
Information Sciences 680 (2024) 121134

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Opt2Vec - a continuous optimization problem representation 

based on the algorithm’s behavior: A case study on problem 

classification

Peter Korošec ∗, Tome Eftimov
Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia

A R T I C L E I N F O A B S T R A C T

Keywords:

Continuous optimization
Problem representation
Autoencoder
Dynamic problem characterization
Anytime problem identification

Characterization of the optimization problem is a crucial task in many recent optimization research 
topics (e.g., explainable algorithm performance assessment, and automated algorithm selection 
and configuration). The state-of-the-art approaches use exploratory landscape analysis to represent 
the optimization problem, where for each one, a set of features is extracted using a set of 
candidate solutions sampled by a sampling strategy over the whole decision space. This paper 
proposes a novel representation of continuous optimization problems by encoding the information 
found in the interaction between an algorithm and an optimization problem. The new problem 
representation is learned using the information from the states/positions in the optimization run 
trajectory (i.e., the candidate solutions visited by the algorithm). With the novel representation, 
the problem can be characterized dynamically during the optimization run, instead of using a set of 
candidate solutions from the whole decision space that have never been observed by the algorithm. 
The novel optimization problem representation is called Opt2Vec and uses an autoencoder type 
of neural network to encode the information found in the interaction between an optimization 
algorithm and optimization problem into an embedded subspace. The Opt2Vec representation 
efficiency is shown by enabling different optimization problems to be successfully identified using 
only the information obtained from the optimization run trajectory.

1. Introduction

An essential aspect for various learning tasks in optimization, such as problem classification [1,2], automated algorithm per-
formance prediction [3–6], automated algorithm selection [7–9], and automated algorithm configuration [10], is to possess a 
comprehensive representation of the landscape characteristics of optimization problems. The significance of possessing effective 
problem representations is connected to choosing unbiased and diverse problem instances, which aids in mitigating bias during 
performance assessment analyses [11]. Moreover, the capability to automatically identify the problem being solved anytime in the 
optimization process is crucial for ensuring the efficiency of the optimization process [4,8,10].

Nowadays, when tackling an optimization problem, a fundamental consideration emerges: determining the appropriate represen-
tation for the problem and identifying which landscape features should be derived from the data. The decision between encompassing 
the entire search space or focusing on specific regions typically explored by algorithms lacks a definitive answer, as the selection of 
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representation relies on the specific application scenario. For static analysis within the problem landscape, a static representation of 
the entire search space might be adequate. However, to explore the interactions between optimization problems and algorithms or 
to provide personalized insights into algorithm behavior for a specific problem, information from the visited or observed parts of the 
search space becomes indispensable.

Our contribution: In this paper, we propose a novel methodology for representing optimization problems using the optimization 
algorithms’ behavior, called Opt2Vec. The proposed methodology is developed to represent parts from the optimization problem 
search space that are visited by the algorithm in a particular timestamp/iteration of the optimization process. It encodes the anytime 
information of how a given algorithm interacts with that problem, while at the same time ensuring invariance to simple transforma-
tions like shifting and scaling. These are all significant contributions that remove the need for extra time-consuming calculations of 
features for further machine learning tasks and at the same time inherently provide information about correlations between problem 
instance and algorithm instance features, which are lacking when performing standard calculations of static landscape features. Due 
to invariance to simple transformations, the representation is more robust to characteristics of problem instances and/or algorithm 
behavior, which usually do not influence algorithm performance. Capturing interactions between algorithm and problem instances 
could provide important information for effective dynamic algorithm configuration. The effectiveness of the Opt2Vec representation 
is evaluated in the task of problem classification to explore if it captures enough characteristics of the problem so it can be used for 
anytime identification of the optimization problem being solved.

The main contributions of the paper are the following:

• Opt2Vec is a novel continuous optimization problem representation based on the algorithm’s behavior. It offers an efficient 
and concise way to obtain relevant information about a problem. This learned representation can serve as input data for other 
machine learning and deep learning tasks.

• The optimization problem being solved can be identified solely from the current state/position (population) in the optimization 
run. The new representation, Opt2Vec, uses only scaled information about the solutions’ population, making it invariant to simple 
transformations like shifting and scaling. Hence, Opt2Vec is well-suited for dynamically characterizing the optimization problem 
at any time.

• The scalability of the proposed Opt2Vec representations extends across various problem dimensions, effectively capturing the 
characteristics of the problem being solved regardless of its dimensionality.

• To the best of our knowledge, this is a first attempt to apply representation learning on individual population of optimization 
process trajectory. The embedding vectors of Opt2Vec representation provided enough information for successful (over 80% 
accuracy) problem classification from individual population in the optimization run and significantly outperformed compared 
exploratory landscape analysis-based representations.

The paper is organized as follows: Section 2 gives an overview of the related work. Section 3 introduces the Opt2Vec represen-
tations, a novel way of representing an optimization problem that encodes the information from the current state/position in the 
optimization run trajectory. Section 4 defines an optimization problem classification task that will be used to evaluate the introduced 
representations. Section 5 shows the effectiveness of the proposed representations in classifying test problems of various dimensions. 
Finally, the discussion and conclusion with ideas for further work are presented in sections 6 and 7.

2. Related work

To describe the characteristics of the optimization problems, fitness landscape analysis (FLA) is used [12]. One approach to doing 
FLA is to characterize the optimization problems based on some high-level characteristics of the problem landscape (e.g., separability, 
multimodality) [13], which requires an expert’s knowledge to identify them. Another way of performing FLA is to calculate low-level 
analytical features from a set of candidate solutions sampled with some sampling technique from the whole decision space of the 
problem landscape [14,15].

The most commonly used approach for extracting low-level landscape features is known as exploratory landscape analysis 
(ELA) [14]. ELA calculates a set of mathematical and statistical numerical features for each problem instance from a set of can-
didate solutions selected by using some sampling strategy (e.g., uniform sampling or Latin hypercube sampling). In 2016, the R 
package flacco [16] was released, which provides an easy way to calculate many of these proposed features. Currently, it provides 
343 different landscape features, which can be split into cheap and expensive based on the computational cost required to calculate 
them. In many recent studies, only cheaper features are explored [4,17]. It has been also shown that the ELA calculation is sensitive 
to the sampling strategy and sample size used [18,19] and is not invariant to simple problem transformation such as shifting and 
scaling [17,20].

Recently, another approach known as topological landscape analysis (TLA) has been proposed to extract low-level analytical 
features for single-objective continuous optimization problems [21,22]. These features provide a fresh perspective on optimiza-
tion problems by quantifying their similarity based on the presence of topological structures. The findings demonstrate that these 
topologically inspired features are independent of the existing ELA landscape feature groups. As a result, they capture distinct and 
complementary information about the problems under study. Both ELA and TLA features are mostly applicable to a static learning 
task, where they should be calculated in an offline setting before using them in the learning process. This comes as a result of their 
2

calculation which is a time-consuming task [23].
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Other approaches to calculating low-level landscape features are known as feature-free approaches that use a deep neural archi-
tecture to learn the low-level landscape features [24,25]. In [24], a collection of deep-learning-based features have been proposed 
based on using convolutional neural networks and transformers that use an alternative representation of the set of candidate solutions 
in the form of point clouds and 2D images as input to extract low-level analytical features. DoE2Vec are other deep-learning features 
learned by using a variational autoencoder using large training data of candidate solutions selected with some sampling strategy 
from the decision space of a set of problems. These features can be efficiently used to find similar problems. Moreover, when used in 
conjunction with classical ELA features in problem classification tasks, they lead to significant performance improvements.

All the above-mentioned approaches (ELA, TLA, and feature-free) calculate the low-level features by using an artificial set of 
candidate solutions obtained by some sampling strategy, which is not related to the set of candidate solutions that are visited by an 
algorithm during its optimization process. However, numerous research papers highlight the lack of a guaranteed correlation between 
landscape features calculated using artificial samples and the performance of the algorithms. Notably, similar landscape features can 
lead to significantly divergent algorithm performances [26,27].

To go beyond this, several studies performed per-instance and per-run automated algorithm selection by calculating the ELA 
features using all candidate solutions that were observed during an optimization algorithm run on a particular problem [28–31]. 
In such cases, the whole information observed by the algorithm during its trajectory (i.e., all visited candidate solutions instead of 
sampling them with some sampling strategy from the decision space) is used to calculate the ELA features. One drawback here is 
that even though the calculation is done by the visited candidates’ solution by merging them all together into one big sample, the 
longitudinal dimension of how they were visited (i.e., the time-series component) is not taken into the calculation process. These 
studies are a step into what is called trajectory-based feature extractions, or more specifically trajectory-based ELA calculation. 
Recently, another study has been proposed where four statistical features (i.e., mean, standard deviation, min, and max) have been 
calculated on each decision variable, and the objective value from the problem through all iterations of the optimization run, called 
DynamoRep features [32]. Next, contacting the four statistics through all iterations provides us with representations about the entire 
trajectory of the optimization run. The study demonstrates that the proposed DynamoRep features capture enough information to 
accurately identify the problem class on which the optimization algorithm was running.

To represent the trajectories that represent the interactions between an algorithm and problem instance, there are also approaches 
rooted in continuous optimization and complex networks. Local Optima Networks (LONs) [33] simplify discrete fitness landscapes, 
representing local optima as nodes and transitions as edges through exploration search operators. For continuous landscapes, a related 
model called compressed monotonic LON (CMLON) [34] groups interconnected nodes sharing the same fitness within the monotonic 
LON (MLON). CMLONs, applied to visualize 24 BBOB problem classes across dimensions [35], display varied representations linked to 
problem properties. Calculated network metrics and dimensionality reduction techniques classify and compare these problems, with 
crucial insights for multimodal problems in higher dimensions, where CMLONs become intricate for visual interpretation. Resembling 
LONs, Search Trajectory Networks (STNs) [36] are innovative instruments for examining and visualizing the behavior of population-
based algorithm instances in continuous spaces. Derived from the concept of Local Optima Networks (LONs), where nodes represent 
local optima, STNs shift the focus to various states within the optimization trajectory, extending beyond local optima. The edges in 
STNs represent the progression between these states, augmenting the usefulness of network-based models in comprehending heuristic 
search algorithms.

Despite the progress in analyzing fitness landscapes based on trajectories, trajectory-based ELA, DynamoRep, and features derived 
from CMLON or STN concentrate on capturing a representation for the entire optimization run trajectory. However, a crucial aspect 
that remains unexplored, and is the focus of this study, is understanding the amount of information contained in a specific, small 
segment of the optimization run trajectory (such as a particular timestamp, iteration, or population). This can become particularly 
significant for effective dynamic algorithm configuration.

3. The Opt2Vec methodology

The proposed Opt2Vec methodology aims to capture the dynamics between an optimization algorithm and a problem instance 
by analyzing populations generated at each iteration during optimization. This involves scaling the collected data samples (i.e., 
populations) to ensure inherent invariance to basic transformations such as shifting and scaling. By doing so, the methodology 
mitigates the influence of these transformations on machine learning feature calculations, which could otherwise erroneously treat 
two samples as distinct when they should be considered the same. Subsequently, unsupervised learning, in the form of autoencoders, is 
employed to embed the scaled, captured data into a representation suitable for further machine learning tasks. It will be demonstrated 
that such a representation of a single scaled data sample contains sufficient information for successful problem classification. The 
ultimate goal is that the successful classification of a problem instance at any point during the optimization run will enable leveraging 
knowledge from past algorithm performances on similar problem instances to dynamically configure algorithm hyper-parameters for 
optimal performance in the remainder of the optimization run.

The proposed Opt2Vec methodology consists of the following steps.

• Data pre-processing, which consists of two steps.
– Data scaling, which aims to make data less sensitive to simple transformations seen across different problem instances.
– Data reduction, which aims to decrease the volume of data for the upcoming learning step, enhancing both its quality and 

processing speed.
3

• Learning the Opt2Vec representations using an autoencoder network architecture on the pre-processed data.
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Fig. 1. The data acquisition pipeline for computing Opt2Vec continuous optimization problem representations consists of running various algorithms, recording the 
trajectory of populations, and finally scaling and reducing data to be used in the computing task. In the presented diagram ellipses represent actions, while squares 
represent states.

In the following section, the data generation process will be presented, as it is essential to gather suitable data for experimentation 
within the proposed Opt2Vec methodology. In subsequent sections, a comprehensive explanation of each of the mentioned steps will 
be provided.

3.1. Data generation

Since we are interested in computing a problem representation for different states/positions of the trajectory, a population-based 
algorithm is suitable to generate data for learning the Opt2Vec representations. Each optimization run (i.e., an algorithm is executed 
on a particular problem instance) consists of many iterations of the optimization algorithm until some stopping condition is met. 
During the optimization run, the candidate solutions that form the population and their offspring are recorded for every iteration. In 
this way, the optimization algorithm’s behavior is recorded concerning how its population changes during the optimization process 
(i.e., optimization trajectory). The population and their offspring at every iteration represent the different states/positions during the 
trajectory of the optimization run. In addition, each population from each run is labeled with the information about the optimization 
problem (i.e., problem name and dimension) that is being solved from which the data is collected. Such kind of data management 
allows us to investigate whether populations generated by the optimization algorithm in a single iteration of the run carry sufficient 
information to successfully train a model that can classify the optimization problem on which the optimization algorithm is being 
executed. The learning task can be assumed as an anytime classification of the problem being solved.

3.2. Data pre-processing

The process of computing Opt2Vec continuous optimization problem representations begins with the pre-processing (i.e., scaling 
and reduction) of data to be used in the computing task. The general data acquisition pipeline is presented in Fig. 1. In more detail, 
data scaling and data reduction are explained in the following sections.

3.2.1. Data scaling

Before computing the problem representations, the collected data is scaled to improve invariance to simple transformations that can 
exist between the problem landscape spaces of different problem instances. This is a really important step since when characterizing 
the problem we should not be interested in solutions’ absolute values (which can be always shifted and/or scaled, while still preserving 
problem characteristics relevant to optimization algorithm), but in the relations between solutions (i.e., the decision variables and 
the objective value) that define the problem (or sampled part of it) landscape characteristics.

For easier explanation, let us assume the following simple multimodal problem 𝑓 (𝑥) = −(1.4 − 3.0 ∗ 𝑥) ∗ 𝑠𝑖𝑛(18.0 ∗ 𝑥) where 
𝑥 ∈ 𝑋 = [0, 1]. On this problem, we apply a simple transformation in the following form 𝑓𝑖(𝑥) = 𝑎𝑖 ∗ 𝑓 (𝑥 − 𝑏𝑖) + 𝑐𝑖, where 𝑎𝑖 ≠ 0
represents scaling factor, 𝑏𝑖 represents shifting value in search space, while 𝑐𝑖 represents a shift in objective space. For problem 
instance 𝑖 = 1 we selected the following values 𝑎1 = 2, 𝑏1 = −0.5, 𝑐1 = 0 and for instance 𝑖 = 2 we selected values 𝑎1 = 4, 𝑏1 = 0.5, 
𝑐1 = 4. To ensure that we sample from the same search space of the problem we also change the range for each of the instances in 
the following way, 𝑋𝑖 =𝑋 + 𝑏𝑖 (i.e., the range is shifted for the value of 𝑏𝑖). The resulting problem instances are presented in Fig. 2, 
where we can observe that with applied transformations they preserve the same landscape characteristics.

Next, if we apply min-max scaling on the whole problem (i.e., min and max for the decision space and the objective value 
are selected from all candidate solutions that are visited across all iterations), both instances (𝑓1 and 𝑓2) would transform to the 
same problem instance (shown in Fig. 2 as 𝑓scaled). Nevertheless, our objective is to perform anytime problem classification, even 
during the optimization run. Due to the nature of the task, we lack precise information about the exact min and max values of the 
problem beforehand. Consequently, it is not feasible to apply such scaling to all candidate solutions within each population during 
the optimization run. For this purpose, the min and max values are obtained within each population, where the information provided 
by the individual population is used for scaling and as such the problem is characterized by the sampled space of the population. 
Such kind of scaling allows us to describe the landscape characteristics of the problem based on the population (i.e., the current 
state/position of the trajectory of the optimization run, shown as sampled points in Fig. 2). Consequently, it skews the correctness 
of the representation as a whole (see 𝑓population in Fig. 2), but on the other side, it will provide scaled information about the current 
state of the algorithm (i.e., the set of visited candidate solutions). This kind of scaling allows us a personalized characterization of 
the problem (independently of the simple transformations) and the algorithm state (i.e., exploration or exploitation phase) at every 
4
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Fig. 2. Multimodal problem presented with shifted and scaled instances 𝑓1 and 𝑓2 , and as scaled version 𝑓scaled , where we can observe that with applied transformations 
they preserve the same landscape characteristics. In addition, an example of a population with five solutions is presented through sample points, and its representation 
is shown as 𝑓population .

By conducting this pre-processing, we ensure the same problem representation (assuming optimization algorithm would have 
the same trajectory behavior) regardless of shifting and scaling applied to the problem (e.g., in the above multimodal problem 
example, the values 𝑎 ≠ 0, 𝑏, and 𝑐). Even more importantly such landscape characteristics can be found in any function that can 
lead to characteristics that are transferable to unseen problem instances. Furthermore, all the necessary computations for problem 
representation are limited to the current population, leading to minimal space and time complexity requirements.

The min-max scaling data values from all populations are in the range [0, 1]. The population at each iteration from each run (as 
seen by the optimization algorithm at a specific iteration/state of the trajectory) can be represented through the scaled matrix, 𝐴, 
of dimension 𝑚 × 𝑛, where 𝑚 is the population size and 𝑛 is the solution length (i.e., number of search (decision) variables plus its 
evaluation (objective) value, which is the result from evaluating the solution on that problem). For example, let us assume that a 
parabola problem in 𝑛 − 1 dimensions, 𝑦 =

∑𝑛−1
𝑗=1 𝑥

2
𝑗
, is optimized by an algorithm. It follows that 𝑥𝑗 , 𝑗 = 1, … , 𝑛 − 1, are the decision 

variables that describe the solution, and 𝑦 corresponds to the solution’s evaluation result (i.e., objective value). In this way, each row 
of the matrix is filled by the solution’s objective value, 𝑦, and its decision variables, 𝑥𝑗 , 𝑗 = 1, … , 𝑛 −1. Because the decision variables 
and the objective values can be in different data ranges, scaling is performed twice within each population separately, once for the 
decision variables and once for the objective values. Finally, we end up with as many scaled matrices as there are iterations from the 
optimization run trajectory, where each one represents an interaction between the algorithm and the problem at a specific state from 
the trajectory of the optimization process.

We would like to emphasize that the task of scaling is not to transform the problem landscape to some “equal”, alternative 
representation, but to remove the problem specifics that can often mask the problem’s relevant characteristics. For instance, we are 
not interested in problem parameters 𝑎, 𝑏, and 𝑐 for the above multimodal problem example, but in the scaled representation 𝑓scaled .

3.2.2. Data reduction

Due to the nature of how population-based optimization algorithms behave, the population considerably changes with every 
iteration at the beginning of the search process (i.e., when the algorithms are performing exploration, or exploring a whole search 
space for regions with potential for good solutions). Later on, the changes become increasingly smaller (i.e., when the algorithm 
is performing exploitation, or searching for the best/optimal solution within the identified regions) until only minor changes are 
applied, if any at all. Based on this, one can assume that at the beginning of the optimization process, almost every new population 
contains new information about the optimization problem search space. With smaller changes being applied with each iteration 
means that new information becomes diminished with every subsequent population. This does not mean that information from the 
exploitation phase should be discarded since it provides valuable information about the local topology of the function. However, the 
amount of redundant information is much higher in the exploitation phase, since often only a small amount of candidate solutions 
of the population changes.

To reduce the amount of data for learning the Opt2Vec representations, only populations that contain either new or relevant 
information about the optimization problem search space should be selected. For this purpose, the Frobenius norm, used as a measure 
of difference or information relevancy, is applied to all scaled matrices obtained from the optimization process trajectories. It is 
5
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Fig. 3. The data pre-processing pipeline consisting of data generation by recording populations, applying scaling, and data reduction using differences of Frobenius 
norms.

‖𝐴‖𝐹 =

√√√√ 𝑚∑
𝑖=1

𝑛∑
𝑗=1

|𝑎𝑖𝑗 |2.
Here, 𝑎𝑖𝑗 is the element of the scaled matrix 𝐴 of dimension 𝑚 × 𝑛, where 𝑖 = 1, … , 𝑚 and 𝑗 = 1, … , 𝑛. When comparing two matrices, 
the Frobenius norm is normally applied to the differences between them. However, in our case, the order of rows (i.e., decision 
variables and objective value) is not always the same since it can change from iteration to iteration. So, it follows that two populations 
with the same solutions in different orders could have a high Frobenius norm, although they are the same from the optimization 
algorithm’s perspective. To get around this issue, the Frobenius norm is calculated for every scaled matrix. We would like to note that 
some other measure of difference could be used (e.g., Hausdorff distance [37]), however, the primary goal is to reduce the amount 
of data to be processed in training based on some similarity measure, so we consider our proposed approach appropriate for the task.

If the difference between two Frobenius norms is smaller than some predefined value, diff, the matrices are considered too similar, 
so only one of them needs to be retained for training purposes. There is no need to store two similar matrices since the second one does 
not bring any new information and can only deteriorate the performance of machine learning methods by unnecessarily increasing 
training data size and providing bias to such training data instances. So, the last retained scaled matrix is compared with the next 
scaled matrix calculated from the optimization process trajectory. This process is applied to all scaled matrices from the beginning to 
the end of the optimization run, going through the whole optimization process trajectory. In this way, only adjacent scaled matrices 
from the optimization process trajectory run that are deemed sufficiently different are retained, forming a dataset. Each retained 
scaled matrix is considered a data instance. For better presentation, the whole data pre-processing and reduction process for a single 
optimization run is presented in Fig. 3.

The data instances can be large, depending on the number of candidate solutions in the population and the optimization problem’s 
dimensionality. This is a potentially significant problem for machine learning approaches since it can reduce their performance and 
robustness while increasing time complexity. For this purpose, a representation learning concept that resulted in the embedded 
Opt2Vec representations is proposed.

3.3. Learning the Opt2Vec representations

Next, the unsupervised learning technique used for learning the embedded Opt2Vec continuous optimization problem represen-
tations is explained in more detail. The so-called original Opt2Vec representations are introduced as a special case of the Opt2Vec 
6

representations. Finally, a classification model used to test their utility is explained in more detail.
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Fig. 4. The autoencoder’s architecture consists of two encodings and two decoding steps. In the middle (Encoded) layer, the values represent the embedding for the 
input.

3.3.1. The autoencoder

One of the most successful and efficient unsupervised representation learning methods is to utilize autoencoders [38]. Autoen-
coders are artificial neural networks with a symmetrical structure. They are trained to reconstruct the input data onto the output 
layer. The middle layer in the architecture provides an encoded vector (embedding) of the input data or dimensionality reduction. In 
parallel, the autoencoder also generates a close representation of the original input data using only the reduced encoding information. 
The autoencoders can perform automated feature fusion by applying nonlinear techniques. A taxonomy of different architectures for 
nonlinear feature fusion and use cases is presented in [39]. Autoencoders are primarily used in natural language processing and com-
puter vision [40,41], where they have been utilized to transform the data instance in another reduced space with little or no loss of 
information. Since our focus is to represent the problem landscape at the current state of the optimization run (i.e., population visited 
by the algorithm at that iteration) and not the entire trajectory, we have not explored other representations that use sequential data 
(iterations) such as long short-term memory architectures or transformers. We have decided to use a standard, basic autoencoder, 
as a solid base on which the methodology can be tested and leave performance-based enhancements, in the form of more advanced 
neural networks, for future work.

For learning the embedded Opt2Vec representation, the autoencoder’s architecture is composed of two encodings and two decoding 
steps (Fig. 4). This architecture has been selected for evaluating the proof of concept of the proposed approach, without doing a 
network architecture search which is one direction for future work. All the layers, except the output layer, are fully connected to the 
next layer using the Rectified Linear Unit, “relu”, activation function. The output layer has a “sigmoid” activation function, so the 
outcome is always between 0 and 1, as is the case for the input, i.e., scaled data instance where every value is between 0 and 1. The 
input layer’s width is equal to the longest vector obtained from the data instance. The widths of the hidden layers are determined as 
a geometrical progression between the input and embedded layer. In the case of the encoder part the widths decrease, while in the 
decoder part, the widths increase. At each step, the information is compressed by the same factor. For example for an input layer of 
width 111 and the encoded layer width of 9, the width of the hidden layer would be 32. For decoding, the layers are the inverse of 
the encoding layers. Finally, the loss function is defined as the mean squared error between the input and the output vector.

3.3.2. Training the embedded Opt2Vec representations

Once the data is collected, the autoencoder architecture is used to train a model that further defines the embedded Opt2Vec rep-
resentations. The collected data consists of datasets (i.e., separate runs) where each of them consists of data instances (i.e., retained 
scaled matrices) calculated from one optimization algorithm run (i.e., containing the information of one optimization process trajec-
tory). Datasets are split into the train, validate, and test sets so the embedded Opt2Vec representation transferability can be checked. 
Since data instances are of varying sizes (i.e., due to different problem dimensions and population sizes), the matrices are padded 
with zeros (Table 1) to meet the predefined maximal matrix width and height. The padded matrices are then used as input data for the 
autoencoder. The actual input is a vector, where the padded matrix is flattened by concatenating the rows of the matrix into a single 
vector. Due to the split on the dataset level, each dataset (one optimization run) can only belong to one of the three sets (train, vali-
dation, test) used for learning to avoid overfitting. In this way, we can mimic the autoencoder’s behavior when applied to data from 
a new optimization run while investigating the methodology’s transferability, e.g., not looking at the autoencoder’s behavior within 
7

optimization runs but between them. The training result is a nonlinear transformation of the input data into condensed, encoded 
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Table 1

A padded matrix with zeros.

solution

result variables

𝑦1 𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16 0
𝑦2 𝑥21 𝑥22 𝑥23 𝑥24 𝑥25 𝑥26 0
𝑦3 𝑥31 𝑥32 𝑥33 𝑥34 𝑥35 𝑥36 0
𝑦4 𝑥41 𝑥42 𝑥43 𝑥44 𝑥45 𝑥46 0
𝑦5 𝑥51 𝑥52 𝑥53 𝑥54 𝑥55 𝑥56 0
𝑦6 𝑥61 𝑥62 𝑥63 𝑥64 𝑥65 𝑥66 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Fig. 5. A three-layer, fully connected architecture of the classification neural network is used to classify the representations presented at the input into optimization 
problem classes on the output.

subspace (defined by the encoding layers), which defines the embedded Opt2Vec representation. The novel problem representation 
is based on an algorithm’s behavior (i.e., personalizing the interaction that happens between the problem and the algorithm, and not 
treating the problem alone discarding the algorithm’s behavior).

3.3.3. The original Opt2Vec representation

The original Opt2Vec representation can be considered a special case of the Opt2Vec representation, where no transformations 
are applied to the data instances (i.e., the autoencoder step is skipped). For example, if the population size and problem dimension 
are set to 10 (i.e., 𝑚 = 10 and 𝑛 = 11), a vector of length 110 (𝑚 ∗ 𝑛), which is a concatenation of the rows of the scaled matrix, 
defines the original Opt2Vec representation.

4. Optimization problem classification

To test the utility of the Opt2Vec representations, a three-layer, fully connected classification neural network (Fig. 5) has been used 
to classify them into optimization problem classes (i.e., a combination of the problem name and its dimension). The basic architecture 
is defined by the input layer width (e.g., length of the Opt2Vec representation vector) and output layer width (number of optimization 
problem classes). Between them, there is a hidden layer whose width is in geometric progression to the width of the input and output 
layers. The activation function is again set to “relu”. Simultaneously, “softmax” is used as an activation function for the output layer, 
so only one class (optimization problem and its dimension) can be identified at a time (i.e., multi-class classification). The neural 
network was selected as a classifier for several reasons. First, the encoder part acts as an input to the classifier. This enables us to 
easily combine feature extractor and classifier into one deeper neural network. For these experiments, this was not done for the 
practical reason of step-by-step comparison between different approaches but will be considered in the future. Second, due to large 
8

amounts of data, the common off-line machine learning classification algorithms are not efficient at learning. Third, the goal is not to 
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Table 2

CEC 2014 Competition functions used in experiments.

Family Function

Unimodal 
Functions

Rotated High Conditioned Elliptic Function
Rotated Bent Cigar Function
Rotated Discus Function

Simple 
Multimodal 
Functions

Shifted and Rotated Rosenbrock’s Function
Shifted and Rotated Ackley’s Function
Shifted and Rotated Weierstrass Function
Shifted and Rotated Griewank’s Function
Shifted Rastrigin’s Function
Shifted and Rotated Rastrigin’s Function
Shifted Schwefel’s Function
Shifted and Rotated Schwefel’s Function
Shifted and Rotated Katsuura Function
Shifted and Rotated HappyCat Function
Shifted and Rotated HGBat Function
Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function
Shifted and Rotated Expanded Schaffer’s F6 Function

Hybrid 
Functions

Hybrid Function 1 (N=3)
Hybrid Function 2 (N=3)
Hybrid Function 3 (N=4)
Hybrid Function 4 (N=4)
Hybrid Function 5 (N=5)
Hybrid Function 6 (N=5)

Composition 
Functions

Composition Function 1 (N=5)
Composition Function 2 (N=3)
Composition Function 3 (N=3)
Composition Function 4 (N=5)
Composition Function 5 (N=5)
Composition Function 6 (N=5)
Composition Function 7 (N=3)
Composition Function 8 (N=3)

find the best classification algorithm but to see if populations carry sufficient information to make relevant predictions. A categorical 
cross-entropy loss is used as the loss function. The training of the classifier has been performed in a standard feed-forward way.

5. Experimental studies

The optimization algorithm for generating the training data was implemented in Java 8, ELA feature calculations were imple-
mented in R, while all other experimental codes were implemented in Python 3.7 using the Tensorflow 2.2 library.

5.1. Experimental setup

For data acquisition, the test problems from the CEC 2014 Competition [42] (see Table 2) have been chosen as the test optimization 
problems. Three dimensionalities (𝐷 = 10, 30, 50) have been selected for all 30 test problems, resulting in 90 test problem classes 
used in the classification task. We need to point out here that different dimensionalities of the same problem are treated as different 
problems.

For the optimization algorithm, a basic Differential Evolution (DE) algorithm [43] has been selected, where its mutation strategy 
(Rand/1/Bin, Rand/1/Exp, Rand/2/Bin, Rand/2/Exp, Best/1/Bin, Best/1/Exp, Best/2/Bin, Best/2/Exp, Best/3/Bin, Rand/Rand/Bin, 
RandToBest/1/Bin, RandToBest/1/Exp), scaling factor 𝐹 = (0, 1) and crossover probability 𝐶𝑟 = (0, 1) hyper-parameters have been 
randomly set. For each problem and its dimensionality two random configurations (i.e., algorithm hyper-parameters settings) have 
been selected, where for each one, 25 runs were performed. Such a setup resulted in executing 4,500 optimization runs. In practice, 
the training data can be gathered from any of the previous optimization runs done by different optimization algorithms that have 
stored information about their trajectory runs. So no additional experiments would be needed. So our selection of DE is only a use 
case that will be used to test the feasibility of the proposed approach. Ideally, the data would be gathered from various optimization 
algorithms, so different heuristics would be used to describe the problem and its characteristics.

To speed up the time to run the experiments, the stopping criteria for all runs have been set to one of the following conditions: 
𝐷 ∗ 10, 000 problem evaluations, 100 iterations without improvement, or an optimum has been achieved (i.e., a solution within 10−8
of the actual optimum value). In the following sections, the size of the population (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒) was set equal to the dimension 
of the problem. The DE pseudocode is presented in Algorithm 1.

The calculated offspring for every iteration has been used from all algorithm runs, which meant that much more information 
about the problem space was gathered than when using candidate solutions from populations. Offspring within each iteration has 
9

been scaled and selected for training based on observed differences in the Frobenius norm (Section 3.2), where the required difference 
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Algorithm 1 Different Evolution Algorithm.
Input: 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝐹 , 𝐶𝑟, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒
Output: best solution

1: 𝑃 = Create and initialize the population of 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒;
2: while stopping condition(s) not true do

3: for each individual, 𝑥𝑖 ∈ 𝑃 do

4: Randomly select individuals;
5: Create an offspring, 𝑥′

𝑖
, by applying 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 with scaling factor 𝐹 on selected individuals;

6: Update 𝑥′
𝑖

using binomial crossover on 𝑥𝑖 with probability 𝐶𝑟;
7: Evaluate the fitness, 𝑓 (𝑥′

𝑖
);

8: if 𝑓 (𝑥′
𝑖
) is better than 𝑓 (𝑥𝑖) then

9: Replace 𝑥′
𝑖

with 𝑥𝑖 in 𝑃 ;
10: end if

11: end for

12: end while

13: Return the individual with the best fitness as the solution;

Fig. 6. The basic pipeline for computing the three compared representations (Embedded Opt2Vec, Original Opt2Vec, and iELA) from the gathered data using autoen-
coder or computing ELA features, respectively. In the presented diagram ellipses represent actions, while squares represent states.

diff has been set to 0.5. Finally, we end up with 1, 398, 130 different data instances coming from all the optimization runs, which are 
classified into one of the 90 test problems.

The data gathered from running all 4, 500 optimization runs was stored in 484 GB of compressed files for all three dimensions 
𝐷 = 10, 30, 50. After performing all the pre-processing steps the size of the data was reduced to 11 GB for the classification task 
with diff=0.5, while an additional 34 GB of compressed data was produced with respect to diff=0.1 and 0.3 required for sensitivity 
analysis. The increase in size for the latter is in the fact that with smaller diff values more populations differ, so more of them need 
to be stored.

For training purposes, the datasets (each optimization run is a separate dataset of retained scaled matrices) have been randomly 
split into train, validation, and test sets with ratios of 82 ∶ 12 ∶ 6, respectively. Since the split has been performed on the dataset level 
(optimization runs), a fully stratified split is not possible since each run contains a different number of data instances (i.e., retained 
scaled matrices). Not being able to stratify the split means that we cannot guarantee that each class (problem name and dimension) 
is represented with the same ratio of data instances in each of the three sets. For this purpose, we repeated each experiment ten times 
with different random splits to obtain a more robust evaluation.

5.2. Benchmarking Opt2Vec problem representations

To assess the effectiveness of the Opt2Vec representations, we conducted a benchmark in the problem classification task. The 
comparison involved two types of Opt2Vec representations: the ones learned by autoencoders, called Embedded Opt2Vec, and the 
original Opt2Vec representations, referred to as Original Opt2Vec. Additionally, we compared the Opt2Vec representations with an 
iterative trajectory-based ELA representation, which we will refer to as iELA. The basic pipeline for computing the three compared 
representations (i.e., Embedded Opt2Vec, Original Opt2Vec, and iELA) is shown in Fig. 6. A more detailed description of the Embedded 
Opt2Vec and the iELA representations is given in the following subsections.

5.2.1. The embedded Opt2Vec representation

Computing the Embedded Opt2Vec representation is done using a trained autoencoder. For the autoencoder, the optimizer 
“adamax” [44] has been used with a batch size of 1, 024 and a maximum of 300 allowed epochs. The early stopping condition 
was set to 10% of maximal epochs without any improvement in the validation set loss function. For better visualization, embedding 
10

lengths of size 𝑙2 were selected, where the embedding length is denoted as 𝑙 = 3,4,… ,10. From here, it follows that we learned 
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Table 3

Average MSE for autoencoder on test set data.

𝑙 𝐷 = 10 𝐷 = 30 𝐷 = 50 𝐷 = 10,30 𝐷 =10-50

3 0.1843 0.2580 0.3130 0.2012 0.2119
4 0.1528 0.2440 0.3078 0.1908 0.2089
5 0.1349 0.2313 0.2982 0.1801 0.2045
6 0.1226 0.2172 0.2900 0.1709 0.2000
7 0.1110 0.2101 0.2846 0.1656 0.1971
8 0.0974 0.2091 0.2806 0.1643 0.1945
9 0.0822 0.2071 0.2777 0.1626 0.1925
10 0.0668 0.2045 0.2748 0.1608 0.1914

Fig. 7. Visualized examples of input (top), encoded (middle), and decoded (bottom) vectors for different dimensionalities for the Embedded Opt2Vec representation. 
The black color represents the zero value, while other colors represent values in the range (0, 1].

the Embedded Opt2vec representations vectors with sizes 9, 16, … , 100. The autoencoder was trained for all embedding lengths 𝑙 on 
dimensionalities 𝐷 = 10, 𝐷 = 30, and 𝐷 = 50, separately, and their combinations (𝐷 = 10, 30 and 𝐷 = 10, 30, 50). The training mean 
squared errors (MSEs) averaged across all ten splits are presented in Table 3.

When the embedding length 𝑙 increases, which means that we are learning representations with a larger size, the MSE is reduced 
for all dimensions (Table 3). This outcome is expected since the original data needs to be less compressed when 𝑙 is large. From the 
results, it follows that the MSE for 𝐷 = 30 and 𝐷 = 50 is greater than 𝐷 = 10, 30 and 𝐷 = 10, 30, 50 because, for both combinations, 
the lower dimensional matrices need to be padded with zeros.

Fig. 7 presents several examples of the input, the embedding (i.e., the Embedded Opt2Vec representation), and the decoded 
vectors, which provide more insights into the autoencoder’s performance on a single training instance. The examples correspond 
to 𝑙 = 5, which means that we have the Embedded Opt2Vec representations of size 25. The input vectors used for learning them 
are coming from the combination of all dimensionalities 𝐷 = 10, 30, 50. The black color represents the zero value, while other colors 
represent values in the range (0, 1]. It can be observed that the dimensions are perfectly preserved with encoding/decoding. Although 
actual data instance decoding is not perfect, it still maintains the major characteristics of the original input.

5.2.2. Iterative trajectory-based ELA representation

The ELA representation has been selected for comparison since it is a state-of-the-art representation for continuous optimization 
problems. In our experiments to perform fair benchmarking, we introduce iterative trajectory-based ELA calculation (iELA), where 
the ELA features are computed using the set of the candidate solution at every iteration (i.e., retained scaled matrix with check-marks 
in Fig. 3). It is important to highlight the key distinction between the trajectory-based ELA calculation and the iELA calculation. 
In the trajectory-based ELA approach, all candidate solutions visited throughout all iterations of the optimization run are grouped 
together to compute the ELA features. On the other hand, the iELA approach calculates the ELA features exclusively from the candidate 
11

solutions present in the current population at that specific state of the optimization run’s trajectory. As a result, the trajectory-based 
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Table 4

ELA features used with different dimensionalities.

ELA feature
dimensionality

10 30 50 10,30 10 − 50

basic.lower_max ✓ ✓ ✓ ✓ ✓
basic.upper_min ✓ ✓ ✓ ✓ ✓
basic.objective_max ✓ ✓ ✓
basic.cells_filled ✓ ✓
basic.costs_runtime ✓ ✓ ✓
disp.ratio_mean_02 ✓ ✓
disp.ratio_mean_05 ✓ ✓
disp.ratio_mean_10 ✓ ✓
disp.ratio_mean_25 ✓ ✓
disp.diff_mean_02 ✓ ✓ ✓ ✓ ✓
disp.diff_mean_05 ✓ ✓ ✓ ✓ ✓
disp.diff_mean_10 ✓ ✓ ✓ ✓ ✓
disp.diff_mean_25 ✓ ✓ ✓ ✓ ✓
disp.diff_median_02 ✓ ✓ ✓ ✓ ✓
disp.diff_median_05 ✓ ✓ ✓ ✓ ✓
disp.diff_median_10 ✓ ✓ ✓ ✓ ✓
disp.diff_median_25 ✓ ✓ ✓
disp.costs_runtime ✓ ✓ ✓
ela_level.costs_runtime ✓ ✓ ✓
ela_meta.costs_runtime ✓ ✓ ✓
ela_meta.lin_simple.intercept ✓ ✓ ✓ ✓ ✓
nbc.nn_nb.sd_ratio ✓
nbc.nn_nb.mean_ratio ✓
nbc.nn_nb.cor ✓
nbc.dist_ratio.coeff_var ✓
nbc.costs_runtime ✓

number of used features 16 25 20 11 11

ELA encompasses information about the entire trajectory, while the iELA only represents information pertaining to a particular state 
or position of the optimization run’s trajectory. The iELA calculation is performed in order to test if the information from a single 
state from the trajectory is enough for ELA to capture which problem is being solved. At the same time, it allows us a fair comparison 
with the proposed novel Opt2Vec representations that are designed for such learning scenarios.

For this purpose, we have focused on all groups of landscape features that can be found in the R package flacco [16] (except the 
cell-mapping-based ELA group). After calculating all the ELA features for all data instances (i.e., retained scaled matrices), only those 
features that returned non “NA” values for all data instances have been used (see results in Table 4). Having “NA” values for some 
ELA features is a common issue with ELA features calculation since many feature calculations are sensitive to samplings and their 
characteristics [18]. The last line in Table 4 represents the number of features used (marked with ✓) for the specified dimensionality 
that defines the iELA representations. We would like to note that the potential influence of scaling on the calculation of ELA features 
was not investigated in this work.

5.3. Problem classification

For the classification neural network, the optimizer “adamax” was used with a batch size of 1, 024 and a maximum of 300 allowed 
epochs. The early stopping condition was set to 10% of the maximal epochs without any improvement in the validation set loss 
function. Weights were initialized using the He uniform variance scaling initializer [45]. All the experiments for training the neural 
network classifier using scaled inputs have been performed on the same ten splits used for training the autoencoder. Three sets of 
experiments have been performed to see if the generated samples can be classified into the appropriate classes (problem name and 
dimension).

For the first experiment, several sizes of the Embedded Opt2Vec representations were used to evaluate the sensitivity of the 
classifier with regard to embedding length 𝑙. Experiments were performed for 𝐷 = 10, 𝐷 = 30, 𝐷 = 50, and their combinations 
(𝐷 = 10, 30 and 𝐷 = 10, 30, 50) with input vectors lengths for the classifiers of 110, 930, 2550, 930, and 2550, respectively.

In the second set of experiments, a classifier was trained using the Original Opt2Vec representations as an input vector for the 
classifier.

In the last set of experiments, instead of the Original Opt2Vec representations as input vectors, iELA representations were used as 
input data for training the classifier. A pipeline of how the representations were evaluated is shown in Fig. 8.

5.3.1. Classification results

The classification results obtained from ten random splits (Fig. 9) show that using the flacco library (i.e., iELA representations 
calculated from the data instances), the parts of a problem cannot be correctly described. In every dimensionality or combination 
12

thereof, the classification accuracy is below the accuracy obtained by both Opt2Vec representations. This lower accuracy most prob-
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Fig. 8. A pipeline for evaluation of the representations, where classifiers are first trained using respective representations. Trained classification models are then 
evaluated using test data. Training and test data consist of the same data instances for each representation, so the comparison is fair. In the presented diagram ellipses 
represent actions, while squares represent states.

Fig. 9. Embedding length sensitivity analysis of test data using box plots. The results for the Embedded Opt2Vec with embedding lengths 𝑙 = 3, … , 10, Original 
Opt2Vec, and iELA representations are shown. The Y-axis represents the accuracy that each of the models achieved concerning the dimensions presented on the x-axis.

ably occurs because the data instance samples are too small or correlated, which results in “NA” values for many of the calculated 
features (as is often the case and an issue with calculating ELA features). Please refer to Table 4 to see which ELA features were 
without such values for each dimensionality. This indicates that ELA features are more useful when the sampling is done from the 
whole search space discarding the algorithm’s behavior, however, they are not suitable to represent parts from the search space 
visited by the algorithm. For dimension, 𝐷 = 10 can be seen that the Embedded Opt2Vec representations with size 25 or higher (i.e., 
corresponding to embedding length 𝑙 ≥ 5) provide similar classification accuracy and robustness (height of the box plots) with the 
Original Opt2Vec representations. For dimensions 𝐷 = 30 and 𝐷 = 50 the average accuracy of the Embedded Opt2Vec representations 
(for 𝑙 ≥ 8) can even slightly outperform the Original Opt2Vec representation.

Further, we wanted to see if there is any correlation between autoencoder losses and achieved classification accuracies. The most 
interesting results can be observed when the performance of the classification accuracy is poor. For this reason, we selected the 
Embedded Opt2Vec with 𝑙 = 3 and 𝐷 = 50. Table 5 presents the autoencoder losses and achieved classification accuracies for all ten 
splits in such a scenario. The bold lines indicate split instances, where the classification performance is lower than 0.5. Looking at 
the bold lines, one can observe that they have the worst MSE values out of all split instances. This indicates that the quality of the 
Embedded Opt2Vec representation influences the classification performance. This effect is expected since encoding vectors of length 
2,550 into vectors of size 9 (𝑙2) without losing information represent a significant challenge.

Finally, we evaluated the classification accuracy achieved by all of the compared approaches. Tables 6–8 show the average 
classification accuracy for the training, the validation, and the test set, respectively. The results for the training sets and validation 
sets are presented so one can observe any noticeable overfitting in the training. The reduction in accuracy from training to validation 
set for Opt2Vec approaches is approximately 10 − 15%, while in the case of iELA representation, the accuracy drops approximately 
25 − 50%. This is an indication that the iELA representation is much more affected by overfitting compared to the Opt2Vec. From 
the perspective of classification accuracy, we are the most interested in the test sets, since they are the most representative of the 
expected performance. The bold values in Table 8 represent the best accuracy for each dimension achieved on the test set. In contrast, 
13

values annotated with stars represent better accuracies than the results obtained using the Original Opt2Vec representations. From 
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Table 5

Autoencoder losses vs classification accuracy for 𝑙 = 3 and 𝐷 = 50.

split instance
autoencoding MSE classification accuracy

train validation test train validation test

1 0.320 0.311 0.339 0.184 0.143 0.240

2 0.281 0.295 0.285 0.844 0.792 0.748

3 0.273 0.303 0.300 0.857 0.779 0.763

4 0.322 0.307 0.319 0.187 0.144 0.184

5 0.276 0.283 0.298 0.880 0.800 0.679

6 0.276 0.283 0.309 0.881 0.860 0.786

7 0.316 0.331 0.353 0.174 0.172 0.307

8 0.279 0.294 0.302 0.851 0.846 0.721

9 0.275 0.305 0.294 0.864 0.825 0.760

10 0.321 0.306 0.331 0.177 0.189 0.226

Table 6

Average classification accuracy results for the training sets.

representation 𝐷 = 10 𝐷 = 30 𝐷 = 50 𝐷 = 10,30 𝐷 =10-50

Opt2Vec (𝑙 = 3) 0.8744 0.8980 0.5899 0.9026 0.8963

Opt2Vec (𝑙 = 4) 0.9086 0.9413 0.6853 0.9304 0.9350

Opt2Vec (𝑙 = 5) 0.9213 0.9551 0.8728 0.9423 0.9513

Opt2Vec (𝑙 = 6) 0.9328 0.9651 0.9685 0.9486 0.9578

Opt2Vec (𝑙 = 7) 0.9413 0.9690 0.9751 0.9573 0.9623

Opt2Vec (𝑙 = 8) 0.9478 0.9713 0.9772 0.9602 0.9663

Opt2Vec (𝑙 = 9) 0.9569 0.9717 0.9794 0.9663 0.9694

Opt2Vec (𝑙 = 10) 0.9616 0.9754 0.9817 0.9668 0.9713

Original Opt2Vec 0.9692 0.9984 1.0000 0.9919 0.9969

iELA 0.4542 0.6782 0.8065 0.5357 0.5359

Table 7

Average classification accuracy results for the validation sets.

representation 𝐷 = 10 𝐷 = 30 𝐷 = 50 𝐷 = 10,30 𝐷 =10-50

Opt2Vec (𝑙 = 3) 0.7998 0.7872 0.5550 0.7769 0.7711

Opt2Vec (𝑙 = 4) 0.8292 0.8211 0.5951 0.8112 0.8132

Opt2Vec (𝑙 = 5) 0.8140 0.8167 0.7297 0.8287 0.8264

Opt2Vec (𝑙 = 6) 0.8333 0.8473 0.8423 0.8481 0.8375

Opt2Vec (𝑙 = 7) 0.8389 0.8725 0.8630 0.8477 0.8470

Opt2Vec (𝑙 = 8) 0.8446 0.8739 0.8660 0.8521 0.8462

Opt2Vec (𝑙 = 9) 0.8643 0.8668 0.8511 0.8691 0.8505

Opt2Vec (𝑙 = 10) 0.8759 0.8686 0.8669 0.8521 0.8454

Original Opt2Vec 0.8732 0.8770 0.8430 0.8680 0.8672

iELA 0.1336 0.1651 0.5554 0.1671 0.1941

Table 8

Average classification accuracy results for the test sets.

representation 𝐷 = 10 𝐷 = 30 𝐷 = 50 𝐷 = 10,30 𝐷 =10-50

Opt2Vec (𝑙 = 3) 0.6630 0.7846 0.5414 0.7833 0.7837

Opt2Vec (𝑙 = 4) 0.7385 0.8082 0.5935 0.8117 0.8205

Opt2Vec (𝑙 = 5) 0.7494 0.8297 0.7282 0.8335 0.8371

Opt2Vec (𝑙 = 6) 0.7634 0.8423 0.8461* 0.8420 0.8578

Opt2Vec (𝑙 = 7) 0.7692 0.8646 0.8612* 0.8560* 0.8703

Opt2Vec (𝑙 = 8) 0.7872* 0.8855 0.8588* 0.8528 0.8625

Opt2Vec (𝑙 = 9) 0.7695 0.8854* 0.8527* 0.8590* 0.8604

Opt2Vec (𝑙 = 10) 0.8051 0.8828* 0.8626 0.8627 0.8676

Original Opt2Vec 0.7831 0.8663 0.8439 0.8543 0.8699

iELA 0.1452 0.1502 0.2505 0.1419 0.2323

the results, we can conclude that the Embedded Opt2Vec representations with sizes greater or equal to 36 (i.e., 𝑙 ≥ 6) provide similar 
or better performance than the Original Opt2Vec representations on the test sets. The iELA representations perform much poorer 
14

compared to the Opt2Vec representations, indicating that iELA representation is not appropriate for the evaluated learning scenario.
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Table 9

Classification macro F1 score results for the test sets.

representation 𝐷 = 10 𝐷 = 30 𝐷 = 50 𝐷 = 10,30 𝐷 =10-50

Opt2Vec (𝑙 = 3) 0.4713 0.6302 0.3872 0.5722 0.5549

Opt2Vec (𝑙 = 4) 0.5441 0.6823 0.4519 0.6276 0.6145

Opt2Vec (𝑙 = 5) 0.5586 0.7119 0.5608 0.6381 0.6269

Opt2Vec (𝑙 = 6) 0.5728 0.7454 0.6125 0.6582 0.6586

Opt2Vec (𝑙 = 7) 0.5723 0.7661 0.6396 0.6666 0.6680

Opt2Vec (𝑙 = 8) 0.5885 0.7711 0.6428 0.6676 0.6666

Opt2Vec (𝑙 = 9) 0.5862 0.7787 0.6561 0.6866 0.6651

Opt2Vec (𝑙 = 10) 0.6047 0.7748 0.6549 0.6805 0.6755

Original Opt2Vec 0.6132 0.7786 0.6321 0.7098 0.7002

iELA 0.0421 0.0710 0.1580 0.0548 0.0794

To take into account also the type of errors (false positive and false negative) we have also included the analysis of test sets 
results using macro F1 score. From the Table 9 we can see a similar pattern as observed with the analysis based on average accuracy 
where the performance increases with higher 𝑙 values and the performance of all Opt2Vec representations drastically outperform 
iELA representation.

To obtain more insight into the performance differences between the selected Embedded Opt2Vec, the Original Opt2Vec, and 
the iELA representations, a confusion matrix for the same test set with 𝑙 = 10 and 𝐷 = 50 is presented (Fig. 10). From the figures, 
it is clear that the iELA representations produce a poor confusion matrix with basically none of the problems being correctly iden-
tified, while both Opt2Vec representations produce similar confusion matrices. This is another clear indication that the Embedded
Opt2Vec representation with 𝑙 = 10 provided very similar (in many cases even better, see Table 8) performance with much smaller 
representations (i.e., smaller vector size).

5.3.2. Data acquisition sensitivity analysis

An additional experiment was conducted to understand the impact of the Frobenius norm threshold on the data acquisition 
process. We investigated this by analyzing the influence of selecting different thresholds between Frobenius norms in the acquisition 
process on the process of learning the Opt2Vec representations and their classification. The tested thresholds between the Frobenius 
norms (i.e., diff ) were: 0.1, 0.3, and 0.5. The reason for selecting lower diff values is to see if the reduced required difference (and 
consequent higher number of training data) has any significant influence on the performance of the proposed Opt2Vec representations. 
The influence of selected thresholds was evaluated using offspring data acquired from problems in 𝐷 = 30. The selected thresholds 
had a huge impact on the number of data instances that were collected. Namely, for diff=0.1 the number of data instances was 
4, 882, 067, for diff=0.3 the number of data instances was 1, 343, 085, while for diff=0.5 the number of data instances was 514, 889. 
The increased number of data instances had a large influence on the time complexity of all learning representation tasks, especially 
on calculating the ELA features. Fig. 11 shows how the average classification accuracy over all ten splits changes with respect to the 
applied differences. There is also very little difference in the achieved accuracy for all representations except the iELA representations. 
Although there is a noticeable improvement, it is still far too little to get even close to the other performances.

To evaluate the approach’s efficiency regarding sampling coarseness when using different thresholds between Frobenius norms, 
the models learned on the 10 splits when diff=0.5 were tested on all data instances acquired with diff=0.1. The test was conducted 
with problems of dimension 𝐷 = 30. So the autoencoder learned on each split using the data collected with diff=0.5 has been 
utilized to encode the data collected with diff=0.1. Next, for the encoded representations with diff=0.1, the classification model 
learned using the same split and data collected with diff=0.5 has been utilized to make the predictions. With this, we have tested the 
transferability of the proposed approach to different samplings concerning the selected threshold diff. We need to note here that all 
of the training instances from the split using a 0.5 threshold can also be present in the dataset collected using a 0.1 threshold, which 
can further lead to overfitting. However, in our case, such data represents at most 8% of the dataset collected using a 0.1 threshold, 
so we have neglected it for this experiment. Table 10 presents the classification results obtained using the ten models (trained using 
the data collected with diff=0.5) evaluated on all data instances acquired with diff=0.1. The classification models were trained 
using both Opt2Vec representations as input data. The iELA representation was skipped since the feature portfolio calculated for all 
samples with diff=0.1 was different from the one calculated for all samples with diff=0.5, making such comparison infeasible and 
provides another reason why iELA representation is less suitable in a such learning scenario.

Based on the average classification accuracies across all ten models (i.e., evaluated on all data instances acquired with diff=0.1), 
the Original Opt2Vec representation returned the best accuracy. It even achieved a 5% higher accuracy than the averaged accuracy 
obtained from the acquired test sets where diff=0.5.

When the Embedded Opt2Vec representations with 𝑙 = 3 are used, the average accuracy across all ten models decreases compared 
to other embedding lengths. This decrease suggests that the embedding space with 𝑙 = 3 is too small, and it is not possible to capture 
the necessary features from the original space. The average classification accuracy across all ten models obtained when the Embedded 
Opt2Vec representations with 𝑙 ≥ 4 are similar (i.e., almost the same) to the average accuracy obtained from the acquired test sets 
(diff=0.5). Therefore, the test set results indicate that classification performance is not very sensitive to using different thresholds 
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diff if the Opt2Vec representation preserves enough information (i.e., in our experiment with 𝑙 ≥ 4).
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Fig. 10. Confusion matrix illustrating the performance differences between the selected Embedded Opt2Vec representations with 𝑙 = 10, the Original Opt2Vec repre-
sentations, and the iELA representations, using the same test set for all 30 test problems and 𝐷 = 50.

Table 10

Sensitivity of Opt2Vec models with Frobenius norm differences of 0.5 on 0.1 data.

split instance Original 𝑙 = 3 𝑙 = 4 𝑙 = 5 𝑙 = 6 𝑙 = 7 𝑙 = 8 𝑙 = 9 𝑙 = 10

1 0.935 0.729 0.795 0.794 0.865 0.877 0.828 0.839 0.893
2 0.927 0.655 0.831 0.781 0.787 0.829 0.885 0.889 0.879
3 0.943 0.777 0.817 0.768 0.824 0.893 0.880 0.839 0.866
4 0.913 0.724 0.792 0.849 0.862 0.881 0.868 0.867 0.860
5 0.935 0.753 0.788 0.835 0.800 0.896 0.901 0.880 0.890
6 0.926 0.709 0.734 0.876 0.843 0.867 0.885 0.908 0.899
7 0.910 0.658 0.817 0.870 0.863 0.842 0.861 0.870 0.868
8 0.928 0.728 0.830 0.840 0.858 0.860 0.883 0.868 0.845
9 0.867 0.750 0.809 0.832 0.869 0.839 0.877 0.831 0.904
10 0.901 0.731 0.836 0.815 0.849 0.886 0.897 0.891 0.902

mean 0.918 0.721 0.805 0.826 0.842 0.867 0.877 0.868 0.881

test set (0.5) 0.866 0.785 0.808 0.830 0.842 0.865 0.886 0.885 0.883
16
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Fig. 11. Frobenius norm sensitivity analysis on 𝐷 = 30 for the following diff=0.1, 0.3 and 0.5 values. The average classification accuracy (y-axis) is shown with 
respect to the Embedded Opt2Vec of lengths 𝑙 = 3, … , 10, the Original Opt2Vec, and the iELA representations (x-axis).

6. Discussion

The Opt2Vec representations capture sufficient information from individual populations (i.e., a particular state of the trajectory 
of the optimization run) and characterize a part of the problem landscape instance that can further be used for anytime identification 
of the actual problem that is being solved. It needs to be noted that the characteristics obtained using the Opt2Vec representations 
are based on scaled data, where scaling is done within a single population. Such representation could provide valuable additional 
information to an optimization algorithm during the optimization in respect of what type of problem instance the algorithm is 
currently solving. This information could also lead to a better selection of the most appropriate algorithm configuration for efficiently 
solving the problem (based on previous experience).

In our experiments, the Opt2Vec representations were classified into 90 classes, consisting of 30 different optimization problems 
and three dimensionalities 10, 30, and 50, which resulted in an accuracy of 80% to 87%. The results were obtained using offspring data 
that was min-max scaled. Hence, the approach is invariant to simple transformations (shifting or scaling) of the problem. This result is 
significant since it allows us to efficiently determine the problem while using only information from one state of the trajectory of the 
algorithm run. The only required pre-processed step of the proposed methodology is the scaling of the data (i.e., the Original Opt2Vec 
representation) and the calculation of the Embedded Opt2Vec representation, which are both trivial tasks. This represents a major 
time-saving in comparison to the calculation of the most commonly-used ELA features, which has been shown by the experiments that 
they are not suitable for representing different parts from the search space that are visited by the algorithm across different iterations 
and are not relevant for such kind of learning task. The optimization problem classification performed by the learned model is also 
a computationally simple task.

Training autoencoders can be a time-consuming task (i.e., can take from minutes to days, depending on the size of the training 
dataset), except for the Original Opt2Vec representation, where no training is required. However, it needs to be made only once, and 
the learned model can be used to generate the Opt2Vec representations for new datasets. Similarly, training a classification model 
can be a time-consuming task and largely depends on the amount of data that is used for training. But the advantage is that it needs 
to be done only once and can be later adapted to new data, which can be a less time-consuming task with higher learning start, 
slope, and asymptote [46]. Finally, the learned Opt2Vec representations can be used as part of a classification process to identify the 
optimization problem that is being solved regardless of the dimensionality (by simply padding the lower dimension data with zeros). 
An additional advantage of using the Embedded Opt2Vec representations is the reduced input size when combining them as input 
for machine learning approaches, which can be much more efficient in time and accuracy.

Furthermore, we need to point out that the samples found in the training, validation, and test sets did not belong to the same run. 
The learned models were checked to see if they were transferable to new optimization runs. The results indicate that this approach has 
strong transfer learning capabilities that achieve a test set accuracy above 80%. It can also distinguish between different continuous 
optimization problems in the Original and Embedded Opt2Vec representation space.

7. Conclusion

Automatic characterization of an optimization problem holds significant importance in the field of optimization research. Given 
that evaluating real-world problems can be time-consuming, it becomes crucial to minimize the number of evaluations required to 
accurately characterize the problem. In this study, we showed that continuous optimization problems can be characterized with 
information from individual populations visited by the algorithm during its run (i.e., different states of the trajectory of the optimiza-
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tion run) that allow us for highly accurate anytime identification of the problem being solved. This representation of the problem 
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landscape characteristics, called Opt2Vec, does not require any additional evaluations, except the ones made by the optimization 
algorithm during its run. The Opt2Vec representations are based on an autoencoder type of neural network, which can encode the 
gathered information into a condensed subspace without any significant loss of information.

The experimental results demonstrated that the Opt2Vec representations achieved classification accuracies of over 80% for the 
problem being solved and its dimension. In comparison to a modified version of the current state-of-the-art trajectory-based ELA tech-
nique for fitness landscape analysis (i.e., iterative trajectory-based ELA, iELA), the results indicated that the Opt2Vec representation 
outperformed it. This outcome suggests that the iELA representation is not well-suited for capturing the characteristics of a single 
state in the trajectory of the optimization process.

For future work, we are planning to investigate different research directions. Firstly, we would like to test the approach when 
data from different optimization algorithms is used to learn the Opt2Vec representations to see if this approach extends also over 
different families of optimization algorithms and not just the DE tested in this study. This will allow us to investigate the influence of 
different algorithm families on Opt2Vec performance in different machine-learning tasks. Another direction is related to finding more 
suitable autoencoder architecture to achieve better machine learning task performance (e.g., Graph Autoencoder, where geometrical 
landscape properties found in population could probably be better preserved). Further, since the Opt2Vec representations are coming 
with the cost that they are black-box optimization, we plan to extend the research concerning their interpretability. We aim to 
examine the suitability of the proposed Opt2Vec representation for both automated algorithm selection and configuration learning 
tasks. Additionally, we intend to extend these tasks by not limiting the learning of the Opt2Vec representations to a single population 
but by incorporating several populations from sequential iterations. Last but not least, we are planning to use different deep learning 
architectures such as transformers, and long short-term memory networks to find features that can describe various particularities of 
the algorithm behavior.
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Appendix A. Problem classification using conventional ELA features

To demonstrate the advantages of the proposed representations, we conducted an additional experiment. We evaluated the perfor-
mance of conventional ELA features, which are computed from artificial candidate solutions generated by some sampling technique, 
rather than being derived from observations during the algorithm’s execution.

For this purpose, we have generated 10,000 samples for each of the 30 CEC 2014 problems in a 𝐷 = 10, 30, 50 dimensional 
space, resulting in a total of 300,000 data instances described by ELA features for each problem dimension separately, with 10,000 
instances from each problem class. To calculate the ELA, we have used the Sobol sampling technique [47] by using a 50 ×𝐷 sample 
size (minimum recommended sample size for robust ELA feature calculation [48]). The used ELA features have been selected based 
on their non-missing values during the iterative ELA calculation process (on the test data). Subsequently, we created a balanced 
dataset for multi-class classification with 80:20 split for training and validation sets, where each instance has been labeled with its 
corresponding problem class. Using this dataset, we trained the same multi-class classifier (for each problem dimension, separately) 
that has been used for Opt2Vec and iELA representations as defined in Section 5.3 to predict the problem class based on the calculated 
conventional ELA features. We have evaluated the models using the same test datasets employed for models trained with Opt2Vec 
and iELA features. This experiment has also explored the potential of transfer learning by assessing if artificial samples generated 
for a specific problem could help identify the problem being solved by using a single iteration of real observed candidate solutions 
produced by the algorithm instance. As presented in Table A.11 the mean classification accuracy across all 10 test splits is below 5% 
in all three selected dimensions, indicating that the conventional ELA approach is inadequate for this task, underscoring the necessity 
for novel representations like Opt2Vec. This experiment also points out that landscape features that are proposed only to describe 
18

the fitness landscape in a problem space are not suitable for working with trajectory data.
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Table A.11

Average classification accuracy results for the 
conventional ELA features.

dataset 𝐷 = 10 𝐷 = 30 𝐷 = 50

train 0.793 0.852 0.808
test 0.017 0.048 0.007
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