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Abstract. If G is a graph and X ⊆ V (G), then X is a total mutual-visibility set
if every pair of vertices x and y of G admits the shortest x, y-path P with
V (P ) ∩ X ⊆ {x, y}. The cardinality of the largest total mutual-visibility set of G is
the total mutual-visibility number µt(G) of G. In this paper the total mutual-visibility
number is studied on Hamming graphs, that is, Cartesian products of complete
graphs. Different equivalent formulations for the problem are derived. The val-
ues µt(Kn1 □Kn2 □Kn3) are determined. It is proved that µt(Kn1 □ · · · □Knr ) =
O(Nr−2), where N = n1 + · · · + nr, and that µt(K □ ,r

s ) = Θ(sr−2) for every r ≥ 3,
where K □ ,r

s denotes the Cartesian product of r copies of Ks. The main theorems are
also reformulated as Turán-type results on hypergraphs.
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1. INTRODUCTION

Let G = (V (G), E(G)) be a graph and X ⊆ V (G). Then vertices x and y of G are
X-visible, if there exists the shortest x, y-path P such that no internal vertex of P be-
longs to X. The set X is a mutual-visibility set if any two vertices from X are X-visible,
while X is a total mutual-visibility set if any two vertices from V (G) are X-visible. The
cardinality of the largest mutual-visibility set (resp. total mutual-visibility set) is the
mutual-visibility number (resp. total mutual-visibility number) µ(G) (resp. µt(G)) of G.

The mutual-visibility sets were introduced by Di Stefano in [7] motivated by mutual
visibility in distributed computing and social networks. Although the motivation came
from theoretical computer science, it is a graph theory concept. It needs to be said
that the term mutual-visibility is also used in other contexts, for instance in robotics,
where the mutual visibility problem asks for a distributed algorithm that reposition
robots to a configuration where they all can see each other, cf. [1]. Some related
research can be found in [3, 6, 12]. The graph theoretic mutual-visibility was further

© 2025 Authors. Creative Commons CC-BY 4.0 63



64 Csilla Bujtás, Sandi Klavžar, and Jing Tian

investigated in [4, 5], where the latter paper naturally raised the need to introduce
the total mutual-visibility which was in turn investigated in [11, 13].

A graph G is a Hamming graph if G is the Cartesian product of complete graphs.
In particular, complete graphs are Hamming graphs. In [4, Corollary 3.7] it was shown
that µ(Kn □Km) = z(n, m; 2, 2), where z(n, m; 2, 2) is the Zarankiewicz’s number. To
determine the latter number is a notorious open problem [14, 15]. On the other hand, it
was proved in [13, Proposition 15] that µt(Kn □Km) = max{n, m}. In [11] the authors
proposed a challenging problem to determine the total mutual-visibility number of
Hamming graphs with at least three factors. They provided a total mutual-visibility
set of K3 □K3 □K2 of cardinality 4, and in Figure 1 we give a total mutual-visibility set
of K2 □K3 □K4 of cardinality 5.

Fig. 1. K2 □K3 □K4 with a total mutual-visibility set of cardinality 5 in bold

In the light of what has just been said, in this paper we focus on the total
mutual-visibility in Hamming graphs. In the next section we give equivalent formula-
tions of the problem which later serve as a tool for proof. Our first main result which
we prove in Section 3 reads as follows.

Theorem 1.1. If n1 ≥ n2 ≥ n3 ≥ 2 and N = n1 + n2 + n3, then

µt(Kn1 □Kn2 □Kn3) =





N − 4, n3 = 2,

N − 5, n3 = 3,

N − 6, n3 ≥ 4.

Note that if n1 ≥ n2 ≥ n3 = 1, then by the above-mentioned result from [13]
we have

µt(Kn1 □Kn2 □K1) = µt(Kn1 □Kn2) = N − n2 − 1 = n1.
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In Section 4, we prove the following result.

Theorem 1.2. If r ≥ 3, and s, n1, . . . , nr are positive integers, N = n1 + · · · + nr,
then the following statements hold:

(i) µt(Kn1 □ · · · □Knr
) ≤ 6

r! Nr−2,
(ii) µt(K □ ,r

s ) ≤ c′
r sr−2 with c′

r = 3
∏r

i=3(i − 1)i−3.

In the subsequent section, we strengthen the result for balanced Hamming graphs
by establishing the exact magnitude for their total mutual-visibility number. The
result [13, Proposition 15] implies µt(K □ ,2

s ) = Θ(s). However, the situation is different
for higher values of r as our third main result asserts. It will be proved in Section 5
using a probabilistic approach.

Theorem 1.3. If r ≥ 3, then

µt(K □ ,r
s ) = Θ(sr−2).

In the last section we reformulate our problem as a Turán-type question and
accordingly restate Theorems 1.1-1.3.

In the remainder of the introduction, we recall some definitions and terminology,
mainly about the Cartesian product of graphs. The standard shortest-path distance
between vertices u and v of a (connected) graph G will be denoted by dG(u, v). We will
use the term clique for a complete graph as well as for its vertex set. If u, v ∈ V (G),
then the interval IG[u, v] between u and v in G is the set of all vertices of G that lie on
shortest u, v-paths. The Cartesian product G□H of graphs G and H has the vertex set
V (G□H) = V (G)×V (H), vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈ E(G)
and h = h′, or g = g′ and hh′ ∈ E(H). Given a vertex h ∈ V (H), the subgraph of
G□H induced by the set {(g, h) : g ∈ V (G)}, is a G-layer and is denoted by Gh.
H-layers gH are defined analogously. Each G-layer and each H-layer is isomorphic
to G and H, respectively. Moreover, each layer of a Cartesian product is its convex
subgraph. We use this fact later on many times, sometimes implicitly. The Cartesian
product of r copies of G is denoted by G□ ,r. We say that K □ ,r

s is a balanced Hamming
graph. For more information on the Cartesian product see the book [9].

2. EQUIVALENT FORMULATIONS OF THE PROBLEM

In this section we prove two equivalent formulations of the total mutual-visibility
problem in Hamming graphs. First we prove that total mutual-visibility sets in
Hamming graphs are precisely the vertex sets such that no pair of vertices is at
distance 2. Then we reformulate this fact in terms of clique systems in complete
multipartite graphs.

We say that a 4-cycle of a Cartesian product graph G is a Cartesian square if it is
not contained in a single layer of G. This definition also applies to Cartesian product
of more than two factors. More precisely, let G = G1 □ · · · □Gr, r ≥ 2. Then the
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vertices u, u′, u′′, u′′′ ∈ V (G) form a Cartesian square if there exist i, j ∈ [r], i < j,
such that

u = (u1, . . . , ui−1, ui, ui+1, . . . , uj−1, uj , uj+1, . . . , ur),
u′ = (u1, . . . , ui−1, ui, ui+1, . . . , uj−1, u′

j , uj+1, . . . , ur),
u′′ = (u1, . . . , ui−1, u′

i, ui+1, . . . , uj−1, u′
j , uj+1, . . . , ur),

u′′′ = (u1, . . . , ui−1, u′
i, ui+1, . . . , uj−1, uj , uj+1, . . . , ur).

The following results were stated in [11, Lemma 5.8] for two factors, the proof for
more factors is analogous. That is, we just need to infer that a Cartesian square is
a convex subgraph of a Cartesian product graph.

Lemma 2.1. Let G = H1 □ · · · □Hr, r ≥ 2. If X is a total mutual-visibility set of G
and C is a Cartesian square of G, then X contains no diametral pair of vertices of C.

If a Cartesian square of a Cartesian product graph G fulfills the condition of
Lemma 2.1 for a set X ⊆ V (G), then we say that the cycle is X-suitable. For the proof
of our first characterization, we need the following result.

Proposition 2.2. If G is a Hamming graph, u, v ∈ V (G), and dG(u, v) = t, then the
subgraph induced by IG[u, v] is isomorphic to the t-cube Qt.

Our first equivalent formulation of the total mutual-visibility problem in Hamming
graphs now reads as follows.

Theorem 2.3. If G is a Hamming graph and X ⊆ V (G), then the following statements
are equivalent.

(i) X is a total mutual-visibility set of G.
(ii) 2 /∈ {dG(u, v) : u, v ∈ X}.
(iii) Each Cartesian square of G is X-suitable.

Proof. Let G = Kn1 □ · · · □Knr
, where ni ≥ 2 for i ∈ [r], and r ≥ 1. If r = 1, then

G is a complete graph which contains no Cartesian square, every subset of V (G)
forms a total mutual-visibility set, and diam(G) = 1. Hence, the three statements are
equivalent for G, and we may assume in the rest that r ≥ 2.

(i)⇒(ii) Suppose on the contrary that there exist vertices u, v ∈ X with dG(u, v) = 2.
Then u and v lie in a convex C4, but then the other two vertices of this convex C4 are
not X-visible, a contradiction.

(ii)⇒(iii) If 2 /∈ {dG(u, v) : u, v ∈ X}, then clearly each Cartesian square contains
at most two vertices of X, and if so, these two vertices are adjacent, hence each
Cartesian square is X-suitable.

(iii)⇒(i) Let X ⊆ V (G) and assume that each Cartesian square of G is X-suitable.
We need to show that each two vertices u, v ∈ V (G) are X-visible and proceed by
induction on dG(u, v) = t. If t = 1, the assertion is clear. Suppose now that t ≥ 2 and
that each pair of vertices at distance at most t − 1 is X-visible. By Proposition 2.2,
IG[u, v] induces a t-cube Qt. Let v(1), . . . , v(t) be the neighbors of v in this Qt. Then
each pair of vertices v(i) and v(j) lies in a Cartesian square of G together with



Total mutual-visibility in Hamming graphs 67

the vertex v. Since each Cartesian square of G is X-suitable, we infer that at most one
of the vertices v(1) and v(2) lies in X. Assume without loss of generality that v(1) /∈ X.
By the induction hypothesis, v(1) and u are X-visible which in turn implies that u
and v are also X-visible by concatenating the corresponding shortest u, v(1)-path and
the edge v(1)v.

To get another reformulation of the total mutual-visibility problem on Hamming
graphs, we consider the complete multipartite graph Kn1,...,nr

, where r ≥ 3 and
n1 ≥ · · · ≥ nr ≥ 2. Note that each maximal clique in it is a maximum clique that is of
order r.
Proposition 2.4. If r ≥ 3 and n1 ≥ · · · ≥ nr ≥ 2, then µt(Kn1 □ · · · □Knr

) is equal
to the cardinality of the largest family of maximal cliques of Kn1,...,nr

such that no two
cliques from the family intersect in an (r − 2)-clique.
Proof. Let r ≥ 3 and n1 ≥ · · · ≥ nr ≥ 2 and set G = Kn1 □ · · · □Knr

. Setting
V (Knj

) = [nj ] we have V (G) = {(i1, . . . , ir) : ij ∈ [nj ], j ∈ [r]}. We are going to
prove that each total mutual-visibility set of G gives rise to a family of maximal cliques
in Kn1,...,nr , such that no two cliques from the family intersect in an (r − 2)-clique,
as well as the other way around, that is, each family of maximal cliques in Kn1,...,nr

gives rise to a total mutual-visibility set of G.
Set H = Kn1,...,nr

. Let Ii, i ∈ [r], be the partite classes of H, where |Ii| = ni,
so that V (H) =

⋃r
i=1 Ii. Let further Ii = {ui,j : j ∈ [ni]}.

Let X = {x1, . . . , xt} be a total mutual-visibility set of G. For i ∈ [t], set

xi = (z(i)
1 , z

(i)
2 , . . . , z(i)

r ). (2.1)

To each vertex xi assign an r-clique of H induced by the set of vertices

Xi = {u1,z
(i)
1

, u2,z
(i)
2

, . . . , u
r,z

(i)
r

}. (2.2)

We claim that X = {Xi : i ∈ [t]} is a set of r-cliques of H such that no two cliques
from X intersect in an (r − 2)-clique. Since the vertices from Xi belong to pairwise
different partite classes of H, the graph induced by Xi is isomorphic to Kr. Moreover,
if i′ ̸= i, then dG(xi, xi′) ̸= 2, hence |Xi ∩ Xi′ | ≠ r − 2. We have thus seen that the
total mutual-visibility set X of G gives rise to a family of maximal cliques of H, such
that no two cliques from the family intersect in an (r − 2)-clique.

To prove the reverse assignment, we proceed in the reverse order as above. That is,
we start with a family of k-cliques X such that no two cliques from the set intersect
in an (r − 2)-clique. Then we use their enumeration as in (2.2) to produce a total
mutual-visibility set of the same cardinality as in (2.1).

3. PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is divided into two cases. We first deal with the case when
n3 ∈ {2, 3}, and then with the case n3 ≥ 4. For the proof of the first part, we recall
the following result.
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Proposition 3.1 ([13, Proposition 4.4]). If s ≥ 3 and n ≥ 3, then

µt(Cs □Kn) =
{

0, s ≥ 5,

n, otherwise.

Theorem 3.2. If n1 ≥ n2 ≥ n3 ∈ {2, 3}, then µt(Kn1 □Kn2 □Kn3) = n1 + n2 − 2.
Proof. Let n1 ≥ n2 ≥ n3, let n3 ∈ {2, 3}, and set G = Kn1 □Kn2 □Kn3 . By a straight-
forward case analysis we infer that µt(K2 □K2 □K2) = 2, hence the theorem holds in
this case. We may thus assume in the rest that n1 ≥ 3.

The vertices from the set

Y = {(i, 1, 1) : 2 ≤ i ≤ n1} ∪ {(1, j, 2) : 2 ≤ j ≤ n2}

are pairwise at distance 1 or 3. Theorem 2.3 implies that Y is a total mutual-visibility
set of G. Hence, µt(G) ≥ n1 + n2 − 2 = |Y |.

Let V (Knj ) = [nj ], so that

V (G) = {(i1, i2, i3) : ij ∈ [nj ], j ∈ [3]}

and let X be a total mutual-visibility set with |X| = µt(G). For a vertex x ∈ V (G),
let Xi(x) = {v ∈ X : dG(x, v) = i}, i ∈ [3].

To prove that µt(G) ≤ n1 + n2 − 2, note first that if no two vertices of X are
adjacent, then |X| ≤ n3. Indeed, if |X| > n3, then there exist two vertices w, w′ ∈ X
with the same third coordinate. As w and w′ are not adjacent, this means then
dG(w, w′) = 2, a contradiction with Theorem 2.3. Hence, if no two vertices of X are
adjacent, then |X| ≤ n3 ≤ n2 ≤ n1 + n2 − 2.

Let u and u′ be two adjacent vertices of X. Assume that u and u′ differ in the
first coordinate. By the symmetry of Hamming graphs we may assume without loss of
generality that u = (1, 1, 1) and u′ = (2, 1, 1). By Theorem 2.3, we have X2(u) = ∅,
so that

X = {u} ∪ X1(u) ∪ X3(u). (3.1)
We claim that all the vertices from X1(u) differ from u in the first coordinate. Indeed,
if this would not be the case, then there would exist a vertex u′′ = (1, j′′, 1) (or u′′ =
(1, 1, k′′)) in X, but then u′ and u′′ are diametral vertices of a Cartesian square which is
not possible by Theorem 2.3. Since n1 ≥ n2 ≥ n3, the claim implies that |X1| ≤ n1 − 1.
Case 1. |X1(u)| = n1 − 1.

By the above claim, in this case we may assume without loss of generality that
X1(u) = {(i, 1, 1) : i ∈ {2, . . . , n1}}. Consider an arbitrary vertex w = (w1, w2, w3)
from X3(u). Then w1 ≠ 1, w2 ̸= 1, and w3 ̸= 1. Since (w1, 1, 1) ∈ X and
d(w, (w1, 1, 1)) = 2 we get that X3(u) = ∅. By (3.1) we conclude that if |X1(u)| = n1−1,
then |X| = n1 ≤ n1 + n2 − 2 because n2 ≥ 2.
Case 2. |X1(u)| ≤ n1 − 2.

If n2 = 2, then we also have n3 = 2, and hence G = Kn1 □K2 □K2 = Kn1 □C4.
The assertion of the theorem then follows by Proposition 3.1. In the rest we may thus
assume that n2 ≥ 3.
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Suppose on the contrary that µt(G) ≥ n1 + n2 − 1 ≥ n1 + 2. Then |X3(u)| ≥ 3.
We distinguish two subcases.

Case 2.1. n3 = 2.

Then the third coordinate of the vertices from X3(u) is 2. Let z = (i, j, 2) ∈ X3(u).
If no vertex from X is adjacent to z, then |X| ≤ |X1(u)| + 2 ≤ n1 and we are done.
Assume hence that z′ ∈ X is adjacent to z, so that z′ = (i′, j, 2) or z′ = (i, j′, 2).
If z′ = (i′, j, 2), then the first coordinates of the vertices from X are pairwise different,
hence |X| ≤ n1 in this subcase. If z′ = (i, j′, 2), then the vertices from X3(u) must
have pairwise different second coordinates and also not equal to 1, hence in this subcase
|X3(u)| ≤ n2 − 1 so that |X| ≤ 1 + (n1 − 2) + (n2 − 1) = n1 + n2 − 2.

Case 2.2. n3 = 3.

If the third coordinate of all the vertices of X3(u) is 2, then by similar arguments to
the case n3 = 2 we get µt(G) ≤ n1+n2−2. Analogously, if the third coordinate of all the
vertices of X3(u) is 3, then we also conclude that µt(G) ≤ n1 + n3 − 2 ≤ n1 + n2 − 2.
Hence, in the rest we may assume that in X3(u) there exist vertices w = (i, j, 2)
and w′ = (i′, j′, 3). Set W1 = X3(u) ∩ X1(w) and W3 = X3(u) ∩ X3(w), so that
X3(u) = {w} ∪ W1 ∪ W3. Further, let Ni(u) = {v ∈ V (G) : dG(u, v) = i}, i ∈ [3]. See
Figure 2 for a schematic presentation of these sets.

u

· · ·· · ·

· · ·

· · ·· · · · · ·
w

X1(u)

X3(u)

N1(u)

N2(u)

N3(u)
W1 W3

Fig. 2. Graph G with a total mutual-visibility set X = {u} ∪ X1(u) ∪ X3(u)

Assume first that W1 = ∅, that is, X3(u) = {w}∪W3. Since n3 = 3 and w = (i, j, 2),
the third coordinate of the vertices of W3 is 3. Furthermore, if the second coordinates
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of all the vertices from W3 are equal to j′, the first coordinates of the vertices from X
are pairwise different. Then we have |W3| ≤ n1 − |X1(u)| − 2 and hence

|X| = |X1(u)| + |X3(u)| + 1
= |X1(u)| + (|W3| + 1) + 1
≤ |X1(u)| + (n1 − |X1(u)| − 2 + 1) + 1 = n1.

If the first coordinates of all the vertices from W3 are equal to i′, then since j′ ̸= j ̸= 1,
we have |W3| ≤ n2 − 2. Hence, in this case we get

|X| = |X1(u)| + |X3(u)| + 1
= |X1(u)| + (|W3| + 1) + 1
≤ n1 − 2 + (n2 − 2 + 1) + 1 = n1 + n2 − 2.

Assume second that |W1| > 0. If the second coordinates of all the vertices of W1
are j, then it follows that the third coordinates of the vertices from W1 equal to 2 and
the third coordinates of the vertices from W3 equal to 3. Hence, the first coordinates of
the vertices from X1(u) ∪ W1 are pairwise different, since |W3| ≥ 1, which then implies
that |W1| ≤ n1 − |X1(u)| − 2. Assume further that the second coordinates of all the
vertices from W3 equal to j′. That means that the first coordinates of the vertices
from X are pairwise different, then we have |W3| ≤ n1 − |X1(u)| − |W1| − 2. Hence,

|X| = |X1(u)| + |X3(u)| + 1
= |X1(u)| + (|W1| + |W3| + 1) + 1
≤ |X1(u)| + (|W1| + n1 − |X1(u)| − |W1| − 2 + 1) + 1 = n1.

Assume that the first coordinates of all the vertices from W3 are equal to i′. Since
j′ ̸= j ̸= 1, then we have |W3| ≤ n2 − 2. Hence,

|X| = |X1(u)| + |X3(u)| + 1
= |X1(u)| + (|W1| + |W3| + 1) + 1
≤ |X1(u)| + (n1 − |X1(u)| − 2 + n2 − 2 + 1) + 1 = n1 + n2 − 2.

Similarly, we also get |X| ≤ n1 + n2 − 2 when the first coordinates of all the vertices
of W1 are i.

By similar arguments to the above, µt(G) ≤ n1 + n2 − 2 holds when u and u′ differ
in the second or in the third coordinate, in which case all the vertices from X1(u)
differ in this coordinate. Hence, in any case we have µt(G) ≤ n1 + n2 − 2, and we can
conclude that µt(G) = n1 + n2 − 2.

Theorem 3.3. If n1 ≥ n2 ≥ n3 ≥ 4, then

µt(Kn1 □Kn2 □Kn3) = n1 + n2 + n3 − 6.

Proof. To prove this result we will apply Proposition 2.4. More precisely, setting
H = Kn1,n2,n3 we are going to prove that the largest set of triangles in H such that no
two triangles from the set intersect in a single vertex has cardinality n1 + n2 + n3 − 6.
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We use the same notation as in the proof of Proposition 2.4. That is, let I1, I2, I3
be the partition classes of H with Ii = {ui,j : j ∈ [ni]} for each i ∈ [3]. A 3-clique
(triangle) induced by the vertices u, v, z is denoted by uvz. Consider first the following
sets of triangles in H

K1 = {u1,ju2,1u3,1 : 3 ≤ j ≤ n1},

K2 = {u1,1u2,ju3,2 : 3 ≤ j ≤ n2},

K3 = {u1,2u2,2u3,j : 3 ≤ j ≤ n3},

and set K = K1 ∪ K2 ∪ K3. It is clear that |K| = n1 + n2 + n3 − 6. Moreover, for any
two triangles t, t′ ∈ K, either t and t′ are from the same set Ki and |t ∩ t′| = 2, or they
are from different triangle sets and do not share a vertex. In either case, |t ∩ t′| ≠ 1 as
required. By Proposition 2.4 we thus have µt(Kn1 □Kn2 □Kn3) ≥ n1 + n2 + n3 − 6.

To prove the reverse inequality, let K be a triangle set in H of maximum cardinality
such that |t ∩ t′| ̸= 1 holds for every pair of triangles t, t′ from K. Given K, we say
that uv is a base edge of the triangle uvz ∈ K, if uv is incident to at least two triangles
from K.

Claim A. Every triangle t ∈ K has at most one base edge.

Proof of Claim A. Suppose that uv and vz are two base edges of uvz ∈ K. Then, there
exists a vertex z1 ̸= z with uvz1 ∈ K, and also a vertex u1 ≠ u with u1vz ∈ K. The
triangles t1 = uvz1 and t2 = u1vz share the vertex v. As |t1 ∩ t2| = 1 is not possible,
there must be another common vertex in t1 ∩ t2. As u ̸= u1, z ̸= z1, and u ̸= z are
supposed, the only remaining possibility is u1 = z1. However, under the assumption
u1 = z1, vertices u, v, z, and u1 form a 4-clique that is impossible in the 3-partite
graph H.

By Claim A, the triangles in K can be partitioned into classes K1, . . . , Ks such
that, for each i ∈ [s], the set Ki either contains all triangles from K which are incident
to a fixed base edge, or Ki contains just one triangle without a base edge. Note that,
by Claim A, the partition is unique. Let Vi denote the set of vertices covered by the
triangles in Ki, for every i ∈ [s].

Claim B. The sets V1, . . . , Vs are pairwise vertex-disjoint, and |K| = |⋃s
i=1 Vi| − 2s ≤

n1 + n2 + n3 − 2s holds.

Proof of Claim B. We first prove that V1, . . . , Vs are pairwise vertex-disjoint. If Ki

contains a triangle t without a base edge, then |t ∩ t′| < 2 holds for every t′ ∈ K \ {t}.
By the assumption |t ∩ t′| ̸= 1, we may infer that t is vertex-disjoint from every other
triangle in K. Now, consider a triangle t = uvz with a base edge uv and the class
Ki that contains t. Suppose that z is also incident to another triangle t′ = zxy. As
|t ∩ t′| ̸= 1, the two triangles share a vertex different from z. It follows then that t
contains a base edge different from uv that contradicts Claim A. We may conclude
that z belongs to only one class Vi. A similar argument shows that the same is true
for the vertices u and v.
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Since the triangles in Ki share a base edge or Ki contains only one triangle,
|Ki| = |Vi| − 2 holds for every i ∈ [s]. As V1, . . . , Vs are pairwise vertex-disjoint, we
may conclude |K| = |⋃s

i=1 Vi| − 2s ≤ n1 + n2 + n3 − 2s as stated.

Claim C. If s = 1, then |K| ≤ n1, and if s = 2, then |K| ≤ n1 + n2 − 2.

Proof of Claim C. If s = 1, then all triangles in K has the same base edge uv and
a further vertex which belongs to the third partite class of H. Hence, the number of
triangles in K is at most n1 and |K| ≤ n1 + n2 − 2 is true.

If s = 2, we have two sets K1 and K2 with base edges uv and u′v′. If u, u′ ∈ Ii

and v, v′ ∈ Ij , then the remaining vertices in V1 ∪ V2 \ {u, u′, v, v′} all belong to
the third partite class Iℓ. By Claim B, V1 and V2 are disjoint sets and therefore,
|V1 ∪ V2| ≤ |Iℓ| + 4 and |K| ≤ |Iℓ| = nℓ. In the other case, the base edges uv and u′v′

contain at least one vertex from each partition class of H. Suppose that u, u′ ∈ Ii,
v ∈ Ij , v′ ∈ Iℓ, and that uv and u′v′ are the base edges in K1 and K2, respectively.
It follows from Claim B that V1 \ {u, v} ⊆ Iℓ \ {v′} and |K1| ≤ nℓ − 1. Analogously,
|K2| ≤ nj − 1. We may conclude again that

|K| ≤ nℓ + nj − 2 ≤ n1 + n2 − 2

which finishes the proof of the claim.

By Claim B, we have |K| ≤ n1 + n2 + n3 − 6 whenever s ≥ 3. By Claim C,
we get |K| ≤ n1 + n2 − 2 if s = 2. As n3 ≥ 4 is supposed, it also implies
|K| ≤ n1 + n2 + n3 − 6. Similarly, the case of s = 1 gives |K| ≤ n1 < n1 + n2 + n3 − 6.
We may then infer |K| ≤ n1 + n2 + n3 − 6. In view of Proposition 2.4, we conclude
that µt(Kn1 □Kn2 □Kn3) ≤ n1 + n2 + n3 − 6.

Theorem 1.1 follows by combining Theorems 3.2 and 3.3.

Remark 3.4. Using the method from the proof of Theorem 3.3, it is possible to
give a shorter proof of Theorem 3.2. However, we decided to include the present
proof because it could provide a different technique to handle higher dimensional
Hamming graphs.

4. PROOF OF THEOREM 1.2

Recall that for Theorem 1.2(i) we assume r ≥ 3 and N = n1 + · · · + nr. The main
goal is to prove that µt(Kn1 □ · · · □Knr ) = O(Nr−2), but along the way we will also
determine the constant from the statement of the theorem. We are going to show that,
for each r ≥ 3 and each r-dimensional Hamming graph Kn1 □ · · · □Knr

, the constant
cr = 6

r! satisfies
µt(Kn1 □ · · · □Knr

) ≤ crNr−2 . (4.1)

By Theorem 1.1, the statement (4.1) is true for r = 3 with the constant c3 = 1.
We then proceed by induction on r.
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We may suppose that n1 ≥ · · · ≥ nr and therefore, nr ≤ N
r holds. Let H denote

the product Kn1 □ · · · □Knr and let X be a maximum total mutual-visibility set
in H. For an integer j ∈ [nr], we define the following set of vertices in H:

L(j) = {(x1, . . . , xr−1, j) : xi ∈ [ni] for i ∈ [r − 1]}.

The subgraph of H induced by L(j) is isomorphic to the (r − 1)-dimensional Hamming
graph H ′ = Kn1 □ · · · □Knr−1 . As it is a convex subgraph of H, the set X ∩ L(j)
contains no two vertices at distance 2 apart. Hence, the removal of the fixed last
coordinate j transforms L(j) ∩ X into a total mutual-visibility set X ′ in H ′. Clearly,
|X ′| ≤ µt(H ′) and |X ′| = |X ∩ L(j)| hold. By the induction hypothesis,

|X ′| ≤ µt(H ′) ≤ cr−1(N − nr)r−3 < cr−1 Nr−3. (4.2)

Equivalently, every set L(j) contains less than cr−1 Nr−3 vertices from X. On the
other hand, every vertex v ∈ X belongs to exactly one set L(j), and it follows that

|X| < nr cr−1 Nr−3 ≤ N

r
cr−1 Nr−3 = cr−1

r
Nr−2. (4.3)

This proves (4.1) for the r-dimensional Hamming graphs with the constant cr = cr−1/r.
Starting with the constant c3 = 1, we infer that the upper bound (4.1) holds for every
r ≥ 3 with the constant cr = 6

r! .

The assertion (ii) of Theorem 1.2 is true for r = 3 by Theorem 1.1. We then proceed
by induction on r. The formula can be proved along the same lines as the inequality
in (i). We set H = K □ ,r

s , n1 = . . . = nr = s, and N = rs. Rewriting the inequalities
(4.2) and (4.3) according to the hypothesis and using N − nr = (r − 1)s, we get

|X ′| ≤ µt(H ′) ≤
(

3
r−1∏

i=3
(i − 1)i−3

)
((r − 1)s)r−3 =

(
3

r∏

i=3
(i − 1)i−3

)
sr−3,

and we can conclude

|X| = µt(H) ≤
(

3
r∏

i=3
(i − 1)i−3

)
sr−2

which proves Theorem 1.2.

5. PROOF OF THEOREM 1.3

Theorem 1.3 asserts that for every integer r ≥ 3 it holds that µt(K □ ,r
s ) = Θ(sr−2).

For r ≥ 3, Theorem 1.2(ii) directly implies µt(K □ ,r
s ) = O(sr−2). For the lower bound,

we give a probabilistic proof based on a similar idea as the proof in [2, Section 4] for
a famous hypergraph Turán-problem of Brown, Erdős, and Sós.
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Let r ≥ 3 and H = K □ ,r
s . From H, we choose each vertex with probability

p = 2
r(r−1)s2 , independently of the decisions made for other vertices. This way, we

obtain a set S ⊆ V (H). The expected value of the size of S is

E(|S|) = srp = 2
r(r − 1)sr−2 .

We say that a set {u, v} of two vertices from S is a bad pair in S, if dH(u, v) = 2. Let
B denote the set of all bad pairs that are present in S. To get the pairs of vertices
at distance 2 apart in H, we may first choose the two entries where they differ, fix
the coordinates for these two entries appropriately, and fix the remaining coordinates
arbitrarily. As the vertices of S were selected randomly with probability p, we may
estimate the size of B in the following way:

E(|B|) =
(

r

2

)
s2(s − 1)2

2 sr−2 p2

≤ r(r − 1)s4

4
2

r(r − 1)s2 sr−2 p

= 1
2 sr p = 1

2 E(|S|).

For a set S ⊆ V (H), we remove one vertex from each bad pair. The obtained set
S∗ contains no bad pairs, that is, S∗ is a total mutual-visibility set in H. Moreover,
we have

E(|S∗|) ≥ E(|S|) − E(|B|) ≥ 1
2 E(|S|) = sr−2

r(r − 1) .

There exists at least one set S that results in a total mutual visibility set X with
|X| ≥ E(|S∗|) after removing one vertex from each bad pair. We may therefore infer

µt(K □ ,r
s ) ≥ 1

r(r − 1) sr−2.

Together with the upper bound, this implies µt(K □ ,r
s ) = Θ(sr−2).

Remark 5.1. If we consider r-dimensional Hamming graphs in general, the statement
analogous to that in Theorem 1.3 is not valid. Indeed, assume that, for a fixed r ≥ 3,
there exists an absolute constant c = c(r) such that

µt(Kn1 □ · · · □Knr
) ≥ c Nr−2

holds for every Hamming graph with 2 ≤ nr ≤ · · · ≤ n1 and N =
∑r

i=1 ni. By setting
n2 = · · · = nr = 2 and choosing an integer n1 > 2 r−3

√
4/c, the obtained r-dimensional

Hamming graph H gives the contradiction

µt(H) ≤ |V (H)| = 2r−1 n1 = 2r−1

nr−3
1

nr−2
1 < c nr−2

1 < c Nr−2 ≤ µt(H).
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6. A TURÁN-TYPE PROBLEM

In this section, we show that our main results can be reformulated in the language of
Turán-type problems on hypergraphs.

A hypergraph H = (V, E) is a set system over the vertex set V . More precisely,
every (hyper)edge e ∈ E is a nonempty subset of V . A hypergraph H ′ = (V ′, E′) is
a subhypergraph of H = (V, E) if both V ′ ⊆ V and E′ ⊆ E hold. A hypergraph H
is r-uniform if every e ∈ E contains exactly r vertices. Note that r-uniform hypergraphs
are often called r-graphs. Then, 2-uniform hypergraphs correspond to simple graphs.
The complete r-partite r-graph K(r)

n1,...,nr is the r-uniform hypergraph on the vertex
set V = V1 ∪ · · · ∪ Vr, where the partite classes V1, . . . , Vr are pairwise disjoint and
|Vi| = ni holds for every i ∈ [r], and moreover, the edge set is defined as

E = {e ⊆ V : |e ∩ Vi| = 1 for every i ∈ [r]}.

Thus, K(r)
n1,...,nr contains Πr

i=1ni edges.
The basic example for a hypergraph Turán problem takes an n-element vertex set

V and asks for the maximum number of edges in a r-uniform hypergraph H = (V, E)
that contains no subhypergraph isomorphic to a given (r-uniform) hypergraph F .
This maximum number is denoted by exr(n, F ). Remark that most of the Turán-type
hypergraph problems considered are notoriously hard. Even the tight asymptotics or
the exact order of magnitude for exr(n, F ) may be hard to identify as n → ∞. For
more details on the subject we refer the reader to the book [8] and the survey [10].

We may also consider the version of the problem, where the edges must be selected
from the complete r-uniform r-graph K(r)

n1,...,nr such that the obtained hypergraph
does not contain a subhypergraph isomorphic to a given F . Under this condition, the
maximum number of edges will be denoted by ex(K(r)

n1,...,nr , F ).
For r ≥ 2, let Fr denote the r-uniform hypergraph on r + 2 vertices that contains

two edges f1 and f2 with |f1 ∩ f2| = r − 2, see Figure 3.

F2 F3 F4

Fig. 3. The 2-uniform, 3-uniform and 4-uniform forbidden subhypergraphs
in our problem

By Proposition 2.4, the maximum size of a total mutual visibility set in the Hamming
graph Kn1 □ · · · □Knr

equals the maximum number of r-cliques in the graph Kn1,...,nr
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such that no two of them intersect in r−2 vertices. The latter problem can be expressed
by taking the vertex sets of the maximum cliques in Kn1,...,nr as edges in an r-uniform
r-graph and forbidding the subhypergraph Fr. Therefore, we may conclude

µt(Kn1 □ · · · □Knr
) = ex(K(r)

n1,...,nr
, Fr)

and then, Theorems 1.1, 1.2, and 1.3 can be reformulated as follows.
Proposition 6.1. If n1 ≥ n2 ≥ n3 ≥ 2 and n = n1 + n2 + n3, then

ex(K(3)
n1,n2,n3 , F3) =





n − 4, n3 = 2,

n − 5, n3 = 3,

n − 6, n3 ≥ 4.

Proposition 6.2. (i) If r ≥ 3 and n denotes
∑r

i=1 ni, then

ex(K(r)
n1,...,nr

, Fr) = O(nr−2).

(ii) For every integer r ≥ 3, it holds that

ex(K(r)
s,...,s, Fr) = Θ(sr−2).

The famous problem of Brown, Erdős, and Sós from [2] asks for the maximum
number of edges in an r-uniform hypergraph of order n when all subhypergraphs with
v vertices and e edges are forbidden. This maximum is denoted by f (r)(n, v, e) − 1.
Our problem differs from this famous one in two main aspects and consequently,
neither lower nor upper bounds on f (r)(n, r + 2, 2) − 1 can be applied directly to
ex(K(r)

n1,...,nr , Fr). First, when f (r)(n, r+2, 2)−1 is counted, r-edges intersecting in r−1
vertices are also forbidden unlike to our problem setting. Second, in our problem, the
edges of the extremal hypergraph must be selected from Kn1,...,nr , while the problem
discussed in [2] has no such a restriction.
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