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A B S T R A C T   

The increasing availability of RNA sequencing data has opened up numerous opportunities to analyze various 
RNA interactions, including microRNA-target interactions (MTIs). In response to the necessity for a specialized 
tool to study MTIs in cancer and normal tissues, we developed AmiCa (https://amica.omics.si/), a web server 
designed for comprehensive analysis of mature microRNA (miRNA) and gene expression in 32 cancer types. Data 
from 9498 tumor samples and 626 normal samples from The Cancer Genome Atlas were obtained through the 
Genomic Data Commons and used to calculate differential expression and miRNA-target gene (MTI) correlations. 
AmiCa provides data on differential expression of miRNAs/genes for cancers for which normal tissue samples 
were available. In addition, the server calculates and presents correlations separately for tumor and normal 
samples for cancers for which normal samples are available. Furthermore, it enables the exploration of miRNA/ 
gene expression in all cancer types with different miRNA/gene expression. In addition, AmiCa includes a ranking 
system for genes and miRNAs that can be used to identify those that are particularly highly expressed in certain 
cancers compared to other cancers, facilitating targeted and cancer-specific research. Finally, the functionality of 
AmiCa is illustrated by two case studies.   

1. Introduction 

Today, cancer remains one of the leading causes of death worldwide 
and presents a significant challenge for the healthcare system [1]. To 
uncover the critical genomic and genetic changes in cancer, it is essen
tial to explore various aspects, including genomic alterations, methyl
ation patterns, and changes in mRNA and microRNA (miRNA) 
expression levels. MiRNAs play a crucial role in carcinogenesis by 
binding to mRNAs and consequently influencing the protein profile of 
the cell [2]. The quantification of miRNA and gene levels has advanced 
in recent years with new high-throughput technologies such as RNA 
sequencing (RNA-Seq) [3,4]. Although the method provides tran
scriptomic data of immense importance for the development of novel 

disease therapies, the time-consuming and complex data analysis tends 
to limit its translational potential. 

As a result, there are several platforms and databases that are widely 
used in this field to collect, analyze, and visualize genomic data in the 
context of cancer research, such as GDC [5], cBioPortal [6], XENA [7], 
miRBase [8], miRTarBase [9], GEPIA2 [10], Tissue Atlas [11], FIRE
BROWSER (http://firebrowse.org/), dbDEMC [12], IMOTA [13], Can
cer miRNA census [14]. One of the largest sources of experimental 
cancer data is The Cancer Genome Atlas (TCGA), hosted on the GDC 
portal, which provides genomic data for numerous tumor and normal 
samples across various cancer types. This includes gene expression data, 
miRNA expression data, and clinical information, enabling researchers 
to explore gene expression and miRNA-target gene correlations in 
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cancer on a large scale. Although there are alternative big data sources 
available, data obtained from different databases cannot be directly 
compared [15]. Detecting miRNA/gene correlations may contribute to 
the development of new prognostic, diagnostic and therapeutic solu
tions in cancer. With the development of miRNA target gene identifi
cation methods, tools for exploring the interactions between miRNAs 
and their target genes, miRNA-target interactions (MTIs), have also been 
established, including miRTarBase, which contains MTI correlations [9]. 
However, the correlations in miRTarBase are only presented for patients 
with paired tumor and normal tissues. To provide an alternative that 
includes correlations of all miRNAs and mRNAs from RNA-Seq data 
available for both cancer and normal tissues, we developed a platform 
with extended comprehensive potential. The correlations between 
miRNA-mRNA levels are calculated not only for tumor samples but also 
for normal samples. Depending on the research interest, the user can 
search for correlations of MTIs in either tumor or normal tissues or 
investigate how the correlations are perturbed when cancer occurs. The 
AmiCa platform offers various options, from searching expression pro
files of miRNAs and genes to exploring MTIs, available for individual 
cancer or across cancer types. Users can even match miRNA and gene 
expression for pairs that are not confirmed MTIs. Additionally, our tool 
allows users to rank miRNAs or genes based on selected cancer 
compared to other cancers in the database. The platform also delivers 
user-friendly query results through meaningful graphs. Our primary 
objective with AmiCa is to offer an openly accessible interactive catalog 
of MTIs alongside their expression data, fostering improved target 
identification methods. Notably, our aim is to facilitate quicker and a 
more accessible utilization of valuable gene expression data. 

2. Materials and methods 

2.1. Data curation 

We retrieved miRNA and mRNA expression data for all TCGA pro
jects from the GDC portal [5] using the TCGAbiolinks package in R [16]. 

Included mRNA data was previously normalized using the FPKM-UQ 
method (Fragments Per Kilobase of transcript per Million mapped reads 
Upper Quartile). The formalin-fixed paraffin-embedded samples were 
excluded from the dataset because multiple aliquots were sequenced, 
resulting in duplicated entries in the mRNA data. After excluding these 
samples, our mRNA dataset contained 9785 tumor samples and 730 
normal samples. 

Similarly, the miRNA data, was pre-mapped and normalized by RPM 
(Reads Per Million miRNA mapped). The miRNA data has information 
on pre-miRNA IDs, isoform coordinates, read counts, RPM and miRNA 
regions. The miRNA region provides two information, one specifies the 
nature of the transcript, such as mature, stem-loop, precursor, or an 
unannotated read, and the other provides miRNA MIMAT ID, which 
identifies specific mature miRNAs in miRBase [8]. Only mature miRNAs 
were retained, for which RPM values were aggregated. Therefore, we 
obtained a new matrix with aggregated RPM values for each mature 
miRNA per sample. The annotation of miRNAs was performed using 
miRBase (version 22.1) [8]. By aggregating mature miRNA regardless of 
isoform coordinates, we obtained mixed isomiRs of mature miRNAs 
[17]. The miRNA dataset contained no formalin-fixed paraffin-embed
ded samples; therefore, we retained all 9879 tumor and 675 normal 
samples. 

To perform correlation analysis of MTIs, it was necessary to use 
samples with paired miRNA/gene data. Consequently, this intersect 
consisted of 9498 tumor and 626 normal samples. The samples belonged 
to 33 cancer types, but the intersection between miRNA and mRNA data 
included only 32 cancer types. In glioblastoma (GBM), there were no 
tumor samples with paired miRNA/gene data; however, there were five 
normal samples in GBM with such paired data. Therefore, these five 
samples were combined with the Lower Grade Glioma (LGG) dataset, as 
both projects include samples derived from brain tissue. 

2.2. Analysis of gene and miRNA expression in cancer 

To determine the regulatory impact of miRNAs/genes on specific 
cancers, we assessed their differential expression. 

In the mRNA dataset, we first averaged the FPKM-UQ values across 
tumor samples for each cancer type and then applied a log2 trans
formation. The same was applied for the normal samples from the same 
TCGA project. As a result, we obtained log2(average FPKM-UQ) for each 
group of samples. To obtain the log2 fold change value (log2FC), we 
subtracted the log2-transformed average FPKM-UQ value of normal 
samples from that of tumor samples for each project separately. 

The same procedure was applied in the miRNA dataset on RPM 
values obtaining log2(average RPM) for each sample group and log2FC 
for miRNA. 

These miRNA/gene log2FC values are displayed on the first page of 
each cancer that includes normal samples, including bladder urothelial 
carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical and 
endocervical cancers (CESC), cholangiocarcinoma (CHOL), colon 
adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and neck 
squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney 
renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma 
(KIRP), brain lower grade glioma (LGG), liver hepatocellular carcinoma 
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma 
(LUSC), pancreatic adenocarcinoma (PAAD), pheochromocytoma and 
paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum 
adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach 
adenocarcinoma (STAD), thyroid carcinoma (THCA), thymoma (THYM) 
and uterine corpus endometrial carcinoma (UCEC). Furthermore, these 
values were used in all sections of the “Expression by disease", while 
log2(average FPKM-UQ) and log2(average RPM) are displayed in the 
MTI reports. 

For cancers without normal samples, such as adrenocortical carci
noma (ACC), lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), 
acute myeloid leukemia (LAML), mesothelioma (MESO), ovarian serous 
cystadenocarcinoma (OV), sarcoma (SARC), testicular germ cell tumors 
(TGCT), uterine carcinosarcoma (UCS) and uveal melanoma (UVM) the 
log2FC was undeterminable. For these cancers the first page of the 
cancer shows log2(average FPKM-UQ) for gene and log2(average RPM) 
for miRNA. Due to lack of normal samples, these cancers were not 
included in sections of the “Expression by disease”: “miRNA/gene 
expression”, “Genes Ranked by Expression” and “miRNA ranked by 
Expression”. 

2.3. Target genes 

The validated list of MTIs obtained from miRTarBase included 
381,833 MTIs [9]. These MTI pairs consisted of various combinations of 
2451 miRNAs and 19,587 target genes. The miRNAs/genes that were 
part of these MTIs were intersected with miRNA/gene data from TCGA, 
resulting in 316,056 MTIs, where both the miRNA and gene were 
expressed in at least ten samples of any given cancer. 

2.4. Correlations between miRNA and their target genes 

Correlation analyses were performed on samples with paired 
miRNA/gene data. Prior analysis, we transformed the data using 
log2(FPKM-UQ+1) for target genes and log2(RPM+1) for miRNAs. The 
correlation coefficient (R) was calculated for 316,056 MTIs using the 
Pearson correlation test to assess the relationship between the expressed 
miRNAs and their target genes. Correlation coefficient R was calculated 
separately for tumor and normal samples in each cancer, except in 
datasets lacking normal samples, where correlations were only calcu
lated for tumor samples. Correlations were determined using the R 
package "sigr" [18] when more than three samples were available; 
otherwise, correlation calculations were not feasible. 
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2.5. Platform design 

The data included in our study is stored in a relational MySQL 
database management system (http://www.mysql.com). A web inter
face designed with HTML, CSS and JavaScript and hosted on an Apache 
web server facilitates data retrieval. Interactive charts were created with 
Google Chart Tools (https://developers.google.com/chart/) using a 
combination of PHP scripts and MySQL queries to manipulate the data. 

2.6. Ranking miRNA/gene expression 

We developed an Expression Prioritization Index (EPI) to rank 
miRNA/gene expression by priority. The EPI is calculated as the sum of 
products between the relative weights (wi) and the ranks of the i-th 
criteria. We considered three criteria: 1) the most overexpressed 
miRNA/gene in the studied cancer (w = 0.1), 2) the difference to the 
second most expressed miRNA/gene (w = 0.3), and 3) the number of 
underexpressed genes/miRNAs (w = 0.6). 

Firstly, we categorized genes based on three criteria: gene expression 
(rang_exp), differential gene expression (rang_diff), and the count of 
cancers where the gene exhibits negative expression (rang_neg). We 
then transformed these values, which originally ranged from 1 to 100, 
into decimal fractions, referred to as "rang decimal fractions" (RDF).  

RDF = rang / 100                                                                                

Subsequently, we calculated the EPI for genes and miRNAs in eight 
cancers using the formula:  

EPI = (rang_exp * 0⋅1) + (rang_diff * 0⋅3) + (rang_neg * 0⋅6)                

Fig. 1 presents a graphical abstract that illustrates the implementa
tion of the AmiCa platform. The workflow details the sequence of events, 
including data extraction and processing, tool development, results 
visualization, and tool applicability. 

3. Results 

3.1. AmiCa platform overview 

The AmiCa platform enables expression studies to be carried out in a 
variety of ways. Fig. 2 shows the homepage of the AmiCa platform. It 
illustrates how users can navigate through the various analysis options, 
including examining miRNA and gene expression and their correlations 
within individual cancer types (Fig. 2A), expression and correlation of 
MTIs across different cancer types (Fig. 2B), and expression of miRNAs 
and genes across different cancer types, as well as ranking genes and 
miRNAs based on their expression relative to other cancer types 
(Fig. 2C). 

Fig. 1. An illustration of the AmiCa workflow. miRNA and gene expression data were extracted from The Cancer Genome Atlas (TCGA) and used to calculate 
differential expression and miRNA-target genes (MTIs) correlations. The resulting expression and correlation values are visualized on the AmiCa web platform. 
Finally, AmiCa generates tables and graphs that can be easily downloaded for further analyzes, such as prioritizing miRNAs and genes by ranking. 

Fig. 2. First page of the AmiCa platform. Users can study miRNA and gene expressions and their correlations in each of the 32 cancers (A), explore miRNA/target 
gene interactions across cancers (B), and compare and rank miRNA and/or gene expressions across cancers via tabular and graphical representations (C). 
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Fig. 3. Expression by diseases of the selected miRNA/gene. A) query input for miRNA/gene; B) results presented in table format with the differential expression 
across different cancers; C) graphic presentation of selected miRNA and D) gene across cancers with normal tissue samples. 
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3.2. Diseases 

The dropdown menu “Diseases” in the sidebar enables selection from 
32 different types of cancer (Fig. 2A). The first page for each cancer 
(Fig. 4) displays data on patients and samples included in the analysis, 
such as statistics by gender, disease type, and race (Fig. 4A). It features a 
graphical view of the ten genes and miRNAs that are most up/down
regulated in cancers with normal tissue samples; for cancers lacking 
normal samples, the view displays the ten most expressed miRNAs/ 
genes in tumor samples (Fig. 4B). The first page also contains search 
forms for entering a miRNA or gene name (Fig. 4C). 

In the miRNA form, the miRNA name (e.g., hsa-miR-124–3p) or a 
part of the miRNA name (e.g., 124) can be entered and miRNA selected 
from a dropdown list. The form “Search by gene” has the same function 
in selecting desired genes. The dropdown lists contain the union of all 
miRNAs and genes expressed in at least one cancer type but are not 
necessarily represented in every cancer type. Upon selecting a miRNA/ 
gene of interest, a report consisting of four parts is generated and opens 
in a new tab. The summary section includes the number of tumor and 
normal (when available) samples with paired miRNA/gene data, the 
log2(average RPM) for the selected miRNA or the log2(average FPKM- 
UQ) for the selected gene for tumor and normal samples (when avail
able). The second part of the report displays distribution of miRNA/gene 
expression in the analyzed tumor and normal (when available) tissue 
samples. The third part shows the log2FC values for the ten most upre
gulated and ten most downregulated target genes (if there are ten or 
more target genes) for miRNA searches. For gene searches, it shows the 
most up/downregulated miRNAs for the selected target gene. If normal 
samples are not available, top the most expressed miRNAs/genes are 
displayed. The last part displays a table of all known MTIs for the 
searched miRNAs/genes. This table allows searches and sorting of in
dividual columns by clicking the arrows at the end of each column. 
Clicking on a row automatically fills in the form at the bottom of the 
page with the names of the miRNA and gene. The selection is then 
transmitted via the "Show graph" button. 

A new tab opens a four-part report for the specific (previously 
selected) MTI (Fig. 5), where the MTIs and their correlations within each 
cancer are examined in more detail. The expression of miRNA/gene on 
these pages is represented by log2-transformed values of miRNA/gene 

expressions for individual samples, which are used for graphing 
expression values and calculating the correlation of the MTIs. Each MTI 
report provides a detailed summary for both tumor and normal samples, 
including the number of samples with paired miRNA/gene data that also 
had a non-zero expression value, necessary for the R calculation. The 
summary includes the log2(average RPM) for the miRNA and the 
log2(average FPKM-UQ) for the gene, the calculated R and p-value for 
the selected MTI, and the MTI validation methods from miRTarBase. 
Notably, the sample size may sometimes be smaller than the entire 
dataset, due to R calculation is performed for samples with non-zero 
values for miRNA/gene data. The second part contains graphs 
showing miRNA and gene expression in tumor and normal samples, and, 
where applicable, a comparison between expressions in tumor and 
normal for paired tumor and normal samples. The third part of the MTI 
report shows the expression in tumor tissue by sample, presented as a 
distribution in a graphical and tabular view. 

3.3. miRNA/target genes 

The miRNA/target gene section (Fig. 2B) focuses on the graphical 
presentation of the differential expression of MTIs across different can
cer types with visualization option. Only cancers with normal samples 
are included in this section, as the difference in expression between 
tumor and normal samples is crucial for the comparison of different 
tissue types. 

The miRNA/gene name is entered in the textbox (Fig. 3A). Upon 
clicking the search button, a table displays the differentially expressed 
miRNAs/genes across various cancers (Fig. 3B). Selecting a row triggers 
an autofill query beneath the table, accompanied by a "Show Graph" 
button. This button generates a graph that visually presents differential 
expression of the selected miRNA (Fig. 3C) and gene (Fig. 3D) across 
multiple other cancers. 

3.4. Expression by disease 

Selecting the “Expression by Disease” dropdown menu in the sidebar 
opens three applications to examine genes and miRNAs expressed in 
cancer types, where normal tissue samples were available, namely: 
miRNA/gene expression, genes ranked by expression, and miRNA 

Fig. 4. Welcome page to study miRNA and gene expression in brain lower grade glioma (LGG). (A) statistics by gender, disease type, and race; (B) graphical view of 
the ten genes and miRNAs that are most upregulated and/or downregulated in LGG; (C) search forms for entering the miRNA or gene name for further study of their 
expression in LGG. 
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Fig. 5. Utilization of miRNA/gene expressions and their correlation within a specific cancer. Report for miRNA hsa-miR-124–3p and its target gene VIM for brain 
lower grade glioma (LGG) (A) and thyroid carcinoma (THCA) (B). 

Fig. 6. Expression of miRNA hsa-miR-124–3p (A) and gene VIM (B) by each included cancer.  
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ranked by expression (Fig. 2C). The result is available in a tabular and 
graphical form. The miRNA/gene expression application opens two 
search forms in which the miRNA and/or the gene name (not necessarily 
MTI) can be entered. The results are displayed as two bar charts for the 
searched miRNA/gene with differential expression values in different 
cancer types. 

Gene and miRNA ranking based on their differential expression, 

compared to other cancer types, is available by selecting “Genes ranked 
by expression” and “miRNA ranked by expression” from the dropdown 
menu. Using the radio buttons on the left side of the website, a specific 
cancer type can be selected (Fig. 7). The result is displayed in the table 
with an export option. To search for specific miRNA/gene, a search box 
above the table on the right can be used. Clicking on the row or name of 
the miRNA/gene, the preset search window is filled, which draws a bar 

Fig. 7. Gene and miRNA ranking according to their expression profiles in the case of brain lower grade glioma (LGG). (A) gene expression ranking by disease and (B) 
miRNA expression ranking by disease. 
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chart with the differential expression values of this miRNA/gene in 
cancer types, where normal tissue samples were available. The chart is 
also easily exported. 

The rank displayed in the table represents the number of cancers in 
which the expression of the miRNA/gene is lower than that of the 
selected cancer (up to a maximum of 22). 

3.5. Case study 1 

3.5.1. miRNA/gene expressions and their correlations in case of brain 
lower grade glioma 

AmiCa provides multiple ways to study miRNA/gene expression in 
the cancer of interest. Below we demonstrate the applicability of the 
AmiCa platform on a practical example of one cancer type, brain lower 
grade glioma (LGG). First, we selected LGG among other cancer types 
through the “Diseases” tab in the sidebar menu (page not shown). 

Statistics of the data used in the LGG study showed that the analysis 
was performed on 507 samples (54.9 % male, 45.1 % female) and that 
the majority of included patients were white (92.1 %). Diagnoses were 
classified into five sub-diagnoses: anaplastic astrocytoma, not otherwise 
specified (NOS) astrocytoma, mixed glioma, anaplastic oligoden
droglioma, and oligodendroglioma, NOS. The predominant diagnoses 
were anaplastic astrocytoma and mixed glioma with 128 and 126 
samples, respectively (Fig. 4A). Gene HOXD8 and miRNA hsa-miR- 
10b–5p were found to be the most up-regulated in LGG, while gene 
AC006538.2 and miRNA hsa-miR-137–3p were the most down- 
regulated in LGG (Fig. 4B). 

AmiCa offers users the ability to conduct MTI searches based on 
specific genes or miRNAs. When focusing on the gene VIM, our analysis 
revealed 24 validated MTIs with various miRNAs. Among these in
teractions, the most significant negative correlation emerged for hsa- 
miR-124–3p (Fig. 5A). 

Gene and miRNA expression in LGG was calculated based on 507 
tumor and five normal samples (from the GBM dataset). These five 
normal samples were not paired with tumor samples, as it is common in 
other cancers. Therefore, as an example of expression with paired tumor 
and normal samples, we included a report for the selected MTI in the 
case of THCA (Fig. 5B). 

3.5.2. Expression by disease 

3.5.2.1. miRNA/gene expression. To study the expression of a specific 
miRNA and gene in LGG, we selected miRNA hsa-miR-124–3p (Fig. 6A) 
and gene VIM (Fig. 6B). Notably, AmiCa enables the user to choose a 
specific miRNA-gene pair that is not a confirmed MTI, so any miRNA- 
gene combination can be presented, regardless. The results show that 
hsa-miR-124–3p is the most downregulated miRNA in LGG with log2FC 

–3.78, while the gene VIM is upregulated in LGG with log2FC 1.18. 
Fig. 6B also shows that the highest expression of VIM is present in KIRC. 

3.5.2.2. Genes and miRNAs ranked by expression. By selecting LGG using 
the radio buttons on the left side of the website (Fig. 7), a comparative 
analysis of differential gene expression profiles in different cancer types 
revealed 1618 genes with the highest rank (Fig. 7A). The HOXD8 gene 
appeared as the most highly expressed gene in LGG with a log2FC of 
10.49, followed by its second highest expression in LIHC with a log2FC 
of 4.26. The gene was downregulated in as many as 12 cancer types, 
with the lowest expression in KIRP. 

A comparative analysis of miRNA expression in LGG versus other 
cancer types showed 13 miRNAs with a rank of 22. The most highly 
expressed miRNA was hsa-miR-10b–5p with a log2FC of 4.86 in LGG 
samples, while in LIHC and READ the log2FC was 2.91. This miRNA was 
downregulated in 13 cancer types, with the lowest expression in CESC. 

3.6. Case study 2 

In the second case study, we employed gene and miRNA rankings 
based on their expression to illustrate the utility of AmiCa. We focused 
on identifying specific genetic markers capable of distinguishing pri
mary liver adenocarcinomas from those with metastatic potential to the 
liver. 

For the eight cancer types comprising BRCA, CHOL, COAD, LIHC, 
LUAD, PAAD, READ and STAD, we obtained a list of the most overex
pressed genes/miRNAs from the "expression by disease" section, which 
was crucial in the development of the Expression Prioritization Index 
(EPI). 

The top genes/miRNAs for each of these eight cancers were extracted 
from the AmiCa platform. 

For gene prioritization, our analysis starting point was the initial 100 
genes identified as the most overexpressed in the "expression by disease" 
section, under the "Genes Ranked by Expression" subsection. Table 1 
outlines the top genes in each category, forming the basis for con
structing the EPI, and includes the addition of the EPI’s most prioritized 
gene. The complete gene lists with EPI rank are included in Supple
mentary Table 1. 

Using the AmiCa’s "expression by disease" section (Fig. 8), the first- 
prioritized genes for each cancer were drawn. The first prioritized 
genes according to EPI were: SLC17A8 in BRCA, WIF1 in CHOL, MUC6 in 
COAD, GPC3 in LIHC, ETNPPL in LUAD, CIDEC in PAAD, AL662899.3 in 
READ and C4BPA in STAD. 

For miRNA analysis, data obtained by AmiCa often yielded less than 
100 miRNAs due to data limitation, with varying counts for each cancer 
type (e.g., BRCA: 7 miRNAs, CHOL: 14 miRNAs, COAD: 57 miRNAs, 
LIHC: 10 miRNAs, LUAD: 23 miRNAs, PAAD: 12 miRNAs, READ: 193 
miRNAs, and STAD: 7 miRNAs). These results were extracted from the 
"expression by disease" section under the "miRNAs Ranked by Expres
sion" subsection. Table 2 presents the top miRNAs in each category, 
forming the foundation for constructing the EPI, and includes the 
addition of the EPI’s most prioritized miRNA. Detailed lists of miRNAs 
along with their EPI rank are available in Supplementary Table 2. 

Using AmiCa’s "expression by disease" section (Fig. 9), the first- 
prioritized miRNAs for each cancer were drawn. The first prioritized 
miRNAs according to EPI were: hsa-miR-184 in BRCA, hsa-miR-133a-3p 
in CHOL, hsa-miR-143–3p in COAD, hsa-miR-216b–5p in LIHC, hsa- 
miR-143–5p in LUAD, hsa-miR-100–5p in PAAD, hsa-miR-126–3p in 
READ and hsa-miR-194–3p in STAD. 

4. Discussion 

We developed AmiCa, a web platform that allows users to analyze 
and visualize miRNA/gene expression datasets and explore correlations 
between miRNAs and their target genes. A distinctive feature of our tool 

Table 1 
Top prioritized genes in each category that composes EPI for each selected 
cancer.  

Cancer Gene 
Expression 
rank no. 1 

Differential 
gene 
expression 
rank no. 1 

Count of 
negative gene 
expression 
rank no. 1 

Expression 
prioritization 
index 
rank no. 1 

BRCA MS4A15 SCT SLC17A8 SLC17A8 
CHOL CST1 C2orf50 SLC5A8 WIF1 
COAD SFTA2 DKK4 SLC22A3 MUC6 
LIHC MAGEA1 GPC3 GPC3 GPC3 
LUAD CLPSL2 SPP2 ETNPPL ETNPPL 
PAAD UGT1A10 SI TMEM238 CIDEC 
READ C6orf15 BHLHA9 GRIN2 AL662899.3 
STAD CST4 R3HDML HJV C4BPA 

EPI, expression prioritization index; BRCA, breast invasive carcinoma; CHOL, 
cholangiocarcinoma; COAD, colon adenocarcinoma, LIHC, hepatocellular car
cinoma; LUAD, lung adenocarcinoma; PAAD, pancreas adenocarcinoma, READ, 
rectum adenocarcinoma; STAD, stomach adenocarcinoma. 
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Fig. 8. First prioritized genes according to Expression Prioritization Index (EPI) of (A) breast invasive carcinoma (BRCA), (B) cholangiocarcinoma (CHOL), (C) colon 
adenocarcinoma (COAD), (D) hepatocellular carcinoma (LIHC), (E) lung adenocarcinoma (LUAD), (F) pancreas adenocarcinoma (PAAD), (G) rectum adenocarci
noma (READ) and (H) stomach adenocarcinoma (STAD). 
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is the ability to calculate correlations for both tumor and normal sam
ples, and it includes a ranking system for miRNAs and genes. With 
AmiCa, researchers can identify prime candidates for targeted hypoth
eses and design experiments using specific miRNA, gene, or both loci 
data for advanced research and analysis. 

For our first case study demonstrating the capabilities of the AmiCa 
platform, we selected LGG due to its status as the most common ma
lignant primary brain tumor in adults [19,20]. Identifying effective 
biomarkers and new therapeutic targets for diagnosing, treating, and 
predicting LGG is essential. Notably, genes such as SPARC and VIM are 
upregulated in glioblastoma samples [21,22]. Our demonstration spe
cifically focused on the gene VIM and its associated MTIs. The most 
negatively correlated MTI identified was VIM/hsa-miR-124–3p, which is 
consistent with recent studies confirming the downregulation of 
hsa-miR-124–3p in gliomas [23]. 

The second case study was selected to showcase AmiCa’s ability to 
distinguish among different diseases using rank by miRNA/gene. We 
aimed to identify the most upregulated genes in eight cancer types and 
compare their expression across other cancers. Notably, distinguishing 
between similar cancer types that originate in the same organs, such as 
LIHC and CHOL, as well as COAD and READ, poses a significant chal
lenge based on their expression profiles. Conversely, differences in 
miRNAs/genes expression are more pronounced among cancers origi
nating from different organs. 

We developed a novel index EPI, to identify the most distinctive 
genetic loci for a specific type of cancer. We prioritized miRNAs and 
genes with the lowest EPI scores (lower EPI indicating higher priority) 
and highlighted the top miRNA and gene that are the most distinctive in 
each of those eight cancer types. 

Among these genes, significant evidence shows overexpression of the 
GPC3 gene and protein in LIHC [24–26], and heightened MUC6 
expression was observed in COAD and READ [27]. Additionally, our 
literature review revealed the upregulation of the MS4A15 gene has 
been observed in both STAD [28] and ovarian cancer [29]. CST1 ex
hibits overexpression in various cancers, with the highest expression 
CHOL, and confirmed overexpression in LIHC [30], BRCA [31] and 
PAAD [32]. In colon cancer, C6orf15 is highly expressed in tumor tis
sues, correlating with adverse pathological features and a poor prog
nosis [33]. The DKK4 gene has been identified as upregulated in COAD 
[34]. Many of the loci prioritized within these criteria have not yet been 
extensively studied in cancer, presenting significant opportunities for 

further research. 
For miRNAs prioritized by the EPI, we observed the upregulation of 

hsa-miR-100–5p in PAAD [35]. Extensive research has shown that 
hsa-miR-133a–3p is downregulated in several cancers, including BRCA 
[36], COAD and READ [37], LIHC [38], STAD [39] and others, aligning 
with our findings (Fig. 9B). For miRNAs prioritized by each of the 
criteria we found hsa-miR-374a–3p upregulated in COAD [40], while 
hsa-miR-552–5p and hsa-miR-26a–5p were overexpressed in COAD and 
READ [41,42]. Additionally, hsa-miR-654–5p was found overexpressed 
in STAD [43] and miRNA hsa-miR-582–3p was also found to be over
expressed in COAD [44]. 

Future research could explore the differences between primary 
cancers and their metastases. The Amica tool, as presented here, not 
only facilitates and complements various studies involving MTI but also 
empowers researchers to formulate initial hypotheses at the onset of 
their research endeavors. 

Technological advancements in next-generation sequencing have 
yielded vast genomic data and led to the development of platforms with 
diverse capabilities. While some platforms offer comprehensive visual
ization tools for genomic data, others serve as informational hubs for 
specific miRNAs/genes across various tissues. 

AmiCa distinguishes itself by specifically focusing on miRNA-gene 
target interactions, a feature not comprehensively addressed by other 
tools. For instance, GEPIA2 [10] excels in gene correlations and 
disease-specific transcript data but lacks miRNA-target gene pairing. 
Similarly, dbDEMC [12] provides extensive miRNA expression data 
across cancers but lacks focus on MTIs. Tissue Atlas [11] offers a 
comprehensive sncRNA atlas, including miRNA, but limits its correla
tions among miRNAs in normal tissues. Meanwhile, miTED [45] focuses 
on tissue origins without exploring detailed MTIs. In contrast, platforms 
like the Cancer miRNA Census [14] and IMOTA [13] present 
cancer-related miRNAs and focus on normal tissues, respectively, 
without providing cancer-specific correlations. 

Unlike these platforms, miRTarBase [9] hosts an extensive curated 
MTI database but is constrained by calculating MTI correlations on 
paired tumor-normal samples, limiting its wider applicability. In 
contrast, AmiCa integrates mature miRNA data with gene expression 
across 32 cancer types, presenting correlations separately for tumor and 
normal samples where available. This approach allows AmiCa to over
come limitations related to sample availability and ensures biological 
accuracy by focusing on mature miRNAs, directly involved in post
transcriptional gene regulation. This distinguishes AmiCa from tools like 
XENA [7], which analyze pre-miRNAs. 

AmiCa’s unique feature is its ranking system by miRNA/gene, not 
found in other tools with miRNA/gene expression data. This ranking 
enhances the platform’s utility in oncogenomic research. However, 
AmiCa faces limitations due to a scarcity of normal tissue samples. Its 
natural evolution involves expanding the dataset to include more 
diverse sources and incorporating additional data on normal tissue 
samples’ miRNA/gene expression levels. 

In conclusion, AmiCa emerges as a pivotal tool for in-depth explo
ration of miRNAs and genes within specific cancer contexts. It facilitates 
comprehensive studies and enables insightful comparisons, significantly 
contributing to unraveling the complexities of cancer research. This 
article has highlighted two practical demonstrations of the platform’s 
utility, but it is important to recognize the broader potential that AmiCa 
offers in advancing cancer research. 
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Fig. 9. First prioritized miRNAs according to Expression Prioritization Index (EPI) for (A) breast invasive carcinoma (BRCA), (B) cholangiocarcinoma (CHOL), (C) 
colon adenocarcinoma (COAD), (D) hepatocellular carcinoma (LIHC), (E) lung adenocarcinoma (LUAD), (F) pancreas adenocarcinoma (PAAD), (G) rectum 
adenocarcinoma (READ), and (H) stomach adenocarcinoma (STAD). 
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