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Abstract: The coupled processes of coprecipitation and ultrasonic spray pyrolysis (USP) were used to
synthesize Fe3O4-Au hybrid nanostructures. The first coprecipitation method enabled the synthesis
of Fe3O4 nanoparticles by mixing iron salts’ ions (Fe2+ and Fe3+) and ammonia as the base, and
USP was used as the coating process of the Fe3O4 nanoparticles with Au. The formatted hybrid
nanostructures consist of Fe3O4 nanoparticles that have Au on their surface in the form of gold
nanoparticles (AuNPs). AuNPs have a crystalline structure and range in size from 10 to 200 nm.
Additional characterization techniques, including ICP-OES, TEM, SEM, EDS, DLS, zeta potential,
and room temperature magnetic hysteresis loops, were used to determine the chemical, physical, and
magnetic properties of the Fe3O4 nanoparticles and hybrid nanostructures. It was found that USP
produces separate AuNPs too (not just on the Fe3O4 surface), suggesting a bimodal formation of
AuNPs. The zeta potential of the Fe3O4 nanoparticles showed poor stability (−15 mV), indicating a
high tendency to aggregate, and the zeta potential of the hybrid nanostructures was also very low
(∼=0), which, comparatively means even worse stability. The saturation magnetization of the Fe3O4

nanoparticles was 35 emu/g, which is relatively lower than that of bulk Fe3O4, while the saturation
magnetization of the hybrid nanostructures was significantly lower (0.1 emu/g) compared to the
Fe3O4 nanoparticles.

Keywords: magnetic NPs; gold NPs; transmission electron microscopy; magnetic properties

1. Introduction

Nanoparticles (NPs) are materials with dimensions in the nanometer range, typically
between 1 and 100 nanometers. At this scale, unique magnetic properties emerge, distin-
guishing them from their bulk counterparts. Fe3O4 represents a special class of magnetic
NPs that can interact with an external magnetic field as a direct consequence of their super-
paramagnetic, ferrimagnetic, and/or ferromagnetic properties [1]. Fe3O4 has gained great
attention in the past decade because of its promising results in various fields [2]. Fe3O4
NPs have become a crucial tool in the biomedical area, significantly transforming different
diagnostic and therapeutic methods. Due to their distinctive magnetic properties, as well
as their compatibility with biological systems, and capacity to be modified on the surface,
these materials are highly suitable for a wide range of applications, including magnetic
resonance imaging (MRI) [3], targeted drug administration [4], and cancer therapy [5].
The potential of Fe3O4 in biomedical applications is extensive, and current research is
investigating novel and effective methods to employ these NPs. The prospects involve
the advancement of multifunctional Fe3O4, with the ability to perform both diagnosis and
treatment simultaneously, commonly known as ‘theragnostic’ [6–8]. Fe3O4 NPs have a
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significant benefit in their large surface area-to-volume ratio, enabling various functionaliza-
tion and alterations that respond to specific biomedical requirements. The ability to adapt
allows for the creation of magnetite (Fe3O4) with tailored characteristics [9]. Fe3O4-based
sensors have shown remarkable application in different fields, including food technology,
lab testing, clinical diagnosis, and environmental monitoring [10]. Fe3O4-based biosensors
have achieved tremendous status, due to distinct properties such as magnetic signaling
and magnetic separation [11].

Despite the enormous potential of Fe3O4 NPs, these materials are not ideal as active
elements in sensing applications, which is why they have been used most often as cap-
ture/preconcentration elements in a sensing system, rather than as the sensor itself. This
is because the low electrical conductivity and limited optical properties compromise the
ability of Fe3O4 to be the transducing element of a sensor [12]. Another challenge facing
the use of Fe3O4 in sensing is its large surface area-to-volume ratio and low surface charge
at neutral pH, which typically results in low stability, with the Fe3O4 tending to aggregate
when dispersed in solvents [13]. Such aggregation can be reduced with appropriate surface
chemistry, which is also vital for sensing applications [14]. However, the surfaces of most
magnetic materials are not highly compatible with well-defined surface chemistry such as
the alkanethiol system. Gold coating of the Fe3O4 NPs addresses all the above-mentioned
challenges, including conductivity, optical properties [15], biocompatibility [16], bioaffinity
through functionalization of the amine/thiol terminal groups [17], and chemical stability
by protecting the magnetic core from aggregation, oxidation, and corrosion [18].

Gold-coated Fe3O4 NPs have been recognized and applied in analytical chemistry,
mostly for bio-separation and the development of electrochemical and optical sensors [19].
Applications of these NPs in biomedicine have also been explored, including magnetic
resonance imaging contrast agents [20], targeted drug delivery [21], as well as downstream
processing [22]. The reason lies in their high versatility; the optical and magnetic properties
of the NPs can be tuned and tailored to applications by changing their size, gold shell
thickness, shape, charge, and surface modification [16].

More than two decades have passed since the first reports on the synthesis of gold-
coated Fe3O4 NPs, but challenges remain in different aspects of working with this category
of NPs [23]. The first challenge is how to prepare highly monodisperse iron or iron oxide
nanocrystals efficiently. This requires the NPs to be made with precise control of particle
size and magnetic properties. The greater challenge is how to coat the core effectively with a
smooth, complete, and tunable gold shell. The most common methods are to coat magnetic
NPs by depositing gold directly onto the core surface or by using a chelating material
between the core and the gold shell [16]. The properties of gold-coated Fe3O4 NPs make
overcoming these challenges worthwhile, and the last few years have seen considerable
progress in their synthesis and application.

The aim of this research focuses on the synthesis of Fe3O4 NPs using the coprecipitation
method, followed by the formation of the Au coating using ultrasonic spray pyrolysis (USP).
Different types of characterization techniques were used to confirm the hypothesis that an
Au coating was reached on the resulting Fe3O4 NPs, and to determine the properties of
such a hybrid nanostructure.

2. Materials and Methods
2.1. Fe3O4 Synthesis with Coprecipitation

A total of 3.75 g of iron (II) sulfate heptahydrate (Sigma-Aldrich, Darmstadt, Germany)
and 2.97 g of iron (III) sulfate hydrate (Sigma-Aldrich) were weighed into a 1000 mL beaker.
A total of 500 mL of distilled water was added to the beaker, and the sulfates were allowed
to dissolve. A solution of ammonia in water was prepared—3 mL of ammonia (Sigma-
Aldrich) dissolved in 150 mL of distilled water. A pH meter was placed in the beaker.
The ammonia solution was added dropwise to the beaker to raise the pH to 3. This pH
was maintained for 30 min. Then, 250 mL of pure ammonia was added and left to stir
for 30 min. A magnet was placed at the bottom of the beaker and the NPs were allowed
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to settle. The remaining liquid was poured off, the magnet removed, and the NPs rinsed
with distilled water. This was repeated 5 times. After examining the NPs using scanning
electron microscopy, the decision was made to synthesize NPs using lower concentrations
of both iron sulfates. Thus, three other syntheses were made, using 1/2, 1/4, and 1/8 of
the original mass of iron sulfates. We determined that the suspension made with 0.47 g
of iron (II) sulfate heptahydrate and 0.37 g of iron (III) sulfate hydrate (1/8) is the most
appropriate for further characterization—the suspension appeared to have the least amount
of aggregation of Fe3O4.

2.2. Fe3O4 Coating of Au with USP

For the experimental work, a proprietary USP device was used (Zlatarna Celje d.o.o.,
Celje, Slovenia), with an ultrasonic membrane with 1.65 MHz, a tube furnace with a
quartz tube with a 1.5 m length and 35 mm internal diameter. The tube is separated into
two heating zones with lengths of 0.5 and 1.0 m, for droplet evaporation and particle
reaction, respectively. A reaction gas inlet is attached to the tube between these heating
zones. The final particles are collected in 3 serially connected gas washing bottles, with a
collection medium for stabilization.

The precursor solutions for USP were prepared by adding the suspension of Fe3O4
obtained by the coprecipitation method (80 mL, containing 390 mg of Fe3O4) to 700 mL
of deionized (DI) water, and then adding 3.12 g of AuCl (≈50% Au basis) (Glentham Life
Sciences Ltd., Corsham, UK). The concentrations of Fe3O4 and Au in the precursor solutions
were 0.5 and 2 g/L, respectively. The evaporation zone was set at 200 ◦C, while the reaction
zone was set at 400 ◦C. The carrier gas used was N2, with a flow rate of 4 L/min, and the
reduction gas used was H2 with a flow rate of 4 L/min. The synthesis was carried out for
2 h. The gas washing bottles contained 1.0 L of a water solution with an added 4.5 g/L
of Polyvinylpyrrolidone (PVP) MW 30,000 (Sigma-Aldrich, Darmstadt, Germany) for the
stabilization process. Figure 1 represents the preparation of our samples.
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2.3. X-Ray Diffraction (XRD)

The (XRD) measurements were conducted on a D8 Advance diffractometer (Bruker,
Hamburg, Germany) equipped with Ni-filtered Cu-Kα radiation (Bruker, Germany) at a
scan rate of 0.24◦ per minute. XRD patterns were obtained over a range of 10 to 60 de-
grees (2θ).

2.4. Optical Emission Spectrometry with Inductively Coupled Plasma (ICP-OES)

An ICP-OES analysis was used for the determination of the elements in the Fe3O4
and Fe3O4-Au hybrid nanostructures’ suspensions. An HP, Agilent 7500 CE spectrometer,
equipped with a collision cell (Santa Clara, CA, USA), was used to determine the Fe and
Au content in the suspensions, with a power of 1.5 kW, a Meinhard nebulizer, a plasma gas
flow of 15 L/min, a nebulizer gas flow of 0.85 L/min, a make-up gas flow of 0.28 L/min,
and a reaction gas flow of 4.0 mL/min. The instrument was calibrated with matrix-matched
calibration solutions, with a relative measurement uncertainty estimated as ±3%.

2.5. Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS)

The Fe3O4 and Fe3O4-Au samples were characterized using scanning/transmission
electron microscopy (S/TEM). A Talos F200i (Thermo Fisher Scientific, Waltham, MA, USA)
TEM/STEM, operated at 200 kV, was employed for imaging, with an integrated Fast Fourier
Transform (FFT) analysis to study the diffraction patterns, since X-ray Diffraction (XRD)
analyses of the samples could not be performed because the samples were in solution
and their amount was small. The application of FFT was critical for enhancing the clarity
and analysis of diffraction patterns obtained from the TEM images. FFT allows for the
transformation of spatial domain images into the frequency domain, highlighting periodic
structures and crystallographic features that may not be readily apparent due to noise
in the direct images. This analysis aids in the precise indexing of diffraction spots, and
the determination of the NPs’ crystallographic orientations. Energy Dispersive X-ray
Spectroscopy (EDS) was performed using a UK Bruker XFlash 6|30 EDS Detector (Thermo
Fisher Scientific, Waltham, MA, USA) and Velox Analytical Software 3.15.0. A drop of
the prepared particle suspensions was deposited onto copper TEM grids coated with an
amorphous carbon lacy film, followed by drying prior to the S/TEM examination.

2.6. Scanning Electron Microscopy (SEM) and EDS

A Sirion 400NC (FEI, Hillsboro, OR, USA) with an INCA 350 EDS (Oxford Instruments,
Abingdon, Oxfordshire, UK) was used for the SEM/EDS analyses. A droplet of the samples
(Fe3O4 and Fe3O4-Au suspensions) was set on an SEM stub holder with graphite tape and
left to dry in a desiccator. The dried samples were then coated with carbon for increased
conductivity during the SEM imaging and EDS analysis.

2.7. Dynamic Light Scattering (DLS) and Zeta Potential

DLS analysis and zeta potential measurements were used on a suspension of Fe3O4
and Fe3O4-Au. The samples were moved into an omega cuvette and put into a DLS
analysis machine. The analysis was conducted on a Malvern Zetasizer Nano ZS instrument
(Malvern Panalytical, Worcestershire, UK). The statistical analysis was performed with the
Excel program (Microsoft).

2.8. Magnetic Measurement

Room temperature magnetic hysteresis loops of dried samples (Fe3O4 and Fe3O4-Au
suspensions) were measured with a vibrating-sample magnetometer VSM Lake Shore 7307
(Lake Shore Cryotronics, Westerville, OH, USA).



Metals 2024, 14, 1324 5 of 16

3. Results
3.1. XRD Analysis

Figure 2 represents the results of the XRD analysis of Fe3O4 nanoparticles. The XRD
analysis showed characteristic diffraction patterns typical of magnetite (Fe3O4). The peaks
at 2θ at 30.1, 35.5, 42.6, and 57.0, can be attributed to diffractions at the (220), (311), (400),
and (511) planes, which are characteristic of magnetite [24].
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Figure 2. XRD analysis of Fe3O4 nanoparticles.

3.2. ICP-OES Results of the Fe3O4 and Fe3O4-Au Suspensions

The measuring concentration of Fe in the prepared Fe3O4 suspension is given in
Table 1, while the resulting concentration of Fe and Au elements in the prepared Fe3O4-Au
suspension is given in Table 2.

Table 1. ICP-OES result of Fe in the prepared Fe3O4 suspension.

Sample mg/mL Fe

Fe3O4 4.88

Table 2. ICP-OES analysis of Fe and Au in the prepared Fe3O4-Au hybrid nanostructures suspension.

Sample µg/mL Fe µg/mL Au

Fe3O4-Au 7.0 40.6

3.3. TEM Analysis

The TEM images of Fe3O4 and Fe3O4-Au were analyzed to assess their morphology
before and after USP. Figure 2 presents the TEM results for the Fe3O4. In Figure 3a,c,
clusters of Fe3O4 are observed, with some NPs exhibiting spherical shapes, while others
are irregular. The particle sizes range from 5 nm to 25 nm, although significant aggregation
is evident. The EDS analysis (Figure 3b) revealed a prominent oxygen peak, alongside
two Fe-L and Fe-K peaks, indicating a high iron content in the sample. A small silicon peak
was also detected, likely due to contamination, or originating from the substrate material.
Figure 3d displays a 2-D Fast Fourier Transform (FFT), characterized by a concentric ring
diffraction pattern with some brighter, more distinct spots. This suggests the presence of
larger crystallites, while the continuity of the rings indicates that the crystallites are small
(in the nanometer range) and oriented randomly, signifying a nanocrystalline material.
Each ring corresponds to a specific set of crystallographic planes within the NPs. The ring
pattern suggests that the NPs are crystalline, composed of numerous small crystallites with
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varying orientations. The sharp, regularly spaced spots and rings suggest that the NPs
are highly crystalline, with well-defined atomic planes. The presence of rings, rather than
single diffraction spots, indicates that the NPs are not single crystals, but consist of multiple
crystallites in random orientations. The electron diffraction pattern can be indexed to the
Fe3O4 cubic phase of iron oxide, as illustrated in Figure 3d.
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Figure 3. (a.) TEM bright-field (BF) image of the Fe3O4 at lower magnification; (b.) EDS analysis of
the Fe3O4; (c.) TEM BF image of the Fe3O4 at higher magnification; (d.) 2-D FFT image showing the
concentric ring pattern of the Fe3O4.

Figure 4 shows the TEM and STEM results of Fe3O4-Au, with a lower magnification
overview of the produced particles in Figure 4a and a higher magnification image of a
typical Fe3O4-Au particle in Figure 4b. This section was examined additionally with EDS
mapping and two selected area analyses in Figure 4c,d. The TEM images show clusters of
smaller Fe3O4, covered with somewhat larger AuNPs with spherical and irregular shapes.
The Fe3O4 has similar sizes as without the Au, in a range from 5 nm to 25 nm. They
also appear to be aggregated, as before. The AuNPs are larger, in a range of about 10 to
200 nm. The EDS mapping analysis shows a distribution of O, Fe, and Au, with the O
and Fe seemingly overlapping. Additionally, C was detected but was removed from the
analysis, as its presence is the result of the sample holder (TEM grid with lacy carbon film)
and the stabilizer used for the particle collection during the USP process (PVP stabilizer).
Some separate AuNPs were also present in the Fe3O4-Au sample. An example is shown in
Figure 4e, showing a measured fringe spacing of 0.20 nm, which is in very good agreement
with the cell parameters of Au and the particle oriented in the (200) direction, along with
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an FFT pattern of this particle in Figure 4f. The spot pattern indicates a crystalline structure
of the produced AuNPs, with indices as shown in Figure 4e.
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3.4. SEM Analysis

In Figure 5a, the suspension of Fe3O4 in water is shown, where the settling of the NPs
is clearly visible, in addition to some NPs floating. Figure 5b,c showcase the results of the
SEM analysis. The particle size is between 20 and 40 nm, which corresponds to the results
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of the TEM analysis. In the EDS analysis (Figure 5d) of the Fe3O4, carbon and oxygen can
be observed with the addition of iron. The carbon was present because of the graphite tape
used to prepare the samples. The oxygen and iron are the result of the Fe3O4.
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Figure 5. (a.) Suspension of the Fe3O4 in water; (b.) SEM image of the Fe3O4; (c.) SEM image of the
Fe3O4 with particle sizes measured; and (d.) EDS analysis of the Fe3O4.

Figure 6 shows the SEM/EDS analysis performed on Fe3O4-Au hybrid nanostructures.
The particle structures are similar to the TEM images, wherein the Fe3O4 clusters are
covered with irregularly shaped AuNPs, along with some individual AuNPs present
as separate entities. The EDS shows the presence of C, O, Cl, Fe, and Au. Again, the
carbon is present due to the graphite tape on which the sample was deposited, as well
as due to the stabilizer PVP. Chlorine is a side product of the USP process, which was
additionally collected from the USP gas flow, along with the collection of the particles in
the collection medium.
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3.5. DLS and Zeta Potential Analysis

In Figure 7, we can see the graph of the DLS analysis of the Fe3O4 NPs. The peak
is located at values around 50–100 nm, with the average hydrodynamic diameter being
around 65 nm, a polydispersity index of 36%, and a standard deviation of approximately
39 nm. A standard deviation of 39 nm means that, on average, the Fe3O4 NPs sizes deviated
by 39 nm from the average hydrodynamic diameter. D10 is approximately 15.08 nm and
D90 is about 115 nm, which indicates that 10% of NPs are smaller than 15.08 nm, and 90%
are smaller than 115 nm. The median value (D50) of the hydrodynamic diameter (62 nm) is
close to the mean value (65 nm), indicating a symmetric distribution of Fe3O4 NPs sizes.
The presence of one peak indicates that the NPs are relatively monodisperse, meaning
that they have a consistent size around this value. We can also observe no other peak that
would indicate the presence of much larger NPs.
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In Figure 8, we can see the results of the DLS analysis of Fe3O4-Au hybrid nanostruc-
ture samples. The largest peak is located at values 200–300 nm, which suggests that most
of the NPs have a diameter between 200 and 300 nm, with the average hydrodynamic
diameter being 279 nm, polydispersity index of 33%, and a standard deviation of 160 nm.
A standard deviation means that, on average, the Fe3O4-Au sizes deviated by 160 nm from
the average hydrodynamic diameter. D10 is approximately 74 nm and D90 is about 483 nm,
which indicates that 10% of the NPs are smaller than 74 nm, and 90% are smaller than
483 nm. The median value (D50) of the hydrodynamic diameter (255 nm) is close to the
mean value (279 nm), indicating a symmetric distribution.
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It is important to note that DLS measures the hydrodynamic diameter of NPs in
suspension, which includes not only the core NP size but also any surface coatings and
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solvent layers that contribute to the overall NP size in the medium. In the case of NPs with
a non-uniform or incomplete gold coating, the DLS measurements may not reflect the true
size of the core NPs accurately. This is because DLS measures the apparent hydrodynamic
diameter, which could be influenced by the uneven distribution of the coating material,
resulting in an overestimation of the total NPs size. Furthermore, the aggregation of NPs
can also contribute to an increased measured hydrodynamic diameter. Non-contiguous
coatings may alter the surface properties of the NPs, leading to variable interactions with
the surrounding medium, and subsequently impacting the DLS results. As such, the DLS
data should be interpreted with these potential contributions in mind, recognizing that the
measured size could reflect both the aggregated state of the NPs and the uneven nature of
the surface coating.

The discrepancy between the NP sizes measured using DLS and those measured via
TEM or SEM is quite common. DLS measurements tend to show larger NP sizes for several
reasons. DLS measures the hydrodynamic diameter, which includes not only the core of
the NPs, but also any surface layers or adsorbed molecules (e.g., surfactants, polymers, or
solvent molecules) surrounding the NPs. This hydrodynamic shell can make them appear
larger than they are. In contrast, TEM and SEM provide the physical (core) diameter of
the NPs, which does not account for these surrounding layers. In DLS, if NPs aggregate
or form small clusters, the technique will report the size of these larger aggregates rather
than individual particles. This can skew the results toward larger sizes. TEM and SEM
typically measure individual NPs, as the drying process in sample preparation often breaks
aggregates apart. Additionally, DLS is more sensitive to larger NPs or aggregates, because
the scattering intensity scales with the sixth power of the NPs’ radius, meaning large NPs
affect the results disproportionately. In DLS, NPs are measured in a liquid medium, and
their hydrodynamic size reflects interactions with the solvent. NPs in solution may absorb
a hydration layer, increasing their apparent size. TEM and SEM are performed under
vacuum or on dry samples, where such hydration layers are absent, leading to smaller size
measurements. This explains why the DLS results are usually higher than those obtained
via TEM or SEM analysis.

Figure 9 represents the zeta potential result of the Fe3O4. The peak is relatively sharp,
which indicates that most particles have a similar surface charge. The values on the x-axis
range from approximately −100 mV to +100 mV, with the peak centered close to −15 mV.
This suggests that most of the particles in the suspension have a zeta potential near neutral
(close to 0 mV). It was concluded that the Fe3O4 suspension is close to its isoelectric point
(which is around pH 6.5–7 for Fe3O4) [25,26], consequently, the electrostatic repulsion
between the particles is minimal. This indicates that the NPs are less stable and prone to
aggregation, as there is not enough repulsion to keep the particles apart.
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Figure 10 represents the results of the zeta potential measurement of the Fe3O4-Au
hybrid nanostructures. On the graph is a peak, with its center at around 0 mV with a
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median zeta potential of −0.49 mV. This suggests that the NPs exhibit a relatively neutral
surface charge. The distribution of the zeta potential is very narrow, meaning that most of
the particles have very similar surface charge properties, as reflected in the small variance
around the peak. A low zeta potential (close to 0 mV) implies poor stability. The optimal
zeta potential for stable suspensions is usually around −30 mV or +30 mV [27,28]. In
the case of Fe3O4-Au hybrid nanostructures, the zeta potential being close to zero can be
attributed to the surface chemistry and the nature of the AuNPs. Au is a noble metal, and
its surface is relatively inert, which means it does not form strong ionic interactions easily in
aqueous solutions. As a result, the AuNPs’ presence on the Fe3O4 surface, can, effectively,
neutralize, or screen the surface charge of the underlying Fe3O4 core, leading to a reduced
overall surface charge. This can result in a near-neutral zeta potential.
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3.6. Magnetic Properties

Figure 11a represents a magnetic hysteresis loop of Fe3O4, labeled “MNPs-1_8”. The x-
axis represents the external magnetic field H in Oersted’s (Oe), from −20,000 to +20,000 Oe.
The y-axis represents the magnetization M in emu/g, which extends from −40 emu/g
to +40 emu/g. The curve is strongly S-shaped and appears to saturate at both ends
(around 35–40 emu/g for large positive and negative fields). There is no visible coercivity
or remanence (the point at which the loop crosses the x-axis is very close to zero), which
implies that this material exhibits superparamagnetic behavior. The transition to the
superparamagnetic state in magnetite NPs typically occurs for particles with diameters
below 25 to 30 nm, as reported in the literature [29,30]. The exact critical size depends on
factors such as the shape and surface modification of the NPs, but, in general, magnetite
particles smaller than this threshold exhibit superparamagnetic behavior [29,30].

The saturation magnetization is determined from the point where the magnetization
reaches a plateau, indicating that further increases in the applied magnetic field do not result
in a significant increase in magnetization. Looking at Figure 11a, the magnetization appears
to saturate around 35 emu/g, which is in the range of typical values (30–50 emu/g) reported
for nanosized iron oxide particles [31,32]. The saturation magnetization of bulk magnetite at
room temperature is generally reported to be in the range of 92 to 100 emu/g [29]. However,
for magnetite NPs, the saturation magnetization is often lower than the bulk value and can
vary depending on factors like particle size, shape, and surface properties. For instance,
smaller magnetite NPs typically exhibit lower saturation magnetization values. Another
reason for a decrease in saturation magnetization is because of the aggregation of NPs. NPs
have a high surface-to-volume ratio, which leads to many surface atoms. These surface
atoms often have disordered spins, due to broken bonds or surface oxidation. When NPs
aggregate, the surface effects become more pronounced, because the interactions between
surface spins are not as strong as the interactions in the bulk. This disordered spin state at
the surface leads to a reduction in the overall magnetization [29,30].
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Figure 11b represents a magnetic hysteresis loop of Fe3O4-Au hybrid nanostructures.
The figure also shows a typical “S-shaped” curve, characteristic of superparamagnetic or
weakly ferromagnetic materials. In this case, the loop has no significant coercivity (the field
required to bring the magnetization to zero), and no remanent magnetization (residual
magnetism when the external field is removed). This indicates that the material aligns
quickly with and demagnetizes with the external field, suggesting superparamagnetic
behavior. There is no significant hysteresis loop area, indicating very low or no coerciv-
ity and remanent magnetization. This implies the NPs are superparamagnetic at room
temperature, meaning they only exhibit magnetism in the presence of an external field
and lose their magnetization once the field is removed. The curve appears to saturate at
around ±pm 0.10 emu/g for large magnetic fields (close to 20,000 Oe). This represents
the maximum magnetization of the Fe3O4-Au hybrid nanostructures in the presence of a
strong magnetic field, beyond which further increases in the magnetic field do not increase
magnetization significantly. To calculate the volume fraction of magnetite (Fe3O4) and gold
in the Fe3O4-Au hybrid nanostructures we used the following equation:

f (magnetite) =
M(hybrid nanostructures)

M(magnetite)

f (magnetite) =
0.1 emu/g
35 emu/g

f (magnetite) = 0.0029 = 0.29%

The volume fraction of gold is the remainder since the total volume must be equal to 1
or 100%

f (gold) = 1 − 0.0029 = 0.9971 = 99.71 %

Based on the results, we can see that the Fe3O4-Au hybrid nanostructures contain
very little magnetic material—most of the sample was gold (99.71% by volume), and the
rest was magnetite (0.29% by volume). In the analysis of the magnetization behavior, we
recognize that it is challenging to observe the saturation magnetization clearly from the
data presented. One potential factor contributing to this is the diamagnetic contribution
of the presence of Au, which could affect the overall magnetization signal and lead to an
apparent suppression of the saturation magnetization. Au is a diamagnetic material and
can introduce a negative magnetic moment, which may reduce the net magnetization at
higher fields and potentially mask the true saturation point of the magnetic NPs. This
effect could result in an underestimation of the saturation magnetization and impact the
accuracy of the analysis. Furthermore, measurements at higher magnetic fields would be
beneficial to provide a clearer indication of the true saturation point. While the current
data provide valuable insight into the general magnetic behavior of the coated NPs, future
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studies should consider performing magnetization measurements at higher fields to ensure
a more accurate determination of the saturation magnetization.

4. Discussion

The Fe3O4 NPs prepared with the coprecipitation method had spherical and some
irregular shapes, within a size range of about 10 to 40 nm, and a highly crystalline structure.
Aggregation was observed in the Fe3O4 suspension, forming clusters of these NPs. The
Fe3O4 NPs exhibited superparamagnetic behavior. The different examinations showed that
the Fe3O4 retained their sizes, shapes, and aggregation properties. The Fe3O4-Au hybrid
nanostructures had weaker magnetization but still had superparamagnetic behavior, owing
to the presence of Fe3O4, as Au does not have this property.

The resulting Fe3O4-Au hybrid nanostructures were not uniform, with Fe3O4 clusters
covered with spherical and irregular AuNPs. Individual separate AuNPs were observed in
the synthesized suspension after USP. During the USP process, the formation of AuNPs was
bimodal, as AuNPs were formed on the surface of the Fe3O4, as well as directly from the
dried Au-chloride droplets, into AuNPs. The bimodal formation of AuNPs observed in the
study—where AuNPs were deposited both on Fe3O4 surfaces and as separate entities—has
been a recurring challenge in hybrid nanostructure synthesis. Previous studies [29] have
shown that aggregation during synthesis often leads to uneven coatings and variable
nanoparticle sizes, which aligns with our findings. Furthermore, Moraes Silva et al. dis-
cussed similar difficulties when using alternative chemical reduction methods, highlighting
the importance of controlling precursor rations and preventing aggregation for uniform
Au coatings [16].

Earlier research [29,30] on the USP production of Fe NPs coated with Au was per-
formed using dissolved Fe-salts (Fe acetate, nitrate, and chloride) and Au salts in the
precursor solution. The results showed that the Fe NPs forms depended greatly on the
precursor used, forming meshes, and spherical or irregular structures of Fe-oxide NPs.
The AuNPs were deposited on the Fe-oxide NPs with varying degrees of coverage, sizes,
and shapes, depending on the process parameters and salt concentrations in the precursor
solution. A full core-shell Fe-Au structure was not achieved in these investigations, and
similar structures were formed as with the present investigation. The broad miscibility gap
between Fe and Au resulted in complete phase separation between these two elements
during the NPs’ synthesis.

In the present investigation, already prepared Fe3O4 NPs were used as seeds in the
USP precursor solution for the achievement of Au coating on Fe3O4 NPs. Depending
on the coprecipitation method, Fe3O4 with 1/8th of the chosen mass of iron sulfates was
determined as the most appropriate for further processing with USP. These Fe3O4 had
the least aggregation and smallest sizes, making them the most suitable for use with the
ultrasonic membrane. The sizes of the Fe3O4 seeds are required to be as small as possible
for generating aerosol droplets and transporting these droplets into the USP tube furnace.
With large particle sizes in the precursor, the generated droplets do not contain these
particles, as they are left behind in the precursor solution. The Fe3O4 clusters should also
be avoided in the precursor solution to provide for aerosol droplets containing the seeds for
Au coating. The different characterizations showed a higher AuNP content as compared
to Fe, with a larger mass quantity of Au present, as confirmed by ICP-OES. There was
5.8× more AuNP mass present than Fe3O4 in the final Fe3O4-Au suspension. The initial
concentration ratio for Fe and Au in the precursor solution was 4× more Au than Fe. This
indicates that some Fe3O4 may have been left behind in the precursor solution during
droplet generation. Additional optimization of the Au-precursor solution containing Fe3O4
is needed to improve the uptake of these particles in the aerosol droplets, such as further
reduction of the particle sizes and prevention of particle cluster formations.

The characteristics of the Fe3O4-Au hybrid nanostructures are like previous exper-
iments to produce core-shell Fe-Au NPs with one main difference. Previously, solid Fe
NPs were obtained, covered with Au particles [29,30]. However, with this research, we
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have obtained Fe3O4 clusters, covered with AuNPs. Magnetic nanoparticles, such as Fe3O4,
have a natural tendency to aggregate due to magnetic dipole–dipole interactions and van
der Waals forces. This aggregation can potentially influence subsequent coating processes,
such as USP, by affecting the overall surface area and the uniformity of the applied coating.
In the USP coating process, particle aggregation could reduce the exposed surface area,
potentially leading to uneven or patchy gold deposition. This may result in a non-uniform
hybrid structure, as aggregation particles may only be coated on the outer surface of the
cluster, leaving interior surfaces exposed. To mitigate these issues, dispersing agents,
surfactants, or optimized sonication techniques, can help reduce aggregation before or
during the coating process. Similar aggregation challenges have been reported, where they
suggest the use of dispersing agents or surface stabilizers to enhance nanoparticle stability
and coating uniformity [13]. Adopting such strategies could improve the homogeneity of
Fe3O4-Au hybrid nanostructures prepared via USP.

To produce more uniformly covered Fe3O4, their surface needs to be adjusted for more
favorable growth of Au during the USP process. The presence of chlorine in some of the
analyses also indicates an unoptimized USP process, wherein some unreacted Au-salts
may also be present in the final collection medium (water and stabilizer). These initial
investigations of using Fe3O4 seeds have given further insight and possible directions into
investigating the possibilities of producing Fe3O4-Au hybrid nanostructures with USP.

The magnetic properties of the Fe3O4 were retained in the final Fe3O4-Au hybrid
nanostructures, although, the magnetization was diminished by the AuNPs content. By
overcoming the issues with ultrasonic droplet generation with more optimal Fe3O4 sizes in
the precursor solution, and better Au coverage on the Fe3O4, the magnetic properties may
be preserved further for better performance. The magnetic measurements revealed that
saturation magnetization of Fe3O4-Au hybrid nanostructures was significantly reduced
compared to Fe3O4. This can be attributed to surface effects, where disordered spins
and the presence of a non-magnetic Au layer weaken the net magnetization. Similar
reductions in magnetization for small Fe3O4 nanoparticles due to surface spin effects have
been documented, emphasizing the critical impact of nanoparticle size and aggregation on
magnetic properties [32].

Additional optimization steps are needed for the determination of the parameters
for the synthesis of Fe3O4-Au NPs (optimization of the Au/Fe3O4 precursor for USP,
surface modification of the Fe3O4). Studies have shown that fine control over precursor
composition and droplet size is essential for achieving desired core-shell structures [23].

Currently, there are no specific studies that detail the synthesis of Fe3O4 nanoparti-
cles via the coprecipitation method followed by Au coating using USP. The coupling of
coprecipitation and USP in this study provides a novel approach to synthesizing Fe3O4-Au
hybrid nanostructures. Compared to chemical reduction and seed-mediated methods dis-
cussed by Moraes Silva et al. [16], USP offers distinct advantages in scalability but requires
further optimization to address challenges such as bimodal Au formation and reduced
Fe3O4 incorporation. The results provide a valuable foundation for further exploration and
optimization of Fe3O4-Au hybrid nanostructures with coprecipitation and USP.

5. Conclusions

The following conclusions emerged from this research:
Using the coprecipitation method it was possible to synthesize Fe3O4 NPs successfully.

The Fe3O4 NPs exhibited superparamagnetic behavior, with sizes ranging from 5 nm to
25 nm, although significant aggregation was evident.

The process of coating the Fe3O4 NPs with Au via USP resulted in the formation of
separate AuNPs and Fe3O4-Au hybrid nanostructures. AuNPs were formed on the surface
of individual Fe3O4 NPs and their aggregates.

The resulting Fe3O4-Au hybrid nanostructures exhibited a range of sizes and struc-
tures, retaining the superparamagnetic behavior, while demonstrating a reduction in mag-
netization due to the added Au content. Separately formed AuNPs presented a crystalline



Metals 2024, 14, 1324 15 of 16

structure with sizes ranging from 10 to 200 nm, with one possible growth direction of
AuNPs being [01-1].
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