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Given a closed subset K in R, the rational K–truncated mo-
ment problem (K–RTMP) asks to characterize the existence 
of a positive Borel measure μ, supported on K, such that a 
linear functional L, defined on all rational functions of the 
form f

q
, where q is a fixed polynomial with all real zeros of 

even order and f is any real polynomial of degree at most 
2k, is an integration with respect to μ. The case of a com-
pact set K was solved in [4], but there is no argument that 
ensures that μ vanishes on all real zeros of q. An obvious nec-
essary condition for the solvability of the K–RTMP is that L
is nonnegative on every f satisfying f |K ≥ 0. If L is strictly 
positive on every 0 �= f |K ≥ 0, we add the missing argument 
from [4] and also bound the number of atoms in a minimal 
representing measure. We show by an example that nonnega-
tivity of L is not sufficient and add the missing conditions to 
the solution. We also solve the K–RTMP for unbounded K
and derive the solutions to the strong truncated Hamburger 
moment problem and the truncated moment problem on the 
unit circle as special cases.
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1. Introduction

Let R[x]≤k := {f ∈ R[x] : deg f ≤ k} stand for the set of real univariate polynomials 
of degree at most k. Let K ⊆ R be a closed set in R, λ1, . . . , λp distinct real numbers with 
p ∈ N ∪ {0}, η1, . . . , ηr distinct positive real numbers with r ∈ N ∪ {0}, k0, . . . , kp ∈ N, 
�1, . . . , �r ∈ N,

q(x) :=
p ∏

j=1
(x− λj)2kj ·

r∏
j=1

(x2 + ηj)�j , (1.1)

2k :=
∑p

j=0 2kj +
∑r

j=1 2�j and

R(2k) =
{
f

q
: f ∈ R[x]≤2k

}
. (1.2)

The rational K–truncated moment problem (K–RTMP) asks to characterize the ex-
istence of a positive Borel measure μ, supported on K, such that a linear functional 
L : R(2k) → R has an integral representation

L(R) =
∫
K

R(x)dμ(x) ∀R ∈ R(2k). (1.3)

If μ is such a measure, then we call it a K–representing measure (K–rm) for L. The 
points λj (resp. ±i

√
ηj) are called real poles (resp. complex poles).

Remark 1.1. An equivalent formulation of the problem [4], more common in the mo-
ment problem literature, is the following. Assume the notation above. Given sequences 
{γ(j)

i }2kj

i=0 ⊂ R where j = 0, . . . , p and kj ∈ N ∪ {0}, and sequences {γ(p+j,s)
i }�ji=1 where 

j = 1, . . . , r, s = 0, 1, and �j ∈ N ∪ {0}, characterize the existence of a positive Borel 
measure μ, supported on K, such that

γ
(0)
i =

∫
K

xidμ(x), i = 0, . . . , 2k0,

γ
(j)
i =

∫
K

1 
(x− λj)i

dμ(x), j = 1, . . . , p, i = 1, . . . , 2kj ,

γ
(p+j,0)
i =

∫
K

1 
(x2 + ηj)i

dμ(x), j = 1, . . . , r, i = 1, . . . , �j ,

γ
(p+j,1)
i =

∫
K

x 
(x2 + ηj)i

dμ(x), j = 1, . . . , r, i = 1, . . . , �j .

(1.4)
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Equivalence of the formulations (1.3) and (1.4) is due to partial fractions decomposition, 
i.e., every R ∈ R(2k) can be expressed as

2k0∑
i=0 

aix
i +

p ∑
j=1 

2kj∑
i=1 

bi,j
(x− λj)i

+
r∑

j=1 

�j∑
i=1 

ci,j
(x2 + ηj)i

+
r∑

j=1 

�j∑
i=1 

di,jx 
(x2 + ηj)i

for some ai, bi,j , ci,j , di,j ∈ R. �

The univariate rational moment problems for the interval (bounded or unbounded), 
especially the full version without bounds on the degrees of moments (i.e., kj can be 
∞ in (1.4) above) were studied extensively by Jones, Njåstad and Thron [11–13,17–20]. 
The main approach for their results was a theory of orthogonal and quasi-orthogonal 
rational functions. For any compact set K ⊂ R the K–RTMP was studied by Chandler 
[4] using duality with positive polynomials. The motivation for this paper was to extend 
Chandler’s solution from a compact set K, in which only real poles are allowed, to an 
arbitrary closed set K ⊆ R, in which complex poles are also present. Apart from the fact 
that the K–RTMP is interesting for its own sake, the application of the univariate re-
duction technique can also provide solutions to the bivariate truncated moment problem 
(TMP) on some algebraic curves, where all irreducible components are rational (see [2, 
Section 6] for xy = 0; [27] for y2 = y and y(y − a)(y − b) = 0, a, b ∈ R \ {0}, a �= b; [26] 
for y = x3 and y2 = x3; [28] for xy = 1 and xy2 = 1; [29] for y = q(x) and yq(x) = 1, 
q ∈ R[x]; [25] for y(ay + x2 + y2) = 0, a ∈ R \ {0}, and y(x− y2) = 0).

We also mention that versions of the multidimensional rational moment problem for 
linear functionals on localizations of the polynomial algebra have been investigated in 
[5,21,23].

A technique used in [4] to solve the K–RTMP is to convert the problem into the 
usual TMP, which concerns the integral representability of linear functionals on univari-
ate polynomials of bounded degree with respect to the measure supported on K. This 
simplifies the problem since univariate TMPs have been widely studied in the litera-
ture [1,6,10,14], but one must additionally characterize when the measure vanishes on 
all real poles of the K–RTMP. This detail is not taken care of in [4]. Our first main 
result closes this gap for strictly positive functionals on K, i.e., functionals that are pos-
itive on every nonzero polynomial nonnegative on K. We extend the result to arbitrary 
closed sets K, where complex poles are allowed. We formulate the result in terms of the 
corresponding functional on polynomials, where at most countable closed set in K is 
to be avoided by the measure. The proof is done by applying a more general result of 
di Dio and Schmüdgen (see [9, Proposition 2] or [22, Theorem 1.30]), which holds for 
strictly positive linear functionals on arbitrary finite-dimensional subspaces of the real 
vector space of continuous functions on a locally compact Hausdorff space. [9, Corollary 
6] also provides an upper bound for the Caratheodory number, i.e., the number of atoms 
needed in a minimal representing measure. Moreover, we provide a constructive proof in 
the case K is a closed semialgebraic set, which also improves the upper bound on the 
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Caratheodory number obtained by applying [9, Corollary 6]. In the proof, we essentially 
use a result of Blekherman et al. [3], which characterizes minimal quadrature rules for 
linear functionals on univariate polynomials of bounded degree. Our second main result 
solves the K–RTMP for arbitrary closed K for positive functionals that are not strictly 
positive, i.e., the functional can vanish on some nonzero polynomial that is nonnegative 
on K. We construct a counterexample to the solution [4, Proposition 2] for compact 
K, which misses additional conditions except K–positivity of the functional. Finally, we 
apply our main results to obtain a solution to the strong Hamburger TMP [28] and the 
TMP on the unit circle [7].

1.1. Reader’s guide

The paper is structured as follows. In Section 2 we introduce some further nota-
tion, show the correspondence between the K–RTMP and the corresponding univariate 
K–TMP, recall the result characterizing positive polynomials on K, the notions of lo-
calizing Hankel matrices, the solution to the R–TMP by Curto and Fialkow, and the 
characterization of minimal quadrature formulas in the nonsingular case by Blekherman 
et al. In Section 3 we solve the K–TMP coming from the K–RTMP both in the nonsin-
gular case (see Theorem 3.1) and in the singular case (see Theorem 3.2). Example 3.4
shows that K–positivity of the functional is not sufficient for the existence of a K–rm 
that avoids real poles. Finally, in Section 4 we derive the solutions to the strong Ham-
burger TMP (see Corollary 4.1) and the TMP on the unit circle (see Theorem 4.4), and 
give an example (see Example 4.6), which demonstrates the construction of the measure 
as in the proof of Theorem 3.1.

2. Preliminaries

We write Rn×m for the set of n×m real matrices. For a matrix M we call the linear 
span of its columns a column space and denote it by C(M). The set of real symmetric 
matrices of size n will be denoted by Sn. For a matrix A ∈ Sn the notation A � 0 (resp. 
A  0) means A is positive definite (pd) (resp. positive semidefinite (psd)).

For a polynomial f ∈ R[x] we denote by Z(f) := {x ∈ R : f(x) = 0} its set of zeros.

2.1. Representing measures

Assume the notation from §1. For L : R(2k) → R we define a corresponding linear 
functional L on R[x]≤2k by

L : R[x]≤2k → R, L(f) := L(fq−1). (2.1)

We call a positive Borel measure μ, supported on a closed set K ⊆ R, a
K–representing measure (K–rm) for L if and only if
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L(f) =
∫
K

fdμ ∀f ∈ R[x]≤2k.

For x ∈ R, δx stands for the Dirac measure supported on x. By a finitely atomic 
positive measure on R we mean a measure of the form μ =

∑�
j=0 ρjδxj

, where � ∈ N, 
each ρj > 0 and each xj ∈ R. The points xj are called atoms of the measure μ and the 
constants ρj the corresponding densities.

Let Λ ⊆ K be a set. We write

ML,K := {μ : μ is a K–representing measure for L},

ML,K := {μ : μ is a K–representing measure for L},

ML,K,Λ := {μ : μ is a K–representing measure for L with μ(Λ) = 0}.

We denote by M(fa)
L,K , M(fa)

L,K and M(fa)
L,K,Λ the subsets of ML,K , ML,K and ML,K,Λ, 

respectively, containing all finitely atomic measures.
Let μ be a Borel measure supported on K. Let f be a μ-integrable functions. We 

denote by f · μ the Borel measure on K defined by

(f · μ)(E) :=
∫
E

fdμ (2.2)

for every Borel set E ⊆ K.

Proposition 2.1. Let q be as in (1.1). The following statements hold:

(1) ML,K �= ∅ if and only if ML,K,∪p
j=1{λj} �= ∅.

(2) M(fa)
L,K �= ∅ if and only if M(fa)

L,K,∪p
j=1{λj} �= ∅.

(3) The map

Φ : ML,K,∪p
j=1{λj} → ML,K , μ �→ q · μ,

is a bijection. The inverse of Φ is Φ−1(μ) = 1
q · μ.

Proof. Note that (1) and (2) follow from (3). So it suffices to prove (3).
Let μ ∈ ML,K,∪p

j=1{λj} and fq ∈ R(2k). We have

L
(f
q

) (2.1)= L(f) =
∫
K

fdμ =
∫
K

f

q
qdμ =

∫
K

f

q
d(q · μ),

where the third equality is well–defined since μ(Z(q)) = 0. Hence, q · μ ∈ ML,K .
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Conversely, let μ ∈ ML,K and f ∈ R[x]≤2k. We have

L(f) (2.1)= L
(f
q

)
=
∫
K

f

q
dμ =

∫
K

f
1
q
dμ =

∫
K

fd
(1
q
· μ
)
.

Hence, 1
q ·μ ∈ ML,K,∪p

j=1{λj}. Clearly, μ({λj}) = 0 for each j otherwise 
∫
K

1
qdμ was not 

well–defined. �
Remark 2.2. In [4, p. 75] it is claimed that each μ ∈ ML,K yields q · μ ∈ ML,K . This is 
wrong since μ({λj}) could be nonzero in some λj. The K–RTMP in [4] for compact K
is solved under this claim. In the next section we solve the K–RTMP for any closed set 
K using correct correspondence between measures for L and L. �

2.2. Positive polynomials

We denote by

Pos(K) := {f ∈ R[x] : f(x) ≥ 0 for all x ∈ K}

the set of all polynomials that are nonnegative on K. Let

Pos≤2k(K) := Pos(K) ∩R[x]≤2k.

We denote by 
∑

R[x]2 (resp. 
∑

R[x]2≤k) the set of all finite sums of squares p2 of poly-
nomials, where p ∈ R[x] (resp. p ∈ R[x]≤k).

We call a linear functional L : R[x]≤2k → R:

(1) K–positive if L(f) ≥ 0 for every f ∈ Pos≤2k(K).
(2) strictly K–positive if it is positive and L(f) > 0 for every 0 �= f ∈ Pos≤2k(K).
(3) square–positive if L(g) ≥ 0 for every g ∈

∑
R[x]2≤k.

(4) singular if L(g2) = 0 for some 0 �= g such that g2 ∈ R[x]≤2k.

2.3. Preordering and the natural description

Given a finite set S := {g1, g2, . . . , gn} or a countable set S := {gi}∞i=1 in R[x] and 
e := (e1, . . . , em) ∈ {0, 1}m, let ge stand for ge11 ge22 · · · gemm . Let

E :=
{

{0, 1}n, if S has n elements,
∪∞
j=1{0, 1}j , if S is infinite,

and

Sπ :=
{
ge : e ∈ E

}
.
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The preordering generated by S in R[x] is defined by

TS :=
{ ∑

s∈Sπ

σss : σs ∈
∑

R[x]2 for each s and σs �= 0 for finitely many s
}
.

For d ∈ N ∪ {0} we define the set

T
(d)
S :=

{∑
s∈Sπ

σss : σs ∈
∑

R[x]2 and deg(σss)

≤ d for each s, σs �= 0 for finitely many s
}
.

We call T (d)
S the degree d truncation of the preordering TS.

A set SK ⊂ R[x] is the natural description of the closed set K, if it satisfies the 
following conditions:

(a) If K has the least element a ∈ R, then x− a ∈ SK .
(b) If K has the greatest element b ∈ R, then b− x ∈ SK .
(c) For every a, b ∈ K, a �= b, if (a, b) ∩K = ∅, then (x− a)(x− b) ∈ SK .
(d) These are the only elements of SK .

Remark 2.3. The definition of the natural description coincides with the one given in [15, 
2.3 Notes.(2)] the only difference being that we allow any closed set K, not necessarily 
a semialgebraic one, i.e., a union of finitely many closed intervals. �

For a closed set K ⊆ R we write I(K) to denote the smallest closed interval containing 
K. Note that I(K) \K is of the form

I(K) \K = ∪i∈Γ(ai, bi),

where {(ai, bi) : i ∈ Γ} is a family of pairwise disjoint bounded intervals and the index 
set Γ is at most countable. For J ⊆ Γ we define the set

KJ = I(K) \ ∪j∈J (aj , bj)

Proposition 2.4. Let K ⊆ R be a closed set and I(K), ai, bi,Γ,KJ be defined as above. 
Let Ω be the set of all finite subsets of Γ. The following statements hold:

(1) Pos≤d(K) = ∪ 
J∈Ω

Pos≤d(KJ).

(2) T
(d)
SK

= ∪ 
J∈Ω

T
(d)
SKJ

.

(3) Pos≤d(K) = T
(d)
SK

.
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Proof. First we prove (1). Since K ⊆ KJ for every J ∈ Ω, the inclusion (⊇) is trivial. 
To prove the inclusion (⊆) take p ∈ Pos≤d(K). Note that p is nonnegative on all but at 
most finitely many intervals (ai1 , bi1), . . . , (aij , bij ), where i� ∈ Γ for each i�. This follows 
from the observation that if p is negative in a point from (ai, bi), then it should have 
a zero on [ai, bi] in order to be nonnegative on K. Since the degree of p is at most d, 
there are at most 2d disjoint intervals (ai, bi) such that p has a zero on [ai, bi]. But then 
p ∈ Pos≤d(KJ) for J = {i1, . . . , ij}.

(2) follows by noticing that Sπ
K = ∪ 

J∈Ω
Sπ
KJ

.

It remains to prove (3). By [16, Theorem 4.1], we have that T (d)
SKJ

= Pos≤d(KJ) for 
every J ∈ Ω. This fact, together with (1) and (2), implies (3). �
2.4. Localizing Hankel matrices

Let γ ≡ γ(2k) = (γ0, γ1, . . . , γ2k) ∈ R2k+1 be a sequence. For � ∈ N, � ≤ k, the Hankel 
matrix H1,γ(2�) of size (�+1)× (�+1), with columns and rows indexed by the monomials 
1, X, . . . ,X�, is equal to

H1,γ(2�) := (γi+j)�i,j=0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 X X2 · · · X�

1 γ0 γ1 γ2 · · · γ�

X γ1 γ2 . .
.

. .
.

γ�+1

X2 γ2 . .
.

. .
.

. .
. ...

...
... . .

.
. .
.

. .
.

γ2�−1
X� γ� γ�+1 · · · γ2�−1 γ2�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.3)

Convention: If γ ≡ γ(2�+1) = (γ0, γ1, . . . , γ2�+1) ∈ R2�+2 is of even length, then we define 
H1,γ := H1,γ(2�) , i.e., we omit the last coordinate.

For p(x) =
∑�

i=0 aix
i ∈ R[x] we define the evaluation p(X) on the columns of the 

matrix H1,γ(2�) by p(X) = a01 +
∑�

i=1 aiX
i, where 1 and Xi represent the columns of 

H1,γ(2�) indexed by these monomials. Then p(X) is a vector from the linear span of the 
columns of H1,γ(2�) . If this vector is the zero one, then we say p is a column relation of 
H1,γ(2�) .

Let H1,γ(2k) be psd and singular. Let � ∈ N be the smallest number such that H1,γ(2�)

is singular. Then the only column relation of H1,γ(2�) is of the form X� = a01 + a1X +
. . . + a�−1X

�−1 for some ai ∈ R. The polynomial

pγ(x) = x� −
�−1 ∑
i=0 

aix
i ∈ R[x]≤�

is called the generating polynomial of γ. Let

qi,γ(x) := xi · pγ(x), i ∈ N.
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By [6, Theorem 2.4], all polynomials q1,γ , q2,γ , . . . , qk−deg pγ−1,γ are column relations of 
H1,γ(2k) , while qk−deg pγ ,γ being a column relation or not determines the existence of a 
R–rm for γ (see Theorem 2.6 below).

The Riesz functional Lγ : R[x]≤2k → R of γ is defined by Lγ(xi) := γi for each i. 
Let f ∈ R[x]≤2k. An f–localizing Hankel matrix Hf,γ of γ is a real square matrix of 
size s(k, f) × s(k, f), where s(k, f) = k + 1 − �deg f

2 �, with the (i, j)–th entry equal to 
Lγ(fxi+j−2). We write

f · γ := (γ(f)
0 , γ

(f)
1 , . . . , γ

(f)
2k−deg f ), γ

(f)
i := Lγ(fxi).

Note that Hf,γ = H1,f ·γ . We denote the Riesz functional of f · γ by Lf,γ and call it an
f–localizing Riesz functional of γ.

For a functional L : R[x]≤2k → R the notation Lf stands for Lf,γ , where γ is a 
sequence belonging to L, i.e., γi := L(xi) for each i.

Proposition 2.5. The following statements are equivalent:

(1) Lf,γ is square–positive.
(2) Lf,γ(g) ≥ 0 for every g ∈

∑
R[x]2 such that deg(g) ≤ 2k − deg f .

(3) Hf,γ is positive semidefinite.

Proof. The equivalence (1) ⇔ (2) is clear. The equivalence (1) ⇔ (3) follows by the 
equality Lf,γ(g2) = (ĝ)THf,γ ĝ, where ĝ is the vector of coefficients of g in the order 
1, x, . . . , xk−� deg f

2 �. �
2.5. Solution to the R–TMP

Let x1, . . . , xr ∈ R. We denote by V(x1,...,xr) := (xi−1
j )i,j ∈ Rr×r the Vandermondo 

matrix. The following is a solution to the R–TMP.

Theorem 2.6 ([6, Theorems 3.9 and 3.10]). Let k ∈ N, γ = (γ0, . . . , γ2k) ∈ R2k+1 with 
γ0 > 0 and Lγ : R[x]≤2k → R be the Riesz functional of γ. The following statements are 
equivalent:

(1) MLγ ,R �= ∅.
(2) There exist γ2k+1, γ2k+2 ∈ R such that H1,γ(2k+2) is positive semidefinite.
(3) One of the following statements holds:

(a) H1,γ(2k) is positive definite.
(b) H1,γ(2k) is positive semidefinite and if pγ is the generating polynomial of γ, then 

the polynomial xk−deg pγ · pγ(x) is a column relation of H1,γ(2k) .
(c) Lγ is square–positive and if 0 �= p ∈ R[x] is a polynomial of the lowest degree 

such that p2 ∈ kerLγ , then x2k−2 deg p · p2 ∈ kerLγ .
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Moreover, if MLγ ,R �= ∅, then:

(i) If H1,γ(2k) is singular, then MLγ ,R =
{∑r

i=1 ρiδxi

}
, where x1, . . . , xr are the roots 

of pγ and (ρi)ri=0 = V −1
(x1,...,xr)(γi)

r−1
i=0 . In this case there are unique γ2k+1, γ2k+2 ∈

R such that H1,γ(2k+2) is positive semidefinite.
(ii) If H1,γ(2k) is invertible, then there are infinitely many (k + 1)–atomic measures in 

MLγ ,R. They are obtained by choosing γ2k+1 ∈ R arbitrarily, defining

γ2k+2 :=
(
(γi)2k+1

i=k+1
)T (H1,γ(2k))−1(γi)2k+1

i=k+1

and using (i) for γ̃ := (γ0, . . . , γ2k+1, γ2k+2) ∈ R2k+3.

The following result characterizes the existence of a (k + 1)–atomic measure for a 
sequence γ ∈ R2k+1 with H1,γ � 0, having one prescribed atom in the support.

Theorem 2.7 ([3, Theorem 4]). Let k ∈ N and γ = (γ0, . . . , γ2k) ∈ R2k+1 be a sequence 
such that H1,γ is positive definite. The following statements are equivalent:

(1) There exists a (k + 1)–atomic R–representing measure for γ with one of the atoms 
equal to x1.

(2) x1H1,γ(2k−2) −Hx,γ is invertible.

Moreover, if the equivalent statements (1) and (2) hold, then the other k atoms except 
x1 are precisely the solutions to g(x) = 0, where

g(x) := detG(x1,x), G(x1,x2) = x1x2H1,γ(2k−2) − (x1 + x2)Hx,γ + Hx2,γ .

3. Solution to the K–RTMP

Let K ⊆ R be a closed set, Γ ⊆ R an at most countable closed set and L : R[x]≤2k → R

be a linear functional. In this section we characterize when L has a K–rm vanishing on 
Λ, i.e., ML,K,Λ �= ∅. By Proposition 2.1, this in particular solves the K–RTMP for L on 
R(2k), defined by (1.2). The case of nonsingular L is covered by Theorem 3.1, while the 
case of singular L by Theorem 3.2. Example 3.4 shows that the solution [4, Proposition 
2] for a compact set K is missing additional conditions from Theorem 3.2 other than 
K–positivity of L.

We use ∂K and int(K) to denote the topological boundary and the interior of the set 
K, respectively. Let iso(K) be the set of isolated points of K. We use card(V ) to denote 
the cardinality of the set V . A closed set K ⊆ R is semialgebraic if it is of the form

K := {x ∈ R : p1(x) ≥ 0, . . . , pm(x) ≥ 0}

for some p1, . . . , pm ∈ R[x].
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By Proposition 2.1, solving K–RTMP, defined in §1, is equivalent to solving the 
K–TMP for L, defined by (2.1), where the measure must vanish on all real poles. In this 
section we solve the K–TMP for L, where the measure has to vanish on a given closed 
set, which is at most countable.

The following is the solution to the nonsingular case of the K–TMP for L.

Theorem 3.1 (Nonsingular case). Let K ⊆ R be a closed set and Λ ⊂ R be a finite or a 
countable closed set such that Λ∩ iso(K) = ∅. Let L : R[x]≤2k → R be a linear functional 
and L|

T
(2k)
SK

\{0} > 0, where SK is the natural description of K. Then there exists an 

r–atomic measure μ ∈ M(fa)
L,K,Λ with k + 1 ≤ r ≤ 2k + 1.

Moreover, assume that K is closed and semialgebraic and write card(∂K) = 2�1 + �2, 
�1 ∈ N ∪ {0}, �2 ∈ {0, 1}. Then r is at most:

i) k + 1, if K ∈ {R, [a,∞), (−∞, a]} for some a ∈ R. 
ii) k + �1 + 1, if K is bounded and has a non-empty interior. 
iii) k + �1 + �2 + 1, if K is bounded only from one side. 
iv) k + �1 + 2, if K is unbounded from both sides.

Proof. Since Λ ∩ iso(K) = ∅, it follows that Pos≤2k(K) = Pos≤2k(K \ Λ). By Propo-
sition 2.4, the assumption L|

T
(2k)
SK

\{0} > 0 implies that L|Pos≤2k(K)\{0} > 0. Since Λ is 
closed, K \ Λ is a locally compact Hausdorff space. By [9, Proposition 2 and Corol-
lary 6] (or [22, Theorem 1.30]), L has an r–atomic K–rm μ such that μ(Λ) = 0 and 
r ∈ {k + 1, . . . , 2k + 1}. This proves the first part of the theorem.

Let us prove the moreover part. Assume first that the assumptions of ii) hold, i.e., K
is a bounded, closed, semialgebraic set with a non-empty interior.

Claim 1. It suffices to prove ii) under the assumption Λ ∩ ∂K = ∅.

Proof of Claim 1. Let K1 := ∂K \ iso(K). Since Pos≤2k(K) = Pos≤2k(K \K1), there is 
μ ∈ M(fa)

L,K,Λ∪K1
by the first part of the theorem, in particular supp(μ) ⊆ K \ (Λ ∪K1). 

Let a := min(K), b := max(K). Note that

K = [a0, a1] ∪ [a2, a3] ∪ · · · ∪ [a2m−2, a2m−1] ∪ [a2m, a2m+1],

where m ∈ N∪{0}, a0 := a, a2m+1 := b and a2i ≤ a2i+1 < a2i+2 for i = 0, . . . ,m−1 and 
a2m ≤ a2m+1. We possibly shorten each interval [a2i, a2i+1] to [ã2i, ã2i+1] ⊆ [a2i, a2i+1]
such that

K̃ := [ã0, ã1] ∪ [ã2, ã3] ∪ · · · ∪ [ã2m−2, ã2m−1] ∪ [ã2m, ã2m+1]

has the following properties:
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(1) K̃ contains all atoms of μ,
(2) supp(μ) ∩ int(K) = supp(μ) ∩ int(K̃)
(3) supp(μ) ∩ iso(K) = supp(μ) ∩ iso(K̃),
(4) Λ ∩ ∂K̃ = ∅,
(5) card(∂K̃) = card(∂K).

To prove Claim 1 it only remains to prove that L|Pos≤2k(K̃)\{0} > 0. Since K̃ contains all 
atoms of μ, it follows that L|Pos≤2k(K̃)\{0} ≥ 0. Assume that there exists p ∈ Pos≤2k(K̃)\
{0} such that L(p) = 0. Let p0 be obtained from p by moving each zero of p on [ai, ãi] or 
[ãi, ai] to ai together with multiplicity, i.e., every factor (x− α)t of p where α ∈ (ai, ãi]
or α ∈ [ãi, ai) and t is largest possible, is replaced by (x − ai)t. By construction, 0 �=
p0 ∈ Pos≤2k(K) and L(p0) = 0 (since supp(μ) ⊆ Z(p0)), which is a contradiction. This 
proves Claim 1. �

By Claim 1, we may assume that Λ ∩ ∂K = ∅. Let Sπ
K,odd and Sπ

K,even stand for all 
f ∈ Sπ

K of odd and even degree, respectively. Denoting by ⊕ the direct sum of matrices, 
we define a linear matrix function

L(x, y) := L1(x) ⊕ L2(x, y),

where

L1(x) :=
⊕

f∈Sπ
K,odd

Hf,(γ,x) and L2(x, y) :=
⊕

f∈Sπ
K,even

Hf,(γ,x,y).

Let us write

S�
L :=

{
(x, y) ∈ R2 : L(x, y) � 0

}
(resp. S	

L :=
{
(x, y) ∈ R2 : L(x, y)  0

}
).

Let prx : R2 → R be the projection to the first coordinate, i.e., prx(x, y) = x.

Claim 2. prx
(
S	
L
)

is an interval with a non-empty interior.

Proof of Claim 2. Define γ := (γ0, γ1, . . . , γ2k), where γi = L(xi) for each i. By the first 
part of the proof we have that M(fa)

L,K,Λ �= ∅. Hence, γ has an infinite extension

(γ, γ2k+1, γ2k+2, . . .) (3.1)

generated by moments of some measure μ ∈ M(fa)
L,K,Λ. We have that

Hf,(γ,γ2k+1,...γ2k+2�) = H1,f ·(γ,γ2k+1,...γ2k+2�)  0

for each f ∈ Sπ
K and every � ∈ N. In particular, L(γ2k+1, γ2k+2)  0. Hence, the sets S	

L
and prx

(
S	
L
)

are non-empty.



292 R. Nailwal, A. Zalar / Linear Algebra and its Applications 708 (2025) 280–301 

Since prx
(
S	
L
)

is a projection of S	
L , it is convex and hence an interval. It remains to 

prove that prx
(
S	
L
)

is not a singleton. Assume on the contrary that

prx
(
S	
L
)

= {x0} for some x0 ∈ R. (3.2)

Then γ2k+1 in (3.1) is uniquely determined and equal to x0. We separate two cases 
according to the existence of f ∈ Sπ

K,odd such that Hf,(γ,x0) is singular.

Case 1. There exists f ∈ Sπ
K,odd such that Hf,(γ,x0) = H1,f ·(γ,x0) is singular.

It follows by Theorem 2.6 that each γ2k+i in (3.1) is uniquely determined by γ. But 
then

card(ML,K,Λ) = card(M(fa)
L,K,Λ) = 1. (3.3)

For t ∈ K \ Λ let evt : R[x] → R be a functional defined on each xi by evt(xi) := ti. 
Due to finite dimensionality there exists εt > 0 such that (L − εt evt)|T (2k)

SK
\{0} > 0. It 

follows that M(fa)
L−εt evt,K,Λ �= ∅ by the first part of the theorem. Hence, any t ∈ K \ Λ is 

in the support of some measure from M(fa)
L,K,Λ. Therefore card(ML,K,Λ) = ∞, which is 

in contradiction with (3.3). So in this case (3.2) cannot hold.

Case 2. For all f ∈ Sπ
K,odd we have that Hf,(γ,x0) � 0.

Let us write

S�
L2

:=
{
(x, y) ∈ R2 : L2(x, y) � 0

}
(resp. S	

L2
:=
{
(x, y) ∈ R2 : L2(x, y)  0

}
).

Note that

(x0, y) ∈ S	
L2

⇔ Hf,(γ,x0,y)  0 for all f ∈ Sπ
K,even,

(x0, y) ∈ S�
L2

⇔ Hf,(γ,x0,y) � 0 for all f ∈ Sπ
K,even.

By the form of Hf,(γ,x0,y), the solution set of Hf,(γ,x0,y) � 0 is an open interval of 
the form (a,∞) or (−∞, a) for some a ∈ R and the solution set of Hf,(γ,x0,y)  0
is then either [a,∞) or (−∞, a]. Therefore S	

L2
:= {(x0, y0)} is either a singleton or 

pry
(
S	
L2

)
:= [y1, y2] is an interval with a non-empty interior, where pry : R2 → R is 

the projection to the second coordinate, i.e., pry(x, y) = y. In the first case there exists 
f ∈ Sπ

K,even such that Hf,(γ,x0,y0) is singular and by the same reasoning as in Case 1
above, the equalities (3.3) should hold, which leads to a contradiction. In the second case 
pry

(
S�
L2

)
= (y1, y2) and there is (x0, y) ∈ S�

L2
. But then (x1, y) ∈ S�

L for some x1 close 
enough to (x0, y), which is a contradiction with (3.2).

This proves the Claim 2. �
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Fix f ∈ Sπ
K,even and x0 from the interior of prx

(
S	
L
)
. Let yf,x0 ∈ R be such that 

Hf,(γ,x0,yf,x0 )  0 and Hf,(γ,x0,yf,x0 ) �� 0. Namely, yf,x0 is uniquely determined by the 
equality

L̃(fx2k+2−deg f ) = vT (Hf,γ)−1v (3.4)

as the moment of x2k+2, where

v =
(
Lf,(γ,x0)(x

i)
)2k+1−deg f

i=k+1−deg f/2

and L̃ : R[x]≤2k+2 → R is the extension of L(γ,x0) : R[x]≤2k+1 → R. By Theorem 2.7, 
the generating polynomial pf ·(γ,x0,yf,x0 ) has one of λ ∈ Λ as its root only for countably 
many choices x0. Thus, as f runs over the set Sπ

K only countably many x0 are such that 
the generating polynomial pf ·(γ,x0,yf,x0 ) has one of λ ∈ Λ as a root. So there exists x̃
in the interior of prx

(
S	
L
)

such that none of the generating polynomials pf ·(γ,x̃,yf,x̃) has 
some λ ∈ Λ as a root. Choosing this x̃ and the smallest yf,x̃ over all f ∈ Sπ

even gives γ̃ =
(γ, x̃, yf,x̃) such that Lγ̃ is K–positive. Moreover, if there are more choices of f , we choose 
one of the lowest degree. By [24, Théorème II, p. 129], we have that MLγ̃,K �= ∅. Since 
Lf,γ̃ is singular, Theorem 2.6 implies that the K–rm ν for Lf ·γ̃ is unique and supported 
on Z(pf ·(γ,x̃,yf,x̃)). Since for every μ ∈ MLγ̃ ,K we have that f · μ ∈ MLf·γ̃ ,K (see (2.2)), 
it follows that f · μ = ν. Hence, supp(μ) ⊆ Z(f) ∪ Z(pf ·(γ,x̃,yf,x̃)). If Z(f) �⊆ supp(μ), 
then there exists f̃ ∈ Sπ of lower degree than f , such that Lf̃ ,γ̃ is also singular (since 

f̃ · μ ∈ ML
f̃·γ̃,K

). But this is a contradiction with the choice of f , whence supp(μ) =
Z(f)∪Z(pf ·(γ,x̃,yf,x̃)). Note that the size of this union is deg(f)+deg pf ·(γ,x̃,yf,x̃), which 
is at most 2�1 + (2k−2�1

2 + 1) = k + �1 + 1. This proves ii) of the moreover part.
Let us now prove i) of the moreover part. Note that �1 = 0, Sπ

K,even = {1} and

Sπ
K,odd =

⎧⎪⎨⎪⎩
∅, if K = R,

x− a, if K = [a,∞),
a− x, if K = (−∞, a].

The proof is now verbatim the same to the proof of part ii).
Next we prove iii) of the moreover part. Assume that K is bounded from above 

and b := max(K). By the first part of the theorem there exists μ ∈ M(fa)
L,K,Λ. Then 

the support of μ is contained in [a, b] for some a ∈ int(K) \ Λ and a / ∈ supp(μ). Let 
K̃ := K ∩ [a, b]. Note that ∂K̃ ⊆ ∂K ∪ {a}, card(∂K̃) ≤ 2�1 + �2 + 1 and L is strictly 
K̃–positive. Indeed, since supp(μ) ⊆ K̃, L is clearly K̃–positive. It remains to show 
that it is strictly K̃–positive. If L(p) = 0 for some 0 �= p|

K̃
≥ 0, then p = p1p2 with 

supp(μ) ⊆ Z(p1) ⊂ (a,∞) and Z(p2) ⊆ (−∞, a]. From Z(p1) ⊂ (a,∞) it follows that 
p1 has a constant sign on (−∞, a] and from Z(p2) ⊆ (−∞, a] it follows that p2 has a 
constant sign on (a,∞). From p|

K̃
≥ 0 and a constant sign of p2 on K̃, it follows that 

p1 has constant sign on K̃. Multiplying p1 with −1 if necessary we can assume that 
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p1|K̃ ≥ 0. Also L(p1) = 0, because supp(μ) ⊆ Z(p1). Since p1 does not change sign on 
both K̃ and on (−∞, a], a ∈ K̃ and p1(a) �= 0, it follows that p1 does not change the 
sign on K. But then L(p1) = 0 for 0 �= p1|K ≥ 0 and L is not strictly K–positive, which 
is a contradiction. By ii), part iii) for K bounded from above follows. If K is bounded 
from below, the proof is analogous.

Finally we prove iv) of the moreover part. The proof is analogous to the proof of iii)
above, the only difference being that b �= max(K) but merely a, b ∈ int(K)\(Λ∪supp(μ)), 
and hence card(∂K̃) ≤ 2(�1 + 1) + �2. �

The following is the solution to the singular case of the K–TMP for L.

Theorem 3.2 (Singular case). Let K ⊆ R be a closed set and Λ ⊂ R be a finite or a 
countable closed set such that Λ∩ iso(K) = ∅. Let L : R[x]≤2k → R be a linear functional 
with L|

T
(2k)
SK

\{0} �> 0, where SK is the natural description of K. The following statements 
are equivalent:

(1) ML,K,Λ �= ∅.
(2) M(fa)

L,K,Λ �= ∅.
(3) The following statements hold:

(a) L|
T

(2k)
SK

\{0} ≥ 0.
(b) If:

(i) f0 ∈ Sπ is a polynomial of the lowest degree in Sπ such that Lf0 is 
singular,

(ii) 0 �= pf0 is a polynomial of the lowest degree such that p2
f0

∈ kerLf0 ,

then

Z(f0pf0) ∩ Λ = ∅. (3.5)

(c) If K is unbounded, then

xdp2
f0

∈ kerLf0 , (3.6)

where f0, pf0 are as in (3b) and d := 2k − deg(f0p
2
f0

).

Moreover, if M(fa)
L,K,Λ �= ∅, then the representing measure μ for L is unique and

supp(μ) = Z(f0) ∪ Z(pf0).

Proof. The nontrivial part is to prove (3) ⇒ (2). Let K1 = K \Λ. Since Λ∩ iso(K) = ∅, 
it follows that Pos(K) = Pos(K1). Since L|

T
(2k)
SK

≥ 0, it follows by [8, Theorem 2.4] that 
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L1 := L|R[x]≤2k−1 has a K–rm. We will prove that card(ML1,K) = 1. Let μ ∈ ML1,K . 
Since by assumption 0 = Lf0(p2

f0
), it follows by K–positivity of L that

0 = Lf0(pf0) = (L1)f0(pf0) =
∫
K

f0pf0dμ,

whence supp(μ) ⊆ Z(f0) ∪ Z(pf0). If supp(μ) �= Z(f0) ∪ Z(pf0), then either Z(f0) �⊆
supp(μ) or Z(pf0) �⊆ supp(μ). In the first case there exists f1 ∈ Sπ of lower degree than 
f0, such that Lf1 is also singular, which is a contradiction. In the second case there 
exists p of lower degree than pf0 , such that Lf0(p2) = 0, which is a contradiction. Hence, 
supp(μ) = Z(f0) ∪ Z(pf0) and μ ∈ ML1,K is uniquely determined. By (3.5), it follows 
that μ ∈ M(fa)

L1,K,Λ. We separate 2 cases according to K and deg f0.

• If K is compact, then, by [24, Théorème II, p. 129], L has a K–rm and hence μ must 
also represents L(x2k).

• If K is unbounded, then (3.6) ensures L(x2k) is also a moment of μ, whence μ ∈
M(fa)

L,K,Λ.

This concludes the proof of the theorem. �
Remark 3.3. 

(1) A special case of Theorems 3.1 and 3.2 for compact K with finite Λ, which comes 
from L (see (1.3)) with only real poles allowed and k0 = 0, is [4, Proposition 2]. It 
states that ML,K,Λ �= ∅ is equivalent to L|

T
(2k)
SK

≥ 0. However, by Example 3.4 below 

this equivalence does not hold. In the proof of [4, Proposition 2] it is only proved 
that L being K–positive implies that ML,K �= ∅. But by Proposition 2.1 above more 
is needed, namely ML,K,Λ �= ∅.

(2) If K is unbounded and (3a) and (3b) of Theorem 3.2 are satisfied, then L|R[x]≤2k−1

has a K–rm μ vanishing on Λ, while L(x2k) ≥
∫
K
x2kdμ. Condition (3c) characterizes 

when the equality occurs in this inequality. �

The following example demonstrates that K–positivity of the functional L is not 
sufficient for the existence of an rm in the K–RTMP. The Mathematica file with numerical 
computations can be found on the link https://github.com/ZalarA/RTMP_univariate.

Example 3.4. Let K = [0, 1], λ1 = 0, λ2 = 1, R(4) =
{

f
x2(x−1)2 : f ∈ R[x]≤4

}
and 

L : R(4) → R the linear functional defined by

L(1) = γ
(0)
0 := 1 

48 , L
(

1 
x

)
= γ

(1)
1 := 1 

24 , L
(

1 
x2

)
= γ

(1)
2 = 5 

12 ,

https://github.com/ZalarA/RTMP_univariate
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L
(

1 
x− 1

)
= γ

(2)
1 := − 1 

24 , L
(

1 
(x− 1)2

)
= γ

(2)
2 := 5 

12 .

The corresponding functional L : R[x]≤4 → R is defined by

L(1) = 1, L(x) = 1
2 , L(x2) = 5 

12 , L(x3) = 3
8 , L(x4) = 17

48 .

The localizing Hankel matrices determining whether L|
T

(4)
S[0,1]

≥ 0 holds are

H1,γ =

⎛⎜⎝ 1 1
2

5 
12

1
2

5 
12

3
8

5 
12

3
8

17
48

⎞⎟⎠ , Hx,γ =
( 1

2
5 
12

5 
12

3
8

)
, H1−x,γ =

( 1
2

1 
12

1 
12

1 
24

)
,

Hx(1−x),γ =
( 1 

12
1 
24

1 
24

1 
48

)
.

They are all psd with the eigenvalues ≈ 1.54, 0.22, 0.007 for H1,γ , ≈ 0.86, 0.016 for Hx,γ , 
≈ 0.51, 0.027 for H1−x,γ , and 5 

48 , 0 for Hx(1−x),γ . Note that p(x) = x − 1
2 is a column 

relation of Hx(1−x),γ and thus the unique measure for L consists of the atoms 0, 1, 1
2 all 

with densities 1
3 . Hence, L does not have a K–rm, even though L is K–positive.

4. Examples

In this section we derive the solution to the strong Hamburger TMP (Corollary 4.1) 
and the TMP on the unit circle (see Theorem 4.4), and give an example demonstrating 
the construction of the minimal representing measure as in the proof of Theorem 3.1.

A special case of Theorem 3.2 is the solution to the strong truncated Hamburger 
moment problem.

Corollary 4.1 ([28, Theorem 3.1]). Let L be a linear functional on

R =
{

f

x2k1
: f ∈ R[x]≤2k

}
,

where k ≥ k1. Let L : R[x]≤2k → R be the linear functional defined by L(f) := L
(

f
x2k1

)
. 

Then L has an R–representing measure if and only if the following statements hold:

(1) L is square–positive.
(2) If L is singular, then:

(a) The generating polynomial p of H1 does not have 0 as its root.
(b) x2k−2 deg p · p2 ∈ kerL.
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Proof. Take K = R, Λ = {0} and use Theorems 3.1 and 3.2. Then SR = {1} and 
T

(2k)
SR

=
∑

R[x]2≤k. �
A special case of Theorem 3.2 is the solution to the TMP, which can be used to solve 

the TMP on the unit circle.

Corollary 4.2. Let L be a linear functional on R =
{

f
(x2+1)�1 : f ∈ R[x]≤2k

}
, where k ≥

�1. Let L : R[x]≤2k → R be the linear functional defined by L(f) := L
(

f
(x2+1)�1

)
. Then 

L has an R–representing measure if and only if the following statements hold:

(1) L is square–positive.
(2) If L is singular and p is the generating polynomial of H1, then x2k−2 deg p ·p2 ∈ kerL.

Proof. Take K = R, Λ = ∅ and use Theorems 3.1 and 3.2. Then SR = {1} and T (2k)
SR

=∑
R[x]2≤k. �

Remark 4.3. If L in Corollary 4.2 is only square–positive, then as in Remark 3.3.(2), the 
restriction L|R(2k−1) , where R(2k−1) =

{
f

(x2+1)�1 : f ∈ R[x]≤2k−1
}
, has some R–rm μ, 

while L
(

x2k

(x2+1)�1
)
≥
∫
R

x2k

(x2+1)�1 dμ. Condition (2) in Corollary 4.2 characterizes, when 
the equality occurs in this inequality. �

Below we will use Corollary 4.2 to derive a solution to the TMP on the unit circle.
Let k ∈ N and β ≡ β(2k) = {βi,j}i,j∈Z+, 0≤i+j≤2k be a bivariate sequence of degree 

2k. The functional Lβ : R[x, y]≤2k → R defined by

Lβ(p) :=
∑

i,j∈Z+,
0≤i+j≤2k

ai,jβi,j , where p =
∑

i,j∈Z+,
0≤i+j≤2k

ai,jx
iyj ,

is called the Riesz functional of β. Lβ is called square–positive if Lβ(p2) ≥ 0 for every 
p ∈ R[x, y]≤k. For p ∈ R[x, y] we denote by Z(p) = {(x, y) ∈ R2 : p(x, y) = 0} its set of 
zeros.

The solution to the TMP on the unit circle is the following.

Theorem 4.4 ([7, Theorem 2.1]). Let p(x, y) = x2 + y2 − 1 and β := β(2k) =
(βi,j)i,j∈Z+,i+j≤2k, where k ≥ 2. Then the following statements are equivalent:

(1) β has a Z(p)–representing measure.
(2) Lβ is square–positive and the relations β2+i,j +βi,2+j = βi,j hold for every i, j ∈ Z+

with i + j ≤ 2k − 2.

Proof. The non-trivial implication is (2) ⇒ (1). Due to the relations β2+i,j+βi,2+j = βi,j

for every i, j ∈ Z+ with i + j ≤ 2k − 2, Lβ(q) = 0 for every q ∈ R[x, y]≤2k of the form 



298 R. Nailwal, A. Zalar / Linear Algebra and its Applications 708 (2025) 280–301 

q = (x2 + y2 − 1)q1 with q1 ∈ R[x, y]≤2k−2. Let x(t) = t2−1
t2+1 , y(t) = 2t 

t2+1 , t ∈ R, be a 
rational parametrization of Z(p), which is one-to-one and onto Z(p) \ {(1, 0)}. We have 

1 
t2+1 = 1

2 (1 − x(t)), t 
t2+1 = 1

2y(t) and t2

t2+1 = 1
2 (1 + x(t)). Hence,

ti

(t2 + 1)2k =

⎧⎨⎩
1 

22k (1 − x(t))2k−i(y(t))i, i = 0, . . . , 2k,

1 
22k (1 + x(t))i−2k(y(t))4k−i, i = 2k + 1, . . . , 4k,

ti

(t2 + 1)k =

⎧⎨⎩
1 
2k (1 − x(t))k−i(y(t))i, i = 0, . . . , k,

1 
2k (1 + x(t))i−k(y(t))2k−i, i = k + 1, . . . , 2k.

(4.1)

Let R(4k) :=
{

f(t) 
(t2+1)2k : f ∈ R[t]≤4k

}
and define the functional L : R(4k) → R by

L
( ti

(t2 + 1)2k
)

=

⎧⎨⎩
1 

22kLβ

(
(1 − x)2k−iyi

)
, i = 1, . . . , 2k,

1 
22kLβ

(
(1 + x)i−2ky4k−i

)
, i = 2k + 1, . . . , 4k.

(4.2)

Let L : R[t]≤4t → R be the linear functional defined by L(f) := L
(

f
(t2+1)2k

)
. Using 

correspondences (4.1)–(4.2) for g ∈ R[t]≤2k, we have that

L(g2) = L
( g2

(t2 + 1)2k
)

= Lβ(p2
1) ≥ 0

for some p1 ∈ R[x, y]≤k. Hence, L is square–positive. By Corollary 4.2 and Remark 4.3, 
there exists an R–rm μ for L|R(4k−1) , where R(4k−1) :=

{
f(t) 

(t2+1)2k : f ∈ R[t]≤4k−1

}
, while

Δ := L
( t4k

(t2 + 1)2k
)
−
∫
K

t4k

(t2 + 1)2k dμ ≥ 0.

If Δ = 0, then the pushforward measure φ#(μ), where

φ : R → Z(p) \ {(1, 0)}, φ(t) = (x(t), y(t)),

is a Z(p)–rm for Lβ. Otherwise we add the atom (1, 0) with the density Δ to φ#(μ) and 
we get a Z(p)–rm for Lβ. �
Remark 4.5. The proof of Theorem 4.4 is done using the solution to the trigonometric 
moment problem [6]. �

The following example demonstrates the construction of the representing measure for 
a functional similarly as in the proof of Theorem 3.1 (but allowing Λ ∩ ∂K �= ∅). A 
minimal K–representing measure avoiding real poles does not exist, but allowing one 
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more atom such a measure exists. The Mathematica file with numerical computations 
can be found on the following link https://github.com/ZalarA/RTMP_univariate.

Example 4.6. Let K = (−∞, 0] ∪ [1, 2] ∪ [3,∞), λ1 = 0, λ2 = 1, λ3 = 2,

R(6) =
{

f

x2(x− 1)2(x− 2)2 : f ∈ R[x]≤6

}

and L : R(6) → R the linear functional, defined by

L(1) = γ
(0)
0 := 1539

128 
, L

(
1 
x

)
= γ

(1)
1 := −255

64 
, L

(
1 
x2

)
= γ

(1)
2 = 235

32 
,

L
(

1 
x− 1

)
= γ

(2)
1 := 3 

64 , L
(

1 
(x− 1)2

)
= γ

(2)
2 := 313

96 
,

L
(

1 
x− 2

)
= γ

(3)
1 := 253

64 
, L

(
1 

(x− 2)2

)
= γ

(3)
2 := 713

96 
.

The corresponding functional L : R[x]≤6 → R is defined by

L(1) = 1, L(x) = 13
12 , L(x2) = 23

8 
, L(x3) = 307

48 
, L(x4) = 555

32 
,

L(x5) = 9043
192 

, L(x6) = 17203
128 

.

Let f1(x) = x(x − 1), f2(x) = (x − 2)(x − 3) and f3 = f1f2. The localizing Hankel 
matrices determining whether L|

T
(6)
SK

≥ 0 holds are

H1,γ =

⎛⎜⎜⎜⎝
1 13

12
23
8 

307
48 

13
12

23
8 

307
48 

555
32 

23
8 

307
48 

555
32 

9043
192 

307
48 

555
32 

9043
192 

17203
128 

⎞⎟⎟⎟⎠ , Hf1,γ =

⎛⎜⎝
43
24

169
48 

1051
96 

169
48 

1051
96 

5713
192 

1051
96 

5713
192 

33523
384 

⎞⎟⎠ ,

Hf2,γ =

⎛⎜⎝
83
24 −71

48
251
96 

−71
48

251
96 −239

192
251
96 −239

192
1139
384 

⎞⎟⎠ ,Hf3,γ =
( 131

32 −247
64 

−247
64 

539
128

)
.

They are all pd with the eigenvalues ≈ 153.6, 1.44, 0.46, 0.12 for H1,γ , ≈ 98.9, 0.85, 0.31
for Hf1,γ , ≈ 6.74, 1.71.0.58 for Hf2,γ , and 8.01, 0.29 for Hf3,γ . Now we will check that 
there is no pair (γ7, γ8) ∈ R2, such that for the extension γ̃ = (γ, γ7, γ8) it holds that 
H1,γ̃ is psd and singular, while Hf1,γ̃ , Hf2,γ̃ , Hf3,γ̃ are psd. Using Schur complements 
we have:

https://github.com/ZalarA/RTMP_univariate
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H1,γ̃  0 ⇔ γ8 ≥ 0 and H1,γ̃/H1,γ ≥ 0,

Hf1,γ̃  0 ⇔ γ8 − γ7 ≥ 0 and Hf1,γ̃/Hf11,γ ≥ 0,

Hf2,γ̃  0 ⇔ γ8 − 5γ7 + 6γ6 ≥ 0 and Hf2,γ̃/Hf2,γ ≥ 0,

Hf3,γ̃  0 ⇔ γ8 − 6γ7 + 11γ6 − 6γ5 ≥ 0 and Hf3,γ̃/Hf3,γ ≥ 0.

(4.3)

Let f0 := 1. We have that

Hf0,γ̃/Hf0,γ = γ8 −
220
591γ

2
7 + 15971773

56736 
γ7 −

4733803996639
87146496 

,

Hf1,γ̃/Hf1,γ = γ8 −
11
39γ

2
7 + 3154553

14976 
γ7 −

6505636110821
161021952 

,

Hf2,γ̃/Hf2,γ = γ8 −
376
369γ

2
7 + 13927589

17712 
γ8 −

29105958864401
190439424 

,

Hf3,γ̃/Hf3,γ = γ8 −
131
75 

γ2
7 + 38902817

28800 
γ7 −

11603048263019
44236800 

.

(4.4)

Computation with Mathematica shows that there is no choice of γ7 ∈ R such that for 
γ8 = max(0,H1,γ̃/H1,γ), we would have Hfi,γ̃ ≥ 0 i = 1, 2, 3. Namely, the conditions in 
(4.3), (4.4) are of the form γ8 ≥ max(0, qi(γ7)), where qi(γ7) is a quadratic function in γ7
corresponding to fi. So the question is whether there exists γ7 such that max(0, q0(γ7)) ≥
max(0, qi(γ7)) for each i. Since this is not true, the example shows that there is no 
minimal representing measure for L that would be supported on K vanishing on poles.

Choosing γ7 = 370 and γ8 = 2000 and repeating the computations above for γ9 and γ10
it turns out that for every γ9 ∈ [−71.50, 845.19], the moment matrix Hf0 corresponding 
to f0 restricts γ10 the most from below among all fi, i = 0, 1, 2, 3. Hence, choosing 
the smallest possible γ10 for γ9 from this interval gives a representing measure for γ
supported on the zeroes of the generating polynomial of Hf0 . At most three choices of γ9
will be such that λi is one of the zeros of the generating polynomial, so we avoid those.
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