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A B S T R A C T

Fast and accurate identification of potato plant traits is essential for formulating effective cultivation strategies. 
The integration of spectral cameras on Unmanned Aerial Vehicles (UAVs) has demonstrated appealing potential, 
facilitating non-invasive investigations on a large scale by providing valuable features for construction of ma
chine learning models. Nevertheless, interpreting these features, and those derived from them, remains a chal
lenge, limiting confident utilization in real-world applications. In this study, the interpretability of machine 
learning models is addressed by employing SHAP (SHapley Additive exPlanations) and UMAP (Uniform Manifold 
Approximation and Projection) to better understand the modeling process. The XGBoost model was trained on a 
multispectral dataset of potato plants and evaluated on various tasks, i.e. variety classification, physiological 
measures estimation, and detection of early blight disease. To optimize its performance, nearly 100 vegetation 
indices and over 500 auto-generated features were utilized for training. The results indicate successful separation 
of plant varieties with up to 97.10% accuracy, estimation of physiological values with a maximum R2 and 
rNRMSE of 0.57 and 0.129, respectively, and detection of early blight with an F1 score of 0.826. Furthermore, 
both UMAP and SHAP proved beneficial for comprehensive analysis. UMAP visual observations closely corre
sponded to computed metrics, enhancing confidence for variety differentiation. Concurrently, SHAP identified 
the most informative features – green, red edge, and NIR channels – for most tasks, aligning tightly with existing 
literature. This study highlights potential improvements in farming efficiency, crop yield, and sustainability, and 
promotes the development of interpretable machine learning models for remote sensing applications.

1. Introduction

Potatoes (Solanum tuberosum L.) rank fourth among the world’s food 
crops, following wheat, corn, and rice. Their adaptability, ease of 
cultivation, short production cycle, and high yield make them a critical 
component of national food security (DeFauw et al., 2012; Wijesinha- 
Bettoni and Mouillé, 2019). Conventional farming practices, using 
synthetic pesticides for pest management, support food security and 
economic stability and help meet current demand (Cristache et al., 
2018). However, in the European Union (EU), organic farming practices 
have been rapidly increasing since the 1990 s. (Offermann and Nieberg, 
2002). These adhere to strict guidelines, reducing the use of synthetic 
pesticides, and emphasizing soil health, crop rotation, and integrated 

pest management (Geissen et al., 2021; Reganold and Wachter, 2016). 
Organic potato farming addresses consumer preferences for sustainably 
produced food and promotes biodiversity conservation (Pacifico and 
Paris, 2016). However, strict EU guidelines for organic farming limit the 
choice of crop varieties, as only selected ones meet all requirements 
(Röös et al., 2018). Advanced high-throughput phenotyping, a key 
aspect of phenomics, can aid in selecting suitable genotypes in breeding 
programs (Pasala and Pandey, 2020).

Potato varieties can be easily distinguished by numerous morpho
logical characteristics (phenotypes) (Rozentsvet et al., 2024). Pheno
typing techniques provide spectrally and spatially accurate data, 
enabling the quantification of agronomically relevant traits, such as leaf 
area, canopy architecture, chlorophyll content, and stress responses, 
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including disease detection (Lammerts Van Bueren et al., 2011; Shakoor 
et al., 2017). The Distinctness, Uniformity, and Stability (DUS) testing 
protocols by the Community Plant Variety Office (CPVO) describe 10 
different plant characteristics and 10 flower characteristics that define 
the growth of a particular variety. This provides a conventional 
approach using visual evaluations. Important plant characteristics for 
this type of phenotyping include foliage structure (leafy or stem type), 
growth habit (from spreading to erect), size and openness of the leaves, 
intensity of green color, and anthocyanin coloration of the foliage (stems 
and leaves) (Community Plant Variety Office, 2024; Dolničar et al., 
2017).

Aforementioned traditional methods can fall short in disease detec
tion over large areas. They require significant human effort by exten
sively trained experts, and struggle to provide spatial diagnostic results 
for plant diseases over large areas (Abbas et al., 2023). These issues are 
compounded when symptoms are not species-specific or vary signifi
cantly between varieties. In these cases, molecular methods are required 
for accurate identification, increasing human effort and overall costs of 
assessments.

Several of these issues are addressed by precision agriculture 
methods, such as multispectral imaging. Coupled with unmanned aerial 
vehicles (UAVs) it offers numerous benefits, including reduced human 
effort, objective and quantitative measurements, non-destructive 
monitoring, early detection of plant health issues and cost- 
effectiveness (Abbas et al., 2023; León-Rueda et al., 2022). Optical im
aging sensors, capable of measuring spectral alterations in plant infor
mation due to stress exposure, enable the assessment of various stressors 
by observing changes in the plant’s spectral signature, though these 
sensors do not directly measure plant physiological characteristics. 
Measurements of biochemical characteristics, such as pigment content, 
are hindered by complex plant tissue and presence of accessory pig
ments, proteins, carbohydrates and other molecules (Fernández-Marín 
et al., 2018; Sujatha, 2015). This underscores the crucial role of devel
oping new interpretable methods for precise prediction making.

Machine learning methods are increasingly utilized to model various 
plant characteristics, stress presence, and physiological parameters, 
based on remote sensing data. This trend is driven by the growing vol
ume of available data, and the complex, nonlinear interactions between 
variables. In potato plant research, the studies focused on disease 
detection (Lizarazo et al., 2023; Rodríguez et al., 2021; Sun et al., 2023), 
chlorophyll content (Yang et al., 2022; Yin et al., 2023), biomass esti
mation (Liu et al., 2022a, 2022b), yield estimation (Li et al., 2021) and 
accessing other characteristics of plants (Yu et al., 2023). While various 
models were utilized, multiple studies have identified XGBoost (eXtreme 
Gradient Boosting) as one of the most performant (Attia et al., 2022; Li 
et al., 2023; Shwartz-Ziv and Armon, 2021).

Features extracted from remote sensing images, such as spectral in
formation, have been proven useful in enhancing the performance of 
machine learning models (Wei et al., 2022; Zeng et al., 2023). Empiri
cally devised vegetation indices were demonstrated to be beneficial for 
analyzing various crop stress effects. They offer rapid processing capa
bilities, and can establish robust correlations between plant stress or 
illness and the corresponding patterns of reflected light (Han et al., 
2022; Yin et al., 2023). Despite their utilization as effective proxies for 
physiology measurements, stress presence and overall crop condition 
(Abdelbaki et al., 2021), the performance of these models can be further 
boosted by generating additional features, such as new calculations or 
transformations, which can capture more complex patterns and re
lationships in the data (Lu et al., 2020; Sethy et al., 2022; Yang et al., 
2023; Yu et al., 2023).

Explainable AI has emerged as a critical field in machine learning, 
aiming to address the ’black box’ nature of many models, which are 
often criticized for their lack of interpretability (Jones et al., 2022). This 
is not only crucial for understanding model behaviors but also for 
extracting knowledge from modeling efforts (Li et al., 2023). Methods 
such as SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 

2017) offer deeper insights into trained models and enhance the capa
bilities of machine learning models (Nohara et al., 2022; Rodríguez- 
Pérez and Bajorath, 2020). Dimensionality reduction methods, e.g., 
UMAP (Uniform Manifold Approximation and Projection) (McInnes 
et al., 2018), can be used in conjunction with SHAP to visualize high- 
dimensional data. This aids in the interpretation of complex machine 
learning models, providing a more comprehensive understanding of the 
model’s behavior (Armstrong et al., 2021). SHAP has been utilized in 
various crops for disease detection (Zeng et al., 2023), water status 
assessment (Wei et al., 2022), maize lodging (Han et al., 2022) and 
cotton yield (Jones et al., 2022). But the combination of SHAP and 
UMAP has not yet been utilized for multispectral imaging-based phe
notyping and plant health assessment.

This study introduces a modern pipeline stack designed to process 
high-resolution multispectral UAV-based images, addressing re
quirements for assessing the characteristics and health conditions of 
potato plants. The focus was classification of varieties, prediction of 
physiological measurements, and detection of early blight (i.e., Alter
naria sp. fungi), while also considering the explainability of the trained 
models. To enhance the model’s performance, extensive feature engi
neering was employed, resulting in a vast array of calculated and 
generated features.

The main contributions of this paper are: 

- We investigate the potential of using multispectral UAV-based im
aging for high-throughput phenotyping and detection of diseases. 
This exploration is conducted on self-acquired datasets and includes 
an examination of the disparities between organically and conven
tionally grown potato plants.

- We adopt a novel approach that auto-generates features through 
simple mathematical formulations and combines these with a 
multitude of calculated vegetation indices.

- This study represents the first known attempt to integrate XGBoost, 
SHAP, and UMAP methods in spectral high-throughput phenotyping 
research of potato plants.

- Lastly, we propose a general analysis pipeline for similar problems 
and commit to open science by making the entire codebase and 
datasets publicly available for use by other researchers.

2. Materials and methods

2.1. Experiment setup

The experiment was conducted in Central Slovenia (46◦08′31.3″N, 
14◦33′20.4″E) at an elevation of 320 m above sea level with a subalpine 
climate (average temperature: 9.5 ◦C, average precipitation: 1352 mm). 
Eight potato varieties (Table 1) were planted in a randomized block 
design with four replications (blocks). Each block contained one 
microplot of a single potato variety. Each plot consisted of a 6x3 meter 
section containing 70 ± 2 potato plants distributed into four rows. The 
experiment was conducted in two different fields, one organic (“eko”) 
and one conventional production (“konv”). Potato seeds were planted in 
mid-April and the crop was grown during the 2022 growing season, 
which typically runs from April to September in Central Slovenia. An 
illustrative instance of the experimental design is presented in Fig. 1. 
The numbered blocks within the field and a section depicting the spatial 
occupation of an arbitrary variety within a given block are delineated in 
the figure.

2.2. Data acquisition

Multiple aerial scans and ground measurements were conducted at 
three distinct time points, on June 15th, 2022, July 11th, 2022, and July 
20th, 2022, for both experiments. This ensured a direct correlation be
tween the acquired airborne scans and the corresponding ground mea
surements. The acquisition time steps were selected to capture distinct 
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stages of plant development, starting when the potato plants had at least 
five fully developed leaves (but typically more), ensuring clear identi
fication in multispectral images with sufficient spatial coverage.

2.2.1. Airborne multispectral imaging
Multispectral images of potato field crops were acquired using a 

SKYHERO SPYDER X4-850 GEO Edition Unmanned Aerial Vehicle 
(UAV) equipped with a Micasense Rededge MX 5-band multispectral 
camera (Table 2). A Stonex S9i GNSS device was used in conjunction 
with ground control points (GCP) for georeferencing and to increase 
spatial accuracy of acquired images. Positioning and distribution of 
GCPs followed best practice guidelines, to ensure spatial accuracy in the 
acquired imagery (Fig. 1) (D S et al., 2023; Pepe et al., 2018). Imaging 
was performed around noon, maintaining a UAV altitude of 50 m above 
ground level, and a flight speed of 5 m/s, capturing GSD (ground sam
pling distance) of 3.5 cm/pixel. The flight plan incorporated an 80 % 

bidirectional overlap and a 25 % buffer to ensure data completeness and 
redundancy. Following acquisition, a standard series of processing 
procedures was executed for the images using PIX4DMapper 
(“Pix4Dmapper,” 2024) and QGIS (QGIS Development Team, 2024). 
This included georeferencing, orthorectification, radiometric correction, 
conversion to reflectance, and the construction of mosaics to ensure 
accurate and calibrated multispectral data for analysis.

2.2.2. Field measurements and plant health assessment
Ground measurements encompassed various parameters, with leaf 

chlorophyll concentration (labeled SPAD) quantified using SPAD-502 
(Konica Minolta, Japan) and Li 600 (LI-COR Biosciences, US) for plant 
physiology, such as stomatal conductance (gsw), transpiration (E), 
quantum efficiency in light (PhiPS2), and electron transport rate (ETR). 
The presence of early blight was determined through visual assessment 
by qualified evaluators following established protocols for potato health 
assessment (Fig. 2). Measurements were conducted within the central 
area of each plot (Fig. 1) to mitigate border effects. Four plants of each 
variety were selected, measurements taken on three leaves of each plant, 
and the average calculated. This resulted in 16 measurements per va
riety per image and a cumulative 128 measurements per imaging session 
across all eight varieties. This yielded a total of 768 measurements (384 
for organic and 384 for conventional) across all three time points. Violin 
plots for all parameters are depicted in Figures A 1–5. Early blight visual 
assessments were exclusively conducted during the final time point, 
yielding 256 measurements (128 for organic and 128 for conventional). 
Additionally, coordinates were recorded for all 256 plants during the 

Table 1 
Morphological characteristics of potato plant varieties. The columns represent 
the variety name, foliage structure, growth habit, plant height, and foliage color; 
as defined by CPVO (Community Plant Variety Office, 2024).

Variety Foliage 
structure type

Growth 
habit

Height Color

KIS 
Tamar

leafy semi 
prostrate

late Low dark green

KIS 
Blegoš

leafy prostrate medium 
early

Low light green colour

Carolus upright medium 
late

Medium medium dark green

Alouette upright medium 
late

Tall dark green + purple 
pigmentation

Levante semi upright medium 
late

Medium light green colour

Twister semi prostrate medium 
late

Medium medium green

Otolia upright stem medium 
early

Tall medium dark green

KIS 
Kokra

leafy semi 
prostrate

medium 
late

medium light green colour

Fig. 1. Organic potato field, acquired on July 20th, 2022. The GCPs, blocks and microplots labeled.

Table 2 
Micasense Rededge MX spectral specification.

Acronym Name Centre Wavelength [nm] Bandwidth [nm]

B Blue 475 20
G Green 560 20
R Red 668 10
RE Red-edge 717 10
N Near-infrared 840 40
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first time point, enabling direct pixel-to-measurement matching in the 
image. These coordinates were then also used for the two subsequent 
time points.

2.3. Processing pipeline

2.3.1. Overall pipeline description
The processing pipeline (Fig. 3) was structured into five distinct 

stages with the overarching goal of transforming raster images, GNSS 
coordinates, and field measurements into a format suitable for further 
analysis. The initial phase involved data loading from multiple sources i. 
e. spectral images and measurement files. Then the data manipulation 
stage formatted the data according to the analytical problem at hand, be 

it classification or regression, and partitioned it into training and testing 
datasets (train and test data) for model training and evaluation. In the 
feature engineering phase, new features were calculated for both the 
training and testing datasets, derived from initial reflectance values to 
augment the model’s performance. The modeling stage utilized the 
training dataset to train the model and optimize its hyperparameters, 
with the best performing model being registered and saved into a model 
registry for later use. Finally, the evaluation stage involved deploying 
the optimized model from the registry to assess its performance on the 
testing dataset. The code of the pipeline was implemented in Python 
3.10 programming language. This systematic pipeline ensured a 
methodical and organized approach to the analysis of multispectral 
images. Subsequent subsections provide a more comprehensive 

Fig. 2. a) visual signs of early blight presence and b) standard area diagrams to estimate severity of potato early blight (Duarte et al., 2013).

Fig. 3. Processing pipeline. Red rectangles signify the five stages, delineating steps based on their functionality. Yellow bubbles, sequentially numbered, represent 
individual steps. Brief input and output descriptions accompany each stage on the right. Blue, curved feedback arrows indicate optional backtracking through saved 
logs and artifacts.
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description of each stage.

2.3.2. Data load
The georeferenced, orthorectified, and reflectance-transformed im

ages, as detailed in Section 2.2.1, encapsulated the spectral information 
across entire fields. Extraction of leaf area pixels was guided by GNSS 
locations provided in a separate file. The data loader computed the co
ordinates of the ten closest points for each plant in the raster via 
Euclidean distance and extracted the spectral channel values for each of 
these points. The points were thoroughly analyzed, ensuring that mostly 
the extent of the potato plants was included, excluding majority of 
background pixels. This was achieved using QGIS, to ensure that the 
central pixel accurately fell in the middle of each plant.

These values were then averaged along the spectral channel, 
resulting in a singular value per channel, i.e. a mean reflectance of each 
plant. These data were fused with metadata, such as date, treatment, 
block, plant, and variety, into a new row within a table. Table 3 provides 
a representative illustration of this process, although the presented data 
is fabricated for illustrative purposes.

2.3.3. Data manipulation
The dataset underwent partitioning into training (75 %) and testing 

(25 %) subsets facilitated by a data sampler. Partitioning was guided by 
metadata variables, specifically date, variety, treatment, and block, 
ensuring a stratified approach in all instances, aimed to prevent over
fitting, particularly with respect to individual varieties. This split 
ensured a balanced representation of metadata categories in both 
training and testing datasets, contributing to the robustness of subse
quent model training and evaluation. Diverse datasets were generated 
(see subsections 2.3.3.1, 2.3.3.2, and 2.3.3.3) to evaluate the applica
bility of machine learning on relevant challenges in precision agricul
ture: 1. Classification of varieties, 2. Estimation of physiology 
measurements and 3. Detection of diseases (i.e. early blight).

2.3.3.1. Data for varieties classification. The target variable (variety 
name) was directly constructed from metadata, resulting in an encoded 
label that represented each variety across all cases. Data instances (i.e. 
plants) were evenly distributed across all blocks, varieties, treatments, 
and imaging sessions to achieve balanced data stratification. As a result, 
the dataset used for varietal classification consisted of 2976 instances for 
testing and 8928 instances for training; all plants from each microplot 
were included. Variety classifications were performed in a systematic 
approach with several iterations. The initial evaluation was focused on 
distinguishing between two varieties (KIS Krka and KIS Blegoš). This 
was followed by the addition of one variety at a time in each subsequent 
iteration. The selection of the first two varieties and a new variety to 
include was based on algorithm’s ability to provide the best separation, 
as determined by the highest F1 scores (see sections 2.3.5 and 2.3.6). 
This stepwise integration of varieties allowed metrics to be calculated at 
each stage, and to evaluate the maximum achievable metrics for the 
investigated varieties. This approach was deemed necessary due to the 
potential presence of varieties with highly similar spectral signatures. 
Their inclusion in the initial classification model could have hindered 
successful class separation.

2.3.3.2. Data for regression analysis. Since physiological measurements 
were conducted on four plants of each variety within each block, a 
smaller number of instances were available, as for variety classification. 
The measurements were performed during every imaging session on 
predefined plants, maintaining an equal number of measurements across 
varieties and blocks (as described in 2.2.2 Field measurements and plant 
health assessment). This consistency in following measurement protocols 
provided an equivalent number of instances for predicting any physio
logical value, maintaining uniformity across all variables. The dataset 
comprised a total of 192 instances for testing and 576 for training. The 
descriptive statistics of either target values are written in Table 4.

2.3.3.3. Disease detection. Detection of early blight was formulated as a 
binary classification problem. Given the uncontrolled nature of early 
blight appearance, an imbalance existed between the two classes, with a 
higher prevalence of infected plants. Three varieties (Twister, Otolia, 
and KIS Blegos) were excluded from the dataset as they lacked healthy 
plants. The test set comprised 40 data instances (Fig. 4), consisting of 21 
healthy and 19 infected plants, whereas for training 120 instances were 
available, with 63 healthy and 57 infected plants. To further address the 
imbalanced dataset issue, SMOTE (Synthetic Minority Oversampling 
Technique) (Chawla et al., 2011) was applied to the training dataset. 
This method was selected to foster a more equitable representation of 
both minority and majority classes in the machine learning model. It 
tackles this by creating synthetic samples for the underrepresented class, 
aiming to improve model performance on the minority class without 
overfitting. As a result, the training dataset consisted of 240 instances, 
evenly distributed with 120 instances each for healthy and infected 
plants. This balanced allocation ensured that, from each variety, 24 
instances belonged to healthy plants, and 24 instances belonged to 
infected plants.

2.3.4. Feature engineering
The importance of feature engineering in influencing and substan

tially enhancing results is well-established (Heaton, 2017; Shin and Oh, 
2021; Verdonck et al., 2024). In our study, a conscientious approach to 
feature engineering was adopted, wherein the process was individually 
applied to the training and testing datasets to prevent any potential data 
leakage (Apicella et al., 2024). Features were systematically generated 
and appended to the corresponding rows in the data table.

A hybrid feature engineering strategy was employed, encompassing 

Table 3 
Illustration of the initial rows produced during the data loading phase.

Index Reflectance Metadata

Blue Green Red Red edge NIR Date Treatment Block Plant ID Variety

1 0.33 0.47 0.41 0.12 0.03 2022_06_15 eko 1 3 Carolus
2 0.17 0.43 0.47 0.36 0.25 2022_06_15 eko 1 2 Twister
3 0.43 0.20 0.43 0.48 0.28 2022_06_15 konv 2 1 KIS_Tamar
4 0.24 0.24 0.48 0.05 0.47 2022_06_15 konv 3 1 Levante
… … … … … … … … … … …

Table 4 
Descriptive statistics of all available data instances. Mean – average, Std. – 
standard deviation, Min. – minimum value and Max. – maximum value.

Target Units Mean Std. Min Max

E mmol m-2 s-1 2.88 1.69 0.04 10.48
ETR µmol electrons m-2 s-1 251.67 77.29 56.43 466.55
gsw mmol m-2 s-1 0.11 0.07 0.01 0.53
PhiPS2 / 0.38 0.12 0.08 0.73
SPAD / 4.37 0.64 2.62 6.09

Legend: Abbreviations: E – transpiration; ETR − electron transport rate, gsw −
stomatal conductance, PhiPS2 − quantum efficiency in light, SPAD − leaf 
chlorophyll concentration.
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three categories of features: 

I. Non-modified reflectance values (black label): these were the 
reflectance values of the five bands (blue, green, red, red-edge, 
and near-infrared).

II. Automatically generated features (green label): These additional 
features were derived from the reflectance values using elemen
tary mathematical formulations, as described in (Horn et al., 
2019) (e.g., red-edge/green, sqrt(blue)/NIR). This process aimed 
to extract more intricate information from the raw data, gener
ating in total 530 new features.

III. Calculated spectral indices (red label): These indices are designed 
to capture specific aspects of the material properties under 
investigation (e.g., NDVI, CVI (Arevalo-Ramirez et al., 2022)). 
Combining multiple indices enhances the ability to discriminate 
between plant health conditions, improving overall inference 
performance. A standardized catalogue of spectral indices to 
advance the use of remote sensing in Earth system research was 
used for selection (Montero et al., 2023). Employed (98) spectral 
indices are included in the supplementary material.

Each practice retained only those features that demonstrated a per
formance boost, determined by Sequential feature selector (SFS) (Pudil 
et al., 1994), typically resulting in fewer than 20 features per practice. 
To remove similar features, pairwise Pearson’s correlations were 
calculated between all features. Those with correlations exceeding an 
empirically predefined threshold of 0.99 were eliminated. This high 
threshold was chosen to remove only those features that were nearly 
identical in the information they provide. By eliminating features with 
correlations exceeding 0.99, the redundancy was reduced (Akoglu, 
2018), thereby improving computational efficiency without sacrificing 
valuable information from less correlated features (Dormann et al., 
2013).

2.3.5. Modeling
The XGBoost (eXtreme Gradient Boosting) algorithm (Chen and 

Guestrin, 2016; Shwartz-Ziv and Armon, 2021) was used for both clas
sification and regression. It was trained on a dataset enriched with 

engineered features, ensuring the model’s ability to learn complex re
lationships within the data. Hyperparameter tuning (Table 5) was per
formed using an automated hyperparameter optimization software 
framework Optuna (Akiba et al., 2019), conducting 200 trials. It uses the 
Tree-structured Parzen Estimator (TPE) algorithm (Bergstra et al., 2011; 
Watanabe, 2023) for hyperparameter tuning. TPE is a Bayesian opti
mization method that models the objective function to efficiently 
explore the hyperparameter space. The optimization objective involved 
3-times repeated 5-fold cross-validation (Bates et al., 2021), yielding 
either an averaged F1 score for classification or RMSE for regression. 
The model was always initiated with the same random seed to ensure 
experiment reproducibility. The tuning process was tailored to the small 
dataset, aiming to optimize model configuration for enhanced perfor
mance. The version of the model achieving the highest performance 
score (F1 or RMSE) was archived in the model registry for future 
deployment and evaluation on the test set.

2.3.6. Evaluation
For final evaluation, each model was initially deployed from the 

model registry and assessed against the test dataset. An array of metrics, 
including accuracy, balanced accuracy (bAccuracy), F1 score, precision, 
and recall for classification and R2, mean absolute error (MAE), root 
mean square error (RMSE), normalized root mean square error 
(NRMSE), RMSE standardized by the range of values (rNRMSE) 
(Abdelbaki et al., 2021), and max error (ME) for regression, were uti
lized to comprehensively evaluate the model’s performance. In the case 
of the multiclass classification problem, the F1 score, precision, and 
recall were calculated using a weighted approach, where the metrics for 
each class were averaged, weighted by the number of true instances 
(support) for each class. All metrics and data visualization plots were 
methodically stored, portraying both data integrity and the decision- 
making process of the model, along with its achieved performance. To 
facilitate easy retrieval, these results were systematically stored in a 
database.

2.4. Statistical analysis of physiology parameters

Linear Mixed Models (LMM) (Gałecki and Burzykowski, 2013) fitted 
by Restricted Maximum Likelihood (REML) were used to analyze the 
effects of varieties and treatments on physiological parameters. The 
model formula used was: 

y ∼ variety+ treatment+(1|block)+ (1|date)

where the variables were defined as follows: 

- Date: encoded as an ordinal variable, with values ranging from 0 to 2 
representing each consecutive date.

Fig. 4. Distribution of data instances in case of early blight classification for test set.

Table 5 
Hyperparameters of XGBoost explored in optimization procedure.

Parameter Range Default Value

N estimators 100 to 1000 100
Max depth 3 to 6 3
Learning rate 0.01 to 0.2 0.1
Min child weight 1.0 to 10.0 1.0
Subsample 0.5 to 0.8 1.0
Colsample bytree 0.5 to 0.8 1.0
Reg lambda 1.0 to 10.0 1.0
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- Treatment: categorical variable indicating the type of treatment, 
either “conventional” or “organic.”

- Block: categorical variable representing different blocks by number
- Variety: categorical variable indicating different varieties by their 

names.

The model included fixed effects for variety and treatment, and 
random intercepts for block and date, allowing for the assessment of the 
impact of these factors on the response variable y. A Box-Cox trans
formation (Sakia, 1992) was applied to the measurements to stabilize 
variance and make the data more normally distributed. P-values were 
used to determine the statistical significance of pairwise comparisons 
between the varieties within each treatment category. A threshold of α 
= 0.05 was applied, with p-values less than this value indicating a sta
tistically significant difference. All statistical analyses were performed 
using R Statistical Software (R 4.4.1).

2.5. Exploratory data analysis and explainable AI techniques

A combination of exploratory data analysis (EDA) and explainable 
artificial intelligence (XAI) techniques was employed to enhance un
derstanding of the dataset and model outcomes. Impacts of individual 
features in the XGBoost models were evaluated using SHAP (SHapley 
Additive exPlanations) values (Lundberg and Lee, 2017), enabling a 
more interpretable and transparent analysis. All three categories of 
features (I., II. and III) were used in the evaluation. Among all, 10 most 
prominent features were investigated further. To address the challenges 
posed by high-dimensionality datasets, comprising diverse features 
(Lapajne et al., 2022), Uniform Manifold Approximation and Projection 
(UMAP) (McInnes et al., 2018) was utilized in an unsupervised fashion. 
This dimensionality reduction technique allowed for the visualization of 
intricate relationships within the dataset, aiding in the discrimination 
between different potato varieties. To objectively evaluate the success of 
UMAP’s dimensionality reduction, a Support Vector Machine (SVM) 
(Lapajne et al., 2022) with a Radial Basis Function (RBF) kernel was 
employed. Its hyperparameters were not optimized, since it was directly 

Fig. 5. UMAP visualization for well separated potato plant varieties. Circles and triangles represent organic and conventionally grown potato plants. Colored areas 
depict SVM decision boundaries, reflecting separation quality between varieties, expressed with accuracy score. Full UMAP results are provided in Supplemen
tary material.
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used on the dimensionally reduced data obtained through UMAP. This 
allowed for the visualization of decision boundaries in lower- 
dimensional space and the calculation of accuracy scores, thus miti
gating potential overfitting, as the boundaries can be visually inspected 
for irregularities or excessive complexity.

3. Results

3.1. Visual exploration of varieties and statistical results

A high degree of similarity in the underlying features was observed 
for each variety as most data points grouped together, regardless of 
treatment (Fig. 5). Exceptions were observed, e.g., within the organic 
treatment of KIS Kokra, where a subset of data points tends to cluster 
with instances from the Otalia variety. By combining UMAP and SVM, 
distinct boundaries were identified between KIS Tamar (late small dark 
green semi prostrate phenotype) and other very different looking vari
eties, such as KIS Blegoš (early, light green), Alouette (tall dark green 
with anthocyanin pigmentation), Levante (semi prostrate light green), 
Otolia (erect stem type), Carolus and Twister. Notably, the separation 
between KIS Tamar and KIS Blegoš appeared to be the most pronounced, 
even though they are both similar sized, prostrate type, but the opposite 
intensity of green coloration. Additionally, a clear separation boundary 
was observed between KIS Kokra and KIS Blegoš, and KIS Kokra and 
Otolia. Other differences were a bit more subtle, certain groups of data 
points set apart Alouette and KIS Kokra, Carolus and Twister, Carolus 
and KIS Tamar, KIS Kokra and Otolia, and KIS Kokra and KIS Tamar, 
among others (Figure A 7). Notably, there are instances where visual 
separations are indiscernible between varieties, such as KIS Blegoš and 
Levante, Carolus and Levante, Otolia and Levante, KIS Blegoš and 
Twister, Levante and Twister, highlighting instances of potential simi
larity between these pairs (Figure A 8). In this case, the visualized sep
aration boundaries appear randomly positioned due to the absence of a 
clear distinction between the data clusters.

LMMs indicate that varieties had a significant effect for every 
physiological parameter (Tables A 2–16). The effect of treatment was 
significant only for the variables gsw and E, where conventional treat
ment had a negative impact. Among non-significant effects, ETR was 
also lower in the conventional treatment, while PhiPS2 and SPAD were 
higher. Estimates for variety Allouette in organic treatment (the refer
ence) were not significant for any response variable, suggesting no 
substantial baseline effects. Variety KIS Tamar consistently exhibited 
statistically significantly higher values in all response variables, 
compared to variety Aloutte. The fewest significant differences were 
observed for response variable E, and most for SPAD, where all varieties 
except one (KIS Tamar) had a lower response. For SPAD, all varieties 
except KIS Kokra significantly differed from Allouette. For gsw, no sig
nificant differences were found between KIS Kokra, Otolia, and Twister 
compared to Allouette; KIS Tamar had a positive estimate while others 
had negative. For ETR, no significant differences were observed between 
KIS Kokra and Carolus relative to Allouette, with KIS Tamar showing a 
positive estimate among significant varieties. For PhiPS2, Carolus and 
Otolia showed no significant differences from Allouette, whereas KIS 
Kokra and KIS Tamar had higher values and other varieties had lower 
values. Regarding E, no significant differences were found between KIS 
Kokra, Carolus, and Twister compared to Allouette, with KIS Tamar 
again showing higher values. In all response variables there was a 
comparatively large amount of unexplained variability. Among the two 
random effects, date of data acquisition explained more of the variability 
than experimental block.

Statistical analysis of physiological values produced results consis
tent with the UMAP methodology, showing substantial overlap between 
the findings of both approaches. Specifically, no significant differences 
were observed between treatments for either variety or any physiolog
ical parameter. However, differences were noted between the varieties 
themselves. The most pronounced differences were observed in SPAD 

measurements (Fig. 6), where KIS Tamar, separated distinctly from all 
other varieties in both treatments. This finding aligns with the UMAP 
analysis, where KIS Tamar was identified as the most distinct variety, 
since SPAD values were generally higher compared to other varieties 
(Figure A 5). Similarly, SPAD measurements showed that KIS Blegoš also 
differed notably from most other varieties. In this case, the values were 
lower compared to other varieties. In the gsw measurements (Figure A 
2), conventionally grown KIS Tamar variety remained the most distinct, 
while organically grown KIS Tamar was more similar to other varieties. 
Similarly to SPAD, gsw measurements were significantly higher for 
conventional treatment. Interestingly, the organically grown Levante 
variety showed significant differences compared to other varieties in 
gsw measurements (Fig. 6) and conventional grown in E measurements 
(Figure A 6). For measurements of ETR and PhiPS2 no distinct patterns 
could be observed.

3.2. Evaluation of machine learning models

Variety identification achieved the highest accuracy in the discrim
ination of two varieties (F1 = 0.971). Conversely, the lowest score of 
0.476 was obtained when distinguishing among eight varieties 
(Table 6). The varieties were integrated in the following order: KIS 
Tamar, KIS Blegoš, Otolia, Carolus, Alouette, KIS Kokra, Levante and 
Twister. The incorporation of new varieties led to an increase in the 
dataset size, resulting in the utilization of a larger number of data points 
for both training and testing phases. The scores in between exhibited a 
continuous decrease. Precision and Recall values closely mirrored the F1 
score, suggesting that emphasis was not disproportionately placed on 
any particular variety by the model, maintaining a balanced perfor
mance across different varieties. The inclusion of varieties follows the 
separation ability of UMAP. KIS Blegoš and KIS Tamar are included first 
due to their clear separation. However, determining the third variety 
based solely on UMAP already becomes challenging, as overall similarity 
to both previously included varieties must be considered. It becomes a 
matter of estimation to predict which varieties will show the most sig
nificant discrimination when multiple are separated simultaneously. For 
instance, Otolia, Carolus, and Allouette generally exhibit good separa
tion from almost all other varieties in one-to-one comparisons (Fig. 5, 
Figure A 7). Conversely, some varieties, such as Levante and Twister, 
tend to be less distinguishable. Levante, in particular, frequently appears 
in the diagram of poorly separated varieties (Figure A 8).

Comparing the RMSE from the test set with RMSE-CV from the train 
set showed no overfitting during the optimization run. Predictions al
ways surpassed a random base model, with a minimum R2 of 0.313 
(Table 7). The most accurate predictions were observed for SPAD, 
achieving an R2 of 0.570 and rNRMSE of 0.129. In all cases, the rNRMSE 
metric has reached values below 0.2, signifying a relatively modest 
RMSE within the overall range, and thus comparatively good prediction 
efficacy. Comparing MAE and RMSE, the former showed somewhat 
lower values, but the difference is comparatively small, indicating a 
uniform distribution of errors. On the other hand, ME shows significant 
deviations from both RMSE and MAE, with ME ranging from 1.7-times 
(gsw) to 3.8-times (ETR) higher than RMSE. This indicates that while 
the models generally perform well, there are a few outliers where the 
prediction errors are much larger.

Detection of early blight infected potato plants achieved an F1 score 
of 0.825, indicating that the model did not exhibit overfitting toward 
either class (Table 8). The highest accuracy was achieved for Levante, 
with an F1 of 1.000, while Alouette achieved the lowest performance, 
with an F1 of 0.620. It is imperative to acknowledge that certain metrics 
may be skewed due to the small test set (8 plants per variety), and the 
distribution difference between the two classes. For instance, although 
the metrics for the KIS Kokra variety indicated relatively high values, it 
is essential to note that there were twice as many instances of healthy 
data as there were infected ones available for testing (Fig. 4).

J. Lapajne et al.                                                                                                                                                                                                                                 Computers and Electronics in Agriculture 229 (2025) 109746 

8 



Fig. 6. Statistical Analysis of physiology parameters: a) SPAD and b) gsw. Significant differences between pairs are indicated in red, while non-significant differences 
are shown in blue. The shade intensity of both colors represents the p-value size, with lighter shades indicating values near the decision boundary (α = 0.05) and 
stronger shades representing more extreme values (closer to 0 or 1). A bar plot has been added alongside, illustrating the shades and referencing the corresponding p- 
values. Full results are provided in Supplementary material.
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3.3. Evaluation of most important spectral features

Generally, the most informative feature comprised green, red edge 
and NIR channels in conjunction with other channels for regression of 
physiology parameters (Fig. 7). For instance, these channels are 
included in II. Automatically generated features for prediction of E and 
ETR and in combinations of III. Calculated spectral indices (i.e. GOSAVI, 
MCARI, and OSAVI) for prediction of gsw and PhiPS2. Moreover, the 
preeminence of the red edge-to-green channel ratio is evident for E, gsw, 
and ETR. The incorporation of the NIR and red edge channels with other 
features further contributed significant information. Specifically, the 
NIR channel, in conjunction with the red channel, emerged as the most 
important feature for PhiPS2 estimation (OSAVI). The blue channel 
appeared comparatively less influential, consistently ranking lower in 
relevance across all cases. Nevertheless, its significance was not dis
counted, as it holds the third position, for example, in estimating E. 
Similar trends were observed in SPAD. The NIR channel proved to be the 
most informative spectral region, contributing significantly to the top- 
ranked spectral features. These features primarily involved ratios with 
the red-edge channel and indices such as CVI. In contrast, the blue 
channel demonstrated smaller contribution, ranking fifth in importance.

For the detection of early blight (Fig. 8), the NIR channel alone 
yielded the highest information, akin to SPAD regression analysis. 
Moreover, the absolute difference in mean spectral reflectance for this 
band, along with the variance of the values in this channel, is the largest 

between the two classes. Furthermore, in addition to the NIR band, other 
spectral channels, including the green and blue channels, were recog
nized for their contribution to prediction efficacy. Calculated spectral 
indices (III. features category) contributed relatively less information, 
with the first spectral index, RI4XS ranking fourth in importance. None 
of the features from the II. features category were present among the top 
10 features.

For variety discrimination, two spectral indices provided the most 
information: CIRE, and BCC (Fig. 8). The most notable difference be
tween varieties was observed NIR. Automatically generated features (II. 
Features category), such as the combination of NIR and red edge 
channels, contributed supplementary information. No single raw spec
tral channel (I. Features category) was ranked among the top 10 fea
tures. The sequence of relevant features may exhibit bias due to the 
suboptimal classification when discerning all eight varieties, yielding a 
modest F1 score of 0.474. SHAP analysis results consistently demon
strated that more information is provided by the combination of features 
(II. And III. Features categories) compared to the utilization of raw 
reflectance values (I. Feature category), aligning with other research 
(Huang et al., 2016; Rahman et al., 2022).

4. Discussion

Symptomatic detection of early blight in potatoes using multispectral 
imaging was successful, with an overall F1 score exceeding 0.82. The 
separation of plant varieties was feasible. Accuracy varied among vari
eties, but remained acceptable, even though the 8 varieties included in 
this study were spectrally too similar for accurate variety identification. 
Predictions of plant physiological status was also possible using exclu
sively spectral data, with best achieved R2 and rNRMSE of 0.57 and 
0.129, respectively.

Our F1-based integration approach objectively identified and prior
itized the inclusion of potato varieties with the most distinct spectral 
features. This closely mirrored the visual separation achieved using 
UMAP. Varieties with the most evident visual differences, KIS Tamar 
and KIS Blegoš, were integrated first and showed the highest classifi
cation accuracy (F1 score of 0.97). Similarly, KIS Otolia, the next variety 
integrated, remained well-separated visually from KIS Tamar (F1 0.86) 
and moderately from KIS Blegoš (F1 0.71). This pattern continued with 
subsequent variety additions. However, some varieties exhibited highly 
similar spectral responses, hindering differentiation and impacting 
classification metrics. The close alignment of spectral signatures be
tween certain varieties makes separation nearly impossible (Fig. 8). This 
is confirmed by the low F1 score (below 0.7) and the visually indistinct 
separation boundaries in the UMAP projection. Nevertheless, UMAP’s 
strength lies in its ability to reveal these challenges upfront. By visual
izing the data before modeling, UMAP allows for a more informed 
exploration of the dataset, highlighting potential limitations in classifi
cation accuracy for specific variety combinations. Furthermore, UMAP 
revealed clear distinctions between different varieties, corroborated by 
significant differences found in field measurements of plant physiology 
parameters. These are closely related to stomatal characteristics, such as 
density, size, and degree of opening (Haworth et al., 2021). UMAP 

Table 6 
Varieties classification metrics. The term “# Varieties” denotes the total number of varieties included in the analysis. The columns labeled “# Train” and “# Test” 
represent the respective numbers of data instances (i.e. plants) employed for training and testing the model. The “F1 − CV” column showcases the performance score 
attained through model optimization using cross-validation (CV).

# Varieties # Train # Test Accuracy F1 Precision Recall F1 − CV

2 2268 756 0.971 0.971 0.971 0.971 0.968
3 3402 1134 0.800 0.800 0.801 0.800 0.805
4 4464 1488 0.710 0.709 0.709 0.710 0.706
5 5580 1860 0.651 0.653 0.658 0.651 0.646
6 6696 2232 0.587 0.586 0.587 0.587 0.579
7 7812 2604 0.548 0.549 0.551 0.548 0.539
8 8928 2976 0.476 0.474 0.472 0.476 0.484

Table 7 
Summary of regression analysis evaluation on the test set. The “Target” column 
specifies the specific physiology value for which the corresponding metrics are 
presented. The RMSE − CV column showcases the performance score attained 
through model optimization using cross-validation (CV) on the train set.

Target R2 MAE ME RMSE RMSE − CV rNRMSE

E 0,379 0,962 4,671 1,270 1,342 0,136
ETR 0,499 41,626 212,662 55,100 53,733 0,160
gsw 0,313 0,044 0,251 0,061 0,067 0,149
PhiPS2 0,383 0,078 0,289 0,100 0,103 0,159
SPAD 0,570 0,310 1,394 0,399 0,443 0,129

Legend: Abbreviations: E – transpiration; ETR − electron transport rate, gsw −
stomatal conductance, PhiPS2 − quantum efficiency in light, SPAD − leaf 
chlorophyll concentration.

Table 8 
Binary classification scores on the test set for discerning between heathy and 
infected potato plants. The F1 − CV column showcases the performance score 
attained through model optimization using cross-validation (CV) of the train set.

Variety Accuracy bAccuracy F1 Precision Recall F1 − CV

Alouette 0.625 0.630 0.631 0.656 0.625 ​
Carolus 0.875 0.900 0.877 0.906 0.875 ​
KIS Kokra 0.750 0.815 0.767 0.875 0.750 ​
KIS Tamar 0.875 0.890 0.877 0.906 0.875 ​
Levante 1.000 1.000 1.000 1.000 1.000 ​
Pooled 0.825 0.826 0.826 0.825 0.825 0.862
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effectively distinguished variations in key plant processes related to 
photosynthesis, gas exchange, plant water status, and stress tolerance.

The inability to distinguish between certain plant varieties using 
multispectral imaging can be attributed to several interlinked factors. 
Plant varieties can have very similar genetic makeup, especially if they 
are from the same parental lines, leading to similar biochemical com
positions and similar spectral responses (Lapajne et al., 2024; Maldia 
et al., 2023). In this study, varieties exhibited varying intensities of 
flowering, inflorescence, corolla sizes and coloration. They also differed 
in maturity, ranging from very early, determinate growth varieties to 
very late, indeterminate growth varieties. Consequently, these varieties 
can often be distinguished from one another based on their phenotypic 
traits, which are observable to the naked eye. However, in practice, this 

can be more challenging, as many varieties share similar traits.
The potato plant variety differentiation is significantly influenced by 

certain traits, with foliage structure and color being the most impactful. 
Varieties exhibiting different foliage structures, such as KIS Blegoš (leafy 
prostrate) and KIS Tamar (leafy semi-prostrate), achieve high classifi
cation scores (0.93). The differentiation between upright and semi- 
prostrate types, exemplified by Alouette (upright) and KIS Tamar 
(semi-prostrate), also shows significant classification accuracy (0.87). 
Growth habits (early, medium, late) further distinguish varieties, as seen 
with KIS Tamar (late) and KIS Blegoš (medium early) sharing a high 
differentiation score (0.93). Height, though less influential than foliage 
structure and color, helps in distinguishing tall varieties like Alouette 
and Otolia from medium and low-height varieties. Color enhances 

Fig. 7. SHAP bar plot of the most relevant features for regression analysis of: a) SPAD and b) gsw. Larger values indicate features that contribute more information. 
Different features are color-coded for easy identification: non-modified reflectance values (black), automatically generated features (green), and calculated spectral 
indices (red). Full results are provided in Supplementary material.
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differentiation, particularly when combined with other traits; for 
example, Alouette’s dark green foliage with purple pigmentation stands 
out against others. However, varieties with similar growth habits, 
heights, and colors, such as Carolus and Levante, exhibit lower differ
entiation scores (0.68). Combining foliage structure and color yields 
strong differentiation, as demonstrated by KIS Blegoš and KIS Tamar. 
Growth habit, in conjunction with foliage structure, also significantly 
influences classification. Pairs with the lowest scores, such as Alouette 
and Levante (0.61), suggest that despite distinct colors, similarities in 
other traits like growth habit and height diminish differentiation. In 
conclusion, the differentiation between potato plant varieties using 
spectral imaging appears to be influenced by factors such as foliage 
structure and color, with growth habit and height also potentially 
playing significant roles. However, further research and confirmation 
are needed to fully establish the reliability of these factors.

Potential differences in varieties’ spectral signatures can be subtle, 
and multispectral imaging may not be sensitive enough to characterize 
them. This limitation can be overcome using hyperspectral imaging, 
capturing a broader range of spectral bands, including the short-wave 

infrared (1000–––2500 nm) part of the spectrum, at narrower in
tervals (Feng et al., 2020). This provides more detailed information 
about the biochemical composition and structural characteristics of 
plants, allowing for better discrimination between similar varieties. 
Additional data sources can further improve variety classifications. 
Incorporating spatial information from point clouds or LiDAR, such as 
plant canopy structure and lodging strategies (Grebby et al., 2011; Han 
et al., 2022), and texture information extracted from images using gray- 
level co-occurrence matrices, can improve variety phenotyping and 
discrimination (Sun et al., 2023).

Prediction accuracy of physiological characteristics varies depending 
on the specific parameter being inferred. The metrics achieved in this 
study provide a comprehensive overview of model performance across 
different physiological parameters. R2 values range from 0.313 to 0.570, 
indicating that the models explain between 31.3 % and 57 % of the 
variability in the data, while rNRMSE values are consistently below 
0.20, demonstrating relatively low normalized error. Since both R2 and 
rNRMSE are expressed on an absolute scale, they enable direct com
parison across models estimating different physiological targets. In 

Fig. 8. Detection of early blight: a) Mean reflectance of either infestation condition; b) SHAP bar plot. Classification of varieties: c) Mean reflectance per variety; d) 
SHAP bar plot, where each bar’s color corresponds to the contribution of the respective variety. In both cases, the reflectance’s mean value and standard deviation are 
represented with solid line and ribbon, respectively. Larger values in SHAP bar plots indicate features that contribute more information. Different features are color- 
coded for easy identification: non-modified reflectance values (black), automatically generated features (green), and calculated spectral indices (red).
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contrast, MAE, RMSE, and ME are scale-dependent metrics, meaning 
their values are influenced by the units and scale of the target variables. 
This dependence limits their utility for direct cross-model comparisons 
but provides valuable insights into the magnitude of prediction errors 
within each specific context. MAE measures the average error magni
tude and is less influenced by outliers, making it useful for assessing 
general model performance without skew from extreme deviations. 
RMSE, due to its quadratic nature, is more sensitive to large errors, 
highlighting significant deviations that could critically impact out
comes. ME identifies the largest individual deviation between pre
dictions and actual values, assessing the model’s worst-case 
performance when single large errors could have substantial conse
quences. For example, ETR exhibits the largest relative MAE (41.626) 
and RMSE (55.100), while gsw shows the smallest relative errors (MAE 
= 0.044, RMSE = 0.061). The evaluated ground measurements of SPAD 
aligned most closely with predictions, attaining an R2 and rNRMSE of 
0.57 and 0.129, respectively. Chlorophyll plays a crucial role in photo
synthesis by absorbing sunlight and converting it into energy and is 
therefore directly correlated with the greenness of the plant (Björn et al., 
2009).

The estimation of physiological variables in all cases was not entirely 
satisfactory, as a significant portion of variance was not covered by the 
model. This suggests that the five spectral bands were insufficient for 
accurately predicting physiological parameters. Further improvements 
can be achieved by incorporating more spectral bands, possibly by uti
lization of hyperspectral imaging, and by integrating combinations of 
additional technology such as LiDAR (Wang et al., 2022).

Linear mixed model analysis suggests that both variety and treat
ment have a significant effect on physiological parameters of plants, 
with specific varieties having different impacts. Treatment (organicand 
conventional production) had a significant effect only for variables gsw 
and E, where the response in the conventional setting was lower than 
inorganic. Stomatal conductance and transpiration rate are closely 
related because the opening and closing of stomata control both pro
cesses, and higher stomatal conductance typically leads to higher tran
spiration rates (Kirschbaum and McMillan, 2018). Organic farming 
practices often enhance soil health, including enhanced microbial ac
tivity, which can improve resource availability and plant health. 
Furthermore, plants in organic farming often develop deeper and more 
extensive root systems, which improves water uptake and supports 
higher transpiration rates. These factors work together and support 
more efficient gas exchange and water use in potato plants (Lawson 
et al., 2014; Martin-StPaul et al., 2017).

Analysis of random effects revealed that the impact of Block was 
relatively minor, indicating that it does not contribute significantly to 
additional variation. The timing of observations had a more pronounced 
effect, suggesting the importance of accounting for temporal variability. 
Regardless, the comparatively considerable amount of unexplained 
variability indicates there are other important factors influencing the 
response variable, or that there is considerable inherent randomness in 
the data. Several of the possible additional effects, such heterogeneity of 
resource distribution, are nested within the random effect Block, which 
was shown to have a limited effect. Nevertheless, further research and 
the inclusion of additional measured effects are necessary to better 
explore these relationships and potentially enhance the explanatory 
power of LMMs.

Identification of early blight in potatoes achieved a high success rate. 
Detection accuracies varied between varieties, with Levante achieving 
an almost perfect score (~100 %), while with Alouette accuracies were 
acceptable (>60 %). Even though spectral similarities between varieties 
hindered accurate detection of late blight using multispectral imaging, 
overall accuracies were acceptable. All varieties included are resistant to 
certain diseases, such as late blight, while their susceptibility to early 
blight varies. Exact disease resistance scores for early blight are not 
available, but according to potato variety evaluation data in Slovenia, 
Levante, Otolia, KIS Blegoš and Twister are among the more sensitive 

varieties (Agricultural institute of Slovenia, n.d.). Resistance to early 
blight cannot be deduced from the overall resistance of varieties to other 
diseases. Plant disease resistance is pathogen-specific; the genetic, 
physiological, and biochemical pathways that confer resistance to early 
blight are distinct from those that protect plants against other patho
gens. Similarly, manifestation of symptoms, including spectral, can be 
highly specific for each host-pathogen combination. This specificity is 
essential for developing robust disease-resistant cultivars and for the 
precise application of integrated pest management.

Visible symptoms of early blight include leaf lesions, yellowing and 
browning on the margins of leaves. Symptoms start developing in the 
lower parts of plants and move upwards, spreading throughout the 
canopy. In resistant varieties, symptoms develop slower and are less 
pronounced, making detection more challenging and less accurate. Vi
sual examinations data can partially overcome this limitation, detecting 
changes in pigment structure before these become visible or apparent. 
Additionally, hyperspectral imaging can provide more information and 
enable pre-symptomatic detection. In this study, multispectral data was 
acquired at only one time point, leading to a limited data set and 
reduced accuracy. Extraction of leaf-area pixels was performed using a 
10 px circle, without within-circle segmentation, as this would require 
better spatial resolutions. Each plant was considered as a whole, i.e. 
mean reflectance was calculated from all 10 pixels within each circle, 
leading to reduced signal-to-noise ratios. The number of mixed signals 
depends on varieties’ plant structure, information that can be gleaned 
from point clouds or using LiDAR. Of the early maincrop varieties, 
Alouette has the fastest initial foliage development, and good final 
development, while both Carolus and Levante have slower initial canopy 
development. Young leaves are generally resistant to early blight, and 
susceptibility increases with leaf senescence. However, rapid canopy 
development can shade lower, and therefore older, leaves, thus reducing 
disease severity. Several other factors influence the resistance of indi
vidual varieties to early blight, from expression of resistance genes and 
biochemical defenses, such as phytoalexins, to leaf morphology, 
photosynthetic activity, and environmental conditions (Xue et al., 
2019). While these differences are not the main cause for the observed 
differences in early blight detection, they are one of the confounding 
factors, requiring additional research to fully explore their effects on 
disease detection.

Red-green–blue (RGB), red-edge and near-infrared bands (and their 
combinations) are commonly used in crop phenology determination 
(Guo et al., 2021). Red-edge is useful for its correlation with nitrogen 
abundance, water content, chlorophyll concentration and structural 
features due to its chlorophyll absorption and leaf internal scattering 
(Hennessy et al., 2020; Schlemmer et al., 2005). Pigments can be 
detected in visible spectrum (Beamish et al., 2018). The green part of the 
spectrum is less absorbed by chlorophyll a and b compared to blue and 
red. This makes features utilizing green reflectance, along with other 
bands, effective for detecting variations in chlorophyll content in leaves 
(Chen et al., 2018), which was also shown in this study. Previous studies 
have also shown that the red-edge, red, and green spectral bands, both 
individually and in combination, play an essential role in estimating 
crop transpiration coefficients (Shao et al., 2022). The red band is 
especially important for distinguishing among different plant varieties 
due to its relationship with chlorophyll (Hennessy et al., 2020). Previous 
studies have shown that detection of disease severity on potato plants 
can be performed solely from visible part of the spectrum (Gibson-Poole 
et al., 2017; Siebring et al., 2019). Study from Van De Vijver et. al. (Van 
De Vijver et al., 2020) showed that 750 nm, 550 nm and 680 nm 
wavelengths, corresponding to the NIR, red, and red edge bands, 
respectively, were significant for detection of early blight. Detection of 
this disease is possible because infection leads to changes in leaf pigment 
structure and cell structure, alternating spectral reflectance which can 
be detected by multispectral cameras (Van De Vijver et al., 2020). 
Atherton et. al. (“Remote Sensed Spectral Imagery to Detect Late Blight 
in Field Tomatoes,” 2015) concluded that due to the effect this disease 
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has on chlorophyll, which has high energy absorption in red and blue 
bands, these parts of spectrum are important for early blight detection.

The ease of automatic feature ranking and interpretation un
derscores the efficacy of using SHAP for such problems. This provides 
deeper insights into model decisions (i.e. model transparency) and fa
cilitates improved modeling and more informed decisions. Based on this 
foundation, the hybrid engineering strategy utilized in this study, 
proved to be beneficial for modeling of the analyzed problems. The 
importance of both II. automatically generated features and III. calcu
lated spectral indices were relevant for the estimation of physiological 
parameters, as most of the top 10 features presented a combination of 
multiple spectral bands. Both strategies were found to be uniformly 
relevant among the top 10 features, suggesting they hold equal impor
tance. However, for both classification problems − variety classification 
and detection of early blight − the II. automatically generated features 
were found to be less informative. Established spectral indices, refined 
and validated through extensive research and practical application, are 
specifically designed to enhance the spectral characteristics associated 
with vegetation. These indices are based on well-established biophysical 
principles, making them more directly interpretable and relevant for 
assessing plant health compared to generic statistical features, which 
may not capture these specific spectral relationships as effectively and 
lead to non-informative features (Fei et al., 2022; Zafari et al., 2019). 
This implies that the majority of variance could be covered by solely 
employing vegetation indices. Interestingly, for the classification of 
early blight, this was the only instance where non-modified reflectance 
values were found to be the most relevant. This suggests that diseased 
and healthy plants could be already well distinguished based on 
reflectance spectral bands. This is likely due to the developed visible 
symptoms (plant health assessment was performed visually) and hence a 
clear distinction in spectral signatures, where the values for infected 
plants were lower (Fig. 8). While this approach enables symptomatic 
detection, disease severeness and pre-symptomatic detection would 
require integration of additional data, such as hyperspectral imaging 
and LiDAR.

This study’s findings bear implications for improvement of precision 
agriculture practices. The capability to precisely monitor various stress 
factors or characteristics of potato plants could encourage efficient 
farming practices, potentially improving crop yield and promoting 
sustainability. Furthermore, the results suggest the feasibility of non- 
invasive identification of early blight by using multi-spectral imaging 
and UAVs. This could enable the mitigation of potential losses, further 
underscoring the value of these technologies in modern agriculture.

Despite the promising results of the study, several noteworthy factors 
should be considered. The model was built considering only spectral 
features, either direct spectral values or their combinations. Other fea
tures, such as textural, structural, or statistical ones, were not included 
in the study, even though they could potentially enhance the model’s 
performance in some cases (Sun et al., 2023). However, the focus of this 
study was primarily on the hybrid approach, which generated features 
based on extracted spectral signatures. Additionally, it’s worth noting 
that the background was not removed before extracting the spectral 
signatures of individual potato plants, as done in some other studies 
(Rodríguez et al., 2021; Yang et al., 2022). This could potentially impact 
spectral signatures if an arbitrary pixel covered too much soil. However, 
this was mitigated by carefully studying the pinpointed locations of 
plants and ensuring that, in most cases, only the potato extents were 
extracted. Moreover, achieving excellent results in some cases does not 
necessarily imply perfect modeling in sense of causality. Changes in 
spectral features could be influenced by other factors such as water or 
nutrient deficiency stress, among others (Lapajne et al., 2024). The 
performance and generalizability of the model may also be affected by 
small datasets, limited number of varieties, and limited spatial and 
temporal distributions; common issues reported in many studies (Jin 
et al., 2022; Lapajne et al., 2022; Martens and Dardenne, 1998). The 
need to adapt data acquisition due to unfavorable weather conditions 

introduced an additional source of uncertainty in the study. Since data 
collection was performed whenever weather permitted, rather than at 
predefined intervals, this variation may have affected the consistency of 
the observations. Furthermore, the inclusion of multiple potato plant 
varieties with varying growth rates—some being early-maturing and 
others late—made it difficult to establish uniform data collection dates.

5. Conclusions

This research aimed to integrate modern modeling techniques to 
decode intricate relationships among features derived from UAV- 
acquired multispectral imaging of potato plants. It addressed multiple 
challenges in potato research, employing the XGBoost model and 
leveraging explainable machine learning tools (UMAP and SHAP) to 
investigate the intrinsic nature of the analyzed problems. The study 
employs a novel approach that auto-generates features by using simple 
mathematical formulations and integrates these with a wide array of 
calculated vegetation indices. Additionally, the paper presents a modern 
pipeline for processing multispectral images, offering a solution that can 
be extended or applied to other research domains. The results indicate 
the adequacy of the utilized methodology, as the analyzed problems 
yielded satisfactory and anticipated evaluation metrics. For all research 
questions, the most significant spectral bands and extracted features 
were evaluated to determine which channels provided the most infor
mation for successful modeling. In certain cases, such as the estimation 
of physiological parameters, the achieved metrics were moderate, sug
gesting the potential benefit of incorporating additional features, 
possibly through hyperspectral imaging and integration of LiDAR. This 
could enhance the results by integrating necessary additional informa
tion. To summarize, the paper offers numerous benefits: it promotes 
more interpretable machine learning techniques, encourages feature 
integration through automatic mathematical formulations, deepens 
knowledge in potato plant research, and fosters further research by 
making the entire codebase and datasets publicly available. These con
tributions could lead to more sustainable farming practices, and a 
deeper understanding of plant physiology, crucial for the future of 
agriculture.

6. Code and data availability

In line with our commitment to fostering open-science practices, we 
have made the data and code readily accessible. Interested researchers 
will be able to access the pre-processed dataset at https://doi.org/10.5 
281/zenodo.10934163 (accessed on 8 October 2024) and code at http 
s://github.com/janezlapajne/manuscripts (accessed on 8 October 
2024). Additionally, the optimization and feature extraction parts were 
separated and implemented in the Python library at https://github. 
com/siapy/siapy-lib (accessed on 15 October 2024). By providing 
transparent and unrestricted access to these resources, we aim to 
encourage collaborative replication, validation, and further exploration 
of the findings presented in this paper. The accompanying documenta
tion ensures that scientists can seamlessly engage with the materials, 
promoting transparency and reproducibility.
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