]

A scheme of the following result is provided in Fig. 14.

Theorem 6.3 Let S be a compact complete orientable surface with K < 0 and lety C S be
a geodesic circle. Assume any of the following holds:

(H H ([—T, 7] x [0, Z]) C S is a geodesically convex geodesic chart around y, where
T > 3ly1/2.

(2) H({(—D, D) x [0,£]) C S is a geodesic chart around y, where D > 13|y |/4.

(3) Loop y is the unique systole of S with L > |y | being the second smallest value of the
length spectrum.

Then atr = |y|/3 loop y induces a three-dimensional footprint in the sense of Theorem 5.8.

Proof Assume (1) holds. Then by Theorem 3.1 there exists De (Iy1/3,2]y|/5) such that y
is /D\C/‘(ﬁ, l~)) isolated, thus the conditions for Theorem 5.8 are satisfied.

Assumption (2) and Theorem 4.1 imply assumption (1). Assumption (3) and Proposition
4.5 imply assumption (1). O
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