Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the diameter of a super-order-commuting graph

Janko Bračič^a, Bojan Kuzma^{b,c,*}

^a Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva c. 12, SI-1000 Ljubljana, Slovenia

^b University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia

^c IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 25 January 2024 Received in revised form 24 November 2024 Accepted 22 December 2024 Available online xxxx

Keywords: Symmetric group Order relation Super graphs Commuting graphs Prime numbers d-Complete sequence

ABSTRACT

We answer a question about the diameter of an order-super-commuting graph on a symmetric group by studying the number-theoretical concept of *d*-complete sequences of primes in arithmetic progression.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In a recent paper [6], the authors studied the properties of super graphs on finite groups. These graphs were introduced in [2] and are based on already well-studied commuting, power, and enhanced power graphs (we refer to [4] for a nice survey and the current developments), but with an equivalence relation thrown in. More precisely, if \sim is an equivalence relation on a graph Γ , then \sim -super- Γ has the same vertex set as Γ ; however, its edge set is enlarged, whereby distinct x, y form an edge if there exist $u \sim x$ and $v \sim y$ with either u = v or $(u, v) \in E(\Gamma)$. In particular, with the order relation on a finite group \mathcal{G} (i.e., $x \sim y$ if x and y have the same order), the order-super-commuting graph, $\Delta^{o}(\mathcal{G})$, of a group \mathcal{G} is a simple graph with the vertex set equal to \mathcal{G} and where two disjoint vertices x, y form an edge if there exist commuting u, v with |u| = |x| and |v| = |y| (here we also allow u = v so, in particular, each conjugacy class forms an induced complete graph). We should caution that, as in [2] and [6], the central elements and, in particular, the identity also belong to the vertex set of the commuting graph, but we do not allow the loops. Notice that this contrasts with a similar definition in some of the existing literature [1,8], where the central elements are removed. It was shown in [6] that, for n > 4, the only dominant vertex of $\Delta^{0}(S_{n})$, the order-super-commuting graph of the symmetric group S_{n} on *n* elements, is the identity, that is, the center of the group. By deleting all the dominant vertices, one obtains the reduced graph, $\Delta^{o}(S_{n})^{*}$. This is connected if and only if neither n-1 nor n is a prime number; moreover, if it is disconnected, then it has exactly two components, and if it is connected, then its diameter is bounded above by 3, see [6, Proposition 4.9 and Theorem 4.11]. Whether its diameter is 3 or smaller was not determined for all values of n > 4, but it was shown [6, Proposition 4.12] that the following holds.

* Corresponding author. E-mail addresses: janko.bracic@ntf.uni-lj.si (J. Bračič), bojan.kuzma@famnit.upr.si (B. Kuzma).

https://doi.org/10.1016/j.disc.2024.114385

0012-365X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Note

Proposition 1.1. Let $n \ge 4$. If neither n nor n - 1 is a prime number, then diam $\Delta^{0}(S_{n})^{*} = 3$ if and only if there exist nonempty disjoint subsets $\mathscr{T}_{1}, \mathscr{T}_{2}$ consisting of primes smaller or equal to n, such that, for some positive integers α_{p} and β_{q} we have

$$M_{\mathscr{T}_1}^{\alpha} := \sum_{p \in \mathscr{T}_1} p^{\alpha_p} \in \{n-1, n\}, \qquad M_{\mathscr{T}_2}^{\beta} := \sum_{q \in \mathscr{T}_2} q^{\beta_q} \le n,$$

and $p + M_{\mathscr{T}_2}^{\beta} > n$, for every $p \in \mathscr{T}_1$. \Box

With this proposition, the authors proved that the diameter is 3 if n or n-1 is either a nontrivial power of a prime or a sum of two prime powers, where both primes are distinct and greater than or equal to 5. The latter, assuming the strong Goldbach conjecture holds, immediately yields that diam $\Delta^o(S_n)^* = 3$, for every even integer $n \ge 4$. This paper aims to give a complete solution, without relying on the strong Goldbach conjecture and proves that diam $\Delta^o(S_n)^* = 3$ for every $n \ge 4$ such that neither n nor n-1 is a prime number. Our main ingredient is the fact that the sequences consisting of primes congruent to ± 1 modulo 4 are complete (see Theorem 2.5 and its consequences).

An infinite sequence of distinct positive integers $\{a_n; n \in \mathbb{N}\}$ is called complete (see [9]) if every sufficiently large positive integer is a sum of distinct a_i (sometimes such sequences are called weakly complete, while the term complete sequence is reserved for the case when every integer is a sum of distinct a_i). Erdős and Lewin [7] call a complete sequence *d*-complete if every sufficiently large integer is a sum of distinct a_i such that no one divides the other. In [7], there are given several examples of *d*-complete sequences. For instance, it is proved that, for positive integers *p* and *q*, the sequence $\{p^aq^b; a, b \in \mathbb{N}\}$ is *d*-complete if and only if $\{p, q\} = \{2, 3\}$. Bruckman [3] proved that the sequence $\mathscr{P} = \{2, 3, 5, \ldots\}$ of all prime numbers is *d*-complete (while $\{1\} \cup \mathscr{P}$ is complete, see [9, p. 127]). We adapt Bruckman's proof and show that the sequences of all prime numbers congruent to 1 modulo 4, and those congruent to 3 modulo 4, are *d*-complete.

2. Results

2.1. Generating polynomials

Let $1 \le q_1 < q_2 < \dots$ be a sequence of integers. For every $n \in \mathbb{N}$, let

$$f_n(x) = (1 + x^{q_1}) \cdots (1 + x^{q_n}).$$

It is clear that $f_n(x)$ is a polynomial of degree $S_n = q_1 + \cdots + q_n$. Denote the coefficient of $f_n(x)$ at power x^m by $\gamma_m(n)$; we also let $\gamma_m(n) = 0$ if $m \ge S_n + 1$. Then

$$f_n(x) = \sum_{m=0}^{S_n} \gamma_m(n) x^m.$$

Since

$$\sum_{m=0}^{S_{n+1}} \gamma_m(n+1) x^m = f_{n+1}(x) = f_n(x) \cdot (1+x^{q_{n+1}}) = \left(\sum_{m=0}^{S_n} \gamma_m(n) x^m\right) (1+x^{q_{n+1}})$$
$$= \sum_{m=0}^{S_n} \gamma_m(n) x^m + \sum_{m=0}^{S_n} \gamma_m(n) x^{m+q_{n+1}}$$

the comparison of the coefficients gives

$$\gamma_m(n+1) = \begin{cases} \gamma_m(n), & 0 \le m < q_{n+1}; \\ \gamma_m(n) + \gamma_{m-q_{n+1}}(n), & q_{n+1} \le m \le S_n; \\ \gamma_{m-q_{n+1}}(n), & S_n < m \le S_{n+1}. \end{cases}$$
(2.1)

It follows from (2.1) that $\gamma_m(n+1) \ge \gamma_m(n) \ge 0$. On the other hand, let $m \ge 0$ be arbitrary but fixed. Let $n \in \mathbb{N}$ be such that $m < q_{n+1}$. Then, by (2.1), $\gamma_m(n+1) = \gamma_m(n)$. Since $m < q_{n+1} < q_{n+2}$ we also have $\gamma_m(n+2) = \gamma_m(n+1)$ and therefore $\gamma_m(n+2) = \gamma_m(n)$. By induction, $\gamma_m(k) = \gamma_m(n)$, for all k > n. Thus, we may define $\Gamma_m = \max\{\gamma_m(n); n \in \mathbb{N}\}$. Note that $\Gamma_m > 0$ if and only if there exist n such that $\gamma_m(n) > 0$ which is equivalent to the fact that there exist distinct sequence members $q_{j_1}, \ldots, q_{j_\ell}$, where $\ell \ge 1$, such that $m = q_{j_1} + \cdots + q_{j_\ell}$.

Theorem 2.1. Let $1 \le q_1 < q_2 < \cdots$ be a sequence of integers with partial sums $S_n = q_1 + \cdots + q_n$. Consider

$$f_n(x) = (1 + x^{q_1}) \cdots (1 + x^{q_n}) = \sum_{m=0}^{S_n} \gamma_m(n) x^m.$$

Table 1	
---------	--

Small primes congruent to 1 and 3 modulo 4, along with their partial sums, $S_{4,1}(n)$ and $S_{4,3}(n)$, respectively.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
<i>q</i> _{4,1} (<i>n</i>)	5	13	17	29	37	41	53	61	73	89	97	101	109	113	137
$S_{4,1}(n)$	5	18	35	64	101	142	195	256	329	418	515	616	725	838	975
$q_{4,3}(n)$	3	7	11	19	23	31	43	47	59	67	71	79	83	103	107
$S_{4,3}(n)$	3	10	21	40	63	94	137	184	243	310	381	460	543	646	753

If there exist positive integers k_0 and n_0 such that

$$2k_0 + q_{n+1} \leq S_n$$
, for $n \geq n_0$, and $\gamma_m(n_0) \geq 1$, for $k_0 \leq m \leq S_{n_0} - k_0$,

then every integer $m \ge k_0$ is a sum of (one or more) different members of $\{q_1, q_2, ...\}$.

Proof. We will prove by induction that, for $n \ge n_0$, we have

 $\gamma_m(n) \ge 1$ if $k_0 \le m \le S_n - k_0$.

It is obvious that this will imply $\Gamma_m \ge 1$, for all $m \ge k_0$, and the statement will follow.

Let $\mathcal{N} \subseteq \mathbb{N}$ denote the set of all integers $n \ge n_0$ such that $\gamma_m(n) \ge 1$ if $k_0 \le m \le S_n - k_0$. By the hypothesis, $n_0 \in \mathcal{N}$. Assume that $n \in \mathcal{N}$. If $k_0 \le m \le S_n - k_0$, then $\gamma_m(n+1) \ge \gamma_m(n) \ge 1$, by the inductive hypothesis. Similarly, if m is such that $k_0 \le m - q_{n+1} \le S_n - k_0$, then $\gamma_{m-q_{n+1}}(n) \ge 1$, again by the inductive hypothesis, and therefore $\gamma_m(n+1) \ge 1$, by (2.1). Clearly, $k_0 \le m - q_{n+1} \le S_n - k_0$ is equivalent to $k_0 + q_{n+1} \le m \le S_n + q_{n+1} - k_0 = S_{n+1} - k_0$. Also, by the assumptions, $k_0 + q_{n+1} \le S_n - k_0$ so that the intersection of the intervals $[k_0, S_n - k_0]$ and $[k_0 + q_{n+1}, S_{n+1} - k_0]$ is nonempty. We conclude that $\gamma_m(n+1) \ge 1$, for all m such that $k_0 \le m \le S_{n+1} - k_0$. Hence, $n+1 \in \mathcal{N}$. \Box

We next show that there always exists k_0 which satisfies the first condition in Theorem 2.1, provided that the sequence of integers grows at most exponentially.

Lemma 2.2. Let $1 \le q_1 < q_2 < \ldots$ be a sequence of integers satisfying $q_{n+1} < 2q_n$ and let $k_0 \ge 0$ be a given integer. Then, $S_n - q_{n+1} \ge 2k_0$, for every $n \ge q_1 + 2k_0 + 1$.

Proof. Notice first that $q_i < q_{i+1} \le 2q_i - 1$, so that $q_i - q_{i+1} \ge q_i - (2q_i - 1) = -q_i + 1$. Then, proceeding backward, we get

$$S_i - q_{i+1} = q_1 + q_2 + \dots + (q_i - q_{i+1}) \ge q_1 + q_2 + \dots + (q_{i-1} - q_i) + 1 \ge 2q_1 + q_2 + \dots + (q_{i-2} - q_{i-1}) + 1 + 1 \ge \dots \ge q_1 - q_2 + (i-2) \ge -q_1 + (i-1).$$

Hence, with $i \ge q_1 + 2k_0 + 1$ we get that $S_i - q_{i+1} \ge 2k_0$. \Box

2.2. Prime numbers congruent to 1, respectively 3, modulo 4

Let *d* be a positive integer and let $1 \le r < d$ be such that gcd(d, r) = 1. The celebrated Dirichlet's Theorem says that there are infinitely many prime numbers congruent to *r* modulo *d*. Let $\mathscr{P}(d, r) = \{q_{d,r}(1) < q_{d,r}(2) < q_{d,r}(3) < \cdots\}$ be the sequence of all prime numbers congruent to *r* modulo *d* and let $S_{d,r}(n)$ denote the sum of the first *n* prime numbers in $\mathscr{P}(d, r)$. In what follows, we are interested in $\mathscr{P}(4, 1)$ and $\mathscr{P}(4, 3)$.

Lemma 2.3. For $x \ge 7$, the interval (x, 2x] contains a prime number congruent to 1 modulo 4 as well as a prime number congruent to 3 modulo 4.

Proof. By [5, Theorem 1], for every $x \ge 887$, the sets $(x, 1.048x] \cap \mathscr{P}(4, 1)$ and $(x, 1.048x] \cap \mathscr{P}(4, 3)$ are nonempty, that is, there exist prime numbers congruent to 1 and to 3 modulo 4 in the interval (x, 1.048x]. This proves the lemma when $x \ge 887$. For smaller values we note that the list (13, 17, 29, 53, 101, 197, 389, 773, 929) consists of primes congruent to 1 modulo 4 while (7, 11, 19, 31, 59, 107, 211, 419, 827, 887) consists of primes congruent to 3, modulo 4. Also, one easily verifies that if $7 \le x < 887$, then the interval (x, 2x] intersects both lists. \Box

In the following table (Table 1) we list the first 15 prime numbers congruent to 1 and 3 modulo 4, respectively, along with their partial sums.

Lemma 2.4. (*a*) If $n \ge 10$, then $S_{4,1}(n) - q_{4,1}(n+1) \ge 244$. (*b*) If $n \ge 8$, then $S_{4,3}(n) - q_{4,3}(n+1) \ge 112$. **Proof.** (a) Let \mathcal{N} denote the set of all integers $n \ge 10$ such that the statement (a) of the lemma is valid. The table (Table 1) shows that $S_{4,1}(10) - q_{4,1}(11) = 418 - 97 = 321$, so $10 \in \mathcal{N}$. To prove the inductive step, let $n \in \mathcal{N}$. Then, $n \ge 10 > 7$ so by Lemma 2.3,

$$S_{4,1}(n+1) - q_{4,1}(n+2) = S_{4,1}(n) - q_{4,1}(n+1) + 2q_{4,1}(n+1) - q_{4,1}(n+2)$$

$$\geq S_{4,1}(n) - q_{4,1}(n+1) \geq 244,$$

and therefore $n + 1 \in \mathcal{N}$.

(b) Let now \mathcal{N} denote the set of all integers $n \ge 8$ such that the statement (b) of the lemma is valid. The table shows that $S_{4,3}(8) - q_{4,3}(9) = 184 - 59 = 125$, so $8 \in \mathcal{N}$. The rest proceeds as above. \Box

Theorem 2.5. (a) For every integer $m \ge 122$, there exist distinct prime numbers $p_{j_1}, \ldots, p_{j_k} \in \mathscr{P}(4, 1)$ $(k \ge 1)$ such that $m = p_{n_{j_1}} + \cdots + p_{j_k}$.

(b) For every integer $m \ge 56$, there exist distinct prime numbers $q_{j_1}, \ldots, q_{j_\ell} \in \mathscr{P}(4,3)$ $(\ell \ge 1)$ such that $m = q_{j_1} + \cdots + q_{j_\ell}$.

Proof. (a) Let $(k_0, n_0) = (122, 13)$. By Lemma 2.4, $S_{4,1}(n) - q_{4,1}(n+1) \ge 2k_0 = 244$ for all $n \ge n_0$. Also, a direct, though tedious, computation shows that the generating polynomial

$$\prod_{i=1}^{13} (1+x^{q_{4,1}(i)}) = (1+x^5)(1+x^{13})\cdots(1+x^{101})(1+x^{109}) = \sum_{i=0}^{S_{4,1}(13)} \gamma_m(13)x^m$$

satisfies $\gamma_m(13) \ge 1$ for all *m* in interval $[122, 603] = [122, 725 - 122] = [k_0, S_{4,1}(n_0) - k_0]$ (we remark that $\gamma_{121}(13) = \gamma_{604}(13) = 0$). The rest follows from Theorem 2.1.

(b) Let now $(k_0, n_0) = (56, 12)$. By Lemma 2.4, $S_{4,3}(n) - q_{4,3}(n+1) \ge 2k_0 = 112$ for all $n \ge n_0$. Also, a direct computation shows that the generating polynomial

$$\prod_{i=1}^{12} (1+x^{q_{4,3}(i)}) = (1+x^3)(1+x^7)\cdots(1+x^{71})(1+x^{79}) = \sum_{i=0}^{S_{4,3}(12)} \gamma_m(12)x^m$$

satisfies $\gamma_m(12) \ge 1$ for all *m* in the interval [56, 404] = [56, 460 - 56] = [k_0 , $S_{4,3}(n_0) - k_0$] (we remark that $\gamma_{55}(12) = \gamma_{405}(12) = 0$). The rest again follows from Theorem 2.1. \Box

Corollary 2.6. For every integer $m \ge 122$, there exist $k, l \in \mathbb{N}$ and distinct prime numbers $p_1, \ldots, p_k \in \mathscr{P}(4, 1)$ and $q_1, \ldots, q_l \in \mathscr{P}(4, 3)$ such that $m = p_1 + \cdots + p_k = q_1 + \cdots + q_l$. \Box

Table 2 shows that, in addition to the above corollary, every integer which does not belong to the union $[1, 17] \cup [19, 21] \cup [23, 28] \cup [31, 33] \cup [35, 36] \cup [38, 40] \cup [43, 45] \cup [48, 49] \cup [51, 52] \cup [55, 57] \cup \{60, 62, 65, 68, 69, 77, 80, 81, 85, 93, 121\}$ can also be written as a sum of different primes from the class $\mathscr{P}(4, 1)$ as well as the sum of different primes from the class $\mathscr{P}(4, 3)$.

By using also other residue classes of primes we can get additional integers that can be expressed as a sum of different primes from two disjoint subsets (Table 3).

Notice that Tables 2 and 3, together with Corollary 2.6, show that all integers except those in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 21, 25, 27} can be written as a sum of distinct odd primes in at least two ways such that no prime appears in two different sums.

Corollary 2.7. Let $n \ge 4$. If n and n - 1 are not prime numbers, then diam $\Delta^{\circ}(S_n)^* = 3$.

Proof. By Corollary 2.6 and the tables above, we see that for every nonprime number $n \ge 16$, except for n = 21, 25, 27, there are disjoint subsets \mathscr{T}_1 and \mathscr{T}_2 of the sequence of primes \mathscr{P} , neither containing the prime 2, such that $n = \sum_{p \in \mathscr{T}_1} p = \sum_{q \in \mathscr{T}_2} q$. For those integers, the claim follows directly from Proposition 1.1. The remaining integers *n*, for which neither *n* nor n - 1 is a prime number, are n = 9, 10, 15, 21, 25, 27. Except for n = 15, 21, they are all either powers of a prime number or are immediate successors of powers of a prime number and the claim follows from [6, Corollary 4.13] (n = 15 is also considered there). If n = 21, then n - 1 = 20 = 3 + 17 = 7 + 13 and Proposition 1.1 is again applicable.

Remark 2.8. Every prime, congruent to 1 or to 3 modulo 4, is distinct from 2. Also, every prime inside Tables 2 and 3 is distinct from 2. Therefore, the proof of Corollary 2.7 verifies also the last conjecture of [6] that the diameter of the reduced order-super-commuting graph of an alternating group satisfies

diam $\Delta^{o}(Alt_n)^* = 3$

Table 2

All small integers e	expressible	simultaneously	as sums	of dis	stinct	primes	congruent	to 1	modulo 4	4 and to
3 modulo 4.										

18=5+13=7+11	22=5+17=3+19	29=29=3+7+19
30=13+17=7+23	34=5+29=3+31	37=37=3+11+23
41=41=3+7+31	42=5+37=11+31	46=5+41=3+43
47=5+13+29=47	50=13+37=3+47	53=53=3+7+43
54=13+41=7+47	58=5+53=11+47	59=5+13+41=59
61=61=3+11+47	63=5+17+41=3+7+11+19+23	64=5+13+17+29=3+7+11+43
66=5+61=7+59	67=13+17+37=67	70=17+53=3+67
71=5+13+53=71	72=5+13+17+37=3+7+19+43	73=73=3+11+59
74=13+61=3+71	75=5+17+53=3+7+11+23+31	76=5+13+17+41=3+7+19+47
78=5+73=7+71	79=5+13+61=79	82=29+53=3+79
83=5+17+61=83	84=5+13+29+37=3+7+31+43	86=13+73=3+83
87=5+29+53=3+7+11+19+47	88=5+13+17+53=3+7+11+67	89=89=3+7+79
90=17+73=7+83	91=5+13+73=3+7+11+23+47	92=5+17+29+41=3+7+11+71
94=5+89=11+83	95=5+17+73=3+7+11+31+43	96=5+13+17+61=3+7+19+67
97=97=3+11+83	98=37+61=19+79	99=5+41+53=3+7+11+19+59
100=5+13+29+53=3+7+11+79	101=101=3+19+79	102=5+97=19+83
103=5+37+61=3+7+11+23+59	104=5+17+29+53=3+7+11+83	105=5+13+17+29+41=3+19+83
106=5+101=23+83	107=5+13+89=3+7+11+19+67	108=5+13+17+73=3+7+19+79
109=109=3+23+83	110=13+97=31+79	111=5+17+89=3+7+11+19+71
112=5+13+41+53=3+7+19+83	113=113=3+31+79	114=5+109=31+83
115=5+13+97=3+7+11+23+71	116=5+13+37+61=3+7+23+83	117=5+13+17+29+53=3+31+83
118=5+113=47+71	119=5+13+101=3+7+11+19+79	120=5+13+29+73=3+7+31+79

Table 3

Small integers expressed as sums of distinct odd primes in two non-overlapping ways, without restriction on residue classes.

16=3+13=5+11	19=19=3+5+11	20=3+17=7+13
23=23=3+7+13	24=5+19=7+17	26=3+23=7+19
28=5+23=11+17	31=31=3+5+23	32=3+29=13+19
33=3+7+23=5+11+17	35=3+13+19=5+7+23	36=5+31=7+29
38=7+31=3+5+11+19	39=3+5+31=7+13+19	40=3+37=11+29
43=43=3+11+29	44=3+41=7+37	45=3+11+31=5+17+23
48=5+43=7+41	49=3+5+41=7+11+31	51=3+5+43=7+13+31
52=5+47=11+41	55=3+5+47=7+11+37	56=13+43=19+37
57=3+7+47=5+11+41	60=13+47=17+43	62=19+43=3+5+7+47
65=3+19+43=5+13+47	68=31+37=3+5+13+47	69=3+19+47=5+23+41
77=3+31+43=7+23+47	80=37+43=3+5+31+41	81=3+31+47=11+29+41
85=5+37+43=7+31+47	93=3+43+47=23+29+41	121=31+43+47=3+11+29+37+41

if $n \ge 4$ and none of n - 2, n - 1 and n is a prime. The arguments go unchanged when $n \notin \{9, 10, 15, 21, 25, 27\}$ except that instead of Proposition 1.1 one relies on [6, Proposition 4.18]. In the exceptional cases, the three conditions rule out n = 9 (because n - 2 = 7 is a prime), as well as n = 15, 21, 25. What remains is n = 10 and n = 27. By a text preceding Proposition 4.18 in [6] we know that diam $\Delta^{0}(Alt_{10})^{*} = 3$. Lastly, $n = 27 = 3^{3} = 2 + 5 + 7 + 13$ so one can apply [6, Proposition 4.18] on $T_{1} = \{3\}$ with $\alpha_{1} = 3$ and $T_{2} = \{5, 7, 13\}$ to deduce diam $\Delta^{0}(Alt_{27})^{*} = 3$.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Acknowledgement

The authors were partially supported by The Slovenian Research and Innovation Agency through the research programs P2-0268, P1-0285, and research projects N1-0210, N1-0296, and J1-50000.

Data availability

No data was used for the research described in the article.

References

^[1] S. Akbari, H. Mohammadian, H. Radjavi, P. Raja, On the diameters of commuting graphs, Linear Algebra Appl. 418 (1) (2006) 161–176.

^[2] G. Arunkumar, P.J. Cameron, R.K. Nath, L. Selvaganesh, Super graphs on groups, I, Graphs Comb. 38 (3) (2022) 1–14.

- [3] P.S. Bruckman, The primes are a D-complete sequence, Pi Mu Epsilon J. 10 (10) (1999) 769-771.
- [4] P.J. Cameron, Graphs defined on groups, Int. J. Group Theory 11 (2) (2022) 53–107.
- [5] J. Cullinan, F. Hajir, Primes of prescribed congruence class in short intervals, Integers 12 (2012) A56.
 [6] S. Dalal, S. Mukherjee, K.L. Patra, On the super graphs and reduced super graphs of some finite groups, Discrete Math. 347 (2024) 113728.
- [7] P. Erdős, M. Lewin, d-Complete sequences of integers, Math. Comput. 65 (214) (1996) 837-840.
- [8] M. Giudici, C. Parker, There is no upper bound for the diameter of the commuting graph of a finite group, J. Comb. Theory, Ser. A 120 (7) (2013) 1600-1603.
- [9] R. Honsberger, Mathematical Gems. III, Dolciani Math. Exp., vol. 9, Mathematical Association of America, Washington, DC, 1985.