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For a non-decreasing sequence 𝑆 = (𝑠1, 𝑠2, …) of positive integers, a partition of the vertex set of 
a graph 𝐺 into subsets 𝑋1, … , 𝑋𝓁 , such that vertices in 𝑋𝑖 are pairwise at distance greater than 
𝑠𝑖 for every 𝑖 ∈ {1, … , 𝓁}, is called an 𝑆-packing 𝓁-coloring of 𝐺. The minimum 𝓁 for which 𝐺
admits an 𝑆-packing 𝓁-coloring is called the 𝑆-packing chromatic number of 𝐺. In this paper, we 
consider 𝑆-packing colorings of the integer distance graphs with respect two positive integers 𝑘
and 𝑡, which are the graphs whose vertex set is ℤ, and two vertices 𝑥, 𝑦 ∈ℤ are adjacent whenever |𝑥 −𝑦| ∈ {𝑘, 𝑡}. We complement partial results from two earlier papers, thus determining all values 
of the 𝑆-packing chromatic numbers of these distance graphs for all sequence 𝑆 such that 𝑠𝑖 ≤ 2
for all 𝑖. In particular, if 𝑆 = (1, 1, 2, 2, …), then the 𝑆-packing chromatic number is 2 if 𝑘 + 𝑡 is 
even, and 4 otherwise, while if 𝑆 = (1, 2, 2, …), then the 𝑆-packing chromatic number is 5, unless 
{𝑘, 𝑡} = {2, 3} when it is 6; when 𝑆 = (2, 2, 2, …), the corresponding formula is more complex.

1. Introduction

Given a graph 𝐺 and a non-decreasing sequence 𝑆 = (𝑠1, 𝑠2, …) of positive integers, the mapping 𝑓 ∶ 𝑉 (𝐺) → [𝓁] = {1, … , 𝓁} is 
an 𝑆-packing 𝓁-coloring of 𝐺 if for any distinct vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) with 𝑓 (𝑢) = 𝑓 (𝑣) = 𝑖, 𝑖 ∈ {1, … , 𝓁}, the distance between 𝑢 and 
𝑣 in 𝐺 is greater than 𝑠𝑖. The smallest 𝓁 such that 𝐺 has an 𝑆-packing 𝓁-coloring is the 𝑆-packing chromatic number of 𝐺, denoted 
by 𝜒𝑆 (𝐺). This concept was introduced by Goddard, Hedetniemi, Hedetniemi, Harris, and Rall [13], and was studied in a number 
of papers; see the recent survey [3] and the references therein. The main focus of the seminal paper and a number of subsequent 
papers was on the specific sequence 𝑆 = (𝑛)𝑛≥1 in which positive integers appear in the natural order, where the resulting graph 
invariant is simply called the packing chromatic number [4]. Goddard and Xu [14] started consideration of various non-decreasing 
sequences 𝑆 , and a number of authors followed them. Arguably the most interesting sequences are those that involve only integers 
1 and 2, since they are in a sense between standard coloring, where 𝑆 is the constant sequence of 1s, and 2-distance coloring, where 
𝑆 is the constant sequence of 2s (note that a 2-distance coloring is equivalent to a coloring of the square of a graph and it has been 
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intensively studied in the last decades [17]). In particular, 𝑆-packing colorings of subcubic graphs were investigated with respect to 
such sequences 𝑆 [5,12,18]. Roughly a decade ago, Ekstein et al. [10] and Togni [19] initiated the study of 𝑆-packing colorings in 
integer distance graphs, which we present next. Their study was motivated by a series of papers on proper vertex coloring of distance 
graphs, see e.g. [6–9] and references therein.

Given a set 𝐷 = {𝑑1, … , 𝑑ℎ}, ℎ ≥ 1, of positive integers, the (integer) distance graph, 𝐺(ℤ, 𝐷), is the infinite graph with ℤ as the 
vertex set, while vertices 𝑥 and 𝑦 are adjacent if |𝑥 − 𝑦| ∈𝐷. That is, two vertices/integers are adjacent in the graph if their distance 
in ℤ is one of the integers in {𝑑1, … , 𝑑ℎ}. We will simplify the notation, and instead of 𝐺(ℤ, 𝐷) write 𝐺(𝐷), and for distance sets 
with two integers we will write 𝐷 = {𝑘, 𝑡}, and always assume that 𝑘 < 𝑡; thus the corresponding distance graph will be written as 
𝐺(𝑘, 𝑡). The packing chromatic numbers of distance graphs 𝐺(𝑘, 𝑡) were investigated in [11]. In addition, the 𝑆-packing colorings of 
distance graphs 𝐺(𝑘, 𝑡) where 𝑘 ∈ {1, 2} and 𝑡 is arbitrary were studied in [2,16]. Concerning the sequences 𝑆 which involve only 
integers in {1, 2}, exact values for 𝜒𝑆 (𝐺(1, 𝑡)), where 𝑡 ≥ 2, were determined in [1,16], while the values 𝜒𝑆 (𝐺(2, 𝑡)), where 𝑡 ≥ 3, were 
established in [2]. Hence, for this type of sequences 𝑆 , the 𝑆-packing chromatic numbers of 𝐺(𝑘, 𝑡) were left open when 𝑘 ≥ 3, and 
the main goal of this paper is to establish these remaining values.

In the next section, we establish the notation and give some preliminary observations. In particular, we present two main tools 
that are used in the proofs. First, we present a representation of the graph 𝐺(𝑘, 𝑡) in the so-called shifted grid. Second, we introduce 
color patterns and shift sequences, which enable us a relatively brief presentation of colorings. In Section 3, we follow with proving 
the main results, which are the values of 𝜒𝑆 (𝐺(𝑘, 𝑡)), for all 3 ≤ 𝑘 < 𝑡, and for all possible sequences 𝑆 involving only integers 1 and 
2. In Section 4, we give an overview of results on 𝑆-packing colorings of the graph 𝐺(𝑘, 𝑡) by combining the results from [2,16] with 
new results from this paper.

2. Notation and preliminaries

When presenting sequences 𝑆 , we will often use 𝑖𝑝, where 𝑖 and 𝑝 are positive integers, as a shortened notation of the (sub)sequence 
(𝑖, … , 𝑖), where 𝑖 appears 𝑝 times. For instance, (12, 25) stands for the (sub)sequence (1, 1, 2, 2, 2, 2, 2). We may also write 𝑖∞ which 
coincides with the infinite (sub)sequence (𝑖, 𝑖, 𝑖, ...). In the case of distinct integers in the sequence 𝑆 , the integer with the power to 
infinity is the largest among the integers in 𝑆 . For instance, (12, 2∞) presents the sequence with two integers 1 and all other integers 
2.

Note that 𝐺(𝑘, 𝑡) is connected if and only if gcd(𝑘, 𝑡) = 1. If gcd(𝑘, 𝑡) = 𝑔, then 𝐺(𝑘, 𝑡) consists of connected components all of which 
are graphs 𝐺( 𝑘

𝑔
, 𝑡
𝑔
), implying that 𝜒𝑆 (𝐺(𝑘, 𝑡)) = 𝜒𝑆 (𝐺( 𝑘

𝑔
, 𝑡
𝑔
)). Thus, when determining the 𝑆-packing chromatic numbers, we restrict 

to graphs 𝐺(𝑘, 𝑡) such that 𝑘 and 𝑡 are coprime integers.
During our study we make use of the following presentation. Notably, a connected distance graph 𝐺(𝑘, 𝑡) can be represented by the 

square lattice {0, 1, … , 𝑡} ×ℤ with vertices given by points, which are ordered pairs (𝑖, 𝑗), 𝑖 ∈ {0, 1, … , 𝑡}, 𝑗 ∈ℤ, such that vertex/point 
(𝑖, 𝑗) of the grid is a representative of the integer 𝑗 ⋅ 𝑡 + 𝑖 ⋅ 𝑘 from 𝐺(𝑘, 𝑡). These representatives are unique with the exception of the 
points whose first coordinate equals to 0 or 𝑡, since a point (0, 𝑗) on the grid represents the same integer of 𝐺(𝑘, 𝑡) as the point (𝑡, 𝑗′), 
where 𝑗′ = 𝑗 − 𝑘. See Fig. 1, where ordered pairs in bold present points on the grid, while integers present the corresponding integers 
from the distance graph.

Furthermore, let column 𝑖 denote the set of vertices 𝐵𝑖 = {(𝑖, 𝑗) ∶ 𝑗 ∈ ℤ}, where 0 ≤ 𝑖 ≤ 𝑡. As mentioned earlier, integers from 
𝑉 (𝐺(𝑘, 𝑡)) of the form 𝑗𝑡, 𝑗 ∈ℤ, are represented twice on the grid, notably by a vertex in the column 0 and a vertex in column 𝑡. That 
is, 𝑗𝑡 is represented by vertex (0, 𝑗) as well as vertex (𝑡, 𝑗 − 𝑘). For instance, points (0, 0) and (𝑡, −𝑘) represent 0 ∈ 𝑉 (𝐺(𝑘, 𝑡)).

2.1. Color patterns

In this paper, we will often present an 𝑆-packing coloring 𝑐 by using periodic patterns applied on columns 𝐵𝑖, where 𝑖 ∈ {0, … , 𝑡}. 
A periodic pattern of length 𝑑 ≥ 2 is a sequence of colors [𝑐1, … , 𝑐𝑑 ] (denoted by square brackets), where the colors 𝑐𝑛, 𝑛 ∈ [𝑑], are not 
necessarily pairwise distinct. These colors are given to consecutive vertices within one column and the pattern is applied downwards. 
That is, if the coloring 𝑐 is using a pattern 𝑃 = [𝑐1, … , 𝑐𝑑 ] in the column 𝐵𝑥 such that 𝑐(𝑥, 𝑦) = 𝑐1 for some 𝑦, then 𝑐(𝑥, 𝑦 − 𝑛) = 𝑐𝑛+1
for each 𝑛 ∈ [𝑑 − 1]. This pattern is then periodically copied upwards and downwards to cover all the vertices of 𝐵𝑥.

In order for 𝑐 to be an 𝑆-packing coloring of 𝐺(𝑘, 𝑡), patterns must be often shifted in consecutive columns. We define the notion 
of shift sequence (𝑝𝑖)𝑡−1𝑖=0 where each 𝑝𝑖 is a non-negative integer. To describe it, we also need the concept of reference point (𝑖, 𝑗) in 
𝐵𝑖, which is a unique point in each column. We declare the reference point in column 𝐵0 to be (0, 0). The integer 𝑝𝑖 ≥ 0 represents 
the value by which the reference point in 𝐵𝑖+1 shifts downwards with respect to the reference point in 𝐵𝑖 . That is, if the reference 
point in 𝐵𝑖 is (𝑖, 𝑗), for some 𝑗 ∈ ℤ, then (𝑖 + 1, 𝑗 − 𝑝𝑖) is the reference point in column 𝐵𝑖+1. (Note that 𝑝𝑖 = 0 means that there is 
no shift.) To make the elements of the shift sequence correspond to the application of periodic patterns to the columns 𝐵𝑖, we will 
always assume that the reference point of each column 𝐵𝑖 receives the first color of the corresponding pattern applied to this column. 
That is, if a coloring 𝑐 is using the pattern 𝑃 = [𝑐1, … , 𝑐𝑑 ] in a column 𝐵𝑥 with the reference point (𝑥, 𝑗) then 𝑐(𝑥, 𝑗) = 𝑐1. Thus, the 
pattern 𝑃 used together with the reference point (𝑥, 𝑗) completely determines the coloring of points in 𝐵𝑥 .

When shifting the patterns, there are two cases to consider: either columns 𝐵𝑖 and 𝐵𝑖+1 are using the same pattern or they are 
using different patterns. First, suppose that a coloring 𝑐 uses the same pattern [𝑐1, … , 𝑐𝑑 ] in columns 𝐵𝑖 and 𝐵𝑖+1. In this case the 
integer 𝑝𝑖 defines the value by which the color 𝑐1 in 𝐵𝑖+1 is shifted with respect to the color 𝑐1 in 𝐵𝑖. In other words, if 𝑐(𝑖, 𝑗) = 𝑐1 for 
some 𝑗 ∈ℤ, then 𝑐(𝑖 +1, 𝑗 − 𝑝𝑖) = 𝑐1. This implies that 𝑝𝑖 ≠ 0 (the pattern must be shifted) since the adjacent vertices must not receive 
2

the same color. Next, let 𝑐 assign a pattern [𝑎1, … , 𝑎𝑑1 ] to the column 𝐵𝑖 and a pattern [𝑏1, … , 𝑏𝑑2 ] to the column 𝐵𝑖+1. In this case, 
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Fig. 1. Representation of the distance graph 𝐺(𝑘, 𝑡) in the square grid.

the integer 𝑝𝑖 defines the value by which the color 𝑏1 given to the reference point of 𝐵𝑖+1 is shifted with respect to the color 𝑎1 given 
to the reference point of 𝐵𝑖. This means that if 𝑐(𝑖, 𝑗) = 𝑎1, where (𝑖, 𝑗) is the reference point in 𝐵𝑖, then 𝑐(𝑖 +1, 𝑗 − 𝑝𝑖) = 𝑏1 (note that 
(𝑖 + 1, 𝑗 − 𝑝𝑖) is the reference point in 𝐵𝑖+1).

Since the points (0, 𝑗) represent the same vertices as points (𝑡, 𝑗 − 𝑘), the relation 𝑐(0, 𝑗) = 𝑐(𝑡, 𝑗 − 𝑘) must hold for each 𝑗 ∈ ℤ. 
Thus, if 𝑐 is an 𝑆-packing coloring of 𝐺(𝑘, 𝑡), then columns 𝐵0 and 𝐵𝑡 must use the same periodic pattern and 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 𝑑), 

where 𝑑 is the length of the pattern used on 𝐵0. Note that it is sufficient to consider only shifts 𝑝𝑖 < 𝑑max where 𝑑max denotes the 
length of the longest pattern.

In this paper, all colorings given by periodic patterns and shift sequences will either use one or two different patterns. If the second 
option occurs, it is necessary to specify which column receives which pattern. Let 𝑐 be an 𝑆-packing coloring of 𝐺(𝑘, 𝑡) given by the 
shift sequence (𝑝𝑖)𝑡−1𝑖=0 and two periodic patterns 𝑃1 = [𝑎1, … , 𝑎𝑑1 ] and 𝑃2 = [𝑏1, … , 𝑏𝑑2 ] such that pattern 𝑃2 is used for example on 
columns 𝐵1 and 𝐵3, and the rest of the columns obtain pattern 𝑃1. We will abbreviate such description as:

[𝑎1,… , 𝑎𝑑1 ]𝑝0 [𝑏1,… , 𝑏𝑑2 ]𝑝1 [𝑎1,… , 𝑎𝑑1 ]𝑝2 [𝑏1,… , 𝑏𝑑2 ]𝑝3 [𝑎1,… , 𝑎𝑑1 ]𝑝4→𝑡−1
[𝑎1,… , 𝑎𝑑1 ],

provided that the shift sequence has 𝑝4 =… = 𝑝𝑡−1.
For a better understanding of the concepts, we next provide a specific example. Let 𝑐 be an (16)-coloring of 𝐺(𝑘, 𝑡) given by 

𝑃1 = [1, 2, 3], 𝑃2 = [4, 5, 6] and the shift sequence (0, 1, 1, 0, 1𝑡−4) where the notation 1𝑡−4 stands for the (sub)sequence (1, … , 1), where 
1 appears (𝑡 −4) times. Again, the pattern 𝑃2 is applied in columns 𝐵1 and 𝐵3, while the rest of the columns use the pattern 𝑃1 . Thus, 
the (16)-coloring 𝑐 is given by:

[1,2,3]𝑝0=0[4,5,6]𝑝1=1[1,2,3]𝑝2=1[4,5,6]𝑝3=0[1,2,3]𝑝4→𝑡−1=1[1,2,3].

Fig. 2 demonstrates how the reference point (indicated by ordered pairs in bold) is shifted with respect to the given shift sequence 
and how the patterns are applied.

To verify that 𝑐 is an 𝑆-packing coloring of 𝐺(𝑘, 𝑡) we will use equivalent conditions, which can be derived from the above 
notation. Notably, 𝑐 is an 𝑆-packing coloring of 𝐺(𝑘, 𝑡) if and only if every two vertices with the same color are at sufficient distance, 
columns 𝐵0 and 𝐵𝑡 obtain the same pattern and 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 𝑑), where 𝑑 is the length of the pattern in 𝐵0 . The first among these 

three conditions requires the following verification. Note that for every two points (𝑥, 𝑦) and (𝑢, 𝑣) their distance in 𝐺(𝑘, 𝑡) equals 
min{|𝑥 − 𝑢| + |𝑦 − 𝑣|, 𝑥 + (𝑡 − 𝑢) + |(𝑦 − 𝑘) − 𝑣|}. Hence, if 𝑐(𝑥, 𝑦) = 𝑖 = 𝑐(𝑢, 𝑣), then
3

min{|𝑥− 𝑢|+ |𝑦− 𝑣|, 𝑥+ (𝑡− 𝑢) + |(𝑦− 𝑘) − 𝑣|} > 𝑠𝑖.
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Fig. 2. (16)-coloring of 𝐺(𝑘, 𝑡) given by patterns [1,2,3] and [4,5,6], and the shift sequence (0,1,1,0,1𝑡−4).

In particular, if 𝑠𝑖 = 1, then it is sufficient to verify that two vertices with color 𝑖 are not adjacent in the grid. Similarly, if 𝑠𝑖 = 2, 
then two vertices with color 𝑖 must not be adjacent in the grid, must not have a common neighbor in the grid, and 𝑐(1, 𝑗) = 𝑖 implies 
𝑐(𝑡 − 1, 𝑗 − 𝑘) ≠ 𝑖 and vice versa.

3. 𝑺-packing colorings of graphs 𝑮(𝒌, 𝒕)

In this section, we present values of 𝜒𝑆 (𝐺(𝑘, 𝑡)), where 3 ≤ 𝑘 < 𝑡 are positive integers, for all possible infinite sequences 𝑆 whose 
elements are in {1, 2}.

For completeness of our study of 𝑆-packing colorings of graphs 𝐺(𝑘, 𝑡), we first recall the known results about the standard 
chromatic number. That is, we consider the sequence 𝑆 = (1∞). Concerning the chromatic number of distance graphs 𝐺(𝐷), Walther 
proved the general bound 𝜒(𝐺(𝐷)) ≤ |𝐷| + 1; see [1,20]. Since |𝐷| = 2 in our case, we infer that 𝜒(𝐺(𝑘, 𝑡)) ∈ {2, 3} depending on 
whether 𝐺(𝑘, 𝑡) is bipartite or not. Notably, for 3 ≤ 𝑘 < 𝑡, we derive

𝜒(𝐺(𝑘, 𝑡)) =
{

2; 𝑘+ 𝑡 even,

3; 𝑘+ 𝑡 odd.

Therefore, whenever a sequence 𝑆 contains three 1s, the above result may be applied. In the next subsection, we deal with the 
three remaining subcases of sequences 𝑆 depending on the number of 1s.

3.1. 𝑆 = (1, 1, 2, 2, 2 … )

Theorem 3.1. If 𝐺(𝑘, 𝑡) is the distance graph, where 𝑘, 𝑡 are coprime positive integers such that 3 ≤ 𝑘 < 𝑡, and 𝑆 = (1, 1, 2∞), then

𝜒𝑆 (𝐺(𝑘, 𝑡)) =
{

2; 𝑘+ 𝑡 even,

4; 𝑘+ 𝑡 odd.

Proof. If 𝑘 + 𝑡 is even, 𝐺(𝑘, 𝑡) is bipartite, hence 𝜒𝑆 (𝐺(𝑘, 𝑡)) = 2. In the rest of the proof, we assume 𝑘 + 𝑡 is odd, which implies 
4

𝜒𝑆 (𝐺(𝑘, 𝑡)) ≥ 3.
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Suppose that 𝜒𝑆 (𝐺(𝑘, 𝑡)) = 3, and let 𝑐 ∶ 𝑉 (𝐺(𝑘, 𝑡)) → [3] be a (1, 1, 2)-coloring of 𝐺(𝑘, 𝑡). Suppose that there is a vertex (𝑥, 𝑦) ∈
𝑉 (𝐺(𝑘, 𝑡)) in column 𝐵𝑥, where 𝑥 ∉ {0, 𝑡}, with 𝑐(𝑥, 𝑦) = 3. For this choice of 𝑥, the neighborhood of (𝑥, 𝑦) is the set 𝑁(𝑥, 𝑦) =
{(𝑥, 𝑦 + 1), (𝑥 − 1, 𝑦), (𝑥 + 1, 𝑦), (𝑥, 𝑦 − 1)}. Note that there exists an 8-cycle with every alternate vertex in 𝑁(𝑥, 𝑦), and all vertices in 
that cycle can receive only colors in {1, 2}. Consequently, all vertices in 𝑁(𝑥, 𝑦) receive the same color in {1, 2}. (If 𝑥 ∈ {0, 𝑡}, we get 
the same conclusion by noting that columns 𝐵0 and 𝐵𝑡 represent the same yet shifted column by which the coloring can be reassigned 
so that the corresponding point with color 3 is in one of columns between 1 and 𝑡 − 1.) Thus, for every vertex (𝑥, 𝑦) with 𝑐(𝑥, 𝑦) = 3, 
all neighbors receive the same color. Hence, the coloring 𝑐′ ∶ 𝑉 (𝐺(𝑘, 𝑡)) → [2] obtained from 𝑐 by recoloring every vertex (𝑖, 𝑗) with 
𝑐(𝑖, 𝑗) = 3 by using the color in {1, 2} which does not appear in its neighborhood with respect to coloring 𝑐 is a (1, 1)-coloring of 
𝐺(𝑘, 𝑡). Thus, 𝐺(𝑘, 𝑡) is bipartite, which is a contradiction with the assumption that 𝑘 + 𝑡 is odd. We derive that 𝜒𝑆 (𝐺(𝑘, 𝑡)) ≥ 4.

For the proof of the upper bound, we present a (1, 1, 2, 2)-coloring 𝑐 given by the shift sequence (𝑝𝑖)𝑡−1𝑖=0 = (0, 2, 0, 1𝑡−3) and two 
periodic patterns [1, 2] and [3, 4, 2, 1] such that the pattern [3, 4, 2, 1] is used on columns 𝐵1 and 𝐵2, and rest of the columns obtain 
pattern [1, 2]. That is, 𝑐 is defined by:

[1,2]𝑝0=0[3,4,2,1]𝑝1=2[3,4,2,1]𝑝2=0[1,2]𝑝3→𝑡−1=1[1,2].

Note that 𝑐 is a (1, 1, 2, 2)-coloring of 𝐺(𝑘, 𝑡) if and only if three conditions hold: every two vertices with the same color are at sufficient 
distance, columns 𝐵0 and 𝐵𝑡 must obtain the same pattern and 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 2). The matrix below demonstrates the presented 

coloring 𝑐 of 𝐺(𝑘, 𝑡) in the first five columns (note that bold integers indicate the location of reference points):

⋮ ⋮ ⋮ ⋮ ⋮
1 3 2 1 2
2 4 1 2 1
1 2 3 1 2
2 1 4 2 1

1 3 2 1 2
2 4 1 2 1
1 2 3 1 2
2 1 4 2 1
⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at sufficient distance and due to 𝑡 ≥ 4, columns 𝐵0 and 𝐵𝑡 always use the 
same pattern [1, 2]. Thus, the first and the second condition hold. From the following sum we obtain:

𝑡−1∑
𝑖=0

𝑝𝑖 = 2 + (𝑡− 3) = 𝑡− 1 ≡
{

0 (mod 2); 𝑡 odd,

1 (mod 2); 𝑡 even.

Since 𝑘 and 𝑡 are of opposite parity, the condition 
∑𝑡−1

𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 2) also holds.
Therefore, 𝜒𝑆 (𝐺(𝑘, 𝑡)) = 4 for 𝑘 + 𝑡 odd. □

3.2. 𝑆 = (1, 2, 2, 2, … )

Theorem 3.2. If 𝐺(𝑘, 𝑡) is the distance graph, where 𝑘, 𝑡 are coprime positive integers such that 3 ≤ 𝑘 < 𝑡, and 𝑆 = (1, 2∞), then 𝜒𝑆 (𝐺(𝑘, 𝑡)) =
5.

Proof. Due to the representation of 𝐺(𝑘, 𝑡) as the (shifted) square grid {0, 1, … , 𝑡} × ℤ, when determining the lower bound of 
𝜒𝑆 (𝐺(𝑘, 𝑡)), we can use results known for the infinite grid ℤ2. Goddard and Xu [15] proved that 𝜒𝑆 (ℤ2) = 5, hence 𝜒𝑆 (𝐺(𝑘, 𝑡)) ≥ 5. 
(Alternatively, the same conclusion is derived when observing a vertex in 𝐺(𝑘, 𝑡) receiving color 1, and noting that its neighbors must 
receive pairwise distinct colors from {2, … , 5}.)

Next, we determine (1, 24)-colorings of 𝐺(𝑘, 𝑡) with respect to the values 𝑘 and 𝑡.

1. Let 𝑡 ≥ 12. In this case, we present six different (1, 24)-colorings 𝑐𝑛, where 𝑛 ∈ {0, 1, 2, 3, 4, 5}, which are then applied with respect 
to 𝑘 and 𝑡. The first (1, 24)-coloring 𝑐0 is given by just one periodic pattern 𝐴 = [1, 2, 3, 1, 4, 5] and the shift sequence 𝐪𝟎 = (2𝑡), 
while the rest of 𝑐𝑛 given by the shift sequences 𝐪𝐧, 𝑛 ∈ {1, 2, 3, 4, 5}, also use another pattern 𝐵 = [4, 1, 5, 2, 1, 3] in addition to 
pattern 𝐴. More precisely,

𝐪𝟏 = (0,5,2𝑡−2),
𝐪𝟐 = ((0,5)2,2𝑡−4),
𝐪𝟑 = ((0,5)3,2𝑡−6),
𝐪𝟒 = ((0,5)4,2𝑡−8),
𝐪𝟓 = ((0,5)5,2𝑡−10),
5

and
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𝑐1 ∶𝐴𝑝0=0𝐵𝑝1=5𝐴𝑝2→𝑡−1=2𝐴,

𝑐2 ∶𝐴𝑝0=0𝐵𝑝1=5𝐴𝑝2=0𝐵𝑝3=5𝐴𝑝4→𝑡−1=2𝐴,

𝑐3 ∶𝐴𝑝0=0𝐵𝑝1=5𝐴𝑝2=0𝐵𝑝3=5𝐴𝑝4=0𝐵𝑝5=5𝐴𝑝6→𝑡−1=2𝐴,

𝑐4 ∶𝐴𝑝0=0𝐵𝑝1=5𝐴𝑝2=0𝐵𝑝3=5𝐴𝑝4=0𝐵𝑝5=5𝐴𝑝6=0𝐵𝑝7=5𝐴𝑝8→𝑡−1=2𝐴,

𝑐5 ∶𝐴𝑝0=0𝐵𝑝1=5𝐴𝑝2=0𝐵𝑝3=5𝐴𝑝4=0𝐵𝑝5=5𝐴𝑝6=0𝐵𝑝7=5𝐴𝑝8=0𝐵𝑝9=5𝐴𝑝10→𝑡−1=2𝐴.

Recall that 𝑐𝑛 is a (1, 24)-coloring of 𝐺(𝑘, 𝑡) if and only if three conditions hold: every two vertices with the same color are at 
sufficient distance, columns 𝐵0 and 𝐵𝑡 obtain the same pattern, and 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 6). From the definition of colorings 𝑐𝑛 we 

immediately see that both columns 𝐵0 and 𝐵𝑡 obtain the pattern 𝐴, hence the second condition holds.
To verify the first condition, we consider the possible pattern layouts in three consecutive columns, 𝐵𝑖, 𝐵𝑖+1, 𝐵𝑖+2, using the 
patterns 𝐴 and 𝐵. Since 𝐵0 and 𝐵𝑡 represent the same, yet shifted column, the case when 𝑖 = 𝑡 − 1 is interpreted as 𝐵𝑡−1, 𝐵𝑡, 𝐵1. 
We have five possibilities: 𝐴𝐴𝐴, 𝐵𝐴𝐴, 𝐴𝐵𝐴, 𝐴𝐴𝐵 and 𝐵𝐴𝐵. Note that when 𝐴𝐴𝐴 is used, in all presented sequences the two 
shifts are 𝑝𝑖 = 2 = 𝑝𝑖+1, and it is easy to verify that the points with the same colors are at sufficient distances. This correspondence 
will be presented as:

𝐴𝐴𝐴⟷ 2,2.

Similarly, we have the following correspondences between pattern layouts and shifts, which can be derived from the definitions 
of sequences 𝐪𝐧:

𝐵𝐴𝐴⟷ 5,2,
𝐴𝐵𝐴⟷ 0,5,
𝐴𝐴𝐵⟷ 2,0,
𝐵𝐴𝐵⟷ 5,0.

(Note that 𝐴𝐴𝐵 appears when considering the columns 𝐵𝑡−1, 𝐵𝑡 and 𝐵1.) The corresponding matrices for each of the five cases 
are placed below.

𝐴 𝐴 𝐴

⋮ ⋮ ⋮
𝟏 4 3
2 5 1
3 𝟏 4
1 2 5
4 3 𝟏
5 1 2
1 4 3
2 5 1
⋮ ⋮ ⋮

𝐴 𝐴 𝐵

⋮ ⋮ ⋮
𝟏 4 1
2 5 3
3 𝟏 𝟒
1 2 1
4 3 5
5 1 2
1 4 1
2 5 3
⋮ ⋮ ⋮

𝐴 𝐵 𝐴

⋮ ⋮ ⋮
𝟏 𝟒 2
2 1 3
3 5 1
1 2 4
4 1 5
5 3 𝟏
1 4 2
2 1 3
⋮ ⋮ ⋮

𝐵 𝐴 𝐴

⋮ ⋮ ⋮
𝟒 2 5
1 3 1
5 1 2
2 4 3
1 5 1
3 𝟏 4
4 2 5
1 3 𝟏
⋮ ⋮ ⋮

𝐵 𝐴 𝐵

⋮ ⋮ ⋮
𝟒 2 1
1 3 5
5 1 2
2 4 1
1 5 3
3 𝟏 𝟒
4 2 1
1 3 5
⋮ ⋮ ⋮

Again, in all cases it is easy to verify that the points with the same colors are at sufficient distances. In this way, the first condition 
is also verified.
What remains is to use the third condition 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 6) to determine which sequence 𝐪𝐧 is suitable for 𝐺(𝑘, 𝑡) with respect 

to values 𝑘, 𝑡. Let 𝑡 ≡ 𝓁 (mod 6) where 𝓁 ∈ {0, 1, 2, 3, 4, 5}. For each 𝐪𝐧 we calculate the value of 
∑𝑡−1

𝑖=0 𝑝𝑖:

𝐪𝐧 ∶
𝑡−1∑
𝑖=0

𝑝𝑖 = 5𝑛+ 2(𝑡− 2𝑛) = 2𝑡+ 𝑛.

Due to appropriate numbering of sequences we obtain 
∑𝑡−1

𝑖=0 𝑝𝑖 ≡ (2𝓁 + 𝑛) (mod 6) for each 𝐪𝐧. In order to determine which 
𝑐𝑛 gives us the (1, 24)-coloring of 𝐺(𝑘, 𝑡) for fixed values 𝑘, 𝑡, let 𝑘 ≡ 𝑚 (mod 6) where 𝑚 ∈ {0, 1, 2, 3, 4, 5}. Using the condition ∑𝑡−1

𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 6) we derive:

(2𝓁 + 𝑛) (mod 6) =𝑚 ⟹ 𝑛 = (𝑚− 2𝓁) (mod 6).

Thus, if 𝑘 ≡ 𝑚 (mod 6) and 𝑡 ≡ 𝓁 (mod 6) then the (1, 24)-coloring of 𝐺(𝑘, 𝑡) is given by 𝑐𝑛 using the sequence 𝐪𝐧 such that 
𝑛 = (𝑚 − 2𝓁) (mod 6).

2. Let 𝑡 = 11, hence 𝑘 ∈ {3, 4, 5, 6, 7, 8, 9, 10}. For 𝐺(3, 11) and 𝐺(8, 11) we present a (1, 24)-coloring given by the periodic pattern 
6

[1, 2, 3, 4, 5] and the shift sequence (𝑝𝑖)10𝑖=0 = (311). The matrix below demonstrates the presented (1, 24)-coloring of these graphs:
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 3 5 2 4 1 3 5 2 4 1 3
2 4 1 3 5 2 4 1 3 5 2 4
3 5 2 4 1 3 5 2 4 1 3 5
4 1 3 5 2 4 1 3 5 2 4 1
5 2 4 1 3 5 2 4 1 3 5 2
1 3 5 2 4 1 3 5 2 4 1 3
2 4 1 3 5 2 4 1 3 5 2 4
3 5 2 4 1 3 5 2 4 1 3 5
4 1 3 5 2 4 1 3 5 2 4 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑10

𝑖=0 𝑝𝑖 ≡ 3 (mod 5) holds 
for both graphs.
For 𝐺(4, 11), 𝐺(5, 11), 𝐺(6, 11), 𝐺(7, 11), 𝐺(9, 11) and 𝐺(10, 11) we use (1, 24)-colorings 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐5 and 𝑐0 from case 1, 
respectively.

3. Let 𝑡 = 10, hence 𝑘 ∈ {3, 7, 9}. For both 𝐺(3, 10) and 𝐺(9, 10) we use (1, 24)-coloring 𝑐1 from case 1.
For 𝐺(7, 10) we present a (1, 24)-coloring given by two periodic patterns 𝐶 = [1, 2, 1, 3, 1, 4, 1, 5] and 𝐷 = [4, 3, 5, 4, 2, 5, 3, 2], and 
the shift sequence (𝑝𝑖)9𝑖=0 = ((0, 1)3, 34) such that:

𝐶𝑝0=0𝐷𝑝1=1𝐶𝑝2=0𝐷𝑝3=1𝐶𝑝4=0𝐷𝑝5=1𝐶𝑝6→9=3𝐶.

The matrix below demonstrates the presented (1, 24)-coloring of this graph:

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 4 5 2 1 3 4 1 5 1 2
2 3 1 4 5 2 1 3 1 4 1
1 5 2 3 1 4 5 1 2 1 3
3 4 1 5 2 3 1 4 1 5 1
1 2 3 4 1 5 2 1 3 1 4
4 5 1 2 3 4 1 5 1 2 1
1 3 4 5 1 2 3 1 4 1 5
5 2 1 3 4 5 1 2 1 3 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑9

𝑖=0 𝑝𝑖 ≡ 7 (mod 8) holds.

4. Let 𝑡 = 9, hence 𝑘 ∈ {4, 5, 7, 8}. For 𝐺(4, 9) we present a (1, 24)-coloring given by two periodic patterns 𝐶 = [1, 2, 1, 3, 1, 4, 1, 5]
and 𝐷 = [4, 3, 5, 4, 2, 5, 3, 2], and the shift sequence (𝑝𝑖)8𝑖=0 = ((0, 1)3, 33) such that:

𝐶𝑝0=0𝐷𝑝1=1𝐶𝑝2=0𝐷𝑝3=1𝐶𝑝4=0𝐷𝑝5=1𝐶𝑝6→8=3𝐶.

The matrix below demonstrates the presented (1, 24)-coloring of this graph:

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 4 5 2 1 3 4 1 5 1
2 3 1 4 5 2 1 3 1 4
1 5 2 3 1 4 5 1 2 1
3 4 1 5 2 3 1 4 1 5
1 2 3 4 1 5 2 1 3 1
4 5 1 2 3 4 1 5 1 2
1 3 4 5 1 2 3 1 4 1
5 2 1 3 4 5 1 2 1 3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑8

𝑖=0 𝑝𝑖 ≡ 4 (mod 8) holds.
For 𝐺(5, 9) we present a (1, 24)-coloring given by the periodic pattern 𝐶 = [1, 2, 1, 3, 1, 4, 1, 5] and the shift sequence (𝑝𝑖)8𝑖=0 = (59). 
7

Again, the matrix below demonstrates the presented (1, 24)-coloring of this graph:
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 3 1 2 1 5 1 4 1 3
2 1 5 1 4 1 3 1 2 1
1 4 1 3 1 2 1 5 1 4
3 1 2 1 5 1 4 1 3 1
1 5 1 4 1 3 1 2 1 5
4 1 3 1 2 1 5 1 4 1
1 2 1 5 1 4 1 3 1 2
5 1 4 1 3 1 2 1 5 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑8

𝑖=0 𝑝𝑖 ≡ 5 (mod 8) holds.
For 𝐺(7, 9) and 𝐺(8, 9) we use (1, 24)-colorings 𝑐1 and 𝑐2 from case 1, respectively.

5. Let 𝑡 = 8, hence 𝑘 ∈ {3, 5, 7}. For 𝐺(3, 8) we present a (1, 24)-coloring given by two periodic patterns 𝐶 = [1, 2, 1, 3, 1, 4, 1, 5] and 
𝐷 = [4, 3, 5, 4, 2, 5, 3, 2], and the shift sequence (𝑝𝑖)7𝑖=0 = (0, 1, 36) such that:

𝐶𝑝0=0𝐷𝑝1=1𝐶𝑝2→7=3𝐶.

The matrix below demonstrates the presented (1, 24)-coloring of this graph:

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 4 5 1 2 1 3 1 4
2 3 1 4 1 5 1 2 1
1 5 2 1 3 1 4 1 5
3 4 1 5 1 2 1 3 1
1 2 3 1 4 1 5 1 2
4 5 1 2 1 3 1 4 1
1 3 4 1 5 1 2 1 3
5 2 1 3 1 4 1 5 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑7

𝑖=0 𝑝𝑖 ≡ 3 (mod 8) holds.
For 𝐺(5, 8) and 𝐺(7, 8) we use (1, 24)-colorings 𝑐1 and 𝑐3 from case 1, respectively.

6. Let 𝑡 = 7, hence 𝑘 ∈ {3, 4, 5, 6}. For 𝐺(3, 7), 𝐺(4, 7) and 𝐺(5, 7) we use (1, 24)-colorings 𝑐1, 𝑐2 and 𝑐3 from case 1, respectively.
For 𝐺(6, 7) we present a (1, 24)-coloring given by the periodic pattern [1, 2, 3, 4, 5] and the shift sequence (𝑝𝑖)6𝑖=0 = (37). The matrix 
below demonstrates the presented (1, 24)-coloring of this graph:

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 3 5 2 4 1 3 5
2 4 1 3 5 2 4 1
3 5 2 4 1 3 5 2
4 1 3 5 2 4 1 3
5 2 4 1 3 5 2 4
1 3 5 2 4 1 3 5
2 4 1 3 5 2 4 1
3 5 2 4 1 3 5 2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and 
∑6

𝑖=0 𝑝𝑖 ≡ 1 (mod 5), hence the condition ∑6
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 5) holds.

7. Let 𝑡 = 6, hence 𝑘 = 5. For 𝐺(5, 6) we present an (1, 24)-coloring given by two periodic patterns 𝐶 = [1, 2, 1, 3, 1, 4, 1, 5] and 
𝐷 = [4, 3, 5, 4, 2, 5, 3, 2], and the shift sequence (𝑝𝑖)5𝑖=0 = (0, 1, 34) such that:

𝐶𝑝0=0𝐷𝑝1=1𝐶𝑝2→5=3𝐶.
8

The matrix below demonstrates the presented (1, 24)-coloring of this graph.
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 4 5 1 2 1 3
2 3 1 4 1 5 1
1 5 2 1 3 1 4
3 4 1 5 1 2 1
1 2 3 1 4 1 5
4 5 1 2 1 3 1
1 3 4 1 5 1 2
5 2 1 3 1 4 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑4

𝑖=0 𝑝𝑖 ≡ 5 (mod 8) holds.

8. Let 𝑡 = 5, hence 𝑘 ∈ {3, 4}. For 𝐺(3, 5) we present an (1, 24)-coloring given by the periodic pattern [(1, 2, 1, 3)2, (1, 4, 1, 5)2] and 
the shift sequence (𝑝𝑖)4𝑖=0 = (75). The matrix below demonstrates the presented (1, 24)-coloring of this graph.

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 4 1 5 1 4
2 1 3 1 2 1
1 5 1 4 1 5
3 1 2 1 3 1
1 4 1 5 1 2
2 1 3 1 4 1
1 5 1 2 1 3
3 1 4 1 5 1
1 2 1 3 1 2
4 1 5 1 4 1
1 3 1 2 1 3
5 1 4 1 5 1
1 2 1 3 1 4
4 1 5 1 2 1
1 3 1 4 1 5
5 1 2 1 3 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑4

𝑖=0 𝑝𝑖 ≡ 3 (mod 16) holds.
For 𝐺(4, 5) we use coloring 𝑐0 from case 1.

9. Let 𝑡 = 4, hence 𝑘 = 3. For 𝐺(3, 4) we use coloring 𝑐1 from case 1.

After verifying all the possible cases for 𝑘 and 𝑡, we conclude that 𝜒𝑆 (𝐺(𝑘, 𝑡)) = 5, and the proof is complete. □

3.3. 𝑆 = (2, 2, 2, … )

Lemma 3.3. If 𝐺(𝑘, 𝑡) is the distance graph, where 𝑘, 𝑡 are coprime positive integers such that 3 ≤ 𝑘 < 𝑡, and 𝑆 = (2∞), then 𝜒𝑆 (𝐺(𝑘, 𝑡)) ≤ 6.

Proof. We determine (26)-colorings of 𝐺(𝑘, 𝑡) with respect to the values of 𝑘, 𝑡.

1. Let 𝑡 ≥ 6. In this case, we present six different (26)-colorings 𝑐𝑛, where 𝑛 ∈ {0, 1, 2, 3, 4, 5}, which we apply with respect to 𝑘 and 
𝑡. Each 𝑐𝑛 is given by the periodic pattern [1, 2, 3, 4, 5, 6] and a shift sequence 𝐪𝐧 = (𝑝𝑖)𝑡−1𝑖=0 such that:

𝐪𝟎 = (2𝑡),
𝐪𝟏 = (3,2𝑡−1),
𝐪𝟐 = (3,2,3,2𝑡−3),
𝐪𝟑 = (3,2,3,2,3,2𝑡−5),
𝐪𝟒 = (3,4,3,2𝑡−3),
𝐪𝟓 = (3,4,3,2,3,2𝑡−5).

Since the colorings are given by the unique pattern, 𝑐𝑛 is a (26)-coloring of 𝐺(𝑘, 𝑡) if and only if every two vertices with the same 
color are at the distance at least 3 and 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 6). To verify the first condition, we observe a coloring 𝑐 ∶ 𝑉 (ℤ2) → [6]
9

of the infinite grid ℤ2 using the pattern [1, 2, 3, 4, 5, 6]. Since 𝑐 is (26)-coloring, the following must hold for each 𝑖, 𝑗 ∈ℤ:
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𝑐(𝑖, 𝑗) ≠ 𝑐(𝑖+ 1, 𝑗),
𝑐(𝑖, 𝑗) ≠ 𝑐(𝑖+ 1, 𝑗 ± 1),
𝑐(𝑖, 𝑗) ≠ 𝑐(𝑖+ 2, 𝑗).

Thus, the periodic pattern [1, 2, 3, 4, 5, 6] in column 𝐵𝑖+1 can be shifted by 2, 3 or 4 with respect to the column 𝐵𝑖 . In addition, 
the pattern in column 𝐵𝑖+2 can be shifted by 1, 2, 3, 4 or 5 with respect to the column 𝐵𝑖. Thus, for the graph 𝐺(𝑘, 𝑡) we obtain 
𝑝𝑖 ∈ {2, 3, 4}, and

𝑝𝑖 = 2⇒ 𝑝𝑖+1 ≠ 4,
𝑝𝑖 = 3⇒ 𝑝𝑖+1 ≠ 3,
𝑝𝑖 = 4⇒ 𝑝𝑖+1 ≠ 2,

holds for all 𝑖 ∈ {0, … , 𝑡 − 2}, and, furthermore,

𝑝0 = 2⇒ 𝑝𝑡−1 ≠ 4,
𝑝0 = 3⇒ 𝑝𝑡−1 ≠ 3,
𝑝0 = 4⇒ 𝑝𝑡−1 ≠ 2,

because 𝐵0 and 𝐵𝑡 represents the same yet shifted column.

Next, we use the second condition 
∑𝑡−1

𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 6) to determine which sequence 𝐪𝐧 is suitable for 𝐺(𝑘, 𝑡) with respect to 
values 𝑘, 𝑡. Let 𝑡 ≡ 𝓁 (mod 6) where 𝓁 ∈ {0, 1, 2, 3, 4, 5}. For each 𝐪𝐧 we calculate the value of 

∑𝑡−1
𝑖=0 𝑝𝑖:

𝐪𝟎 ∶
∑𝑡−1

𝑖=0 𝑝𝑖 = 2𝑡 ≡ 2𝓁 (mod 6),

𝐪𝟏 ∶
∑𝑡−1

𝑖=0 𝑝𝑖 = 3 + 2(𝑡− 1) = 2𝑡+ 1 ≡ (2𝓁 + 1) (mod 6),

𝐪𝟐 ∶
∑𝑡−1

𝑖=0 𝑝𝑖 = 3 + 2 + 3 + 2(𝑡− 3) = 2𝑡+ 2 ≡ (2𝓁 + 2) (mod 6),

𝐪𝟑 ∶
∑𝑡−1

𝑖=0 𝑝𝑖 = 3 + 2 + 3 + 2 + 3 + 2(𝑡− 5) = 2𝑡+ 3 ≡ (2𝓁 + 3) (mod 6),

𝐪𝟒 ∶
∑𝑡−1

𝑖=0 𝑝𝑖 = 3 + 4 + 3 + 2(𝑡− 3) = 2𝑡+ 4 ≡ (2𝓁 + 4) (mod 6),

𝐪𝟓 ∶
∑𝑡−1

𝑖=0 𝑝𝑖 = 3 + 4 + 3 + 2 + 3 + 2(𝑡− 5) = 2𝑡+ 5 ≡ (2𝓁 + 5) (mod 6).

Thus, for 𝐪𝐧 we obtain 
∑𝑡−1

𝑖=0 𝑝𝑖 ≡ (2𝓁 + 𝑛) (mod 6). In order to determine which 𝑐𝑛 gives us the (26)-coloring of 𝐺(𝑘, 𝑡) for fixed 
values 𝑘, 𝑡, let 𝑘 ≡ 𝑚 (mod 6) where 𝑚 ∈ {0, 1, 2, 3, 4, 5}. From the condition 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡ 𝑘 (mod 6) we obtain:

(2𝓁 + 𝑛) (mod 6) =𝑚 ⟹ 𝑛 = (𝑚− 2𝓁) (mod 6),

hence if 𝑘 ≡ 𝑚 (mod 6) and 𝑡 ≡ 𝓁 (mod 6) then the (26)-coloring of 𝐺(𝑘, 𝑡) is given by 𝑐𝑛 using the sequence 𝐪𝐧 such that 
𝑛 = (𝑚 − 2𝓁) (mod 6).

2. Let 𝑡 = 5, hence 𝑘 ∈ {3, 4}. For 𝐺(3, 5) we present a (26)-coloring given by the periodic pattern [1, 2, 3, 4, 5, 1, 6, 3, 2, 5, 4, 6] and 
the shift sequence (𝑝𝑖)4𝑖=0 = (35). The matrix below demonstrates the presented (26)-coloring of this graph.

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 5 6 4 1 5
2 4 3 5 2 4
3 6 2 1 3 6
4 1 5 6 4 1
5 2 4 3 5 2
1 3 6 2 1 3
6 4 1 5 6 4
3 5 2 4 3 5
2 1 3 6 2 1
5 6 4 1 5 6
4 3 5 2 4 3
6 2 1 3 6 2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

It is easy to verify that all vertices with the same color are at a sufficient distance and the condition 
∑4

𝑖=0 𝑝𝑖 ≡ 3 (mod 12) holds.
For 𝐺(4, 5) we use the coloring 𝑐0 from case 1.
10

3. Let 𝑡 = 4, hence 𝑘 = 3. For 𝐺(3, 4) we use the coloring 𝑐1 from case 1.
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By considering all cases of 𝑘 and 𝑡, we obtain 𝜒𝑆 (𝐺(𝑘, 𝑡)) ≤ 6, as desired. □

Theorem 3.4. If 𝐺(𝑘, 𝑡) is the distance graph, where 𝑘, 𝑡 are coprime positive integers such that 3 ≤ 𝑘 < 𝑡, and 𝑆 = (2∞), then

𝜒𝑆 (𝐺(𝑘, 𝑡)) =
⎧⎪⎨⎪⎩
5; (𝑡 ≡ 1,4 (mod 5) and 𝑘 ≡ 2,3 (mod 5))

or (𝑡 ≡ 2,3 (mod 5) and 𝑘 ≡ 1,4 (mod 5)),

6; otherwise.

Proof. Consider the infinite grid ℤ2. Goddard and Xu [15] proved that 𝜒𝑆 (ℤ2) = 5, hence 𝜒𝑆 (𝐺(𝑘, 𝑡)) ≥ 5. Let 𝑐 ∶ 𝑉 (ℤ2) → [5] be a 
(25)-coloring of ℤ2. Consider a vertex (𝑥, 𝑦) ∈ 𝑉 (ℤ2) with its neighborhood 𝑁(𝑥, 𝑦) = {(𝑥, 𝑦 + 1), (𝑥 − 1, 𝑦), (𝑥 + 1, 𝑦), (𝑥, 𝑦 − 1)}. Each 
of these 5 vertices must receive a different color since they are at the distance at most 2. Without loss of generality, let

𝑐(𝑥, 𝑦+ 1) = 1, 𝑐(𝑥− 1, 𝑦) = 2, 𝑐(𝑥, 𝑦) = 3, 𝑐(𝑥+ 1, 𝑦) = 4, 𝑐(𝑥, 𝑦− 1) = 5.

Thus, the vertex (𝑥 + 1, 𝑦 + 1) can obtain either color 2 or 5 with respect to the coloring 𝑐. We consider both options.

1. Let 𝑐(𝑥 +1, 𝑦 +1) = 2. Due to the assignment of colors to vertices in 𝑁([𝑥, 𝑦]) and (𝑥 +1, 𝑦 +1), we derive the following chain of 
implications:

𝑐(𝑥+ 1, 𝑦+ 1) = 2⇒ 𝑐(𝑥+ 1, 𝑦− 1) = 1⇒ 𝑐(𝑥− 1, 𝑦− 1) = 4
⇒ 𝑐(𝑥, 𝑦− 2) = 2⇒ 𝑐(𝑥+ 1, 𝑦− 2) = 3⇒ 𝑐(𝑥− 1, 𝑦− 2) = 1
⇒ 𝑐(𝑥, 𝑦− 3) = 4⇒ 𝑐(𝑥+ 1, 𝑦− 3) = 5⇒ 𝑐(𝑥− 1, 𝑦− 3) = 3
⇒ 𝑐(𝑥, 𝑦− 4) = 1⇒…

Thus, the coloring 𝑐 forces for each column 𝐵𝑖 the periodic pattern [1, 3, 5, 2, 4]. Moreover, 𝑐(𝑖, 𝑗) = 𝑐(𝑖 + 1, 𝑗 − 2) for all 𝑖, 𝑗 ∈ℤ.

2. Let 𝑐(𝑥 + 1, 𝑦 + 1) = 5. Similarly:

𝑐(𝑥+ 1, 𝑦+ 1) = 5⇒ 𝑐(𝑥− 1, 𝑦+ 1) = 4⇒ 𝑐(𝑥− 1, 𝑦− 1) = 1
⇒ 𝑐(𝑥+ 1, 𝑦− 1) = 2⇒ 𝑐(𝑥, 𝑦− 2) = 4⇒ 𝑐(𝑥− 1, 𝑦− 2) = 3
⇒ 𝑐(𝑥+ 1, 𝑦− 2) = 1⇒ 𝑐(𝑥, 𝑦− 3) = 2⇒ 𝑐(𝑥− 1, 𝑦− 3) = 5
⇒ 𝑐(𝑥+ 1, 𝑦− 3) = 3⇒ 𝑐(𝑥, 𝑦− 4) = 1⇒…

In this case, the coloring 𝑐 forces for each column 𝐵𝑖 the periodic pattern [1, 3, 5, 4, 2] and 𝑐(𝑖, 𝑗) = 𝑐(𝑖 + 1, 𝑗 − 3) for all 𝑖, 𝑗 ∈ℤ.

We have shown that (up to permutation of colors) there exist only two 25 -packing colorings of the square lattice ℤ2 . We now apply 
these two colorings to 𝐺(𝑘, 𝑡).

1. Consider the coloring given by the periodic pattern [1, 3, 5, 2, 4] with relation 𝑐(𝑖, 𝑗) = 𝑐(𝑖 +1, 𝑗 −2). Hence, this coloring enforces 
the constant shift sequence (𝑝𝑖)𝑡−1𝑖=0 where 𝑝𝑖 = 2 for all 𝑖 ∈ {0, … , 𝑡 − 1}. Note that if 𝑐 is a (25)-coloring of 𝐺(𝑘, 𝑡), then 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡

𝑘 (mod 5). What remains is to determine for which values of 𝑘, 𝑡 this condition holds.
Let 𝑡 ≡ 𝓁 (mod 5) where 𝓁 ∈ {0, 1, 2, 3, 4}. From the following sum we derive:

𝑡−1∑
𝑖=0

𝑝𝑖 =
𝑡−1∑
𝑖=0

2 = 2𝑡 ≡ 2𝓁 (mod 5),

hence 𝑘 ≡ 2𝓁 (mod 5). Note that for 𝓁 = 0 we obtain 𝑡, 𝑘 ≡ 0 (mod 5) which is a contradiction with the proposition gcd(𝑘, 𝑡) = 1
and thus it is sufficient to consider 𝓁 ∈ {1, 2, 3, 4}.

2. Consider the coloring given by the periodic pattern [1, 3, 5, 4, 2] with relation 𝑐(𝑖, 𝑗) = 𝑐(𝑖 + 1, 𝑗 − 3), which is equivalent to the 
constant shift sequence (𝑝𝑖)𝑡−1𝑖=0 where 𝑝𝑖 = 3 for all 𝑖 ∈ {0, … , 𝑡 − 1}. We again determine for which 𝑘, 𝑡 the condition 

∑𝑡−1
𝑖=0 𝑝𝑖 ≡

𝑘 (mod 5) holds.
Let 𝑡 ≡ 𝓁 (mod 5) where 𝓁 ∈ {0, 1, 2, 3, 4}. Similarly to the previous case:

𝑡−1∑
𝑖=0

𝑝𝑖 =
𝑡−1∑
𝑖=0

3 = 3𝑡 ≡ 3𝓁 (mod 5),

hence 𝑘 ≡ 3𝓁 (mod 5). For 𝓁 = 0 we obtain 𝑡, 𝑘 ≡ 0 (mod 5), contradicting gcd(𝑘, 𝑡) = 1 again, thus we consider 𝓁 ∈ {1, 2, 3, 4}.

By calculating the values of 𝑘, 𝑡 for the given 𝓁, we obtain that 𝜒𝑆 (𝐺(𝑘, 𝑡)) = 5 if and only if either (𝑡 ≡ 1, 4 (mod 5) and 𝑘 ≡ 2, 3 (mod 5))
11

or (𝑡 ≡ 2, 3 (mod 5) and 𝑘 ≡ 1, 4 (mod 5)). From Lemma 3.3 we derive 𝜒𝑆 (𝐺(𝑘, 𝑡)) = 6 for the remaining values of 𝑘, 𝑡. □
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4. Concluding remarks

The results presented in this paper complement previously known results from [1,2,16,20] on 𝑆-packing colorings of connected 
distance graphs 𝐺(𝑘, 𝑡), which satisfy the property that each integer in a sequence 𝑆 belongs to {1, 2}. Note that such 𝑆-packing 
colorings are classical colorings (𝑆 = (1∞)), 2-distance colorings (𝑆 = (2∞)) and 𝑆-packing colorings which lie between these two.

The amalgamation of the results presented herein with those established earlier gives us the 𝑆-packing chromatic numbers of all 
connected distance graphs 𝐺(𝑘, 𝑡), where 𝑘 ≥ 1 and 𝑡 > 𝑘 are coprime. With respect to the sequence 𝑆 we summarize all of these 
results as follows.

1. 𝑆 = (1∞).

𝜒(𝐺(𝑘, 𝑡)) =
{

2; 𝑘+ 𝑡 even,

3; 𝑘+ 𝑡 odd.

2. 𝑆 = (1, 1, 2∞).

𝜒𝑆 (𝐺(𝑘, 𝑡)) =
{

2; 𝑘+ 𝑡 even,

4; 𝑘+ 𝑡 odd.

3. 𝑆 = (1, 2∞).

𝜒𝑆 (𝐺(𝑘, 𝑡)) =
{

5; 𝑘 ≠ 2 or 𝑡 ≠ 3,
6; otherwise.

4. 𝑆 = (2∞).

𝜒2(𝐺(𝑘, 𝑡)) =

⎧⎪⎪⎨⎪⎪⎩

5; (𝑡 ≡ 1,4 (mod 5) and 𝑘 ≡ 2,3 (mod 5))
or (𝑡 ≡ 2,3 (mod 5) and 𝑘 ≡ 1,4 (mod 5)),

7; 𝑘 = 2 and 𝑡 = 3,
6; otherwise.

As for other sequences 𝑆 that contain elements greater than 2, investigations of 𝜒𝑆 (𝐺(𝑘, 𝑡)) are far from complete. For the sequence 
𝑆 = (𝑑∞), 𝑑 ≥ 3, lower and upper bounds are known for 𝜒𝑆 (𝐺(𝑘, 𝑡)) [2], which in some cases culminate to exact results. For instance, 
if 𝑡 ≥ 5 is an odd integer and 𝑑 ≥ 𝑡 − 3, then 𝜒𝑑 (𝐺(𝑘, 𝑡)) = 1 + 𝑡 ⋅

(
𝑑 − 𝑡−3

2

)
. Similarly, lower and upper bounds are known for the 

sequence 𝑆 = (1, 2, 3, …) which corresponds to the standard packing coloring. These results focus on the distance graph 𝐺(1, 𝑡) [10,19]. 
Additionally, exact results exist for certain sporadic sequences 𝑆 , which came into fruition while studying the 𝑆-packing chromatic 
numbers of 𝐺(𝑘, 𝑡) for sequences that contain only elements from {1, 2}. The 𝑆-packing coloring of 𝐺(1, 𝑡) provided in [16] partitions 
the color classes in such a way that the vertices of some color classes are farther apart than they need to be. As a consequence, this 
gives results for the sequences 𝑆 with larger elements.

We mention that distance graphs are related to the graphs circulants. The vertex set of 𝐶𝑛(𝑑1, … , 𝑑𝑘) is {0, … , 𝑛 − 1}, while the 
adjacencies are defined in the same way as in the corresponding distance graph; that is, 𝑖 ∈ 𝑉 (𝐺) is adjacent to 𝑖 + 𝑑𝑗 (mod 𝑛) for all 
𝑗 ∈ [𝑘]. Using this relation, the authors of [2] extended their investigation of the 𝑆-packing chromatic numbers of graphs 𝐺(2, 𝑡) to 
circulant graphs 𝐶𝑛(2, 𝑡). It turns out that whenever 𝑛 is divisible by the length of the pattern used in the coloring of a distance graph, 
one can easily determine the packing chromatic number of the corresponding circulant graph. In other cases, lower bounds can be 
obtained. A systematic investigation of the 𝑆-packing chromatic numbers of circulants 𝐶𝑛(𝑘, 𝑡) could be an interesting challenge.

There remains ample scope for research concerning the 𝑆-packing chromatic number of distance graphs 𝐺(𝑘, 𝑡). In addition, for 
distance graphs 𝐺(𝐷), where |𝐷| ≥ 3, only a few results on their 𝑆-packing colorings are known.
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