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We answer a question about the diameter of an order-super-commuting graph on a 
symmetric group by studying the number-theoretical concept of d-complete sequences of 
primes in arithmetic progression.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In a recent paper [6], the authors studied the properties of super graphs on finite groups. These graphs were introduced 
in [2] and are based on already well-studied commuting, power, and enhanced power graphs (we refer to [4] for a nice 
survey and the current developments), but with an equivalence relation thrown in. More precisely, if ∼ is an equivalence 
relation on a graph �, then ∼-super-� has the same vertex set as �; however, its edge set is enlarged, whereby distinct 
x, y form an edge if there exist u ∼ x and v ∼ y with either u = v or (u, v) ∈ E(�). In particular, with the order relation 
on a finite group G (i.e., x ∼ y if x and y have the same order), the order-super-commuting graph, �o(G), of a group G is 
a simple graph with the vertex set equal to G and where two disjoint vertices x, y form an edge if there exist commuting 
u, v with |u| = |x| and |v| = |y| (here we also allow u = v so, in particular, each conjugacy class forms an induced complete 
graph). We should caution that, as in [2] and [6], the central elements and, in particular, the identity also belong to the 
vertex set of the commuting graph, but we do not allow the loops. Notice that this contrasts with a similar definition in 
some of the existing literature [1,8], where the central elements are removed. It was shown in [6] that, for n ≥ 4, the only 
dominant vertex of �o(Sn), the order-super-commuting graph of the symmetric group Sn on n elements, is the identity, 
that is, the center of the group. By deleting all the dominant vertices, one obtains the reduced graph, �o(Sn)∗ . This is 
connected if and only if neither n − 1 nor n is a prime number; moreover, if it is disconnected, then it has exactly two 
components, and if it is connected, then its diameter is bounded above by 3, see [6, Proposition 4.9 and Theorem 4.11]. 
Whether its diameter is 3 or smaller was not determined for all values of n ≥ 4, but it was shown [6, Proposition 4.12] that 
the following holds.
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Proposition 1.1. Let n ≥ 4. If neither n nor n−1 is a prime number, then diam�o(Sn)∗ = 3 if and only if there exist nonempty disjoint 
subsets T1,T2 consisting of primes smaller or equal to n, such that, for some positive integers αp and βq we have

Mα
T1

:=
∑

p∈T1

pαp ∈ {n − 1,n}, Mβ

T2
:=

∑
q∈T2

qβq ≤ n,

and p + Mβ

T2
> n, for every p ∈ T1 . �

With this proposition, the authors proved that the diameter is 3 if n or n − 1 is either a nontrivial power of a prime or 
a sum of two prime powers, where both primes are distinct and greater than or equal to 5. The latter, assuming the strong 
Goldbach conjecture holds, immediately yields that diam �o(Sn)∗ = 3, for every even integer n ≥ 4. This paper aims to give 
a complete solution, without relying on the strong Goldbach conjecture and proves that diam �o(Sn)∗ = 3 for every n ≥ 4
such that neither n nor n − 1 is a prime number. Our main ingredient is the fact that the sequences consisting of primes 
congruent to ±1 modulo 4 are complete (see Theorem 2.5 and its consequences).

An infinite sequence of distinct positive integers {an; n ∈N} is called complete (see [9]) if every sufficiently large positive 
integer is a sum of distinct ai (sometimes such sequences are called weakly complete, while the term complete sequence 
is reserved for the case when every integer is a sum of distinct ai ). Erdős and Lewin [7] call a complete sequence d-
complete if every sufficiently large integer is a sum of distinct ai such that no one divides the other. In [7], there are 
given several examples of d-complete sequences. For instance, it is proved that, for positive integers p and q, the sequence 
{paqb; a,b ∈N} is d-complete if and only if {p,q} = {2,3}. Bruckman [3] proved that the sequence P = {2,3,5, . . .} of all 
prime numbers is d-complete (while {1} ∪ P is complete, see [9, p. 127]). We adapt Bruckman’s proof and show that the 
sequences of all prime numbers congruent to 1 modulo 4, and those congruent to 3 modulo 4, are d-complete.

2. Results

2.1. Generating polynomials

Let 1 ≤ q1 < q2 < . . . be a sequence of integers. For every n ∈N , let

fn(x) = (
1 + xq1

) · · · (1 + xqn
)
.

It is clear that fn(x) is a polynomial of degree Sn = q1 + · · · + qn . Denote the coefficient of fn(x) at power xm by γm(n); we 
also let γm(n) = 0 if m ≥ Sn + 1. Then

fn(x) =
Sn∑

m=0

γm(n)xm.

Since

Sn+1∑
m=0 

γm(n + 1)xm = fn+1(x) = fn(x) · (1 + xqn+1) =
( Sn∑

m=0

γm(n)xm
)(

1 + xqn+1
)

=
Sn∑

m=0

γm(n)xm +
Sn∑

m=0

γm(n)xm+qn+1

the comparison of the coefficients gives

γm(n + 1) =
⎧⎨
⎩

γm(n), 0 ≤ m < qn+1;
γm(n) + γm−qn+1(n), qn+1 ≤ m ≤ Sn;

γm−qn+1(n), Sn < m ≤ Sn+1.

(2.1)

It follows from (2.1) that γm(n + 1) ≥ γm(n) ≥ 0. On the other hand, let m ≥ 0 be arbitrary but fixed. Let n ∈ N be such 
that m < qn+1. Then, by (2.1), γm(n + 1) = γm(n). Since m < qn+1 < qn+2 we also have γm(n + 2) = γm(n + 1) and therefore 
γm(n + 2) = γm(n). By induction, γm(k) = γm(n), for all k > n. Thus, we may define �m = max{γm(n); n ∈ N}. Note that 
�m > 0 if and only if there exist n such that γm(n) > 0 which is equivalent to the fact that there exist distinct sequence 
members q j1 , . . . ,q jℓ , where ℓ ≥ 1, such that m = q j1 + · · · + q jℓ .

Theorem 2.1. Let 1 ≤ q1 < q2 < · · · be a sequence of integers with partial sums Sn = q1 + · · · + qn. Consider

fn(x) = (1 + xq1) · · · (1 + xqn ) =
Sn∑

m=0

γm(n)xm.
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Table 1
Small primes congruent to 1 and 3 modulo 4, along with their partial sums, S4,1(n) and S4,3(n), respectively.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
q4,1(n) 5 13 17 29 37 41 53 61 73 89 97 101 109 113 137 
S4,1(n) 5 18 35 64 101 142 195 256 329 418 515 616 725 838 975 
q4,3(n) 3 7 11 19 23 31 43 47 59 67 71 79 83 103 107 
S4,3(n) 3 10 21 40 63 94 137 184 243 310 381 460 543 646 753 

If there exist positive integers k0 and n0 such that

2k0 + qn+1 ≤ Sn, for n ≥ n0, and γm(n0) ≥ 1, for k0 ≤ m ≤ Sn0 − k0,

then every integer m ≥ k0 is a sum of (one or more) different members of {q1,q2, . . . }.

Proof. We will prove by induction that, for n ≥ n0, we have

γm(n) ≥ 1 if k0 ≤ m ≤ Sn − k0.

It is obvious that this will imply �m ≥ 1, for all m ≥ k0, and the statement will follow.
Let N ⊆ N denote the set of all integers n ≥ n0 such that γm(n) ≥ 1 if k0 ≤ m ≤ Sn − k0. By the hypothesis, n0 ∈ N . 

Assume that n ∈ N . If k0 ≤ m ≤ Sn − k0, then γm(n + 1) ≥ γm(n) ≥ 1, by the inductive hypothesis. Similarly, if m is such 
that k0 ≤ m − qn+1 ≤ Sn − k0, then γm−qn+1(n) ≥ 1, again by the inductive hypothesis, and therefore γm(n + 1) ≥ 1, by 
(2.1). Clearly, k0 ≤ m − qn+1 ≤ Sn − k0 is equivalent to k0 + qn+1 ≤ m ≤ Sn + qn+1 − k0 = Sn+1 − k0. Also, by the assumptions, 
k0 +qn+1 ≤ Sn −k0 so that the intersection of the intervals [k0, Sn −k0] and [k0 +qn+1, Sn+1 −k0] is nonempty. We conclude 
that γm(n + 1) ≥ 1, for all m such that k0 ≤ m ≤ Sn+1 − k0. Hence, n + 1 ∈ N . �

We next show that there always exists k0 which satisfies the first condition in Theorem 2.1, provided that the sequence 
of integers grows at most exponentially.

Lemma 2.2. Let 1 ≤ q1 < q2 < . . . be a sequence of integers satisfying qn+1 < 2qn and let k0 ≥ 0 be a given integer. Then, Sn −qn+1 ≥
2k0 , for every n ≥ q1 + 2k0 + 1.

Proof. Notice first that qi < qi+1 ≤ 2qi − 1, so that qi − qi+1 ≥ qi − (2qi − 1) = −qi + 1. Then, proceeding backward, we get

Si − qi+1 = q1 + q2 + · · · + (qi − qi+1) ≥ q1 + q2 + · · · + (qi−1 − qi) + 1 ≥
≥ q1 + q2 + · · · + (qi−2 − qi−1) + 1 + 1 ≥ · · · ≥ q1 − q2 + (i − 2) ≥ −q1 + (i − 1).

Hence, with i ≥ q1 + 2k0 + 1 we get that Si − qi+1 ≥ 2k0. �
2.2. Prime numbers congruent to 1, respectively 3, modulo 4

Let d be a positive integer and let 1 ≤ r < d be such that gcd(d, r) = 1. The celebrated Dirichlet’s Theorem says that 
there are infinitely many prime numbers congruent to r modulo d. Let P(d, r) = {qd,r(1) < qd,r(2) < qd,r(3) < · · · } be the 
sequence of all prime numbers congruent to r modulo d and let Sd,r(n) denote the sum of the first n prime numbers in 
P(d, r). In what follows, we are interested in P(4,1) and P(4,3).

Lemma 2.3. For x ≥ 7, the interval (x,2x] contains a prime number congruent to 1 modulo 4 as well as a prime number congruent to 
3 modulo 4.

Proof. By [5, Theorem 1], for every x ≥ 887, the sets (x,1.048x] ∩ P(4,1) and (x,1.048x] ∩ P(4,3) are nonempty, that 
is, there exist prime numbers congruent to 1 and to 3 modulo 4 in the interval (x,1.048x]. This proves the lemma when 
x ≥ 887. For smaller values we note that the list (13,17,29,53,101,197,389,773,929) consists of primes congruent to 
1 modulo 4 while (7,11,19,31,59,107,211,419,827,887) consists of primes congruent to 3, modulo 4. Also, one easily 
verifies that if 7 ≤ x < 887, then the interval (x,2x] intersects both lists. �

In the following table (Table 1) we list the first 15 prime numbers congruent to 1 and 3 modulo 4, respectively, along 
with their partial sums.

Lemma 2.4. (a) If n ≥ 10, then S4,1(n) − q4,1(n + 1) ≥ 244.
(b) If n ≥ 8, then S4,3(n) − q4,3(n + 1) ≥ 112.
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J. Bračič and B. Kuzma Discrete Mathematics 348 (2025) 114385 

Proof. (a) Let N denote the set of all integers n ≥ 10 such that the statement (a) of the lemma is valid. The table (Table 1) 
shows that S4,1(10) − q4,1(11) = 418 − 97 = 321, so 10 ∈ N . To prove the inductive step, let n ∈ N . Then, n ≥ 10 > 7 so 
by Lemma 2.3,

S4,1(n + 1) − q4,1(n + 2) = S4,1(n) − q4,1(n + 1) + 2q4,1(n + 1) − q4,1(n + 2)

≥ S4,1(n) − q4,1(n + 1) ≥ 244,

and therefore n + 1 ∈ N .
(b) Let now N denote the set of all integers n ≥ 8 such that the statement (b) of the lemma is valid. The table shows 

that S4,3(8) − q4,3(9) = 184 − 59 = 125, so 8 ∈ N . The rest proceeds as above. �
Theorem 2.5. (a) For every integer m ≥ 122, there exist distinct prime numbers p j1 , . . . , p jk ∈ P(4,1) (k ≥ 1) such that m =
pn j1

+ · · · + p jk .
(b) For every integer m ≥ 56, there exist distinct prime numbers q j1, . . . ,q jℓ ∈ P(4,3) (ℓ ≥ 1) such that m = q j1 + · · · + q jℓ .

Proof. (a) Let (k0,n0) = (122,13). By Lemma 2.4, S4,1(n) − q4,1(n + 1) ≥ 2k0 = 244 for all n ≥ n0. Also, a direct, though 
tedious, computation shows that the generating polynomial

13 ∏
i=1 

(1 + xq4,1(i)) = (1 + x5)(1 + x13) · · · (1 + x101)(1 + x109) =
S4,1(13)∑

i=0 
γm(13)xm

satisfies γm(13) ≥ 1 for all m in interval [122,603] = [122,725 − 122] = [k0, S4,1(n0) − k0] (we remark that γ121(13) =
γ604(13) = 0). The rest follows from Theorem 2.1.

(b) Let now (k0,n0) = (56,12). By Lemma 2.4, S4,3(n) − q4,3(n + 1) ≥ 2k0 = 112 for all n ≥ n0. Also, a direct computation 
shows that the generating polynomial

12 ∏
i=1 

(1 + xq4,3(i)) = (1 + x3)(1 + x7) · · · (1 + x71)(1 + x79) =
S4,3(12)∑

i=0 
γm(12)xm

satisfies γm(12) ≥ 1 for all m in the interval [56,404] = [56,460 − 56] = [k0, S4,3(n0) − k0] (we remark that γ55(12) =
γ405(12) = 0). The rest again follows from Theorem 2.1. �
Corollary 2.6. For every integer m ≥ 122, there exist k, l ∈ N and distinct prime numbers p1, . . . , pk ∈ P(4,1) and q1, . . . ,ql ∈
P(4,3) such that m = p1 + · · · + pk = q1 + · · · + ql . �

Table 2 shows that, in addition to the above corollary, every integer which does not belong to the union [1,17] ∪
[19,21]∪ [23,28]∪ [31,33]∪ [35,36]∪ [38,40]∪ [43,45]∪ [48,49]∪ [51,52]∪ [55,57]∪{60,62,65,68,69,77,80,81,85,93, 
121} can also be written as a sum of different primes from the class P(4,1) as well as the sum of different primes from 
the class P(4,3). 

By using also other residue classes of primes we can get additional integers that can be expressed as a sum of different 
primes from two disjoint subsets (Table 3). 

Notice that Tables 2 and 3, together with Corollary 2.6, show that all integers except those in {1,2,3,4,5,6,7,8,9,10,11, 
12,13,14,15,17,21,25,27} can be written as a sum of distinct odd primes in at least two ways such that no prime appears 
in two different sums.

Corollary 2.7. Let n ≥ 4. If n and n − 1 are not prime numbers, then diam�o(Sn)∗ = 3.

Proof. By Corollary 2.6 and the tables above, we see that for every nonprime number n ≥ 16, except for n = 21,25,27, there 
are disjoint subsets T1 and T2 of the sequence of primes P , neither containing the prime 2, such that n = ∑

p∈T1

p = ∑
q∈T2

q. 

For those integers, the claim follows directly from Proposition 1.1. The remaining integers n, for which neither n nor n − 1
is a prime number, are n = 9,10,15,21,25,27. Except for n = 15,21, they are all either powers of a prime number or are 
immediate successors of powers of a prime number and the claim follows from [6, Corollary 4.13] (n = 15 is also considered 
there). If n = 21, then n − 1 = 20 = 3 + 17 = 7 + 13 and Proposition 1.1 is again applicable. �
Remark 2.8. Every prime, congruent to 1 or to 3 modulo 4, is distinct from 2. Also, every prime inside Tables 2 and 3 is 
distinct from 2. Therefore, the proof of Corollary 2.7 verifies also the last conjecture of [6] that the diameter of the reduced 
order-super-commuting graph of an alternating group satisfies

diam �o(Altn)
∗ = 3
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J. Bračič and B. Kuzma Discrete Mathematics 348 (2025) 114385 

Table 2
All small integers expressible simultaneously as sums of distinct primes congruent to 1 modulo 4 and to 
3 modulo 4. 

18=5+13=7+11 22=5+17=3+19 29=29=3+7+19 
30=13+17=7+23 34=5+29=3+31 37=37=3+11+23 
41=41=3+7+31 42=5+37=11+31 46=5+41=3+43 
47=5+13+29=47 50=13+37=3+47 53=53=3+7+43 
54=13+41=7+47 58=5+53=11+47 59=5+13+41=59 
61=61=3+11+47 63=5+17+41=3+7+11+19+23 64=5+13+17+29=3+7+11+43 
66=5+61=7+59 67=13+17+37=67 70=17+53=3+67 
71=5+13+53=71 72=5+13+17+37=3+7+19+43 73=73=3+11+59 
74=13+61=3+71 75=5+17+53=3+7+11+23+31 76=5+13+17+41=3+7+19+47 
78=5+73=7+71 79=5+13+61=79 82=29+53=3+79 
83=5+17+61=83 84=5+13+29+37=3+7+31+43 86=13+73=3+83 
87=5+29+53=3+7+11+19+47 88=5+13+17+53=3+7+11+67 89=89=3+7+79 
90=17+73=7+83 91=5+13+73=3+7+11+23+47 92=5+17+29+41=3+7+11+71 
94=5+89=11+83 95=5+17+73=3+7+11+31+43 96=5+13+17+61=3+7+19+67 
97=97=3+11+83 98=37+61=19+79 99=5+41+53=3+7+11+19+59 
100=5+13+29+53=3+7+11+79 101=101=3+19+79 102=5+97=19+83 
103=5+37+61=3+7+11+23+59 104=5+17+29+53=3+7+11+83 105=5+13+17+29+41=3+19+83 
106=5+101=23+83 107=5+13+89=3+7+11+19+67 108=5+13+17+73=3+7+19+79 
109=109=3+23+83 110=13+97=31+79 111=5+17+89=3+7+11+19+71 
112=5+13+41+53=3+7+19+83 113=113=3+31+79 114=5+109=31+83 
115=5+13+97=3+7+11+23+71 116=5+13+37+61=3+7+23+83 117=5+13+17+29+53=3+31+83 
118=5+113=47+71 119=5+13+101=3+7+11+19+79 120=5+13+29+73=3+7+31+79 

Table 3
Small integers expressed as sums of distinct odd primes in two non-overlapping ways, 
without restriction on residue classes.

16=3+13=5+11 19=19=3+5+11 20=3+17=7+13 
23=23=3+7+13 24=5+19=7+17 26=3+23=7+19 
28=5+23=11+17 31=31=3+5+23 32=3+29=13+19 
33=3+7+23=5+11+17 35=3+13+19=5+7+23 36=5+31=7+29 
38=7+31=3+5+11+19 39=3+5+31=7+13+19 40=3+37=11+29 
43=43=3+11+29 44=3+41=7+37 45=3+11+31=5+17+23 
48=5+43=7+41 49=3+5+41=7+11+31 51=3+5+43=7+13+31 
52=5+47=11+41 55=3+5+47=7+11+37 56=13+43=19+37 
57=3+7+47=5+11+41 60=13+47=17+43 62=19+43=3+5+7+47 
65=3+19+43=5+13+47 68=31+37=3+5+13+47 69=3+19+47=5+23+41 
77=3+31+43=7+23+47 80=37+43=3+5+31+41 81=3+31+47=11+29+41 
85=5+37+43=7+31+47 93=3+43+47=23+29+41 121=31+43+47=3+11+29+37+41 

if n ≥ 4 and none of n − 2, n − 1 and n is a prime. The arguments go unchanged when n / ∈ {9,10,15,21,25,27} except that 
instead of Proposition 1.1 one relies on [6, Proposition 4.18]. In the exceptional cases, the three conditions rule out n = 9
(because n − 2 = 7 is a prime), as well as n = 15,21,25. What remains is n = 10 and n = 27. By a text preceding Propo-
sition 4.18 in [6] we know that diam �o(Alt10)

∗ = 3. Lastly, n = 27 = 33 = 2 + 5 + 7 + 13 so one can apply [6, Proposition 
4.18] on T1 = {3} with α1 = 3 and T2 = {5,7,13} to deduce diam �o(Alt27)

∗ = 3.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this article.

Acknowledgement

The authors were partially supported by The Slovenian Research and Innovation Agency through the research programs 
P2-0268, P1-0285, and research projects N1-0210, N1-0296, and J1-50000.

Data availability

No data was used for the research described in the article.

References

[1] S. Akbari, H. Mohammadian, H. Radjavi, P. Raja, On the diameters of commuting graphs, Linear Algebra Appl. 418 (1) (2006) 161–176.
[2] G. Arunkumar, P.J. Cameron, R.K. Nath, L. Selvaganesh, Super graphs on groups, I, Graphs Comb. 38 (3) (2022) 1–14.

5 

http://refhub.elsevier.com/S0012-365X(24)00516-8/bibAB311CBBBED8C30FC702ABB5B4487FC0s1
http://refhub.elsevier.com/S0012-365X(24)00516-8/bibCAE5878001947084EE0107584D8E2EC8s1
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