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Abstract. Modular algorithm frameworks not only allow for combina-
tions never tested in manually selected algorithm portfolios, but they also
provide a structured approach to assess which algorithmic ideas are cru-
cial for the observed performance of algorithms. In this study, we propose
a methodology for analyzing the impact of the different modules on the
overall performance. We consider modular frameworks for two widely
used families of derivative-free black-box optimization algorithms, the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and dif-
ferential evolution (DE). More specifically, we use performance data of
324 modCMA-ES and 576 modDE algorithm variants (with each variant
corresponding to a specific configuration of modules) obtained on the 24
BBOB problems for 6 different runtime budgets in 2 dimensions. Our
analysis of these data reveals that the impact of individual modules on
overall algorithm performance varies significantly. Notably, among the
examined modules, the elitism module in CMA-ES and the linear pop-
ulation size reduction module in DE exhibit the most significant impact
on performance. Furthermore, our exploratory data analysis of problem
landscape data suggests that the most relevant landscape features re-
main consistent regardless of the configuration of individual modules,
but the influence that these features have on regression accuracy varies.
In addition, we apply classifiers that exploit feature importance with re-
spect to the trained models for performance prediction and performance
data, to predict the modular configurations of CMA-ES and DE algo-
rithm variants. The results show that the predicted configurations do not
exhibit a statistically significant difference in performance compared to
the true configurations, with the percentage varying depending on the
setup (from 49.1% to 95.5% for modCMA and 21.7% to 77.1% for DE).
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1 Introduction

Black-box optimization refers to optimization for problems where the structure
of the objective function is unknown, unexploitable, or non-existent [1]. In such
cases, information about the optimization problem is gathered by evaluating the
objective function for newly sampled candidate solutions, without making use of
knowledge of the underlying structure or characteristics of the problem [48]. It-
erative metaheuristic optimization algorithms are especially well-suited to tackle
such problems as they search for the optimal solution by iteratively querying the
objective function with different inputs (i.e., solution candidates), and they use
only this information to steer their search towards the most promising regions
of the search space. Some commonly used iterative metaheuristics include lo-
cal search algorithms [29], evolutionary algorithms [20], genetic algorithms [41],
particle swarm optimization [34], and ant colony optimization [16], among many
others.

Many state-of-the-art algorithms are claimed to have been originally inspired
by natural processes such as evolution and swarm intelligence [30]. Fueled by
the variance in the performance of the algorithms on different problem types, re-
searchers continue to seek inspiration from nature and employ diverse metaphors
to develop and refine these techniques.

However, a recent call for action by the evolutionary computation scientific
community has highlighted three significant concerns related to metaphor-based
metaheuristics [3]. Firstly, the usefulness of metaphors in metaheuristics is ques-
tionable, as many "novel" algorithms inspired by metaphors often lack scientific
justification and oversimplify or modify the metaphor to resemble an optimiza-
tion process, making them differ greatly from their original inspiration. Secondly,
there is a lack of originality, with researchers often rediscovering concepts that
have already been published in earlier studies (under different names). Finally,
the experimental validation and comparisons of these algorithms are often bi-
ased, with improper comparisons made between novel and non-state-of-the-art
algorithms on benchmark problem instances that are under-representative of the
diversity in the problem space. These issues highlight the need to develop novel
approaches that can be used to better understand the behavior of metaphor-
based metaheuristics (and metaheuristics in general) in order to identify genuine
contributions to the field.

A commonly used method to understand the behavior of algorithms is the
assessment of their performance through benchmarking and statistical analyses.
Typically, this involves reporting the average performance across a selected set
of benchmark problems [23, 18]. However, this approach has faced criticism for
its limitations in accurately interpreting algorithm behavior and its inability to
generalize to new problems [27, 28, 21]. Furthermore, in these statistical analysis
approaches, algorithms are treated as black-boxes much like optimization prob-



Assessing Module Contribution in Modular Optimization Frameworks 3

lems, hence, it is challenging to draw any conclusions about the characteristics
of the algorithms that contribute most to their performance.

Another approach to understanding metaheuristics is the development of
classification systems and taxonomies that try to categorize these algorithms
based on their underlying mechanisms, search strategies, and other relevant
factors [63, 43, 62]. Unlike statistical approaches that treat algorithms as black
boxes, these classification systems aim to provide a structured way of describing
metaheuristics and help researchers identify similarities and differences between
different algorithms. However, one limitation of these classification systems is
the lack of connection between the algorithms and the optimization problems
they are designed to solve, as well as the performance they exhibit on these opti-
mization problems. Without this connection, it can be challenging to understand
the performance of the algorithms on specific problem instances.

To overcome these limitations, new methods for assessing algorithm behavior
are needed. These methods should consider the characteristics of the algorithm,
the landscape characteristics of the problems, and the interaction between the
two in terms of their influence on performance behavior. By understanding these
factors, we can develop more effective algorithms that perform well on a range
of problem instances.

One promising approach for improving the assessment of algorithm behavior
is to use modular optimization algorithm frameworks [17, 53, 2, 8]. These frame-
works provide a flexible and modular way to design and evaluate metaheuristic
algorithms. The idea is to break down the algorithm into smaller components
that can be easily modified and combined to create new algorithms. By using
a modular approach, researchers can better understand how individual compo-
nents contribute to the algorithm’s overall performance and identify areas for
improvement. In these frameworks, ‘modules’ essentially represent the operators
in optimization algorithms. For clarity and consistency throughout this paper, we
will use the term ‘module’ instead of ‘operator’ in the context of modular frame-
works. Modular optimization algorithm frameworks can also provide a way to
bridge the gap between algorithm behavior and the optimization problems they
are designed to solve. By designing algorithms as collections of interchangeable
components, researchers can test different combinations of components on a va-
riety of problem instances.

In this study, we use modular optimization algorithm frameworks to assess
the different algorithmic ideas that were proposed in the literature. Our anal-
ysis is focused on examining each module individually, reflecting the common
practice of proposing algorithmic ideas in isolation. Exploring the interactions
between these modules and their collective impact on performance is an inter-
esting aspect, yet it remains outside the scope of our current research.

We focus on the analysis of two different classes of metaheuristics: Differential
Evolution (DE) [64] and Covariance Matrix Adaptation Evolution Strategies
(CMA-ES) [25]. We use their decomposed versions on basic components/modules
that are available in the modCMA-ES [53] and modDE [67] modular frameworks,
respectively.
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Our contributions and key findings: In this paper, our main contribution is
the proposal of an empirical workflow for understanding the impact of modules
on the performance of DE and CMA-ES algorithm. We analyze 324 modCMA-ES
and 576 modDE algorithm variants across 24 BBOB problems to: (i) Evaluate
the effect of individual modules on overall algorithm performance through anal-
ysis of performance data; (ii) Train ML regression models to predict algorithm
performance, with a focus on understanding how problem landscape features im-
pact these predictions. This approach provides an explainable ML model, link-
ing feature importance directly to the model outcomes; and (iii) Train classifiers
that use performance and landscape feature importance data to predict algo-
rithm module configurations. High prediction accuracy signals variability in the
performance data w.r.t. to the modules, suggesting that higher accuracy reflects
greater variability or a stronger impact of the module on performance. Con-
versely, lower accuracy suggests a module’s configuration has a minimal impact
on overall performance.

Our analyses suggest that, among the CMA-ES modules, the elitism mod-
ule has the most significant influence on performance, whereas the local restart
module has the smallest effect, particularly for shorter runtime budgets. For DE,
the linear population size reduction module has the greatest impact, whereas the
mutation reference and adaptation method modules have relatively minor effects.
However, we also observe that the results of our methodology can be inconclusive
for some of the modules.

Interestingly, we find that the set of landscape features that are most rele-
vant for accurate regression models that predict performance does not depend
on the configuration of the modules, indicating that feature selection does not
necessarily need to be tailored to the specific configuration. Finally, we have
trained classifiers to predict modular configurations, with better performance
gains achieved using performance-based meta-representations.

Extension: This study builds upon our previous work published at the Genetic
and Evolutionary Computation Conference (GECCO 2022) [38] on landscape
feature importance in predicting the performance of modular CMA-ES variants.
Initially focusing on 40 CMA-ES variants and two modules (elitism and step size
adaptation), we now examine a broader scope encompassing 324 CMA-ES vari-
ants, obtained by changing the configurations of six modules. We also extend
our analysis to 576 DE variants, generated by changing the configurations of
seven modules. Furthermore, we investigate how the different CMA-ES and DE
modules individually affect the algorithm’s overall performance. Previously, we
used single-output classifiers and problem landscape-based meta-representations
to predict modular algorithm configurations. In this study, we have extended our
methodology by incorporating both single and multi-output classifiers and inte-
grating problem landscape and performance-based meta-representations. More-
over, we have conducted a statistical analysis of the resulting classification pre-
dictions to determine if there is a performance difference between the true and
predicted configurations.



Assessing Module Contribution in Modular Optimization Frameworks 5

Outline: The paper is structured as follows. In Section 2, we review related
work on empirical performance analysis of modular optimization algorithms,
automated algorithm performance prediction, and explainable ML. Section 3
presents our methodology for obtaining algorithm meta-representations and us-
ing them to predict the algorithm’s modular configuration. We describe our
experimental design in Section 4. In Section 5, we discuss the key findings and
results of our experiments. Finally, in Section 6, we summarize our contributions
and outline several directions for future work.
Availability of data and code: Following best practices towards replicability
and reproducibility, the full project data and code, as well as figures for all
settings, are publicly available [40].

2 Related Work

Diverse research has investigated the modular CMA-ES and DE algorithm fam-
ilies in various single-objective learning scenarios. This includes conducting em-
pirical performance analysis of CMA-ES [68] and DE [13], predicting CMA-
ES [65] and DE [51] algorithm performance, automated algorithm selection [31],
and automated algorithm configuration [58, 6].

The empirical performance analysis [68, 13] has focused on providing em-
pirical results through descriptive statistics of the performance achieved on a
particular benchmark suite. Another way to compare algorithms’ behavior us-
ing information from the performance space is to use performance2vec meta-
representations [19]. Here, the results obtained by multiple runs of an algorithm
instance on a particular problem are averaged and stored as a vector repre-
sentation that consists of the results for all benchmark problems. Further, the
similarity between algorithm instances is assessed as the similarity between the
vector representations obtained by using performance2vec.

The studies performed in automated algorithm performance prediction al-
low us to develop an explainable ML predictive model. For this purpose, land-
scape properties [47] of the problem instances are used as input features to train
an ML predictive model that links them to the performance of the algorithm
achieved after some function evaluations. Further, by applying post-hoc explain-
able techniques, the contribution of each landscape feature to the accuracy of
performance prediction can be analyzed. Recently, the SHAP [61] feature rank-
ing method has been explored for such analyses, since it provides explanations
both at a global level (i.e., all benchmark problem instances) and at a local level
(i.e., per problem instance). The SHAP explanations can be used for algorithm
behavior meta-representation that facilitates the capture of the interactions be-
tween the problem landscape properties and the performance of the algorithm
instance. These meta-representations have been used with unsupervised tech-
niques to find similar groups of algorithm behavior of CMA-ES [65] and DE [51]
configurations.

The mentioned studies integrate into a broader range of research that aims
to understand the behavior of modular CMA-ES and modular DE. However,
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despite significant efforts in this direction, most of the studies that focus on
automated algorithm performance prediction and selection treat the CMA-ES or
DE configurations as black boxes, without exploring the impact of the individual
modules on the final performance of a configuration. While some studies have
used time-series features calculated from the global state variables to classify
isolated CMA-ES modules [54], there is no information on how these features are
linked to each module separately. Another study [58] has investigated a problem
instance-based configuration model that selects optimal CMA-ES modules using
landscape features of problem instances but does not provide any insight into
the importance of the landscape features.

Modular algorithm components have also been investigated in multi-objective
optimization. [7] focus on the automatic design of novel multi-objective evolu-
tionary algorithms (MOEAs) through the utilization of a conceptual framework
encompassing various MOEA components. However, the study does not inves-
tigate the impact of each of those modules on the overall performance of the
algorithm, nor does it provide insight into the importance of problem landscape
features.

A purely performance-oriented view on the modular algorithm framework
was taken by [4], where a modular suite of pseudo-Boolean optimization algo-
rithms is implemented within the ParadisEO framework [10] and tuned on a
collection of W-model problem instances [69, 15] using the irace algorithm con-
figurator [44]. Here, the goal is to identify module combinations that work well
together, rather than to explore their complementarity.

3 Methodology

Our methodology comprises three main components: (i) generating meta-
representations of the modular algorithms (described in Section 3.1); (ii) ex-
ploratory analysis, investigating the impact of the modules on the performance
and investigating the importance of the landscape features for algorithm perfor-
mance prediction (Section 3.2); and (iii) using the learned meta-representations
in a supervised classification task to predict the modular configuration of differ-
ent algorithm instances (Section 3.3).

3.1 Generating meta-representations of modular algorithms

We investigate two types of algorithm meta-representations, performance-based
and Shapley-based.

Performance-based meta-representations Performance-based meta-
representations [19] rely solely on performance data, enabling us to develop an
understanding of how the different modules contribute to the performance of
the algorithm variant. To obtain this data, we execute each modular algorithm
variant (i.e., algorithm instance) on a range of problem instances from diverse
classes.
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Considering the stochastic nature of the algorithms, to obtain reliable esti-
mates of the performance of each variant on each problem instance, we conduct r
independent runs of the algorithm variant. In each run, we measure the precision,
i.e., the absolute difference f(xbest)− f∗, between the best solution xbest found
by the algorithm in the considered run and the global optimum f∗ := infx f(x).
The solution quality (or performance) for instance j in class i, referred to as qij ,
is determined as the median of these precision values.

To summarize the algorithm variant’s performance on a problem class level,
we calculate the mean pi =

1
m

∑m
j=1 qij of the solution qualities qij across the m

instances in class i.
Finally, the overall performance of an algorithm instance across n classes is

summarized in an n-dimensional vector P = (p1, p2, ..., pn).

Shapley-based meta-representations Shapley-based meta-representations
consist of problem landscape feature importance scores derived from regression
models that predict algorithm performance. These scores, known as Shapley val-
ues, quantify the marginal contribution of each input feature (in our case prob-
lem landscape features) to the model’s predictions [49]. Shapley values have been
widely used as an explainability technique in ML [11, 42]. Unlike classical ML
feature importance approaches that provide global importances on a model-level,
Shapley provides feature importances on a local level, for each prediction. This
local interpretability aspect provides valuable insights into the model’s decision-
making process, enhancing its explainability. For calculating the Shapley values,
we use the SHAP (SHapley Additive exPlanations) algorithm [45].

To construct these meta-representations, we first train regression models for
performance prediction for each variant of the modular algorithms, separately.
We consider a portfolio of problem classes with size n and m instances of each
problem class, resulting in a total of n × m problem instances. Each problem
instance is represented as a vector of ℓ problem landscape features, (x1, x2, ..., xℓ),
which serve as input for training the regression models. The target output y that
we aim to predict is the algorithm’s performance within a fixed budget of function
evaluations, as detailed in Section 3.1.

After training the regression model for performance prediction, we calcu-
late the Shapley values of the landscape features. Applying the Shapley value
calculation on the regression models that predict the performance of each algo-
rithm instance separately gives us the Shapley-based meta-representations as an
ℓ-dimensional vector, (s1, s2, ..., sℓ). We need to point out here that the Shapley
meta-representations are model-specific and depend on the ML algorithm used
for learning the predictive model.

3.2 Exploratory analysis using the meta-representations

We use the learned algorithm meta-representations in two types of exploratory
analysis: (1) to investigate the impact of a module’s configuration on the al-
gorithm’s performance and (2) to investigate the importance of the landscape
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features when predicting the algorithm’s performance across the different module
configurations.

The impact of module configuration on algorithm performance Here,
we make use of the performance-based meta-representations. First, to inves-
tigate the impact of module configuration on algorithm performance, from a
selected set of algorithm modules and their configurations, we generate all pos-
sible configurations of the algorithm variants that we will investigate. Then, the
different algorithm variants are grouped with respect to a given module to ob-
serve whether there are some differences in the performance when we change
the module configuration and introduce some specific structural changes to the
algorithm.

Consider as an example the modular CMA-ES algorithm [53]. This algorithm
has multiple configurable modules, but in this illustrative example, for simplicity,
we focus on three: elitism (which can take values of either true or false), the base
sampler (which offers different sampling techniques such as Gaussian, Sobol’, and
Halton), and the step size adaptation mechanism (which includes Cumulative
Step Size Adaptation (CSA) and Step Size Adaptation with Population Success
Rule (PSR)). By combining the settings of these three modules, we can create
a total of 12 different algorithm variants shown in Table 1. To assess the impact
of elitism, we divide the configurations into two distinct groups: one with elitism
activated (elitism = True) and another without it (elitism = False). This division
allows us to analyze and compare the performance of the algorithm variants
under different settings, e.g., for elitism.

Table 1: Illustrative example of groups of CMA-ES algorithm variants when we
investigate the impact of the elitism module on the algorithm’s performance.

Elitism Base sampler Step-size
adapta-
tion

1 True Gaussian CSA
2 True Gaussian PSR
3 True Sobol’ CSA
4 True Sobol’ PSR
5 True Halton CSA
6 True Halton PSR

(a) Algorithm variants with elitism

Elitism Base sampler Step-size
adapta-
tion

7 False Gaussian CSA
8 False Gaussian PSR
9 False Sobol’ CSA
10 False Sobol’ PSR
11 False Halton CSA
12 False Halton PSR

(b) Algorithm variants without elitism

For each group, we visualize the distribution of the achieved performance
on all problem instances and problem classes. Differences in these distributions
would indicate that certain modular configurations perform better/worse on the
overall problem instance portfolio. We repeat this process for the remaining
modules. Additionally, the same analysis can be performed at problem class
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level to investigate whether there are differences in performance in the different
problem classes.

The importance of the landscape features in algorithm performance
prediction for the different module configurations Compared to the
performance-based meta-representations, the Shapley-based ones come with the
benefit that they can be employed in an exploratory analysis pipeline where
we can investigate the importance of the landscape features across the different
modules and across the different configurations of a given module. To this end,
we perform the same process of grouping the algorithm variants as described
in Section 3.2. We then calculate the importance of the landscape features for
each group separately and average them across all problem instances. We repeat
this process for the remaining modules. This approach facilitates the exploratory
analysis of the effect each of the modules has on the final performance of the
algorithm. Furthermore, trends in the landscape space can be observed. More
specifically, some problem landscape features can be found to hold more pre-
dictive value than the rest by observing the SHAP values across the different
problems (in multiple dimensionalities) for different budgets.

3.3 Prediction of a module’s configuration of the algorithm
instances

The meta-representations (both performance- and Shapley-based) of the modu-
lar algorithms variants can be assigned labels that indicate their modular config-
uration. This labeled data serves as input to train ML classifiers, which predict
the configuration of the algorithm’s modules. These classifiers are beneficial, for
example, in cases where we have the performance data of an algorithm that is
achieved after some function evaluations on a particular benchmark suite, but
we don’t have information about the configuration of the algorithm.

By using its meta-representation we may be able to identify a modular con-
figuration with similar performance behavior. This may help us in a lot of studies
for which the performance data is publicly available, but details about the tested
configurations are missing.

For example, if we have CMA-ES performance data, by using the learned
classifiers we can identify a modular CMA-ES configuration with similar behav-
ior.

To test the power of the classifiers, we use the meta-representations of each
modular configuration, and we use the classifiers to predict the modules that are
activated with their values. Further, we report the F1 score (macro F1 score in
the case of multi-class classification) of the predictions across all modules, prob-
lem dimensions, and different cut-off budgets. However, the classifiers may make
wrong predictions for the configuration, and the prediction may differ from the
true configuration in one or several modules. The wrong predictions affect the
performance of the classifier, but the predicted configuration and the true one
may still have similar behavior. To evaluate this, we perform a statistical analy-
sis based on hypothesis testing including the raw performance data for the true



10 A. Kostovska et al.

and the predicted modular configuration. For this purpose, we use the Deep Sta-
tistical Comparison (DSC) approach [18] that ranks the true and the predicted
configuration for each problem instance separately, by comparing the distribu-
tion of their raw performance data (for each problem instance separately). The
ranked data obtained for the true and the predicted configuration across all
benchmark problem instances is further analyzed by the Wilcoxon signed-ranks
test to find if there is a statistically significant difference in the performance of
the true and predicted configuration on the selected benchmark suite.

4 Experimental Design

In this section, we provide details on the experimental setup, which consists of
several components. We describe our problem portfolio, problem landscape data,
algorithm portfolio, and algorithm performance data. Additionally, we provide
information on the regression models for algorithm performance prediction and
the classifiers for the prediction of the modular configuration of each algorithm
instance.

4.1 Problem instance portfolio

The problem instance portfolio consists of the 24 single-objective, noiseless black-
box optimization problems sourced from the BBOB benchmark suite [24] of the
COCO benchmark environment [23]. Multiple instances of each BBOB problem
can be generated by using linear and non-linear transformation processes. These
involve adding an offset, rotating the axes, and scaling the coordinates of each
basic function. The BBOB benchmark suite already contains multiple instances
of each problem. In this study, we consider the first 5 instances of each of the 24
BBOB functions, both with dimension D = 5 and D = 30. This results in two
separate problem instance portfolios, one for each dimension, with each portfolio
containing a total of 120 problem instances.

4.2 Landscape features

For representing the problem landscape, we utilize the "cheap" exploratory land-
scape analysis (ELA) features implemented in the R package flacco [36]. The
ELA features are used as numerical vector representations of the problem in-
stances that capture the landscape characteristics of optimization problems. We
considered a total of 46 different ELA features, which were not calculated from
scratch, but reused from [59]. The selected ELA features were calculated by
using the Sobol’ sampling strategy on a sample of size 100D on a total of 100 in-
dependent repetitions. To represent the landscape of each problem instance, we
calculate the median value for each feature over the 100 independent repetitions.

It is worth mentioning that we deliberately allocated a substantial sample size
for ELA computation to eliminate the effects of noisy feature evaluations. Ad-
ditionally, we do not perform feature selection, even though it has been demon-
strated to improve results in performance prediction tasks [60]. However, we
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anticipate that our findings will hold for other types of features as well, based
on previous work [32, 52].

4.3 Algorithm portfolio

We examine two black-box optimization algorithms that have modular imple-
mentations available, namely CMA-ES and DE. For CMA-ES, we utilize the
modCMA-ES framework [53], which encompasses various versions of the core al-
gorithm. These modifications include changes in the sampling distribution (such
as mirrored or orthogonal sampling), weighting schemes for recombination, and
restart strategies, to name a few. This modular structure allows for the creation
of at least 36 288 configurations of CMA-ES, and additionally provides access to
a large set of control parameters (population size, update rates,. . . ).

We utilized the modDE [67] package5 for DE. This package provides a diverse
array of mutation mechanisms and modules for selecting the base component,
the number of differences included, and the use of an archive for some of the
difference components. Additionally, the package enables the usual crossover
mechanisms and incorporates update mechanisms for internal parameters based
on several state-of-the-art DE versions. In total, this package allows for the
creation of at least 1 474 560 configurations of DE.

4.4 Performance data

Due to the computational infeasibility of collecting data for all possible combina-
tions of modular CMA-ES and modular DE algorithms, we opted to use a subset
of, specifically 324 algorithm variants for modular CMA-ES and 576 variants for
modular DE. The performance data for this subset of algorithm variants is taken
from [39]. We show the modules and parameter spaces used for CMA-ES and
DE in Table 2 and Table 3, respectively. To obtain the algorithm variants, we
created a Cartesian product of the modules and the selected module parameter
spaces.

To evaluate the performance of each algorithm variant, 10 independent runs
have been conducted and the median objective function value has been recorded
for each problem instance. All experiments make use of the IOHexperimenter
module [55] of the IOHprofiler benchmarking environment [14]. Our objective
function measures the precision of the algorithm’s solution, i.e., the distance to
the optimum, within a fixed budget of function evaluations. We considered six
different budget values, B ∈ {50D, 100D, 300D, 500D, 1 000D, 1 500D}, where
D is the problem dimensionality. We report the best precision achieved by each
algorithm variant at the different cut-off budgets for the 5D and 30D problem
instance portfolios. The population size for both CMA-ES and DE is set to
4 + ⌊3 log(D)⌋.

5 modDE package (version 0.0.1-beta) accessible at https://github.com/
Dvermetten/ModDE
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Table 2: The complete list of modCMA-ES modules and their respective param-
eter space yielding a total of 324 algorithm configurations.Module Parameter space

Elitist True, False
Mirrored_sampling None, mirrored, mirrored pairwise
base_sampler gaussian, Sobol’, halton
weights_option default, equal, (1/2)ˆλ
local_restart None, IPOP, BIPOP
step_size_adaptation csa, psr

Table 3: The complete list of modDE modules and their respective parameter
space yielding a total of 576 algorithm configurations.

Module Parameter space
mutation_base rand, best, target
mutation_reference None, pbest, best, rand
mutation_n_comps 1, 2
use_archive True, False
crossover bin, exp
adaptation_method None, shade, jDE
lpsr True, False

4.5 Regression models for algorithm performance prediction

In this study, we train regression models for algorithm performance prediction as
part of the pipeline of obtaining Shapley-based algorithm meta-representations.
Previous studies have investigated the use of ML in algorithm performance pre-
diction, including the use of Random Forest (RF) regression models [50, 12, 35,
37]. RF, an ensemble-based decision tree method, is thoroughly described in
the seminal work by [9]. In our work, we employ the RF approach to learn
performance prediction regression models, as they have been shown to provide
promising results in this context [33, 65] and we tune their hyperparameters. For
training the models we use the RF algorithm as implemented in the Python
package scikit-learn [56].

To ensure optimal results, we trained separate regression models (single-
output models) for each modular variant. This decision was based on findings
by [65], which showed that multi-output models (models that predict the output
for several algorithm instances simultaneously) did not demonstrate performance
gains compared to single-output models.

For learning the performance prediction models, a vector of 46 ELA features
is used to describe each problem instance. Our objective is to predict the preci-
sion, i.e., the distance to the optimum that each algorithm in the portfolio will
attain on a problem instance, given a fixed budget of function evaluations and
problem dimensionality. In this study, we log10-transform the target variable
(the median of the 10 independent runs) as it has been shown to improve the
performance of the learned predictive models when the target variable is the
distance to the optimum [31]. We also cap the target variable to 10−8 prior to
performing the logarithmic transformation.
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Hyperparameter tuning and model evaluation. To assess the learned ML
models’ performance, we use a nested cross-validation (CV) technique that in-
volves two stages. In the outer loop, we partition the data into training and
testing sets, while the inner loop determines the optimal parameters of the
ML method. This evaluation approach may require significant computational
resources, but yields more reliable estimates of the model’s generalization abil-
ity as compared to traditional train/val/test data splitting or standard CV [66,
5].

To implement the outer loop, we apply a leave-one-group-out CV, which
segments the data into groups/folds based on the unique ID of each problem
instance. Since our study involves the first 5 instances of each of the 24 BBOB
problems, we create 5 folds by assigning 4 for training and 1 for testing. We
repeat this process five times, each time selecting a different fold for testing
while using the remaining four for training.

The inner loop adopts a grid search approach to tune the parameters and
selects the optimal ones based on the average performance of the inner CV’s
holdout folds. A leave-one-group-out CV is applied to the training data (i.e., the
four folds) obtained from the outer loop. The R2 score is used as a performance
metric. The parameters chosen for tuning and their corresponding search spaces
can be found in Table 4.

Table 4: Parameters of the RF approach and their corresponding values consid-
ered in the grid search.

Hyperparameter Search space
n_estimators [10, 50, 100, 500, ]
max_features [′auto′,′ sqrt′,′ log2′]
max_depth [4, 8, 15, None]

min_samples_split [2, 5, 10]

After the optimal parameters have been determined, the model is trained on
the entire training data, and its performance is assessed using the test set from
the outer loop.

4.6 Classification models for predicting/identifying the modular
configuration of algorithm variants

To train these classifiers, we use the algorithm meta-representation as input data
and apply the RF classifiers implemented in the Python package scikit-learn [56].
We consider two scenarios: (1) Single-output classifiers – we train a classifier for
each module separately. Depending on the number of possible configurations for
each module, we perform binary classification (when there are 2 possible con-
figurations of the given module, leading to a binary output/target variable) or
multi-class classification (when there are more than 2 possible configurations of
the given module, resulting in a discrete datatype for the output/target variable
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), and (2) Multi-output classifiers – we train a single classifier to predict the
configuration of all modules simultaneously. Here, the output/target variable is
a record of discrete values.

We evaluate both types of classifiers as they have not been studied in this
context before. Note that for different problem dimensionalities and cut-off bud-
gets, we train separate classifiers.

In addition, we assess the performance of TabPFN, a pre-trained Transformer
model that approximates probabilistic inference for a novel prior in a single
forward pass. TabPFN was shown to have fast training time and competitive
performance on tabular prediction tasks by [26] and we use their implementation.

All classifiers are trained using default (hyper-)parameter values. To evaluate
the performance of the learned models, we partition the data into training and
testing sets using leave-one-group-out cross-validation, which segments the data
into train/test folds based on the unique ID of each benchmark problem instance.
As a performance indicator, we report the F1 scores of the classifiers.

5 Results and Discussion

Following the methodology described in Section 3 and the experimental proto-
col given in Section 4, we first perform an exploratory analysis using the algo-
rithm meta-representations (Section 5.1). We then present results on the task of
predicting the modular configuration of the algorithm variants from algorithm
behavior meta-representations in Section 5.2.

5.1 Exploratory analysis

The impact of the modules on the performance of the algorithms We
investigated how different configurations of modules impact the performance of
the CMA-ES and DE algorithms, using performance-based meta-representations
in a log-10 scale. The distribution of the precision achieved by different variants
of the CMA-ES algorithm on 5D problem instances is presented in Figure 1.
We tested 6 different modules (elitist, mirrored, base sampler, weights option,
local restart, and step size adaptation) across the 6 cut-off budgets. Each violin
plot in the figure shows the precision across all CMA-ES algorithm variants that
have the same value for a given module.

For instance, there were 324 algorithm variants selected as the Cartesian
product of the 6 modules, and 162 algorithm variants had the elitism module
activated, while 162 did not. Therefore, the violin plot for ‘elitism = true’ is
based on the precision values of 162 algorithm variants, where the precision
value of an algorithm variant is the mean value of the performance-based meta-
representations (i.e., the mean value of a numerical vector representation of size
24) in a log-10 scale as detailed in Section 3.

The precision values are inversely proportional to algorithm performance,
with smaller values indicating better performance.
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Fig. 1: Distribution of the precision achieved by different variants of the CMA-
ES algorithm on 5D problem instances for different modular configurations,
across different cut-off budgets. The precision values are inversely proportional
to algorithm performance, with smaller values indicating better performance.

We analyzed the results displayed in Figure 1 and made the following ob-
servations: (i) The activation of elitism in the algorithms leads to improved
performance for smaller evaluation budgets. As the budget increases, this trend
reverses and elitist configurations are overtaken by their non-elitist counterparts;
(ii) Algorithm variants that have activated mirrored orthogonal sampling with
pairwise selection (mirrored pairwise) demonstrate a longer tail towards poorer
performance than those that use mirrored sampling without pairwise selection
and those that do not use mirrored sampling at all, although on average they
perform similarly;

(iii) At the lower budget cut-offs, the Halton sampling showed the best per-
formance, Sobol’ sampling came second, and Gaussian sampling demonstrated
the worst performance out of the three. As the budget increases, the differences
are less evident; (iv) Algorithms with recombination weights set to (1/2)ˆλ and
default weights have similar distributions. Also, all three configuration setups
have similar average performance; (v) For the lower budgets, we observe that
the local restart module achieves comparable performance for the three modular
configurations (BIPOP, IPOP, and no restart) across the different budgets. This
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Fig. 2: Distribution of the precision achieved by different variants of the DE
algorithm on 5D problem instances for different modular configurations, across
different cut-off budgets. The precision values are inversely proportional to al-
gorithm performance, with smaller values indicating better performance.

makes intuitive sense, as at low budgets the algorithm will not have had a chance
to trigger any of the restart criteria. As the budget increases, IPOP and BIPOP
local restart techniques show slightly better performance compared to algorithm
variants without a restart mechanism, which matches observations made in pre-
vious work [22]; and (vi) In the case of step size adaptation, for smaller budgets,
cumulative step size adaptation (CSA) exhibits better performance than step
size adaptation using the population success rule (PSR).

For the DE configurations, we show the same type of visualization in Figure 2.
From this figure, we can see that the overall performance differences between DE
module options are much smaller than those seen for CMA-ES. The clear ex-
ception is the LSPR module that, if enabled, results in much worse performance
for smaller budgets. This matches our intuition since LPSR changes the initial
population size to 20D at the beginning of the search. This much larger initial
population size leads to a slower convergence at the beginning of the search.
The difference to no-LPSR slowly decreases over time, but it does not manage
to overtake it within our maximum budget of 1 500D function evaluations. This
observation also seems to suggest that the population size is a critical param-
eter of DE, which matches previous observations [57]. For the other modules,
we observe that the mutation base and reference settings, which are more eli-
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tist (best and pbest) show improved performance for low budgets, matching the
observations for CMA-ES.

We have also conducted the same empirical analysis for the 30D problem
instances, and the results are available in our Zenodo repository [40]. Similar
observations can be made for the 30D problem instances as in the case of using
the 5D problem instances.

The importance of the ELA features for different modular setups Fol-
lowing our experimental design, to obtain the Shapley-based meta-representations
(i.e., landscape feature importance scores), we first trained separate regression
models for each algorithm variant. Table 5 presents the average R2 scores of the
RF and baseline regression models for the CMA-ES and DE algorithm variants,
for both 5D and 30D problems and the six different cut-off budgets. Additionally,
Table 6 summarizes the MSE scores for these models. As a baseline, we employ
a model that consistently predicts the overall mean algorithm performance. One
interesting pattern that can be observed is that the models perform better for
the 30D problems. This improved performance may be due to variations in the
distributions of the target variable across different combinations of budget and
dimensionality. The different distribution characteristics, such as skewness, can
impact the performance of the RF model. Additionally, in a higher-dimensional
space, where the points are spread out, certain ELA features might converge to
specific values which can make the data simpler and easier for models to learn
from.

Subsequently, we have utilized the SHAP algorithm to determine the feature
importance of each of the 46 ELA features at the problem instance level. In the
outer loop of the nested cross-validation, we have employed a leave-one-group-out
CV validation with five groups (four for training and one for testing). However,
we specifically focused on the Shapley values of the training folds, as this data
is used to learn the predictive models and provides insight into the algorithms’
workings.

To generate a Shapley value for each ELA feature and problem instance, we
calculated the value four times (due to each problem instance appearing four
times in the training data and once in the testing data) and then took the mean
of the four values. Lastly, we averaged the Shapley values for each ELA feature
across all problem instances, which gave us a single vector for each algorithm in-
stance. For this purpose, we have leveraged TreeSHAP. TreeSHAP is tailored for
tree-based models such as decision trees, random forests, and boosting machines.
It is designed to be computationally efficient by exploiting the tree structure for
faster calculations, which enables it to manage more complex scenarios effec-
tively. One of the key advantages of TreeSHAP is its consistency property: if a
model relies more on a particular feature, the attributed importance of that fea-
ture will not decrease, ensuring reliable feature attribution. Alternatively, Ker-
nelSHAP can be used for interpreting the impact of features in any model, as it
employs a model-agnostic approach. While KernelSHAP offers flexibility across
various model types, it comes at the cost of computational efficiency. This makes
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KernelSHAP less suitable for complex, high-dimensional situations or applica-
tions requiring real-time explanations. Given that we are working with tree-based
predictive models, TreeSHAP was the appropriate choice for our study. It pro-
vided the necessary computational efficiency. The calculation of TreeSHAP is
detailed in [45], where it is demonstrated that Shapley values can be used to
interpret model performance regardless of whether the model performs well or
poorly.

To investigate the importance of the ELA features, we conduct exploratory
analysis by selecting the top K most important features, where K is chosen from
the set {10, 15, 20}. Next, we tally the frequency of appearance for each feature
in the top K across all algorithm variants within the same group of modular
algorithm variants. This is done by calculating the number of times a feature
appears in the top K as indicated by their Shapley values. The resulting value
ranges between 0 and the total number of algorithm variants in the group.

Analyzing the results in Figure 3 and through our analysis of feature im-
portance in various other scenarios, we have observed that a similar set of ELA
features are the most important predictors of performance, regardless of the al-
gorithm, modular configuration, problem dimensionality, or cut-off budget. This
suggests that we can perform feature selection for all algorithms simultaneously,
irrespective of their configurations. However, we recommend training separate
regression models for each algorithm configuration to obtain the most accurate
predictions.

Table 5: The R2 scores of the RF regression models / R2 scores of the baseline
regression models averaged over the CMA-ES and DE algorithm variants for
the BBOB problem instances in 5 and 30 dimensions where the best precision
is reached after B ∈ {50D, 100D, 300D, 500D, 1000D, 1500D} function evalua-
tions.

Budget CMA-ES DE
5D 30D 5D 30D

50D 0.7577/-
0.0072

0.9400/-
0.0005

0.8788/-
0.0019

0.9403/-
0.0009

100D 0.7689/-
0.0069

0.9179/-
0.0008

0.8783/-
0.0017

0.9433/-
0.0008

300D 0.6146/-
0.0072

0.8457/-
0.0031

0.8587/-
0.0016

0.9362/-
0.0013

500D 0.7045/-
0.0055

0.8322/-
0.003

0.8368/-
0.0024

0.9361/-
0.0015

1000D 0.7272/-
0.0046

0.8072/-
0.0029

0.7795/-
0.0043

0.9242/-
0.002

1500D 0.7288/-
0.0048

0.8391/-
0.0023

0.7508/-
0.0051

0.9191/-
0.0023
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Fig. 3: Frequency of appearance of the ELA features as top 10 most im-
portant features for performance prediction of two modCMA-ES modules
(elitist and mirrored; first four groups) on the 24 BBOB functions in
both 5 and 30 dimensions and for six different evaluation budgets B ∈
{50D, 100D, 300D, 500D, 1 000D, 1 500D}. The fifth group provides the same
data for one DE module (mutation base).
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Table 6: The MSE scores of the RF regression models / MSE scores of the
baseline regression models averaged over the CMA-ES and DE algorithm vari-
ants for the BBOB problem instances in 5 and 30 dimensions where the best
precision is reached after B ∈ {50D, 100D, 300D, 500D, 1000D, 1500D} function
evaluations.

Budget CMA-ES DE
5D 30D 5D 30D

50D 0.7829/4.02480.1482/2.461 0.3716/3.383 0.2642/3.7964
100D 1.2195/5.18340.2692/3.2073 0.4326/3.91060.2458/4.225
300D 3.9828/8.91121.0303/5.8091 0.809/5.6781 0.3055/4.9577
500D 4.8498/13.96041.2684/6.6078 1.0403/6.11260.3803/6.1386
1000D 5.2191/15.25661.7192/7.9612 1.9462/6.88430.5378/7.0673
1500D 5.1945/15.1981.8771/10.9973 2.3355/7.41110.634/7.6636

5.2 Predicting the modular configuration of an algorithm using its
behavior meta-representation

Table 7: F1 scores of the single-output RF, multi-output RF, and single-
output TabPFN models, computed by averaging over the CMA-ES and DE
algorithm variants. The F1 scores are further averaged for both 5 and 30
dimensions, and across the 5 cut-off budgets for function evaluation (B ∈
{50D, 100D, 300D, 500D, 1000D, 1500D}).

Algo

Performance Shapley
single-
output

RF

multi-
output

RF

single-
output

TabPFN

single-
output

RF

multi-
output

RF

single-
output

TabPFN
CMA-
ES

0.794 0.772 0.811 0.623 0.618 0.629

DE 0.758 0.744 0.790 0.603 0.601 0.589

After exploring the performance and ELA data on which the meta-representations
are built, we now analyze whether these meta-representations are powerful enough
to predict/identify the corresponding algorithm variant.

First, we compare the single- and multi-output approaches for training clas-
sifiers using the RF method. The F1 scores for the classifiers obtained on the
test data aggregated across the 2 problem dimensionalities, 5 budgets, and algo-
rithm modules, are listed in Table 7. We have observed that comparable results
can be obtained when employing single-output and multi-output RF techniques
on both CMA-ES and DE algorithms, using both performance- and Shapley-
based meta-representations. However, it is worth noting that the multi-output
RF approach exhibits slightly inferior performance as compared to single-output
RF.
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Fig. 4: The F1 scores of the RF classifiers for predicting the modular configura-
tion of the CMA-ES algorithm variants. Results are presented for each CMA-ES
module separately, for 5D and 30D BBOB problem instances, and for 5 different
cut-off budgets. The baseline is the majority classifier.

Additionally, we have compared the performance of single-output RF classi-
fiers with TabPFN classifiers. Both classifiers showed similar F1 scores, as indi-
cated in Table 7. For instance, when using Shapley-based meta-representations,
the RF classifier’s average F1 score for predicting the modular configuration of
CMA-ES variants was 0.623, while the TabPFN classifier’s F1 score was 0.629,
indicating slightly better performance for TabPFN. However, for the DE vari-
ants, we observed the opposite situation, with RF classifiers achieving an average
F1 score of 0.603 and TabPFN of 0.589.

In Table 7, the F1 scores are averaged over all algorithm modules. To further
analyze the classifiers trained using the single-output RF method, in Figure 4 we
present the F1 scores of the classifiers for each CMA-ES module separately. As
a baseline, we use the majority classifier. Figure 4 shows that the highest per-
formance scores are achieved in predicting the setting of the elitist and step-size
adaptation modules. The higher F1 scores for the elitist and step-size adaptation
modules compared to the other four CMA-ES modules are expected because we
only investigated two module options for these two modules, while the remain-
ing four modules used three different module options. By having fewer classes
to distinguish between, the classification problem is simplified, making it easier
to solve.

The highest F1 scores among the remaining four modules have been observed
for the weights option, followed by the base sampler and mirrored. The config-
uration of the local restart module is the most difficult to predict. In general,
all classifiers for predicting the status of each module outperform the baseline
across the different modules, problem dimensions, and budgets (see Figure 4).
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Fig. 5: The F1 scores of the RF classifiers for predicting the modular configu-
ration of the DE algorithm variants. Results are presented for each DE module
separately, for 5D and 30D BBOB problem instances, and for 5 different cut-off
budgets. The baseline is the majority classifier.

Further, we have observed that the performance-based meta-representations
have better predictive power than the Shapley-based meta-representations.

In Figure 5, we show the F1 scores of the RF classifiers for each DE mod-
ule. For the mutation_n_comps, use_archive, crossover, and lpsr modules
we have considered two different module options. As can be seen in Figure 5,
for these four modules the classifiers have the highest F1 scores, with lpsr
classifiers performing the best, followed by crossover, mutation_n_comps, and
use_archive. As the number of considered modular options increases (three dif-
ferent options for the mutation base and adaptation method modules and four
different options for mutation reference), the F1 scores of the classifiers tend to
decrease. For both CMA-ES and DE, it is worthwhile to note that the mod-
ules that have limited initial impact (local-restart and adaptation mechanism)
are indeed more challenging to predict, especially for small budgets. Neverthe-
less, in all cases, the classifiers outperform the baseline classifier. Furthermore,
the RF classifiers that used performance-based meta-representations consistently
outperformed those that used Shapley-based meta-representations.
Performance difference between algorithm variants. By combining the
predictions of the RF classifiers for all modules, we can predict the modular
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configuration of the algorithm instance. To judge the effectiveness of this predic-
tion, we analyze the difference in performance between the true and predicted
modular configurations. Even though there might be a difference in the config-
uration, the true and the predicted algorithms may have similar performance
behavior. To evaluate this, we use the DSC approach to test for statistical sig-
nificance in the performance of the true and the predicted configuration across
all benchmark problem instances. First, we apply the DSC ranking scheme that
ranks the true and the predicted configuration by comparing the distribution of
their raw performance data for each problem instance separately.

For comparing the distributions, the two-sample Anderson-Darling test is
used by the DSC ranking scheme. Since most of the statistical tests require the
independence condition, we have aggregated the rankings per problem class by
calculating the average of the DSC rankings obtained for the five problem in-
stances that belong to that problem class. Next, the ranked data is analyzed
with a statistical test. The rankings obtained for the 24 problem classes have
been analyzed with the Wilcoxon signed-ranks test to find if there is a statisti-
cally significant difference (at a p-value of 0.05) in the performance of the true
and predicted configuration on the selected benchmark suite. After determining
the statistical significance of the difference between each true and predicted al-
gorithm pair, we calculate the percentage of pairs with performance differences
that are not statistically significant. Additionally, we generate 5 different ran-
dom predictions for the modular configuration of each algorithm instance and
perform the DSC analysis on them. The results for CMA-ES and DE across
different problem dimensions, budgets, and meta-representations are shown in
Table 8 and Table 9, respectively.

In both Table 8 and Table 9, we can observe that the percentage of algo-
rithm pairs, consisting of true and predicted configurations, with performance
differences that are not statistically significant (based on the predictions gener-
ated by our classifiers) is significantly higher as compared to the scenario where
predictions are randomly generated for the modular configuration. This affirms
the robust predictive capabilities exhibited by our classifiers.

An additional noteworthy observation is that the percentage of pairs with
performance differences that are not statistically significant is higher for the
CMA-ES algorithm variants as compared to DE. To further investigate this
observation, we use UMAP [46] as a dimensionality reduction technique to de-
pict the performance-based meta-representations of CMA-ES and DE algorithm
variants. Specifically, we focus on the 5D problems and 300D budget cut-off.

Figure 6 showcases the UMAP plots, allowing for a visual examination of
the performance space. Notably, the CMA-ES algorithm variants exhibit closer
proximity to one another, forming two distinct clusters. This close grouping sug-
gests similar performance characteristics among these variants. We have observed
that the elitism module almost perfectly separates the algorithm variants into
two clusters. In contrast, the DE algorithm variants display more pronounced
differences in performance, leading to a lower percentage of pairs with perfor-
mance differences that are not statistically significant. In this case, the purest
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Table 8: The DSC results on the statistical difference in the performance of
CMA-ES algorithm pairs. Results are reported in the format: percentage of
(true, predicted)-pairs with performance differences that are not statistically
significant/percentage of (true, random)-pairs with performance differences that
are not statistically significant. The numbers in brackets correspond to the stan-
dard deviation for the latter percentage since this was computed over 5 indepen-
dent runs.

Budget SHAP Performance
5D 30D 5D 30D

50D 74.4 / 33.6
(2.0)

68.2 / 24.6
(2.7)

89.2 / 36.4
(2.0)

93.2 / 22.5
(1.2)

100D 80.9 / 62.2
(3.5)

68.2 / 26.9
(2.3)

91.0 / 64.0
(1.6)

93.5 / 27.0
(3.1)

300D 75.0 / 57.5
(1.6)

59.6 / 35.2
(3.0)

87.3 / 58.4
(3.1)

88.9 / 36.5
(1.7)

500D 67.6 / 57.2
(2.3)

55.2 / 33.5
(2.4)

89.5 / 55.8
(3.1)

83.6 / 34.8
(1.5)

1000D 74.1 / 48.7
(2.3)

54.3 / 36.8
(1.1)

84.9 / 48.5
(0.6)

82.7 / 38.9
(1.7)

1500D 72.2 / 43.6
(1.7)

49.1 / 34.0
(2.1)

88.0 / 42.7
(3.0)

81.2 / 34.1
(2.9)

clusters are formed by taking into consideration the configurations of the lpsr
module, indicating that this module exerts the greatest influence on performance
as compared to the other modules.

(a) CMA-ES (b) DE

Fig. 6: UMAP embeddings of the performance-based meta-representations of the
324 CMA-ES and 576 DE algorithm variants.

6 Conclusion

In this study, we propose a methodology for examining the impact of different
modules of optimization algorithms on the overall algorithm performance. We
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Table 9: The DSC results on the statistical difference in the performance of
DE algorithm pairs. Results are reported in the format: percentage of (true,
predicted)-pairs with performance differences that are not statistically significant
/ percentage of (true, random)-pairs with performance differences that are not
statistically significant. The numbers in brackets correspond to the standard
deviation for the latter percentage since this was computed over 5 independent
runs.

Budget SHAP Performance
5D 30D 5D 30D

50D 50.5 / 14.5
(1.2)

21.7 / 12.2
(1.5)

77.1 / 12.6
(1.7)

53.6 / 10.8
(0.7)

100D 45.0 / 11.2
(0.8)

23.6 / 10.9
(1.6)

70.5 / 12.2
(1.3)

54.3 / 11.7
(1.1)

300D 31.9 / 10.0
(1.4)

27.3 / 12.3
(0.7)

57.1 / 9.9
(1.1)

45.3 / 13.2
(0.9)

500D 31.1 / 11.5
(0.9)

28.6 / 16.6
(1.2)

56.9 / 11.3
(1.6)

48.1 / 15.7
(1.1)

1000D 31.2 / 13.0
(1.1)

31.8 / 19.5
(1.5)

49.5 / 12.6
(1.0)

45.5 / 19.0
(1.0)

1500D 33.0 / 16.0
(1.5)

30.4 / 23.2
(0.9)

54.5 / 15.0
(1.7)

46.5 / 22.5
(1.8)

demonstrate its relevance within two pre-existing modular optimization frame-
works, namely modCMA-ES and modDE. To this end, we analyze performance
data from 324 modCMA-ES and 576 modDE algorithm variants across 24 noise-
less BBOB problems. Among the investigated CMA-ES modules, we have found
that the elitism module has the most pronounced influence on performance,
while the local restart module has the smallest influence, particularly for smaller
runtime budgets. These findings are aligned with existing work analyzing these
algorithms. Regarding DE, out of the seven modules examined, we observe that
the linear population size reduction module exerts the greatest influence on per-
formance. The mutation reference and adaptation method modules have consid-
erably smaller effects as compared to the other modules.

Although our findings on some modules are not conclusive, our methodology
is adaptable and can be applied to other modular optimization frameworks,
where it may yield different insights. In our future work, we plan to apply our
methodology to other modular optimization frameworks, such as ParadisEO [10,
17] and the modular hybridization framework of particle swarm optimization and
differential evolution [8].

Through the observation of variations in the impact of different modules on
performance, we reach the conclusion that to accurately assess the contribution
of a new idea or algorithm design, it is crucial to compare algorithm modules
rather than algorithms themselves.

Furthermore, we have successfully trained classifiers to predict the modular
configuration of algorithm variants. We find that the classifiers achieve higher F1
scores, in both cases of using performance-based and Shapley-based algorithm
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meta-representations when the impact of the module on performance is more
substantial. This observation is expected because, in cases where the impact is
less significant, algorithm variants tend to be closer in the meta-representation
space, making it challenging for the ML model to differentiate effectively.

The classifiers built from performance-based meta-representations demon-
strate superior predictive performance as compared to those built from Shapley-
based meta-representations. However, it is worth noting that performance-based
meta-representations are less flexible when it comes to accommodating new prob-
lem classes, as the vector size is predetermined by the number of classes. On the
other hand, Shapley-based meta-representations, which rely on problem land-
scape features, maintain a consistent vector size when introducing new problem
classes. Nonetheless, a limitation arises when new classes are introduced, re-
quiring the retraining of regression models used to determine the Shapley-based
landscape feature importance.

With respect to the importance of the landscape features, it seems that the
same ELA features appear to be the most important features that contribute
to the performance of the algorithm performance prediction regression models,
regardless of the possible values of each module.

With the performance prediction in place, we can hope to deploy the modular
algorithm frameworks in our per-run algorithm selection [37] context, where we
strive to select online which algorithm to choose for a given phase of optimizing
a given problem instance. Our results indicate that switching from an elitist to
a non-elitist selection rule could be beneficial for CMA-ES on a broad range of
problems.

Finally, as future work, we also plan to explore the interplay between the
different modules and their influence on the algorithm performance.
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