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A B S T R A C T

This study aims to find a solution for crack propagation in 2D brittle elastic material using the local radial basis 
function collocation method. The staggered solution of the fourth-order phase field and mechanical model is 
structured with polyharmonic spline shape functions augmented with polynomials. Two benchmark tests are 
carried out to assess the performance of the method. First, a non-cracked square plate problem is solved under 
tensile loading to validate the implementation by comparing the numerical and analytical solutions. The analysis 
shows that the iterative process converges even with a large loading step, whereas the non-iterative process 
requires smaller steps for convergence to the analytical solution. In the second case, a single-edge cracked square 
plate subjected to tensile loading is solved, and the results show a good agreement with the reference solution. 
The effects of the incremental loading, length scale parameter, and mesh convergence for regular and scattered 
nodes are demonstrated. This study presents a pioneering attempt to solve the phase field crack propagation 
using a strong-form meshless method. The results underline the essential role of the represented method for an 
accurate and efficient solution to crack propagation. It also provides valuable insights for future research towards 
more sophisticated material models.

1. Introduction

In material science and structural engineering, cracks play an 
essential role by impacting the performance and integrity of materials. 
Griffith’s groundbreaking contribution in 1920 [1] opened a new era of 
research in fracture mechanics by observing that crack propagation is a 
contest between increasing surface energy and releasing elastic energy. 
Generally, the numerical modelling of cracks can be divided into two 
categories, i.e., continuous/diffuse and discontinuous/discrete ap
proaches. The discontinuous approaches involve a discontinuity in the 
displacement field [2], which is based on the well-known theories of 
linear elastic fracture mechanics (LEFM) and the cohesive zone model 
(CZM) [3]. It is challenging to model crack behaviour using discontin
uous methods, such as crack initiation, nucleation, branching, propa
gation, and patterns [2], because the discrete methods need additional 
criteria to track the discontinuity in the displacement field explicitly [4]. 
The generalized finite difference method (GFDM) has been successfully 
applied to solve crack problems in anisotropic materials, demonstrating 
its accuracy and effectiveness through various numerical examples [5].

On the other hand, the diffuse methods, introduced in the late 1990s, 

have no discontinuity in the displacement field [2]. However, the stiff
ness degrades gradually as the damage increases. Some of the popular 
diffuse methods consist of the screened Poison method [6], gradient 
damage models [2] and phase field method (PFM) [7]. One of the most 
commonly used diffuse methods, PFM, is a robust and helpful approach 
because of its simple applicability in crack initiation, detection, and 
propagation. PFM does not require additional criteria for tracing the 
crack during propagation.

The PFM is a mathematical tool used to solve interfacial problems. 
This approach was used for the first time in the 1980s for modelling free- 
boundary problems [8]. The introduction of PFM to the analysis of 
cracks was first presented by Marigo and Francfort in 1998 [9] and is 
based on the approximate potential developed by Mumford and Shah 
[10] for image segmentation. This model was numerically implemented 
in 2000 [7]. Marigo and Francfort first considered predefined crack and 
crack paths [9], but later on, it was concluded that phase field (PF) could 
also detect crack initiation, and there is no need for predefined cracks 
[11]. The PFM is based on the variational principle of fracture me
chanics, which is the generalisation of Griffith’s theory. This principle 
embodies a broader conceptualisation, facilitating the demonstration of 
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crack initiation and tracing crack propagation. In contrast to discrete 
methods, the global optimisation embedded in the variation principle in 
PFM allows the spontaneous emergence of each newly formed crack 
without specifying it in advance [12]. The differential governing equa
tion of PF predicts crack propagation, whereas the length scale param
eter in the PFM controls the shape of the crack [13]. Recently, PFM has 
been used for crack analysis in different fields, including brittle cracks 
[14–22], dynamic cracks [11,23,24], ductile cracks [25–28], cracks in 
composite materials [29–31], fatigue cracks [27,32,33], hydrogen 
assisted cracks [34–36] and others described in the review article [37]. 
The limitation of PFM is the computational cost due to the relation be
tween the length scale parameter, which defines the thickness of the 
crack, and the node spacing [4]. For a numerically stable crack propa
gation, the minimum node spacing should be at least less than or equal 
to half of the length scale parameter [11].

The previously proposed second-order PF [11] is computationally 
expensive due to the requirement of highly dense mesh [4]. A 
fourth-order PF was proposed by Borden at al. [38], which consists of 
fourth-order derivatives of the PF parameter ϕ in the governing equation 
to loosen the mesh size requirements, regularise the PF and improve the 
convergence rate [13]. Due to the double Laplacian term (Δ2ϕ) in the 
governing equation of the fourth-order PFM, the resulting PF solution 
exhibits high regularity, which ensures a smoother representation of the 
crack with no sharp discontinuities and provides a more precise depic
tion of the crack surface compared to the second-order PFM [39]. The 
results in [38] justify the fourth order being more accurate with a better 
convergence rate in terms of node spacing. In the context of the finite 
element method (FEM), the higher-order derivatives require a minimum 
of C1 continuous basis functions [4], which are difficult to construct 
using FEM. To reduce the computational cost and provide a smooth and 
continuous discretisation in the domain, the authors in [4] used an 
adaptive h-refinement in the framework of isogeometric analysis (IGA). 
Many authors have contributed to fourth-order PF solutions for cracks 
using FEM, such as [40–45], weak form meshless isogeometric collo
cation method used in [13] and local maximum entropy approximant 
schemes used in [46].

The PF modelling of cracks has been done using commercially 
available software like COMSOL Multiphysics [47,48], ABAQUS 
[49–53] and open-source software FENICS [19,20,31] using the weak 
form of the governing equations in the framework of the FEM. These 
FEM-based tools are effective but face challenges, especially in large 
deformation problems and complex geometries.

Meshless methods, also known as mesh-free methods, offer a novel 
approach to numerical analysis by eliminating the need for a traditional 
mesh. Instead of relying on elements connected by nodes, these methods 
use a set of scattered/regular nodes to discretise the domain, which are 
free to move and adapt to changes in the problem geometry [54]. The 
meshless methods can be divided into weak-form and strong-form 
formulated. Despite good stability and accuracy, the weak-form mesh
less methods involve numerical integration, making them computa
tionally more expensive [55]. The weak-form meshless methods have 
been successfully used for phase field modelling of crack propagation. 
For example, in [56], the weak-form meshless method is used for 
second-order PF brittle cracks, where a modified Newton-Raphson 
method is applied to restore the convergence of the radial point inter
polation method iteratively. The Element-free Galerkin method is used 
for second-order PF modelling of cracks in [18] with h-adaptivity by 
triggering the refinement with the strain energy history, showing 
improved accuracy and computational efficiency compared to the case 
with no h-adaptivity. The isogeometric mesh-free collocation method is 
used in [13] to show the robustness and effectiveness of the fourth-order 
PF in terms of computational cost and crack surface resolution compared 
to the second-order PF. In [46], the authors used the mesh-free local 
maximum entropy approximation and showed that the fourth-order PF 
requires fewer nodes to resolve the crack path and has a more accurate 
crack surface than the second-order PF.

On the other hand, strong-form meshless methods directly discretise 
the partial differential equations without any need for integration. They 
are easier to implement numerically than the weak-form meshless 
methods and do not require any background mesh for approximation, 
making them computationally efficient [55]. The strong-form meshless 
methods offer simplicity and high boundary accuracy, while weak-form 
methods provide greater stability and flexibility [57]. However, the 
latter involves complex formulation. In [58], the authors propose a least 
squares radial basis function finite difference approach, based on the 
strong form meshless method, that improves stability and accuracy in 
solving partial differential equations, particularly on irregular domains, 
while maintaining the flexibility of meshless approaches. To this date, 
the strong-form meshless methods have never before been used for crack 
modelling using PF. Therefore, for the first time, this paper presents a 
solution procedure of a fourth-order PFM, solved with a strong-form 
meshless method, for crack propagation. One of the most popular 
strong-form meshless methods is the local radial basis function collo
cation method (LRBFCM) [54], also recently known as the radial basis 
function generated finite difference (RBF-FD) method. The LRBFCM 
employs local approximations within subdomains to calculate each 
node’s local weights of differential operators. These locally computed 
weights are then used to construct a global stiffness matrix [55]. This 
feature of local approximations for LRBFCM makes it possible to solve 
large-scale problems compared to the global Kansa method [59]. A 
detailed overview and implementation of the LRBFCM can be found in 
the review article [60]. The LRBFCM has been used to successfully solve 
different problems, such as diffusion problems [54], 
advection-dominated problems [61], linear thermo-elasticity [62], 
h-adaptive LRBFCM [63], multi-pass hot-rolling simulation [64], nu
merical modelling of visco-plastic material [65], and the simulation of 
laminar backwards-facing step flow under a magnetic field with explicit 
LRBFCM [66]. The LRBFCM is used in [54] with multiquadrics (MQs) as 
an interpolation function, producing good results compared to the finite 
difference method (FDM) [54]. The main disadvantage of MQs is that 
they require a selection process for a suitable shape parameter [67]. 
Polyharmonic splines (PHSs) as radial basis functions (RBFs), on the 
other hand, involve a trivial formula for the selection of shape param
eters [67,68]. This unique feature of PHSs in the RBF approaches has 
recently made it popular. PHSs also play a vital role in convergence, 
accuracy, and stability studies [69,70]. Another feature of PHSs is that 
they can deal efficiently with the numerical issues related to poor con
ditioning [71]. In [68] and [69], the authors reported that the number of 
nodes in the local subdomain must be at least twice the number of 
augmentation monomials to ensure h-convergence governed by the 
order of augmentation. Some recent notable research articles utilising 
PHSs include a coupled domain–boundary type meshless method for 
phase field modelling of dendritic solidification with the fluid flow [72], 
an improved local radial basis function method for solving small-strain 
elasto-plasticity [55], a hybrid radial basis function finite difference 
method for modelling two-dimensional thermo-elasto-plasticity [73], 
and its application to the metallurgical cooling bed problem [74]. An 
example of PHS use for reducing discretisation-induced anisotropy in 
the phase field modelling of dendritic growth is provided in [75].

2. Governing equations

The governing equations for the fourth-order phase field model can 
be derived from the regularised total potential energy Π of a body 
occupying a domain Ω with a boundary Γ, subject to prescribed 
boundary conditions [4]. 

Π = Ee + Es + Eext , (1) 

Ee =

∫

Ω

g(ϕ)ψ(ε)dΩ, (2) 
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Eext = −

∫

Ω

b⋅udΩ −

∫

Γ

T⋅udΓ, (3) 

Es = Gc

∫

Ω

γ(ϕ)dΩ, (4) 

where Ee is the stored elastic energy, Es is the surface fracture energy and 
Eext is the external potential energy, g(ϕ) = (1 − ϕ)2 is the degradation 
function, ψ(ε) = 1

2 (ε : C: ε) is the strain energy density, C is the elasticity 
tensor, ε= 1

2
(
∇u+∇Tu

)
is the strain tensor, b is the body force, u is the 

displacement and T is the prescribed traction on the boundary, Gc is the 
surface fracture energy, γ is the crack surface density and ϕ is the phase 
field parameter (ϕ = 0 is intact and ϕ = 1 is broken material). The crack 
surface density γ(ϕ) is defined as [4,38], 

γ(ϕ) =
1

2l0

(

ϕ2 +
l20
2

Δϕ+
l40
16

(Δϕ)2

)

, (5) 

where l0 is the length scale parameter [76], used to regulate the diffu
sion of the crack. The surface crack energy Eq. (4) can be rewritten, by 
plugging in the Eq. (5), as 

Es =
Gc

2l0

∫

Ω

(

ϕ2 +
l20
2

Δϕ+
l40
16

(Δϕ)2

)

dΩ. (6) 

Putting Eqs. (2), (3) and (6) into Eq. (1) we get the total potential 
energy as 

Π =

∫

Ω

[

g(ϕ)ψ(ε)+ Gc

2l0

(

ϕ2 +
l20
2

Δϕ+
l40
16

Δ2ϕ

)

− b⋅u

]

dΩ −

∫

Γ

T⋅udΓ.

(7) 

By minimising the total potential energy in the Eq. (7) with respect to 
u and ϕ, we reach the strong form coupled balance equations for me
chanical and PF models, respectively. 

∇⋅[g(ϕ)σ] + b = 0, (8) 

(
2l0ψ(ε)

Gc
+1
)

ϕ −
l20
2

Δϕ +
l40
16

Δ2ϕ =
2l0ψ(ε)

Gc
, (9) 

where σ =λtr(ε)I + 2με is the stress tensor, λ and μ are Lamé parameters, 
whereas I is the second-order identity tensor and the corresponding 
boundary conditions (Γ = Γu∪ΓT∪ΓF) are 

u=uonΓu, (10) 

g(ϕ)σ⋅n= TonΓT , (11) 

{un,Tt} = {0,0}onΓF, (12) 

where u is the prescribed displacement at Γu, T is the traction at ΓT, and 
ΓF is a free-slip boundary condition in which the body is restricted from 
moving in the normal direction un = u ⋅ n = 0 and free to move in the 
tangential direction Tt = T⋅t.

For enforcing the irreversibility condition for crack healing, another 
assumption is made in [11] by introducing a history variable H =

maxτ=[0,tmax ][2l0ψ(ε(p,τ)) /Gc]; where p is any point in the domain and τ is 
the respective timestep. By replacing the history variable in the Eq. (9), 
we reach the final governing equation for the fourth-order PF model 

(H+1)ϕ −
l20
2

Δϕ +
l40
16

Δ2ϕ = H. (13) 

The initial crack is introduced using the history field as a function of 
the closest distance d(p, l) from any point p in the domain to the line l as 
[23] 

H0(p) = B

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gc

2l0

(

1 −
2d(p, l)

l0

)

d(p, l) ≤
l0
2

0d(p, l) >
l0
2

,whereB =
1

1 − ϕ
, (14) 

we used ϕ = 1 − 10− 3 to get the scalar parameter B = 103 for all the 
simulations.

By minimising the Eq. (5), writing it in 1D, and assuming ϕ(0) = 1, 
∂ϕ(0)

∂x = 1
[
m− 1], limx→±∞

∂ϕ(x)
∂x = 0

[
m− 1] and limx→±∞

∂2ϕ(x)
∂x2 = 0

[
m− 2] we 

get the homogeneous ordinary differential equation, 

ϕ(x) −
l20
2

∂2ϕ(x)
∂x2 +

l40
16

∂4ϕ(x)
∂x4 = 0. (15) 

The diffused crack for 1D at x = 0[m] [4] can be derived by solving 

Fig. 1. Diffuse crack representation (Eq. (16)) in 1D for different length 
scale parameters.

Fig. 2. Scheme of the domain Ω with boundary Γ. The solid and empty circles 
show the interior and boundary nodes, respectively. The dashed circular line 
shows the limits of a local sub-domain lΩ containing six interior nodes. The 
solid square shows the central node lp.
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the Eq. (15) as 

ϕ(x) = e

(

−
|2x|
l0

)
(

1+
|2x|
l0

)

. (16) 

The effects of l0 for a crack at x = 0[m] using the Eq. (16) are shown 
in Fig. 1. The diffused crack topology approaches the sharp crack to
pology as l0 → 0[m], as shown in Fig. 1.

3. Numerical method and solution procedure

The PFM and mechanical models are solved by the LRBFCM [54]. In 
LRBFCM, the domain Ω is divided into local subdomains lΩ, as shown in 
Fig. 2, and any function f is approximated numerically as 

lf(p) ≈
∑lN

i=1
lαi lΦi(p), (17) 

where the index i runs over lN local nodes of the lΩ and lαi represents the 
unknown coefficients to be determined by collocation and lΦi(p) are the 
shape functions. In order to overcome the ill-conditioning of the local 
interpolation problem, the augmented RBFs are used as 

lf(p) ≈
∑lN

i=1
lαi lΦi(p) +

∑M

i=1
lα(lN+i)pi(p) =

∑lN+M

i=1
lαi lΨi(p), (18) 

where pi represents the monomials (p1 = 1, p2 = x, p3 = y, p4 = x2,p5 =

xy, p6 = y2) and lΨi(p),i = 1, ...., lN + M describes the augmented shape 
functions with M = 6 is the number of monomials.

Any differential equation with a linear differential operator L, using 
the Eq. (18), can be written as 

Llf(p) =
∑nd

χ=1
Lχ lfχ(p) ≈

∑nd

χ=1

∑lN+M

i=1
lαi,χLχ lΨi(p), (19) 

where nd is the space dimension, the constants lαi,χ are calculated from 
the Eq. (19) through a linear system of equations as Ax ¼ b, where A is 
the sparse matrix of known coefficients, b contains the right-hand side of 
the governing equation along the boundary conditions and x is a column 
matrix of unknown values. A detailed explanation of the methodology is 
presented in [55].

The PHSs are a particular type of RBF employed in the present work 
as shape functions lΦi(p). The scaled PHS is defined as [55] 

lΦi(p) =
(
‖ p − lpi ‖

lh

)m

, (20) 

where m = 1, 3, 5, ... is the order of PHS, and in this article m = 3, and lh 
is the scaling parameter, which is the average distance of the subdomain 
nodes from the central node, calculated as 

lh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑lN

i=2

‖ lp − lpi ‖
2

lN − 1

√
√
√
√ . (21) 

The PF and mechanical models are solved in a staggered form, as 
proposed in [11], by solving PF with a frozen mechanical model and vice 
versa. The solution procedure is shown in Fig. 3. The crack is initialised 
with the history field using the Eq. (14). Once the history field is initi
ated, then we use this initial history field to compute the PF (ϕ). This 

study computes the PF by introducing an intermediate variable χ =
l20
2 Δϕ 

to reduce the fourth-order of the original Eq. (13) into two second-order 
differential equations as 

l20
2

Δϕ − χ = 0, (22) 

(H+1)ϕ − χ +
l20
8

Δχ = H. (23) 

An alternative to this process would be the recursive formulation 
proposed in [77], where higher-order derivatives are avoided using 
lower-order terms. The fourth-order differential equation requires 
higher-order basis functions, leading to larger local interpolation prob
lems and a denser stiffness matrix as compared to the second-order 
differential equation.

As soon as ϕ is computed, it is supplied to the mechanical model in 
terms of the degradation function g(ϕ), which degrades the material 
stiffness matrix. The mechanical model (Eq. (8)) is solved with a direct 
approach, as explained in [55]. The discretised form of the Eq. (8) in the 
direct approach is written as 

[∇⋅D : ∇s + D : ∇⊗∇s]nu = − bn, (24) 

where D ¼g(ϕ)C is the degraded elasticity tensor, ∇s is the symmetric 
gradient operator, n is the loading step. The resulting system of linear 
equations is solved for the displacement vector u.

The respective operators in the Eq. (24) can be written in a matrix 
form as 

Fig. 3. Scheme of the solution procedure. The dotted lines surround the iter
ative process.
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∇⋅ =

⎡

⎢
⎢
⎢
⎣

∂
∂x

0 0
∂
∂y

0
∂
∂y

0
∂

∂x

⎤

⎥
⎥
⎥
⎦
,D = g(ϕ)

⎡

⎢
⎢
⎣

λ + 2μ λ λ 0
λ λ + 2μ λ 0
λ λ λ + 2μ 0
0 0 0 2μ

⎤

⎥
⎥
⎦,∇

s

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0

0
∂
∂y

0 0
∂
∂y

∂
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The degraded elasticity tensor is calculated for each point in the 
domain, and then the divergence operators, obtained from the RBFs with 
PHSs as shape functions, are applied to differentiate the material tensor. 
For the staggered solution with internal iterations (called iterative 
process in this study), a convergence check is required by calculating the 
L2 norm as 

uerr =
‖ ui+1 − ui ‖

‖ ui+1 ‖

ϕerr =
‖ ϕi+1 − ϕi ‖

‖ ϕi+1 ‖

, (25) 

where i is the number of iterations, and the iterative process continues 
till the criterion max[uerr,ϕerr] ≤ tol is met. The solution with an iterative 
process is shown with the blue colour inside the box with dotted lines in 
Fig. 3, where the tolerance used is tol = 10− 4. In this study, the pro
cedure where no internal iterations are utilised is termed a non-iterative 
process. The non-iterative process is also shown outside the dotted lines 
in Fig. 3.

The strain tensor is then calculated from the resulting displacements 
using the LRBFCM, and the strain energy density ψ(ε) is calculated from 
the strain tensor, which is then used to update the initial history field. 
The updated history field is then supplied to the PFM, and this exchange 
of the computed fields continues until the material fails.

The method’s numerical implementation is done using Julia version 
1.8.0, where the coefficient matrix weights were calculated from the in- 
house built library. All the simulations were carried out using the 11th- 
generation Intel(R) Core(TM) i7–1165G7 @ 2 × 2.80 GHz processor.

4. Numerical examples

4.1. Non-cracked square plate model

A simple benchmark test with a non-cracked square plate geometry is 
considered to validate the LRBFCM implementation of PFM. The 
analytical solution to the problem in the Eqs. (26)-(29) are calculated by 
considering the boundary conditions εyy ∕= 0, εxx = εxy = 0. 

σyy,0 =
E(1 − ν)

(1 + ν)(1 − 2ν)εyy, (26) 

ψ =
1
2

E(1 − ν)
(1 + ν)(1 − 2ν)ε

2
yy, (27) 

ϕ =
2ψ

Gc
l0
+ 2ψ

, (28) 

σyy = (1 − ϕ)2σyy,0, (29) 

where σyy and εyy are the axial stress and axial strain respectively. The 
geometry and boundary conditions are shown in Fig. 4, with a tensile 
loading applied on the top edge. The material properties are chosen as: 
E = 210kN /mm2, ν = 0.3,Gc = 0.005kN /mm and l0 = 0.1mm. The 

Fig. 4. Geometry and boundary conditions for a non-cracked square plate 
model subjected to uniaxial tension.

Fig. 5. Non-iterative process: The left side compares analytical and numerical solutions for PF and the right side the absolute error as a function of εyy using different 
loading steps.
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numerical parameters are h = 0.005[mm] (regular node distribution) 
with lN = 13 and M = 6. The simulations are carried out using different 
loading steps to show the dependence of the staggered solution (with 
and without any iterations) on the size of the loading step Δu.

4.1.1. Comparison of numerical and analytical solutions with the non- 
iterative process

In this section, the simulations are carried out with a non-iterative 
process, and a subsequent loading increment is applied immediately 
after each staggered (mechanical model and PFM) step. The PF and its 
absolute error are shown as a function of axial strain on the left and right 
sides of Fig. 5, respectively. The axial stress and its absolute error are 
shown as a function of axial strain on the left and right sides of Fig. 6, 
respectively. As shown in Fig. 5 and Fig. 6, five different loading steps 
are chosen to see the dependence of the solution on the size of the 
loading step. It is clear from the figures that as we decrease the size of the 
loading step, the error decreases, and the numerical solution approaches 
the analytical solution. The most accurate results are for the loading step 
Δu = 1 × 10− 5, while the least accurate results are for the loading step 
Δu = 1 × 10− 3.

4.1.2. Comparison of numerical and analytical solutions with iterative 
process

The comparison of the numerical and analytical solutions with an 
intermediate iterative process for PF and axial stress is shown on the left- 
hand and right-hand sides of Fig. 7, respectively. It is clear from these 

Fig. 6. Non-iterative process: The left side compares analytical and numerical solutions for σyy and the right side the absolute error as a function of εyy using different 
loading steps.

Fig. 7. Iterative process: The left side compares analytical and numerical solutions for PF and the right side compares σyy as a function of εyy using different 
loading steps.

Fig. 8. Convergence in terms of loading steps: error as a function of loading 
steps at εyy = 0.008[mm].
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figures that if the iterative process is adopted, then the numerical so
lutions fall on the analytical solution irrespective of the loading step. If 
small enough loading steps are used, even with a non-iterative process, 

this error becomes insignificant, as shown for the loading step Δu = 1 ×
10− 5 in Fig. 5 and Fig. 6.

4.1.3. Convergence of the solution in terms of loading step
In this section, the convergence of the solution in terms of the loading 

step, with a non-iterative process, is shown in Fig. 8. The error e2 is 
calculated as shown in the Eq. (30). 

e2 =
|w − ŵ|

|ŵ|
, (30) 

where w is the numerical solution and ŵ is the analytical solution. The 
solution for PF and stress shows a first-degree convergence rate, as 
shown in Fig. 8. The straight line O(t) shows the first-degree conver
gence rate. Therefore, the smaller the loading step, the higher the 
accuracy.

4.1.4. Validation of the enforced irreversibility condition in terms of loading 
and unloading

The implementation of the enforced irreversibility condition (no 
healing of the crack) is checked by the loading shown on the left side of 
Fig. 9. The evolution of PF is shown on the right side of Fig. 9, whereas 
the relation between axial stress and axial strain is shown in Fig. 10. The 
PF increases as the loading is increased (step A), but there is no change in 
PF as the material is unloaded (step B) and subsequently loaded (step C). 
There is no change in PF during unloading, and the reload is due to the 
enforcement of the irreversibility condition in the history field. As soon 
as the history field increases (step D), the PF evolves again and reaches 
the value one (completely broken state). Fig. 8 shows that as the PF 
evolves, the axial stress decreases. The stress reduces and approaches 
zero during the unloading step (step B). Still, as soon as the material is 
loaded again (step C), the stress increases, following the same path it 
followed during the unloading. When the PF starts evolving again (step 
D), the axial stress decreases again and eventually reaches the value of 
approximately equal to zero (breaking the material).

4.2. A single-edge cracked square plate subjected to tensile loadings

The second benchmark test considered is the well-known single-edge 
cracked square plate subjected to tensile loadings. The geometry and 
boundary conditions are the same as shown in Fig. 4 where the initial 
history field is shown in Fig. 11. The geometry is fixed at the bottom in 
both x and y directions, and a load at increment n is defined for uy on the 
top boundary as un = un− 1 + Δu. Where a variable loading increment is 
applied, that is Δu = 1 × 10− 5[mm]ifn ≤ 450, otherwise, the loading 
increment is adjusted to Δu = 1 × 10− 6[mm] until the failure of the 
material. The material properties are chosen to be λ = 121.15×

Fig. 9. The left side shows the applied displacement as a function of the loading step, and the right side shows the PF as a function of εyy.

Fig. 10. σyy as a function of εyy with the applied loading.

Fig. 11. Initial history field.
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103[N /mm2], μ = 80.77× 103[N /mm2], Gc = 2.7[N /mm]andl0 =

0.015[mm] to match with the material properties in the reference [22]. 
The numerical parameters are h = 0.0075[mm] (regular node distribu
tion) with total nodes N = 18225, lN = 13, M = 6. Unless otherwise 
stated, these simulation parameters and material properties are used in 
all the simulations.

4.2.1. Model verification with the reference solution
A comparison of the results with the reference solution [22] is shown 

in Fig. 12. In this example, an iterative process for the staggered solu
tions of the PF and mechanical models is used. In the iterative process, 
after applying the first loading increment and computing the PF and 
mechanical models, another loading increment is applied when the error 
norm is less than the prescribed error in both PF and displacement fields. 
The force-displacement curve is shown on the right side of Fig. 12. It is 
clear from this figure that the results of the present study agree with the 
reference solution. The right side of Fig. 12 shows the number of 

Fig. 12. The left side compares the force-displacement curve for the solution with the reference solution, and the right side shows the number of iterations required 
for each loading step.

Fig. 13. Force-displacement graph for different loading step sizes with iterative and non-iterative schemes.

Table 1 
Total iterations required for the respective loading step size.

Δu [mm] Total 
iterations

Peak load 
[N]

CPU time 
[hr]

(Constant increment) 1 × 10− 4 2277 664.05 4.86
(Constant increment) 1 × 10− 5 7483 664.13 15.96
(Variable increment) 1 × 10− 5 → 1 
× 10− 6

11,793 664.20 25.15

Fig. 14. Force-displacement graph at different length scale parameters.
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iterations required for each loading step, and a total of 11,769 iterations 
were needed until the complete failure of the material. Initially, the 
solution converges with a small number of iterations with a load 
increment Δu = 1 × 10− 5[mm], however, as soon as the simulations 

proceed and the PF values increase, the number of iterations also in
creases. It is shown that as the loading step approaches the 450th 
loading step, the iterations increase but suddenly decrease as soon as 
they exceed the 450th loading step. This is because of the set loading 
conditions; as it exceeds the 450th loading step, the loading increment is 
adjusted to Δu = 1 × 10− 6[mm]. The same pattern is shown again as 
soon as the PF starts evolving; the number of iterations increases until 
the material fails.

4.2.2. Effects of the loading step size
The PF analysis of the crack propagations can be done with or 

without the iterative process. The staggered solution with a non- 
iterative process does not consider any internal iterations between the 
PF and mechanical models during a loading step. It applies the loading 
increment after each step without looking for a convergence check, as 
shown in Fig. 3. The importance of the iterative process is shown in 
Fig. 13, where different simulations are done with constant loading in
crements of Δu = 1 × 10− 4[mm], Δu = 1 × 10− 5[mm] and variable 
loading increment by adjusting the loading increment from Δu = 1 ×
10− 5[mm] to Δu = 1 × 10− 6[mm] when the loading step n > 450. The 
comparison of the iterative and non-iterative processes is shown in a 
force-displacement graph in Fig. 13. The solution with a non-iterative 
process with large loading steps possesses a high peak load, and the 
material behaviour is non-brittle. For example, using Δu = 1 ×
10− 4[mm] with a non-iterative process, possesses a peak load of 767.7 
[N], whereas the material breaks completely at a displacement of 0.0093 
[mm].

In contrast, using an iterative process with the same loading step of 
Δu = 1 × 10− 4[mm], the material peak load is 664.05 [N], the complete 
breaking of the material occurs at a displacement of 0.0053 [mm], and 
as expected, the material behaviour is brittle. As the loading step is 
decreased to Δu = 1 × 10− 5[mm], the same trend is observed as in the 
case of Δu = 1 × 10− 4[mm], but the peak load for the non-iterative and 
iterative processes is reduced to 681.7 [N] and 664.13 [N] with a 

Table 2 
Minimum node spacing and the respective l0/h ratio in different cases.

Case h [mm] l0 [mm] l0/h

1 0.02 0.04 2
2 0.01 0.04 4
3 0.00666 0.04 6
4 0.005 0.04 8
Reference 0.004 0.04 10

Fig. 15. Convergence in terms of the peak load for RGN and SCN with the 
respective rate of convergence.

Fig. 16. Convergence in terms of displacement.

Fig. 17. Force-displacement graph for RGNs and SCNs.

Table 3 
Total number of iterations required for RGN and SCN.

Δu [mm] Total iterations Peak load [N] CPU time [hr]

1 × 10− 4 (RGN) 2277 664.05 4.86
1 × 10− 4 (SCN) 1534 657.93 3.77
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complete breaking of the material at a displacement of 0.0062 [mm] and 
0.00528 [mm] respectively. In the non-iterative process, the material 
does not break immediately after the peak load is reached but instead 
breaks following a continuous smooth curve. As soon as the loading step 
size is adjusted from Δu = 1 × 10− 5[mm] to Δu = 1 × 10− 6[mm] the 
peak load for non-iterative and iterative processes, it decreased 666.17 
[N] and 664.20 [N] with a complete failure of the material at a 
displacement of 0.0055 [mm] and 0.00528 [mm] respectively. The 
iterative process is used to speed up the simulation time, as shown in 
Fig. 15; even if a large loading step is used, the material breaks at the 
same displacement with a sharp and sudden crack, revealing the brittle 
behaviour of the material, after the peak load is reached. The compar
ison of the total number of iterations required for the respective loading 
step size is shown in Table 1 below. It is clear from Table 1 that a lading 
step size of Δu = 1 × 10− 4[mm] requires the least amount of iterations 
with comparable results compared to using a smaller loading step size, 
which is computationally efficient. In the remaining simulations, the 
loading step of Δu = 1 × 10− 4[mm] is used with an iterative process.

4.2.3. Effects of the size of the length scale parameter
The length scale parameter is essential for PF crack propagation 

because it measures the crack’s width and diffusion. It has been shown in 
[76] that for a consistent PF crack propagation, l0 ≥ 2h, and h = 0.0075 
[mm] is the minimum node spacing. We consider three different values 
of l0 as shown in Fig. 14. The value of the resulting peak load decreases 
as soon as the value of l0 is increased. This is because a larger value of l0 
produces a more diffused PF, which in turn produces a more diffused 
degradation function. As a result, it softens the material more quickly, 
requiring a smaller force to break it.

4.2.4. Effects of the node arrangement density
In this section, the value of the length scale parameter is kept con

stant while the node arrangement density is gradually increased. An 
equal minimum node spacing is used in these simulations for both reg
ular nodes (RGNs) and scattered nodes (SCNs) and is given in Table 2. 
The results were compared with the densest node arrangement (h =
0.004[mm]) by calculating the relative error for the peak load using the 
Eq. (31)

e =
|a − â|
|a|

, (31) 

Fig. 18. The left and right vertical axis represents the total iterations and total time respectively as a function of the nodes in the local subdomain using RGNs 
and SCNs.

Fig. 19. Peak load as a function of the number of nodes in the local subdomain.

Table 4 
Total iterations for different numbers of nodes in the local subdomain and the 
total CPU time with peak load for RGNs and SCNs.

lN Peak load 
[N]

Total 
iterations

Time/iteration 
[s]

CPU time 
[hr]

13 (SCN) 657.93 1534 8.87 3.77
13 

(RGN)
664.05 2277 7.68 4.86

25 (SCN) 651.87 2132 12.60 7.46
25 

(RGN)
665.56 2142 10.98 6.53

49 (SCN) 652.73 2026 28.50 16.03
49 

(RGN)
657.93 1975 27.22 14.93
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where a is the peak load with the densest node arrangement (considered 
reference solution), and â is the peak load with the respective node 
arrangement. The results of the convergence study are shown in Fig. 15, 
where the relative error against the minimum node spacing is plotted. 
The straight lines in the figure represent the respective rates of 
convergence, denoted by O(hp), where h is the minimum node spacing 
and p is the convergence rate exponent.

The RGN exhibit a convergence rate of approximately O(h2.3), indi
cating that the relative error decreases rapidly as the node spacing be
comes finer. In contrast, the SCN shows a convergence rate of about O 
(h2.0). Although this rate is slightly lower than that of RGN, it still re
flects an exceptional improvement in accuracy with finer node spacing.

4.2.5. Convergence test for displacement in terms of node density
In this convergence test, a relative L2 norm is calculated for the 

displacement field with different node densities. The reference solution 
is computed with the densest node arrangement having node spacing h 
= 0.0031[mm]. In order to satisfy the minimum l0 criteria we have used 
l0 = 0.1[mm] in the simulations. The relative L2 norm e2 is calculated 
after the first loading step is applied 

e2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i ‖ ui − ûi ‖2
∑N

i ‖ ûi ‖2

√

, (32) 

where u represents the solution with less dense node arrangement and û 
is the reference solution. The convergence plot is shown in Fig. 16, 
where the relative error for both RGN and SCN is plotted against the 

Fig. 20. PF evolution at different applied loadings with RGNs and SCNs.

Fig. 21. Displacement field at different applied loadings with RGNs and SCNs.
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node spacing. It can be seen that the rate of convergence is approxi
mately equal to O(h2.0), indicating a second-degree convergence rate 
governed by the order of augmentation.

4.2.6. Regular and scattered node distribution
The SCNs are extremely important in testing the method perfor

mance because, in real-world problems, the crack will not be explicitly 
defined, and for the LRBFCM, the PF crack propagation must work with 
the SCNs. Therefore, the LRBFCM is tested with both RGNs (h = 0.0075 
[mm]) and SCNs (h = 0.0075[mm]), as shown in Fig. 17. The results for 
both RGN and SCN are in good agreement, showing that the method 
performs well with SCN. The complete failure of the material for RGN 
and SCN occurs at 0.0053 [mm] and 0.0054 [mm], respectively. The 
SCN performs better in terms of computational efficiency for this current 
case, with 13 nodes in the local subdomain, as shown in Table 3. SCN 
requires only 1534 iterations, while RGN requires 2277, showing that 
SCN is a good choice for better computational performance, where the 
difference in loading steps for the complete failure of the material while 
using RGN is one loading step less than that of SCN. The typical CPU 
time for both RGN and SCN is also shown in Table 3.

In order to check the trend for computational timing, three different 
simulations were conducted for lN = 13, lN = 25andlN = 49, as shown in 
Fig. 18. The respective total timing is shown on the right vertical axis of 
Fig. 18, and the respective peak loads against the number of nodes in the 
local subdomains are shown in Fig. 19. The respective values are also 
given in Table 4. It is clear from Fig. 18 that for lN = 13, the SCN is a 
better choice for better computational efficiency, but as we increase the 
nodes in the local subdomain, then this trend does not remain the same. 
Therefore, the computational timing also depends on the simulation 
parameters; as the number of nodes in the local subdomain increases, 
the time for the completion of one iteration increases, as shown in 
Fig. 18 and Table 4. The peak loads for SCN are smaller than for RGN, as 
shown in Fig. 19.

The evolution of PF for both RGN and SCN is shown in Fig. 20, 
whereas the respective displacement and Von Mises stresses are shown 
in Fig. 21 and Fig. 22. The displacement field splits into two coloured 
regions, indicating a complete failure of the material. As soon as the 
material breaks, the respective Von Mises stresses become zero, showing 
that the material is no longer intact.

5. Conclusions

This article solves the phase field formulated crack propagation in a 
brittle elastic material using a strong-form meshless method for the first 
time. The PF and mechanical models are solved in a staggered form. The 
performance of the solution is analysed using two-dimensional bench
mark tests. The first case consists of a non-cracked square plate model 
subjected to uniaxial tensile loadings to validate the implementation of 
PFM. The numerical solution with iterative and non-iterative processes 
are compared with the analytical solution. The results of the numerical 
solution, using the iterative process between two consecutive loading 
steps, converge to the analytical solution even if a large loading step is 
used. In contrast, with the non-iterative process, the error increases as 
the loading step increases and vice versa. A first-degree convergence rate 
is observed by decreasing the loading step against the error norm. In the 
last part of the first case, the implementation of the forced irreversibility 
is confirmed by loading and unloading the material. During the first 
loading stage, both the stresses and PF increased, but in the second 
unloading stage, due to the irreversibility condition, the PF remained 
constant, whereas the stresses became zero. In the third loading stage 
again, the PF and stresses followed the same curve as in the second stage 
but in the opposite direction. During the fourth stage, the material 
experienced a failure by the PF reaching a value of 1 and stresses 
reaching approximately equal to zero. This section proved that the PF 
implementation is correct, and the model is ready to proceed with the 
second test case.

The second test case consists of a single-edge cracked square plate 
subjected to tensile loadings. The obtained solution was compared with 
a good agreement with the FEM-based reference solution published in 
[22]. The effects of the loading step size with iterative and non-iterative 
processes are shown. It is concluded once again that the smaller the step 
size, the more accurate the results would be, but with a smaller loading 
step size, a large number of total iterations are required to break the 
material completely. On the other hand, with a non-iterative process, the 
material breaks unphysically (in a non-brittle manner) by reaching a 
very high peak load and breaking by following a smooth curve with a 
large displacement. Therefore, choosing an optimal step size and itera
tive process is necessary for proper accuracy and computational effi
ciency. The effects of the size of the length scale parameter are also 
studied, and it was found that increasing the value of the length scale 

Fig. 22. Von Mises stress at different applied loadings with RGNs and SCNs.
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parameter with respect to the node spacing decreases the peak load and 
vice versa. A mesh convergence study is performed for both RGN and 
SCN; it is concluded that both RGN and SCN exhibit higher convergence 
rates, with RGN having a slightly higher convergence rate. At the end of 
the second test case, the simulations are performed using RGN and SCN, 
and it is shown that both RGNs and SCNs perform well for the specific 
case, and SCNs have better computational efficiency than RGNs with 13 
nodes in the local subdomain. The results underline the essential role of 
the represented formulation structure for an accurate and efficient so
lution to crack propagation. It also provides valuable insights for future 
research towards three dimensions and more sophisticated material 
models.
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[54] Šarler B, Vertnik R. Meshfree explicit local radial basis function collocation method 
for diffusion problems. Comput. Math. Appl. 2006;51(8):1269–82. https://doi.org/ 
10.1016/j.camwa.2006.04.013.
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