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b Institute of Metals and Technology, Lepi pot 11 1000 Ljubljana, Slovenia

A R T I C L E  I N F O

Keywords:
Two-phase flow
Phase-field
Two-dimensional
Axisymmetric
Diffuse approximate method
PISO

A B S T R A C T

A formulation of the immiscible Newtonian two-liquid system with different densities and influenced by gravity 
is based on the Phase-Field Method (PFM) approach. The solution of the related governing coupled Navier-Stokes 
(NS) and Cahn-Hillard (CH) equations is structured by the meshless Diffuse Approximate Method (DAM) and 
Pressure Implicit with Splitting of Operators (PISO). The variable density is involved in all the terms. The related 
moving boundary problem is handled through single-domain, irregular, fixed node arrangement in Cartesian and 
axisymmetric coordinates. The meshless DAM uses weighted least squares approximation on overlapping sub-
domains, polynomial shape functions of second-order and Gaussian weights. This solution procedure has 
improved stability compared to Chorin’s pressure-velocity coupling, previously used in meshless solutions of 
related problems. The Rayleigh-Taylor instability problem simulations are performed for an Atwood number of 
0.76. The DAM parameters (shape parameter of the Gaussian weight function and number of nodes in a local 
subdomain) are the same as in the authors’ previous studies on single-phase flows. The simulations did not need 
any upwinding in the range of the simulations. The results compare well with the mesh-based finite volume 
method studies performed with the open-source code Gerris, Open-source Field Operation and Manipulation 
(OpenFOAM®) code and previously existing results.

1. Introduction

Rayleigh-Taylor (RT) instability is a hydrodynamic instability which 
is easiest to observe when we invert a glass full of water. When the glass 
is inverted, the less dense air cannot support the water, and instability 
begins to grow between the denser fluid (water) and the less dense fluid 
(air), ending with water falling out of the glass. The theoretical foun-
dation of RT instability was laid by Lord Rayleigh in 1883 [1] and 
further developed by G. I. Taylor for accelerated fluids in 1950 [2]. The 
phenomenon describes the entrance of the heavier fluid as 
mushroom-shaped protrusions into a lighter fluid. The first experiment 
to validate this theory was performed in 1950 by G. Lewis [3]. The 
analytical studies to cope with the RT instability phenomenon mainly 
considered small density ratios or a negligible density of the lighter 
fluids [4,5]. The difficulties in the analytical studies carved a path for 
the numerical models, the earliest of which was presented in [6]. 
However, models based on the marker-and-cell method [7,8] were the 
first to succeed. The study [9] comprehensively reviews the existing 
experimental, analytical and numerical literature about the RT 

instability phenomenon. Most numerical simulations of the RT insta-
bility [5,10–12] involve the Boussinesq approximation [13]. This 
approximation is handy for buoyancy-driven flows with small density 
variations. It assumes that the density variations do not affect the iner-
tial forces acting on the fluid. Therefore, density is treated as a constant 
everywhere in the momentum equation except for the terms that involve 
gravity, i.e., the buoyancy term. The present model deals with the large 
density ratio and high Atwood number and does not involve the Bous-
sinesq approximation, i.e., the density variation is included in all the 
terms. This generalisation makes the numerical model applicable to a 
much wider range of moving-boundary, two-phase, immiscible flow 
problems.

To accurately model a two-phase moving boundary flow, proper 
handling of the interface between the phases, the discontinuities in the 
material properties across the interface, and proper implementation of 
the interfacial boundary conditions are crucial. The commonly used 
numerical methods for simulating two-phase flows are categorised as 
sharp interface and diffuse interface methods. Sharp interface methods 
treat the interface or moving boundary between two phases as an 
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infinitely thin, sharp layer. A moving mesh handles the moving inter-
face, and the material properties change sharply across the interface. 
The nodes are placed on the interface, and the mesh is deformed ac-
cording to the flow on both sides. Some of the most famous studies using 
the moving mesh are [14–21]. Sharp interface methods have been used 
to study the dynamics of viscous drops in a co-flow capillary tube [22], 
the growth and detachment of a gas bubble in a non-rotational flow [23] 
and stable, accurate and robust computation of incompressible, immis-
cible fluids for bubble and liquid jet formation [24] and several others 
[25,26]. Moving mesh comes with the increased computational cost of 
re-meshing and the related introduction of interpolation error. 
Furthermore, mesh entanglement occurs due to the large displacement 
of the initial domain shape, which limits the sharp interface formulation 
to relatively mild changes of the topology.

As an alternative, fixed-grid methods such as Volume of Fluid (VOF) 
[27], Level Set Method (LSM) [28] and Phase Field Method (PFM) [29] 
were successful in treating deformed interfaces. Both LSM and VOF are 
the most powerful and versatile numerical tools for tracking the evalu-
ation of the interface and have been used for a wide range of two-phase 
flow problems. The VOF method is the most common and oldest 
fixed-grid method that has been used to investigate the droplet forma-
tion in an axisymmetric co-flow microchannel [27], to analyse the 
impact of a Newtonian drop on a thin circular fibre [30] and an 
FVM-based numerical modelling of the Gas Dynamic Virtual Nozzles 
(GDVNs) to generate liquid microjets [31,32]. The VOF method roughly 
estimates the moving interface and its curvature. Further, the interface 
reconstruction from the discontinuous fraction function at each time 
step is computationally demanding. The main drawback of the LSM is 
the smearing of the interface and the difficulty of ensuring mass 
conservation.

On the contrary, the PFM for multiphase flows is easier to implement 
and inherently conservative for two-phase flows. It assumes that the 
interface is diffused physically rather than in a numerical sense. The 
interface is described as a finite volumetric zone across which the 
physical properties vary steeply and continuously. The shape of the 
interface is determined by minimising the free energy of the interface. 
No explicit interface boundary condition is required at the moving 
boundary. The surface tension appears as a surface free energy per unit 
area caused by the gradient of the Phase Field (PF) variable.

In the literature, many applications of the PFM to the two- or 
multiphase flows are present, such as to simulate the three-phase flow 
[33] and to simulate the PF-formulated mixture of two incompressible 
fluids using a semi-discrete Fourier spectral method [34]. A detailed 
review of the development of PFM can be found in [35]. PFM has been 
developed for compressible binary mixtures based on the balance of 
mass, momentum, and energy by considering the second law of ther-
modynamics. It has been proved analytically and numerically that the 
developed model can describe the phase equilibrium for a binary 
mixture of CO2 and ethanol by changing the parameters, which measure 
the attraction force between molecules of both components [36]. The 
study [37] presented a continuum formulation of the immiscible flow 
hydrodynamics based on Navier-Stokes equations and Cahn-Hilliard 
interfacial energy, and it was shown that the PFM simulations are in 
close agreement with the molecular dynamics reference simulations. A 
one-fluid multicomponent numerical formulation was adopted to sys-
tematically derive the thermodynamically consistent hydrodynamic 
PFM for compressible viscous fluid mixtures [38]. PFM was used to 
demonstrate the drop formation process and the effect of various 
physical parameters on the dynamics of the droplet when a Newtonian 
fluid is injected into another co-flowing immiscible, Newtonian fluid 
with different viscosity and density. The simulations were performed 
using a numerical method that involves a convex splitting scheme and a 
projection-type scheme for solving the Cahn Hilliard and momentum 
equations, respectively [39].

The present paper solves the classical RT instability benchmark test 
case with a meshless method. Meshless methods do not need any mesh to 

solve the partial differential equations rather the computational domain 
is discretized with irregularly distributed points without any pre-defined 
mesh connectivity between them. The classical mesh-based numerical 
methods such as the Finite Difference Method (FDM) [40], Finite 
Element Method (FEM) [41], Finite Volume Method (FVM) [42] and 
Boundary Domain Integral Method (BDIM) [43] are used in physical 
modelling of different engineering problems. These methods are very 
well established and offer powerful features. Still, they also involve in-
conveniences such as mesh generation and re-meshing, which are 
complex in moving boundary problems. Many meshless numerical 
methods [44–50] have evolved to overcome these limitations. Meshless 
methods are computationally very suitable for the problems where the 
nodes are added or removed during a simulation. Additionally, the 
meshless methods offer (i) flexibility in discretizing the problem ge-
ometry, (ii) simpler h-adaptivity, (iii) higher order continuous shape 
functions (iv) reduced node alignment sensitivity and (v) similar 
formulation in 2D and 3D problems. The authors employed strong-form 
meshless DAM in the advancements of the present paper because of its 
proven robustness in the regular and irregular node arrangements [46,
51], easier implementation of higher-order polynomial shape function 
and successful implementation in the preliminary studies [52–54].

DAM was initially proposed in [50] and was later used in studies 
[55–57]. The studies [58–61] popularised DAM for heat transfer and 
fluid flow problems. One of the first industrial applications of DAM is 
presented in [62]. A few successful implementations of DAM in solid 
mechanics include [51,63–65]. The recent studies about the 
drop-formation at the nozzle orifice due to the effect of co-flowing 
incompressible gas [66] and simulation of RT instability with Boussi-
nesq approximation [11] proved that the combination of DAM and PFM 
is a valuable numerical tool for solving immiscible, convective hydro-
dynamic problems. Therefore, the authors used the same combination 
for a two-phase flow solver in the present work. The simulations were 
first run in a two-dimensional (2D) Cartesian coordinate system between 
two vertical parallel plates, and the results were compared with the 
reference FVM simulations performed using open-source code Gerris 
[67,68] and in the previous Boussinesq-based study [11]. Afterwards, 
the simulations in the present paper were performed in a cylinder using 
axisymmetric coordinate system. The verification was made by 
comparing our meshless results with the FVM simulations performed by 
Open-source Field Operation and Manipulation (OpenFOAM®) [69] 
code. Compared to the previous meshless simulations of related nu-
merical examples [11], the present model uses non-Boussinesq 
approximation, irregular node arrangement and improved stability by 
employing Pressure Implicit with Splitting of Operators (PISO) [70] 
pressure velocity coupling algorithm instead of Chorin’s pressure ve-
locity coupling [71]. The tested DAM parameters such as shape 
parameter of the Gaussian weight function a0 and the number of nodes 
in a local subdomain nloc are the same as in the authors’ preliminary 
studies of single-phase flow [52–54].

2. Physical model

2.1. Governing equations

The two-phase, viscous, incompressible, immiscible fluid system is 
governed by the following coupled set of Navier-Stokes and Cahn- 
Hilliard equations 

∂ρ
∂t

+∇⋅(ρv) = 0, (1) 

∂(ρv)
∂t

+∇⋅(ρvv) = − ∇P + μ∇2v + Fst + Fb, (2) 

∂φ
∂t

+ v⋅∇φ = E∇2ψ , (3) 
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ψ =
λ
ξ2

(
φ3 − φ

)
− λ∇2φ (4) 

where ρ, v, P, μ and t stand for effective density, velocity, pressure, 
effective dynamic viscosity and time, respectively. 

Fst = − λ
(

∇2φ∇φ+1
2∇(∇φ⋅∇φ)

)

represents the surface tension force 

and Fb = ρg represents the body force, while φ, λ,E,ψ, ξ, σ and g denote 
the PF variable, magnitude of free energy, mobility, chemical potential, 
interface thickness, surface tension and gravitational acceleration, 
respectively. The magnitude of free energy depends on surface tension 

Table 1 
Material properties of the fluid and PF parameters used in the simulations.

Material property/parameter symbol value

Density of the heavier fluid ρ1 1.225 kg /m3

Density of the lighter fluid ρ2 0.1694 kg /m3

Viscosity of both fluids μ1 = μ2 0.00313 kg /(ms)
Surface tension σ 1.0 N /m
Mobility E 9.0× 10− 4 m4 /(N s)
Interface width ξ 0.01m
Magnitude of free energy λ 0.011N

Fig. 1. Scheme of geometry and the boundary conditions of the two-dimensional Rayleigh-Taylor instability problem (left), Initial PF variable distribution at t = 0s in 
the cavity with A = 0.05m(right) obtained by Eq. (6).

Fig. 2. Scheme of geometry and the boundary conditions of the axisymmetric Rayleigh-Taylor instability problem (left), Initial PF variable distribution at t = 0s in 
the cavity with A = 0.05m(right) obtained by Eq. (7).
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and interface thickness as λ = 3σξ
2
̅̅
2

√ . The values of material properties of 
both fluids and PF parameters are shown in Table 1.

φ = 1 represents the top fluid with density ρ1 and viscosity μ1 while φ 
= − 1 represents the bottom fluid possessing density ρ2 and viscosity μ2. 
In the present system ρ1 > ρ2 and μ1 = μ2 and Atwood number At = ρ1 − ρ2

ρ1+ρ2 

is kept at 0.76. The effective density is a smooth function of PF variable 
as 

ρ = ρ1

(
1 + φ

2

)

+ ρ2

(
1 − φ

2

)

. (5) 

2.2. Computational domain, boundary, and initial conditions

Consider solving the two-phase RT instability phenomenon using the 
governing Eqs. (1) to (4). A scheme of the RT instability problem in 
Cartesian and axisymmetric coordinate systems and their respective 
boundary conditions are provided in Fig. 1 and Fig. 2, respectively. 
Hereafter, in this paper, the 2D abbreviation refers to the problem 
presented in Fig. 1, while AX to the problem presented in Fig. 2. The 
nominal dimensions of both cavities are shown in Table 2. Each cavity is 
filled with two incompressible, immiscible fluids possessing different 
constant densities and the same constant viscosities stated in Table 1. 
The heavier fluid is placed above the lighter fluid.

The boundary conditions for each of the 2D and AX cavities are as 
follows: No-slip velocity boundary condition is applied at the top and 
bottom walls, while free-slip velocity boundary condition is applied on 
the side walls and the symmetry axis. Neumann boundary conditions for 
pressure and PF variables are enforced at all the walls and the symmetry 
axis. Initially at t = 0, the fluids are at rest, and the pressure is zero 
everywhere. For the PF variable, an initial profile perturbed by a sinu-
soidal wave of amplitude A = 0.05m is given by the function 

φ = tanh
(

y − 2+Acos(2πx)
/ ̅̅̅

2
√

ξ
)
, (6) 

for the 2D cavity and by the function 

φ = tanh
(

z − 2+Acos(πr)
/ ̅̅̅

2
√

ξ
)

(7) 

for the AX cavity. The initial profiles of the PF variable are shown in 
Figs. 1 and 2.

3. Solution procedure

3.1. Diffuse approximate method (DAM)

The Weighted Least Squares (WLS) approach is used in DAM to 
determine a locally smooth and differentiable approximation of discrete 
data. The local shape functions are defined separately for each compu-
tational node and its associated subdomain, making the method local. 
The approximation of function is defined as the dot product of the 
polynomial basis vector b(p, pl) and the vector of the approximation 
coefficients cl 

f̂ l(p) = b(p,pl)⋅cl =
∑M

m=1
bm(p,pl) cl,m, (8) 

where pl is the position vector of the central node of the subdomain l, p is 
the position vector of any arbitrary point located inside that subdomain, 
and M is the size of the polynomial basis vector. The concept of over-
lapping subdomains with boundary and domain nodes for an arbitrary- 
shaped computational domain is presented in Fig. 3. A node’s local 
neighbourhood is created through k-d tree algorithm [72].

The bases consisting of second order polynomials are suitable for the 
present problem. For second order, the basis is 

b(p,pl) = [1, (pri − prl), (pzi − pzl),

(pri − prl)(pzi − pzl), (pri − prl)
2
(pzi − pzl)

2
]
;M = 6, (9) 

Further, partial derivatives are applied to the approximation func-
tions as 

L f̂ l(p) = L b(p,pl)⋅cl, (10) 

where L is at most second-order linear differential operator. To obtain 
the vector of approximation coefficients cl the following cost function Jl 
is minimised by the WLS method 

Jl =
∑nloc

i=1
θ(pi,pl)[f(pi) − f̂ l(pi)]

2
, (11) 

where f(pi) is the value at a point pi, nloc is the number of nodes in one 
local subdomain and θ is the Gaussian weight function. The mini-
misation of the cost function is performed by setting its partial derivative 
with respect to every unknown coefficient equal to zero 

∂Jl

∂cl,m
= 0, (12) 

∑nloc

i=1
θ(pi,pl)2bj(pi,pl)[b(pi,pl)⋅cl − f(pi)] = 0. (13) 

Table 2 
Nominal dimensions of the cavities.

Geometry Height (H) [m] Width (L) 
[m]

Radius (R) 
[m]

symmetry axis

2D cavity 4.0 1.0 – –
AX cavity 4.0 – 0.5 at r = 0 m

Fig. 3. Concept of overlapping subdomains.
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Dividing Eq. (13) by a constant and rearranging yields to a linear 
system of equations 

Alcl = dlf(pi), (14) 

where Al =
∑nloc

i=1θ(pi,pl)b(pi,pl)b(pi,pl) and dl =
∑nloc

i=1θ(pi, pl)b(pi,

pl).
The Gaussian weight function is defined as 

θ(pi,pl) = exp

(

− a0
‖ pi − pl ‖

2

h2
l

)

, (15) 

where a0 is the dimensionless shape parameter, which defines the width 
of the Gaussian weight and hlis the distance between the central node of 
the subdomain and its farthest neighbour.

For local interpolation, Eq. (10) is written in summation as 

L f̂ l(p) =
∑

k

L b(p,pl)⋅cl,k. (16) 

For one node, the Eq. (14) changes to 

cl,k =
∑nloc

j=1
A− 1

l,k,j dl,j f(pi). (17) 

All the right-sided terms of the Eq. (17) are constants except the field 
values f̂ l(p) so 

f̂ l(p) =
∑nloc

i=1
f(pi)wi, (18) 

while all the discretization coefficients wi are determined before starting 
the subsequent solution steps.

3.2. Node spacing and arrangement

This subsection describes the procedure of node generation and 
space discretisation. The present work employs uniform and non- 
uniform node arrangements in the involved two geometrical arrange-
ments. For example, the uniform and non-uniform node generation of 
2D domain is presented here, but the process is similar in AX. The node 
generation procedure for uniform and non-uniform node arrangements 
is the same, except that the uniform node arrangement uses constant 

node density all over the domain. In contrast, the non-uniform node 
arrangement uses a position-dependent node density function, which 
gives a higher node density within the region of interest (0.5m ≤ H ≤
2.6m) than in the remaining domain. The region of interest for the 2D is 
0.5m ≤ H ≤ 2.6m and for the AX is 0.1m ≤ H ≤ 2.6m.

Firstly, the geometry is parametrised by a boundary function which 
considers the position-dependent node density function. The first node is 
positioned at the lower-left corner of the domain, followed by the 
positioning of subsequent boundary nodes counterclockwise according 
to the boundary shape. The positioning of boundary nodes for the uni-
form and non-uniform node arrangements is presented in Fig. 4 and 
Fig. 8, respectively. Then, the inner boundary nodes are placed as shown 
in Fig. 5 and Fig. 9. The inner boundary nodes are the immediate 

Fig. 4. Boundary nodes for uniform node arrangement. Fig. 5. Boundary (red) and inner boundary (blue) nodes for uniform node 
arrangement.

Fig. 6. Boundary (red), inner boundary (blue) and inner (black) nodes before 
the energy minimisation process for uniform node arrangement.
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neighbours of the boundary nodes. They are positioned in the opposite 
direction of the outward normal of the boundary nodes. The remaining 
inner nodes are randomly positioned inside the domain using the node 
density function and are presented in Fig. 6 and Fig. 10 for uniform and 
non-uniform node arrangements, respectively. A random position prnd is 
assigned to each node inside the domain. For each node, a random 
number Xrnd ∈ [0, 1) and node density ςrrnd 

are calculated. The position is 
accepted only if Xrnd < ςrrnd

/ςmax where ςmax is the maximum node 
density value in the given geometry. It can be seen in Fig. 10 that the 
positions of the domain and boundary nodes are already adjusted ac-
cording to the given node density function, i.e., denser nodes in the 
region of interest and coarser otherwise. Lastly, an energy minimisation 
procedure is performed for the randomly positioned inner nodes. Each 

point is allotted a charge that is inversely proportional to the prescribed 
local density, and the positions of the points are iteratively adjusted to 
minimise the “electrostatic” energy configuration.

The final configuration of uniform and non-uniform node arrange-
ments is shown in Fig. 7 and Fig. 11, respectively. The node arrange-
ments are generated at much lower node densities in graphical 
representation than in numerical simulations. The uniform node 
arrangement is generated by a user-defined node density χu = 500. The 
node density function of the non-uniform node arrangement is given as 

fden = χu[0.5+(1 − 0.5)f1f2], (19) 

and illustrated in Fig. 12. It combines two error functions 
f1 = (erf(− s1 /w0) + 1) /2 and f2 = (1 − erf(− s2 /w0)) /2 where s1 = 0.5 

Fig. 7. Final node distribution after the energy minimisation process for uni-
form node arrangement. (N = 1000 generated by a constant density of 500 
nodes per sq. m).

Fig. 8. Boundary nodes for non-uniform node arrangement.

Fig. 9. Boundary (red) and inner boundary (blue) nodes for non-uniform node 
arrangement.

Fig. 10. Boundary (red), inner boundary (blue) and inner (black) nodes before 
the energy minimization process for non-uniform node arrangement.
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− y and s2 = 2.6 − y are the distances of a node from the starting and 
ending point of the region of interest in y direction.

3.3. Pressure implicit with splitting of operators

This study extends the classical PISO algorithm [70] for the 
pressure-velocity coupling of two-phase, incompressible flow. The key 
enhancement involves incorporating an additional corrector step that 
solves the Cahn-Hilliard equation, which governs the evolution of the PF 
variable. This incorporation ensures that the PF variable and the velocity 
field remain coupled within every time step. Hence, in one iteration, the 
two-phase PISO methodology performs one momentum predictor, two 
momentum correctors, and one PF variable corrector step. The unknown 
variables in PISO equations are marked red. Two-phase PISO method-
ology for incompressible flows works as follows:

Momentum predictor step: The momentum Eq. (2) is discretised 
implicitly and solved as 

[
ρn + Δt

[
∇⋅(ρnvn) + (ρnvn)⋅∇ − μ∇2]]v∗ =

Δt
[

− λ
(

∇2φn∇φn +
1
2
∇(∇φn⋅∇φn)

)

− ρng − ∇Pn
]

+ ρnvn,
(20) 

where, ρn vn, Pn, φn are the known effective mixture density, velocity, 
pressure and PF variable at time tn and Δt is the positive timestep 
duration. The effective mixture density is obtained by 

ρn = ρ1

(
1 + φn

2

)

+ ρ2

(
1 − φn

2

)

, (21) 

The same goes for any other material property that differs between 
fluids. The guessed values are represented by the superscript n, while the 
superscripts *, **, and *** represent the first, second and third inter-
mediate values of the current timestep iteration, respectively. The so-
lution of the Eq. (20) yields v*, the first intermediate velocity of iteration 
tn + 1 = tn + Δt. This intermediate velocity never satisfies the continuity 
Eq. (1).

First momentum corrector step: The momentum Eq. (2) can be 
written explicitly as 

ρ∗v∗∗ − ρnvn

Δt
+∇⋅(ρnvnv∗) = − ∇P∗ + μ∇2v∗−

λ
(

∇2φn∇φn +
1
2
∇(∇φn⋅∇φn)

)

− ρng
(22) 

The rearranging of the Eq. (22) gives the 1st corrected velocity of the 
iteration as 

v∗∗ = Δt
[

− ∇P∗ + μn∇2v∗ − λ
(

∇2φn∇φn +
1
2
∇(∇φn⋅∇φn)

)

− ρng − ∇⋅(ρnvnv∗)

]

+ρnvn/ρ∗

(23) 

Everything on the RHS of Eq. (23) is known except the new pressure 
field P* which is obtained by taking divergence of the Eq. (23) and 
rearranging as 

∇2P∗ =

∇⋅
[

μn∇2v∗ − λ
(

∇2φn∇φn +
1
2
∇(∇φn⋅∇φn)

)

− ρng − ∇⋅(ρnvnv∗)

]

− ∇⋅
(

ρ∗v∗∗

Δt

)

+∇⋅
(

ρnvn

Δt

)

(24) 

For the first momentum corrector, the unknown ∇ ⋅ (ρ*v**) becomes 
zero, since from the continuity equation 

∇⋅(ρ∗v∗∗) = −

(
ρ∗ − ρn

Δt

)

, (25) 

we know that ρ* and ρn are the same until φ is not updated in the iter-
ation. Hence, the Eq. (24) changes to 

∇2P∗ =

∇⋅
[

μn∇2v∗ − λ
(

∇2φn∇φn +
1
2
∇(∇φn⋅∇φn)

)

− ρng − ∇⋅(ρnvnv∗)

]

+∇⋅
(

ρnvn

Δt

)

,

(26) 

for the inner points. For the pressure field on the boundary points, the 
equation 

Fig. 11. Final node distribution after the energy minimization process for non- 
uniform node arrangement (N = 763 generated by node density function 
described in Eq. (19) and χu = 500).

Fig. 12. Node density distribution function for non-uniform node arrangement. 
The final function fden is multiplied by a constant user-defined node density χu =

500 to create a node distribution with 763 nodes in the computational domain.
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n⋅∇P∗ =

n⋅
[

μn∇2v∗ − λ
(

∇2φn∇φn +
1
2
∇(∇φn⋅∇φn)

)

− ρng − ∇⋅(ρnvnv∗)

]

− n⋅
(

ρ∗v∗∗

Δt

)

+ n⋅
(

ρnvn

Δt

)

,

(27) 

is used and v** is the same as the boundary condition of velocity. The 
solution of the Eq. (26) and (27) gives the first intermediate pressure 
field P* of the iteration tn + 1, which is then substituted in the Eq. (23) to 
get the second intermediate velocity of the iteration tn + 1.

PF variable corrector step: Based on second intermediate velocity 
obtained from Eq. (23) the PF variable can be updated by solving the Eq. 
(3) implicitly as 

φ∗ − φn

Δt
+ v∗∗⋅∇φ∗ = E∇2ψn, (28) 

where φn and ψn are guessed values of PF variables and chemical po-
tential. Rearranging Eq. (28) gives 

[1+Δt(v∗∗⋅∇)]φ∗ = Δt
(
E∇2ψn)+ φn. (29) 

Solution of the Eq. (29) provides updated PF variable.
The material property (density) is updated as 

ρ∗ = ρ1
1 + φ∗

2
+ ρ2

1 − φ∗

2
. (30) 

Second momentum corrector step: For incompressible flows, the 
2nd momentum corrector step is just the extension of 1st momentum 
corrector steps. The equations for the second intermediate pressure field 
and third intermediate velocity field are as follows 

∇2P∗∗ =

∇⋅
[

μ∇2v∗∗ − λ
(

∇2φ∗∇φ∗ +
1
2
∇(∇φ∗⋅∇φ∗)

)

− ρ∗g − ∇⋅(ρ∗v∗v∗∗)

]

+∇⋅
(

ρ∗v∗∗∗

Δt

)

+∇⋅
(

ρnvn

Δt

)

,

(31) 

n⋅∇P∗∗ =

n⋅
[

μ∇2v∗ − λ
(

∇2φ∗∇φ∗ +
1
2
∇(∇φ∗⋅∇φ∗)

)

− ρ∗g − ∇⋅(ρ∗v∗v∗∗)

]

− n⋅
(

ρ∗v∗∗∗

Δt

)

+ n⋅
(

ρnvn

Δt

)

,

(32) 

v∗∗∗ =

Δt
[

− ∇P∗∗ + μ∗∗∇2v∗∗ − λ
(

∇2φ∗∇φ∗ +
1
2
∇(∇φ∗⋅∇φ∗)

)

− ρ∗g
]

− ∇⋅(ρ∗v∗v∗∗)Δt + ρnvn/ρ∗∗,

(33) 

where the unknown ∇ ⋅ (ρ*v***) in Eq. (31) can be found through 
continuity equation as 

∇⋅(ρ∗v∗∗∗) = −

(
ρ∗ − ρn

Δt

)

. (34) 

P**, ρ*, φ* and v*** represent the field values of the time level tn + 1. 
These values serve as the initial values of the next time step from tn + 1 to 
tn + 2.

Consistent with the preliminary study [54], the authors also used the 
two momentum correctors in this work. Generally, the number of mo-
mentum correctors can be any whole number greater than or equal to 2, 
and the number of PF variable corrector steps is always one less than the 
number of momentum corrector steps. The workflow of the PISO 
framework for solving PF-formulated two-phase incompressible flow 
problems is presented in Fig. 13.

3.4. Numerical implementation

For DAM simulations: The simulations of the present paper use a 
code based on a previously established meshless library written in 
modern object-oriented FORTRAN and compiled in Intel Fortran 
Compiler Version 19.1.1. The numerical code is parallelized using 
OpenMP, and six threads are used for each computation. The time step 
size Δt of all simulations is restricted by the Courant-Friedrichs Lewy 
(CFL) and Von Neumann stability conditions as 

Δt = min

(
h
|v|

,0.25
h2

D

)

(35) 

where, h is the node spacing measured as the minimum distance be-
tween two consecutive nodes and the diffusivity constant. The Courant 
number [73] of the simulations is Co = (|v|Δt) /h = 0.25. The simula-
tions are performed until the time t = Δt × No.oftimesteps reaches 0.9s. 
The input DAM parameters of each simulation are described in their 
respective discussion in Section 4, but they all align with the preliminary 
single-phase flow study [54]. The numerical method is verified by 
comparing the obtained solutions with the reference FVM-VOF solutions 
at different times.

For reference FVM-VOF simulations: The reference numerical 
simulation in the Cartesian coordinate system is performed with open- 
source code Gerris [67,68]. For multiphase flow simulation, Gerris 
uses second-order time and space discretisation, VOF and Piecewise 

Fig. 13. PISO algorithm for two-phase incompressible flow.
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Linear Interface Construction (PLIC) algorithm [74] for interface 
reconstruction and generalised height function [75] to calculate the 
local curvature of the interface. The classical CFL condition controls the 
time step size, and an adaptive mesh refinement algorithm based on the 
octree division of cells is used, which refines the cells dynamically as the 
interface grows. The input parameters, initial and boundary conditions 
are the same as in DAM simulations.

For the validation of axisymmetric DAM-PF simulations, FVM-VOF 
based OpenFOAM simulations are calculated. The issue of interface 
smearing in VOF based OpenFOAM simulations is handled by an inter-
face compression approach [76]. An axisymmetric wedge-shaped 
domain (based on OpenFOAM® requirement) is discretised with uni-
formly distributed 20,000 non-overlapping hexahedron cells with sizes 
of 0.01m. The boundary and initial conditions are set such that they 
replicate DAM-PF problem setup. In FVM-VOF based simulations a 
second-order vanLeer Total Variation Diminishing (TVD) scheme [77] is 
used for convective terms. A second-order TVD scheme limitedLinearV 
[78] is used for interpolation of the velocity field. For temporal inte-
gration first-order implicit Euler method is used. The pressure-velocity 
coupling was handled with PISO algorithm. Adaptive time stepping is 
utilised with a condition that Courant number stays below 0.25. For 
further detailed implementation and utilisation the readers are directed 
to [78].

4. Results and discussion

This section is divided into three subsections, explaining the out-
comes of the present work. First, a node density independence test is 
conducted for both geometries to demonstrate the node density 
convergence. Next, a sensitivity study of DAM parameters is performed 
to determine suitable input parameters. In the last section, the evolution 
of the interface position is presented for 2D and axisymmetric cavities at 
different intervals of flowtime.

4.1. Space discretization

The node density independence test is done by testing three uniform 
and one non-uniform node arrangements for each geometry. The uni-
form node arrangements are coarse, medium or fine based on their total 
number of nodes while the non-uniform node arrangement is denser in 
the region of interest and coarser otherwise. The coarse, medium and 
fine node arrangements of the 2D cavity are named C2D, M2D and F2D, 
respectively, while its non-uniform node arrangement is NU2D. Simi-
larly, CAX, MAX, FAX are the coarse, medium and fine node arrangements 
of the axisymmetric cavity and NUAX represents its non-uniform node 
arrangement. The procedure of generating uniform and non-uniform 
node arrangements is described in the Section 3.2, and the data about 
their total number of nodes and computational costs is included in 
Table 3. The non-uniform node arrangements are created in a way that 
the node density in the region of interest matches with the medium node 
arrangement, hence the minimum distance between two consecutive 
nodes h is almost the same for M2D and NU2D for 2D cavity and MAX and 
NUAX for the axisymmetric cavity. The node density in the coarser areas 

of each non-uniform node arrangement is six times less than its denser 
area. This subsection aims to find out if the non-uniform node ar-
rangements provide accuracy similar to that of the finer uniform node 
arrangement with less computational expense. For this subsection, the 
shape parameter a0 and the number of nodes in a local subdomain nloc 
are set to 10.0 and 13, respectively.

The solution of the simulations for all four node arrangements of the 
2D and AX cavities and their comparison with the reference FVM-VOF 
results at t = 0.9sare presented in Fig. 14 and Fig. 16, respectively. 
The comparison is done for the vertical coordinate of the interface po-
sition i.e. y-coordinate for the 2D domain and z-coordinate for the AX 
domain. A slight difference in the shapes of the interface for coarser 
node arrangements (C2D for 2D and CAX for AX domain) is observed, 
while the results for the denser node arrangements (M2D and F2D for the 
2D and MAX and FAX for the axisymmetric domain) overlap with their 
respective reference FVM results which means that the solution for the 
uniform medium node arrangements M2D and MAX are node density 
converged with negligible relative errors.

The interface positions for DAM and FVM solutions are extracted 
from Paraview at 2000 points and their relative error is calculated as Δε 
= (εDAM − εFVM)/εFVM, where εDAM and εFVM denote the values of the 

Table 3 
Comparison of the computational details of all the node arrangements used in the present work.

Domain 2D Cavity Axisymmetric cavity

Uniform node arrangement Non-uniform Uniform Node arrangement Non-uniform

Coarse 
C2D

MediumM2D Fine 
F2D NU2D

Coarse 
CAX

Medium 
MAX

Fine 
FAX NUAX

Number of total nodes 90, 000 150, 000 210, 000 90, 625 65, 000 105, 000 155, 000 63, 447
Minimum node spacing h[m] 0.00361 0.00284 0.00237 0.00285 0.00348 0.00292 0.00212 0.00298
Time step size [s] 0.0001 0.00002 0.00002 0.00002 0.0001 0.00002 0.00002 0.00002
Time [s] per iteration 1.34 1.89 2.68 1.40 1.25 1.67 2.34 1.36
No. of iterations to reach tf = 0.9s 9000 45,000 45,000 45,000 9000 45,000 45,000 45,000
Computational time [s] to reach tf = 0.9s 12,060 85,050 120,600 63,000 11,250 75,150 105,300 61,200

Fig. 14. Contours of DAM and FVM with four different node arrangements in 
2D cavity at t = 0.9s.
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vertical coordinate of the interface position obtained using DAM and 
FVM, respectively. The maximum relative error of each node arrange-
ment is presented in Table 4. It can be seen that the relative error is 
reduced when a larger number of nodes in uniform node arrangements 
are used. A larger number of nodes better captures the local variations, 
such as change in interface position, reducing the approximation error 
inherent in the numerical method. In the local subdomains, the field 
values are estimated based on their neighbouring nodes. The distance 
between the neighbours decreases with the number of nodes, leading to 
more accurate interpolation and less interpolation error. The reduced 
interpolation and approximation errors contribute to lower relative 
error between DAM and reference FVM solutions. It is evident from 
Table 4 that the accuracy of the solution is achieved at the expense of 
higher computational cost when constant node density is used all over 
the domain. On the contrary, the solutions with non-uniform node ar-
rangements exhibit comparable accuracy with considerable reduction in 
the computational time. The computational time for NU2D is ~ 45% less 
than M2D for 2D simulations while for AX simulations ~ 37% reduced 
computational time was observed with NUAX that MAX. Therefore, the 
rest of the 2D simulations are performed with node arrangement NU2D 
and node arrangement NUAX is used for AX simulations. For 2D simu-
lations, the results for the chosen node arrangement NU2D are afterwards 
compared with the DAM simulations presented in the study [11] in

Fig. 15. Compared to the existing literature, the present model fits 
better with the Gerris reference results. Notably, the present model 
possesses an inherent stability of incorporating the density variation 
throughout the momentum equation, a feature that proved elusive in the 

Table 4 
Maximum relative error of DAM and FVM solutions for the interface positions of 
the tested node arrangements.

Node 
arrangement

Maximum relative 
error for the vertical 
component of the 
interface position

Node 
arrangement

Maximum relative 
error for the vertical 
component of the 
interface position

C2D 2.19 × 10− 4 CAX 2.76 × 10− 4

M2D 1.72 × 10− 4 MAX 1.49 × 10− 4

F2D 1.55 × 10− 4 FAX 1.36 × 10− 4

NU2D 1.68 × 10− 4 NUAX 1.59 × 10− 4

Fig. 15. Comparison of contours of present model with the previous meshless 
model [11] and FVM in 2D cavity at t = 0.9s.

Fig. 16. Contours of DAM and FVM with four different node arrangements in 
axisymmetric cavity at t = 0.9s.

Fig. 17. Contours of FVM and DAM solutions for three different shape 
parameter values for 2D RT cavity.
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study [11]. The capability of this present model to tackle the large 
density variation (Atwood number of 0.76) gave us the confidence to use 
the solver for our main application i.e., gas-focused microjets where the 
density ratio of the fluids is ~ 6000.

4.2. Sensitivity study of DAM parameters

To highlight the impact of selecting appropriate input parameters, 
the sensitivity study of DAM parameters is performed in this subsection. 
The tested DAM parameters include the shape parameter of the Gaussian 
weight function a0 and the number of nodes in one local subdomain nloc. 
Initially, three different values of shape parameter a0 = 2.5, 5.0 and 10.0 
are investigated for the discussed geometries with 13 nodes in a local 
subdomain. The results in Fig. 17 and Fig. 18 demonstrate that the lower 
shape parameters 2.5 and 5.0 fail to capture the correct dynamics of the 
moving interface for both 2D and axisymmetric coordinates systems.

For 2D cavity, lower shape parameters lead to incomplete detach-
ment of the tails or spikes of the heavier fluid. Conversely, the higher 
shape parameter facilitates the faster penetration of the heavier fluid 
into the lighter fluid, resulting in significantly visible bending curves for 
right and left spikes. The value of shape parameter 10.0 is recommended 
for similar simulations as it gives better accuracy, and the shape of the 
interface overlaps with the reference FVM results. The shape parameter 
decides how gradual the decay of the Gaussian weight function would be 
from 1 to 0. For higher shape parameters, the central node of the sub-
domain is the most important one and the rest of the nodes are given less 
importance which in the present simulations ends with more accurate 
results. However, the attempts to use the shape parameters larger than 
10.0 were unsuccessful, and the solutions diverged quickly. Subse-
quently, the simulations were performed with three different numbers of 
the nodes in a local subdomain nloc = 11, 13and 17. The results of the 

Fig. 18. Contours of FVM and DAM solutions for three different shape 
parameter values for AX RT cavity.

Fig. 19. Contours of FVM and DAM solutions for three different number of 
nodes in a local subdomain for 2D RT cavity at t = 0.9s.

Fig. 20. Contours of FVM and DAM solutions for three different number of 
nodes in a local subdomain for axisymmetric RT cavity at t = 0.9s.

Table 5 
The computational time of different number of nodes in a local subdomain are 
compared.

a0 nloc No. of iterations Time [s] per iteration Total time 
[s]

10.0 11 9000 1.33 11,970
13 9000 1.40 12,600
17 11,250 3.38 38,025
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interface position for all three values of nloc are presented in Fig. 19 and 
Fig. 20. They show a negligible variation from the reference FVM so-
lution. No significant differences in the shape of the interface were 
observed for all three values of nloc in 2D and AX simulations. The effect 
of nloc on the computational time of the solution is presented in Table 5. 
The time step size for two smaller values of nloc is 1 × 10− 4 while for 
higher value the time step size is 1 × 10− 5. The increased number of 

nodes in a local subdomain increases the time required to perform one 
iteration, which results in higher computational time overall. The so-
lutions with smaller number of nodes in a local subdomain in Fig. 19 and 
Fig. 20 overlap very well with the reference results and reduce the 
computational time by~ 30%. Therefore, based on all these findings, the 
most suitable combination of parameters for the present work shape 
parameter a0 = 10.0 and nloc = 13.

Fig. 21. Contours of the time evolution of the interface of the RT instability between two fluids for the 2D cavity (row 1) and for the AX cavity (row 3), Maps of the 
time evolution of the PF variable for the 2D cavity (row 2) and for the AX cavity (row 4).

K.B. Rana et al.                                                                                                                                                                                                                                 Engineering Analysis with Boundary Elements 169 (2024) 105953 

12 



The analysis of the method presented in the previous and present 
subsections proves that the error between the obtained DAM solutions 
and the reference FVM solutions can be minimized by using proper node 
discretisation and suitable input parameters. The next subsection ex-
plores how the interface between two fluids changes their shape over 
time in both discussed geometries.

4.3. Time evolution of RT instability

A classical Rayleigh-Taylor instability benchmark test case described 
in Section 2 is numerically solved in Cartesian coordinates and then 
extended to axisymmetric coordinates for the first time. The time evo-
lution of the interface at different times is presented in Fig. 21.

The onset of RT instability is triggered by an initial perturbation at t 
= 0s between two fluids of different densities and the same viscosity. For 
the present simulations, the perturbation is given by a sinusoidal wave 
of amplitude A = 0.05m given in Eq. (6) and Eq. (7) and presented in 
Fig. 1 and Fig. 2 for 2D and axisymmetric cavities, respectively. The 
gravitational force is the driving force in RT instability, which acceler-
ates the downward acceleration of the heavier fluid. This acceleration 
causes a pressure gradient which opposes the gravitational force. When 
the pressure gradient is not strong enough to balance the gravitational 
force, the interface becomes unstable, and the initial small perturbation 
of the interface starts to grow. The lighter fluid starts to penetrate the 
heavier fluid as bubbles, while the heavier fluid moves into the lighter 
fluid as spikes. At the initial stages of the simulation, these bubbles and 
spikes are tiny and move slowly. As the instability grows, they become 
larger and move quicker.

The surface tension force plays a stabilising role and reduces the 
growth rate of the instability. Its strong damping effect resists the 
development of short wavelength disturbances at the interface. At the 
later stages of RT instability t > 0.5s, the surface tension force narrows 
the RT bubble and accelerates its growth by squeezing. However, the 
squeezing of the bubble neck appears different for 2D and AX simula-
tions in Fig. 21 because the surface tension force behaves differently in 
different coordinate systems.

5. Conclusions

A novel two-phase, meshless numerical model for two-phase 
incompressible flow has been developed. The incorporation of PFM in 
our previously developed DAM and PISO based single-phase flow solver 
enhanced its capabilities to two-phase flow simulations. The model is 
equally suitable for 2D and AX arrangements as well as uniform and non- 
uniform node arrangements. The present study performs the first 
meshless simulation of the classical RT instability problem in axisym-
metric coordinates without the Boussinesq approximation. The obtained 
results are in excellent agreement with the reference FVM-VOF results 
and previous 2D meshless numerical study. Based on the sensitivity 
study regarding DAM parameters, the authors recommend nloc = 13 and 
a0 = 10.0 for similar numerical computation. The successful study 
demonstrates the accuracy and robustness of the two-phase solver and 
builds our confidence to utilise it for more complex cases. The formu-
lation of the numerical model is suitable for two Newtonian, incom-
pressible fluids. The interface thickness between the phases is geometry 
and discretization-dependent and may require adjustment in other types 
of fluid flow problems. In general, the interface thickness should be two 
times the minimum distance between two nodes. The model will further 
be extended for two-phase compressible flow problems, including gas- 
focused micro-jets.
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[46] Šarler B, Vertnik R. Meshfree explicit local radial basis function collocation method 
for diffusion problems. Comput Math Applicat 2006;51:1269–82.

[47] Atluri SN, Shen S. The meshless local Petrov- Galerkin (MLPG) method: a simple & 
less-costly alternative to the finite element and boundary element methods. 
Comput Modell Eng Sci 2002;3:11–51.
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