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Abstract: Hypokinesia triggers oxidative stress and accelerates the turnover of the glutathione
system via the γ-glutamyl cycle. Our study aimed to identify the regulatory checkpoints controlling
intracellular glutathione levels. We measured the intermediate substrates of the γ-glutamyl cycle
in erythrocytes from 19 healthy young male volunteers before and during a 10-day experimental
bed rest. Additionally, we tracked changes in glutathione levels and specific metabolite ratios up
to 21 days of bed rest. Using gas chromatography-mass spectrometry and the internal standard
technique, we observed a 9 ± 9% decrease in glutathione levels during the first 5 days of bed
rest, followed by an 11 ± 9% increase from the 5th to the 10th day, nearly returning to baseline
ambulatory levels. The cysteinyl-glycine-to-glutathione ratio, reflecting γ-glutamyl cyclotransferase
activity (a key enzyme in glutathione breakdown), rose by 14 ± 22% in the first 5 days and then
fell by 10 ± 14% over the subsequent 5 days, again approaching baseline levels. Additionally, the
γ-glutamyl cysteine-to-cysteine ratio, indicative of γ-glutamyl cysteine synthetase activity (crucial
for glutathione synthesis), increased by 12 ± 30% on day 5 and by 29 ± 41% on day 10 of bed rest.
The results observed on day 21 of bed rest confirm those seen on day 10. By calculating the ratio of
product concentration to precursor concentration, we assessed the efficiency of these key enzymes in
glutathione turnover. These results were corroborated by directly measuring glutathione synthesis
and degradation rates in vivo using stable isotope techniques. Our findings reveal significant changes
in glutathione kinetics during the initial days of bed rest and identify potential therapeutic targets for
maintaining glutathione levels.

Keywords: antioxidant; muscle unloading; glutathione turnover; γ-glutamyl cycle

1. Introduction

Muscle unloading leads to the production of reactive oxygen and nitrogen species
(RONS), which may play a role in triggering metabolic pathways that contribute to
inactivity-induced muscle atrophy [1–3], insulin resistance [4], and inflammation [5]. The
generation of RONS also activates antioxidant defenses and elevates biomarkers of ox-
idative stress. Studies by our group and others have demonstrated that systemic [6] and
muscle-specific [7–10] oxidative stress biomarkers are activated in the early stages of ex-
perimental bed rest (that is, within 5 days of bed rest), even before muscle wasting begins.
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Our research found that after about one month of bed rest, a reduction in vastus lateralis
muscle thickness was inversely correlated with an increase in protein carbonylation, an
oxidative stress marker, in the same muscle [11,12]. These changes were accompanied by
an increase in the synthesis rate of muscle glutathione, a key antioxidant [11]. After the
first month of bed rest, the intensity of oxidative stress diminishes, and some biomarkers
return to baseline levels [13]. Similarly, the progression of muscle atrophy slows down
after one month [14]. This suggests a possible link between the timing of oxidative stress
and muscle atrophy during bed rest, with a potential cause–effect relationship. Therefore,
studying the initial phase of bed rest is crucial to understanding the mechanisms that
activate oxidative stress and their potential connection to physiological changes induced
by mechanical muscle unloading.

The glutathione system is a major intracellular antioxidant and detoxifying agent [15].
Glutathione is a tripeptide composed of cysteine, glutamic acid, and glycine, which exerts
its antioxidant function by converting from its reduced form (GSH) to its oxidized form
(GSSG) via the enzyme glutathione peroxidase. The antioxidant capacity of glutathione
depends on its total concentration, predominantly in the reduced form, and the ratio of
the reduced to oxidized forms, which reflects the redox state. The oxidized form consti-
tutes less than 1% of the reduced form. Glutathione is degraded in the cell cytoplasm
through the glutathione cycle, also known as the γ-glutamyl cycle, resulting in the re-
lease of free amino acids—glutamate, cysteine, and glycine—and its re-synthesis from
these same precursors. This cycle was first proposed by Meister et al. [16,17] and has
since been further refined [18–20]. The glutathione cycle involves two key enzymatic
steps in its non-ribosomal biosynthesis in the cytosol [21]. The first step, catalyzed by
γ-glutamylcysteine synthetase (or glutamate cysteine ligase), combines glutamate and
cysteine in an ATP-dependent reaction to form γ-glutamylcysteine. In the second step,
glutathione synthetase adds glycine to γ-glutamylcysteine, again using ATP, to produce
glutathione (γ-glutamylcysteinylglycine). The main factors influencing glutathione syn-
thesis are the availability of cysteine, the sulfur-containing amino acid precursor, and
the activity of the rate-limiting enzyme γ-glutamylcysteine synthetase, which consists of
catalytic and modifier subunits [21–23]. Once synthesized, glutathione can be broken down
by the cytoplasmic ChaC family of γ-glutamyl cyclotransferases, which specifically target
glutathione for degradation [24–26]. This degradation releases 5-oxoproline and cysteinyl-
glycine, which are further processed into glutamate, cysteine, and glycine, respectively.
These amino acids are then reused to synthesize new glutathione molecules, maintaining
the cycle’s efficiency in cellular antioxidant defense and detoxification [27]. Together, these
metabolic pathways form the glutathione or γ-glutamyl cycle, a recycling mechanism that
sustains intracellular levels of this crucial tripeptide [28]. Variations in glutathione levels
are the result of changes in the synthesis and degradation rates of the tripeptide (Figure 1).

Glutathione metabolism is essential for maintaining cellular redox balance and is
tightly regulated across various tissues and cellular compartments. Synthesis of glutathione
predominantly occurs in the liver [20,21], which is the main site for systemic production,
but it also takes place in other tissues, including the kidneys, lungs, brain, gut, skeletal
muscle, heart and erythrocytes [16,21,29]. Within cells, glutathione is primarily found in the
cytoplasm, but significant amounts are also present in mitochondria and the nucleus, where
it mitigates oxidative damage and supports cell function [30]. In addition to its intracellular
roles, glutathione circulates extracellularly in the plasma, providing systemic antioxidant
defense by balancing redox states in the blood [31]. The degradation of glutathione is
largely facilitated by the γ-glutamyl cycle. Here, γ-glutamyl cyclotransferase initiates
glutathione breakdown, generating metabolites that allow for the recycling of constituent
amino acids—glutamate, cysteine, and glycine [17,32].

Glutathione is found in higher concentrations in erythrocytes [33], where it offers
both local and systemic antioxidant protection [29,31,34]. Glutathione plays a key role
in protecting hemoglobin, red blood cell enzymes, and cell membranes from oxidative
damage [25,35]. Degradation is driven by cytoplasmic γ-glutamyl cyclotransferase, which
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converts glutathione into intermediates that can be recycled back into the tripeptide. Ery-
throcytes depend on this pathway to protect against oxidative stress, as they are continually
exposed to reactive oxygen species in the bloodstream. Consequently, the erythrocyte-
specific pathway of glutathione metabolism serves as a critical antioxidant mechanism,
sustaining cellular defense and reflecting systemic redox changes in response to various
physiological stresses, such as those induced by bed rest [6,11,36–43].
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glycine and 5-oxoproline, a crucial step in the breakdown process; CGD (cysteinyl-glycine 
dipeptidase): further hydrolyzes cysteinyl-glycine to yield free cysteine and glycine; OA (5-
oxoprolinase): converts 5-oxoproline into glutamate, aiding in the recycling of amino acids; γ-GCS 
(γ-glutamyl cysteine synthetase): catalyzes the formation of γ-glutamyl-cysteine from glutamate 
and cysteine, the rate-limiting step in glutathione synthesis; GS (glutathione synthetase): combines 
γ-glutamyl-cysteine with glycine to form glutathione. These enzymes work in concert to maintain 
glutathione levels and antioxidant capacity within the cytoplasm of erythrocytes, protecting against 
oxidative damage. 
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Figure 1. The γ-glutamyl cycle. This schematic illustrates the key enzymes and intermediates in-
volved in glutathione metabolism within erythrocytes. GSH (reduced glutathione): the primary
antioxidant form of glutathione, which can be oxidized to GSSG (oxidized glutathione) to maintain
redox balance; GP (glutathione peroxidase): catalyzes the oxidation of GSH to GSSG, neutralizing re-
active oxygen species; GR (glutathione reductase): converts GSSG back to GSH, thus regenerating the
antioxidant pool; γ-GCT (γ-glutamyl cyclotransferase): degrades glutathione into cysteinyl-glycine
and 5-oxoproline, a crucial step in the breakdown process; CGD (cysteinyl-glycine dipeptidase):
further hydrolyzes cysteinyl-glycine to yield free cysteine and glycine; OA (5-oxoprolinase): converts
5-oxoproline into glutamate, aiding in the recycling of amino acids; γ-GCS (γ-glutamyl cysteine
synthetase): catalyzes the formation of γ-glutamyl-cysteine from glutamate and cysteine, the rate-
limiting step in glutathione synthesis; GS (glutathione synthetase): combines γ-glutamyl-cysteine
with glycine to form glutathione. These enzymes work in concert to maintain glutathione levels and
antioxidant capacity within the cytoplasm of erythrocytes, protecting against oxidative damage.

In this study, we assessed the glutathione system and all intermediate metabolites of
the γ-glutamyl cycle during short-term bed rest in the erythrocytes of healthy volunteers.
Analyses were conducted on the 5th and 10th days of bed rest, with enzymatic activities
determined by expressing the ratio between product and precursor. The objective was
to correlate changes in glutathione concentrations with variations in the activity of key
enzymes regulating the synthesis and degradation of the tripeptide. Additionally, to
validate this new approach, we measured red blood cell concentrations of γ-glutamyl cycle
intermediates in blood samples from two previously published studies where glutathione
turnover was measured [44,45]. In one study [45], the administration of an alkalizing
agent during bed rest led to increased glutathione concentrations and reduced turnover,
indicating inhibited degradation. In the other study [44], prolonged hypoxia during bed
rest resulted in increased glutathione concentrations and increased turnover, indicating
stimulated synthesis.
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2. Materials and Methods
2.1. Subjects and Experimental Design

The studies were part of the Italian Space Agency (ASI) project “MARS-PRE Bed
Rest SBI 2019” and the European Union Italy-Slovenia Interreg project “X-BRAIN-net”.
Both bed rest studies were conducted at Izola General Hospital, Slovenia, in 2019 and
2023. The study protocols received approval from the National Ethical Committee of the
Slovenian Ministry of Health (reference numbers: 0120-304/2019/9 and 0120-123/2023/9)
and were carried out in compliance with the standards set by the Declaration of Helsinki.
Before participation, all subjects were thoroughly informed about the study’s objectives,
procedures, and potential risks, and written consent was obtained. Nineteen healthy,
recreationally active young men (age: 23 ± 4 years; height: 1.82 ± 0.05 m; body mass:
78.8 ± 8.0 kg; body mass index (BMI): 23.8 ± 2.4 kg/m2) participated in the studies—10 in
2019 and 9 in 2023. Participants underwent medical screening prior to the study. Exclusion
criteria included regular smoking, habitual drug use, blood clotting disorders, history
of deep vein thrombosis, neuromuscular, metabolic, and cardiovascular conditions, past
embolism, inflammatory diseases, psychiatric disorders, epilepsy, and the presence of
ferromagnetic implants. Subjects were subjected to strict horizontal bed rest for 10 days in
2019 and 21 days in 2023, with no deviations from the lying position, muscle stretching, or
static contractions allowed. Participants were continuously monitored via closed-circuit
television and supervised by researchers and medical staff. They arrived at the hospital
three days prior to bed rest for pre-bed rest measurements. During the study, subjects
consumed an individually controlled, standardized diet (60% carbohydrates, 25% fats, and
15% proteins) and were allowed to drink water ad libitum. Blood samples were collected
from each participant’s medial cubital vein in a postabsorptive state at 07:00 on the day
before bed rest and on the 5th and 10th days of bed rest in the 2019 study, and on the 5th,
9th, and 21st days in the 2023 study. The MARS-PRE 2019 bed rest study design has been
previously detailed [46]. Hematocrit levels were assessed using standard methods for all
blood samples. Body composition, specifically fat-free mass (FFM) and fat mass (FM) was
measured using multifrequency bioimpedance (BIA-Human Implus–DSmedica, Milan,
Italy) both before and after the bed rest periods. Bioelectrical impedance measurements
were taken in the morning after an overnight fast, with participants lying in bed for 30 min
before the assessment to ensure proper body fluid redistribution.

2.2. Analyses

We measured erythrocyte concentrations of total glutathione (i.e., the combined levels
of GSH and GSSG), dipeptide intermediates of the γ-glutamyl cycle (cysteinyl-glycine, and
γ-glutamyl cysteine), and select amino acids (5-oxoproline, glutamic acid, glutamine, cys-
teine, glycine, and alanine) using gas chromatography-mass spectrometry (GC-MS) (HP 5890;
Agilent Technologies, Santa Clara, CA, USA). These were analyzed as N-(t-butyldimethylsilyl)-
N-methyltrifluoroacetamide derivatives, following established protocols [11,36,44,45]. Briefly,
known quantities of internal standards—including [glycine-13C2,15N] glutathione, L-[15N]
glycine, L-[3,3-2H2] cysteine, and L-[15N]alanine (Cambridge Isotope Laboratories, Andover,
MA, USA)—were added to 200 µL of erythrocyte. The samples were processed as described
previously [36], with dithiothreitol added to reduce any dimerized glutathione. The deriva-
tives were measured using electron-impact ionization with selective ion monitoring at nominal
m/z values of 366/363 for glutathione, 219/218 for glycine, 433/432 for glutamate, 432/431
for glutamine, 408/406 for cysteine, and 159/158 for alanine. The internal standards L-[15N]
glycine, L-[3,3-2H2] cysteine, and L-[15N] alanine were also utilized to determine dipeptide
concentrations. The concentration of γ-glutamyl-alanine was calculated using a standard
curve between γ-glutamyl-alanine and L-[15N] alanine at a nominal m/z of 159/132. Simi-
larly, the concentration of cysteinyl-glycine was determined using a standard curve between
cysteinyl-glycine and L-[15N] glycine at a nominal m/z of 219/304, and γ-glutamyl-cysteine
concentration was calculated by a standard curve between γ-glutamyl-cysteine and L-[3,3-2H2]
cysteine at a nominal m/z of 408/306. Hematocrit levels were assessed using standard meth-



Antioxidants 2024, 13, 1430 5 of 16

ods. The GSH/GSSG ratio in red blood cells was measured using a commercially available
kit (Oxford Biomedical Research Inc., Rochester Hills, MI, USA). Erythrocyte concentrations
of 5-oxoproline, glutamine, and glutamate were determined by adding known amounts of
L-[15N] glutamate and L-[15N] glutamine as internal standards to the known volume of ery-
throcyte. Silylated derivatives were measured using electron-impact ionization with selective
ion monitoring at nominal m/z values of 432/433 for glutamic acid, 431/432 for glutamine,
and 300 for the 5-oxoproline derivative. The 5-oxoproline concentration was calculated us-
ing a standard curve between 5-oxoproline and glutamate at a nominal m/z of 300/432 [47].
Plasma levels of insulin, glucose, high-sensitivity CRP, total cholesterol, HDL-C, LDL-C, triglyc-
erides, AST, ALT, albumin, and creatinine were measured by a certified external laboratory
(Synlab Italia Srl, Brescia, Italy) using standard methods. The Homeostatic Model Assessment
was applied to calculate insulin resistance (HOMA-IR) and insulin secretion (HOMA-β%) by
standard equations [44] as follows: HOMA-IR = [fasting glucose (mg/dL) × fasting insulin
(µU/mL)/405]; HOMA-β% = [360 × fasting insulin (µU/mL)]/[fasting glucose (mg/dL) − 63].
The expression of the catalytic and modulator subunits of γ-glutamyl cysteine synthetase in
erythrocytes was measured via Western blot analysis in the 10 participants from the MARS-PRE
Bed Rest SBI 2019 study. Protein concentrations of these enzyme subunits were expressed
as a ratio to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein levels, following
previously established protocols [36]. The activities of the five γ-glutamyl cycle enzymes
(Figure 1) were assessed by calculating product-to-precursor ratios (expressed as fraction or
percent), including: γ-glutamyl cyclotransferase (cysteinyl-glycine-to-glutathione % ratio and
5-oxoproline-to-glutathione % ratio), cysteinyl-glycine dipeptidase (glycine-to-cysteinyl-glycine
ratio and cysteine-to-cysteinyl-glycine ratio), 5-oxoprolinase (glutamate-to-5-oxoproline ratio),
γ-glutamyl cysteine synthetase (γ-glutamyl-cysteine-to-cysteine % ratio, γ-glutamyl-cysteine-to-
glutamate % ratio), and glutathione synthetase (glutathione-to-γ-glutamyl-cysteine ratio and
glutathione-to-glycine ratio).

2.3. Validation of Glutathione Kinetics

We compared glutathione kinetics, as measured by intermediate levels in the erythro-
cyte γ-glutamyl cycle, with kinetics assessed by the rate of L-[2H2-glycine] incorporation
into the tripeptide. This comparison was drawn from previous bed rest studies con-
ducted under different experimental conditions, such as alkali supplementation [45] and
hypoxia [44]. While the experimental design and results of glutathione kinetics using stable
isotopes have been published earlier, the analysis of intermediate levels in the erythrocyte
γ-glutamyl cycle was conducted later on blood samples that had been stored at −80 ◦C, as
described above.

2.4. Statistical Analysis

All values are presented as means ± SD. The data were analyzed using repeated
measures analysis of covariance (RM-ANCOVA), with time points (baseline, 5-day bed
rest, and 10-day bed rest—combining results from days 9 and 10) as within-subject factors.
Baseline values were used as covariates when applicable. Post hoc analysis was conducted,
when appropriate (i.e., significant effects of bed rest), using t-tests with Bonferroni adjust-
ment to evaluate the specific effects of bed rest days. We assessed the time course of bed
rest-induced percentage changes in glutathione levels, the cysteinyl-glycine-to-glutathione
ratio, and the γ-glutamyl-cysteine-to-cysteine ratio on the 5th, 10th, and 21st days of bed
rest. Data from the MARS-PRE study (assessments on the 5th and 10th days of bed rest,
n = 10) and the X-BRAIN-net study (assessments on the 5th, 10th, and 21st days of bed
rest, n = 9) were combined with data from previous bed rest studies, assessments on the
10th day of bed rest, n = 11; see Ref. [44], assessments on the 21st day of bed rest, n = 7,
(see Ref. [45]). Percentage changes at different time points were compared using paired or
unpaired t-tests, as appropriate, with Bonferroni adjustments. All comparisons were con-
sidered statistically significant at p ≤ 0.05. Relationships between variables were analyzed
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using bivariate correlation with Pearson’s coefficient. Statistical analysis was performed
using SPSS software (version 12; SPSS Inc., Chicago, IL, USA).

3. Results

FFM, an indicator of lean body mass, decreased from 62.4 ± 1.9 to 61.0 ± 1.7 kg
(p = 0.002) after 10 days of bed rest in the 2019 study. FFM decreased from 66.5 ± 5.3 to
62.9 ± 4.5 kg (p = 0.001) after 21 days of bed rest in the 2023 study. FM, an indicator of
adipose tissue and energy balance, did not change significantly from baseline (p = 0.75)
after 10 days of bed rest (15.1 ± 6.1 and 15.0 ± 6.2 kg, respectively) in the 2019 study. FM
increased significantly from baseline (p < 0.001) after 21 days of bed rest from 12.5 ± 4.7 to
15.6 ± 5.9 kg in the 2023 study.

Table 1 shows bed rest-induced changes in routine biochemical parameters in the
postabsorptive state. During bed rest, plasma fasting insulin concentration increased signif-
icantly, indicating the development of inactivity-induced insulin resistance. Consistently,
HDL cholesterol decreased, and the ratio of triglycerides to HDL cholesterol increased. The
HOMA Insulin Resistance index tended to increase, whereas the HOMA Insulin Secretion
index increased significantly. Total and LDL cholesterol significantly decreased during bed
rest. Plasma liver enzymes, CRP, and creatinine did not change significantly.

Table 1. Bed rest effects on plasma concentrations of basic biochemical parameters and markers of
insulin sensitivity and secretion.

Baseline 5th BR Day 10th BR Day p
BR Effect

Insulin (µU/mL) 6.4 ± 2.7 7.3 ± 3.6 8.1 ± 4.1 0.041
Glucose (mg/dL) 86 ± 4 84 ± 3 82 ± 5 0.004
HOMA-IR index 1.3 ± 0.6 1.5 ± 0.7 1.7 ± 0.9 0.096
HOMA-β% 104 ± 50 129 ± 66 159 ± 84 0.006
Total cholesterol (mg/dL) 144 ± 31 141 ± 24 136 ± 23 0.013
LDL cholesterol (mg/dL) 85 ± 27 85 ± 20 81 ± 19 0.048
HDL cholesterol (mg/dL) 43 ± 10 40 ± 11 39 ± 10 0.001
Triglyceride (mg/dL) 76 ± 20 83 ± 26 81 ± 26 0.412
Triglyceride/HDL cholesterol 2.0 ± 1.0 2.3 ± 1.1 2.3 ± 1.1 0.011
ALT (mU/mL) 19 ± 7 19 ± 7 23 ± 12 0.182
AST (mU/mL) 36 ± 8 37 ± 7 39 ± 8 0.267
γGT (mU/mL) 18 ± 1 19 ± 2 21 ± 3 0.807
CRP (mg/L) 0.8 ± 1.1 0.6 ± 1.2 0.6 ± 0.8 0.439
Creatinine (mg/dL) 1.0 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 0.154

BR: Bed Rest; HOMA-IR: homeostatic model assessment—insulin resistance; HOMA-β%: homeostatic model
assessment—insulin secretion (β-cell function); LDL: low-density lipoprotein; HDL: high-density lipoprotein;
ALT: alanine transaminase; AST aspartate transaminase; γGT: γglutamyl transferase; CRP: C-reactive protein.

Table 2 shows the levels of total glutathione and intermediate substrates of the γ-
glutamyl cycle in erythrocytes in ambulatory conditions and during early and late bed rest.
The reduced-to-oxidized glutathione ratio (GSH/GSSG) is also presented. Total glutathione
decreased by −9 ± 9% during the first 5 days of bed rest and increased from day 5 to day
9 or 10 by 11 ± 9%, returning approximately to baseline ambulatory values. The ratio
between oxidized and reduced glutathione did not change significantly during bed rest.

Cysteinyl-glycine and 5-oxoproline are direct products of glutathione catabolism; their
intracellular concentration is about 0.5% and 9% of that of glutathione, respectively. γ-
glutamyl cysteine is the direct precursor of glutathione synthesis, and its concentration is
about 0.14% of that of glutathione. We did not observe any significant effect of bed rest on
the concentration of any of the intermediate metabolites of the γ-glutamyl cycle. In contrast,
bed rest significantly decreased cytoplasmic concentration of cysteine, the precursor of
γ-glutamyl cysteine, together with glutamic acid.
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Table 2. Bed rest effects on the ratio between reduced and oxidized glutathione as well as the levels
of total glutathione and of intermediate substrates of the γ-glutamyl cycle in erythrocytes.

Baseline 5th BR Day 10th BR Day p
BR Effect

Total glutathione 2268 ± 619 2093 ± 689 * 2279 ± 671 # <0.001
GSH/GSSG 247 ± 70 291 ± 87 184 ± 18 0.34
γ-glutamyl alanine 73 ± 28 70 ± 27 78 ± 30 0.223
Cysteinyl-glycine 9.3 ± 1.0 9.5 ± 0.7 9.3 ± 1.5 0.686
5-oxoproline 199 ± 36 183 ± 34 187 ± 29 0.263
Glutamic acid 285 ± 72 280 ± 67 275 ± 68 0.548
γ-glutamyl cysteine 3.2 ± 1.2 3.4 ± 1.2 3.2 ± 1.0 0.603
Glutamine 451 ± 35 459 ± 34 438 ± 47 0.120
Cysteine 103 ± 30 101 ± 31 90 ± 19 0.020
Glycine 470 ± 102 476 ± 112 478 ± 104 0.671
Alanine 258 ± 38 288 ± 35 298 ± 36 0.001

BR: Bed Rest; GSH/GSSG: the ratio between reduced and oxidized glutathione. Values are presented as
mean ± SD. p, repeated measures ANOVA or ANCOVA, post hoc analysis by paired t-test with Bonferroni
correction; *, p ≤ 0.05 versus baseline; #, p ≤ 0.05 versus 5th bed rest day. N = 19. Units are nmol/mL erythrocyte
volume except for the GSH/GSSG ratio. Concentrations of total glutathione and of intermediate substrates of
the γ-glutamyl cycle in erythrocytes were determined using gas chromatography-mass spectrometry and stable
isotopes as internal standards. The ratio between reduced and oxidized glutathione was directly determined by
the enzymatic method. See Section 2.2.

Table 3 shows γ-glutamyl cycle enzyme activities estimated as product-to-precursor ratios
or percent. γ-glutamyl cyclotransferase activity, estimated as cysteinyl-glycine/Glutathione,
index of glutathione catabolism, significantly increased by 14 ± 22% during the first 5 days
of bed rest and decreased from day 5 to day 9 or 10 by −10 ± 14%, returning approximately
to baseline ambulatory values. Bed rest-related changes of cysteinyl-glycine/glutathione (i.e.,
γ-glutamyl cyclotransferase activity) and of total glutathione concentration from ambulatory to
day 5 (Spearman R = −0.80) and from day 5 to day 10 (Spearman R = −0.53) were inversely
correlated (p ≤ 0.01). The activity of γ-glutamyl cysteine synthetase, the key enzyme for
glutathione synthesis, is expressed either as the ratio between γ-glutamyl cysteine to cysteine
or as the ratio between γ-glutamyl cysteine to glutamate, significantly increased during bed
rest. The ratio between γ-glutamyl cysteine to cysteine increased from basal by 12 ± 30%
and 20 ± 41% at day 5 and at day 10, respectively. The ratio between γ-glutamyl cysteine to
glutamate increased from basal by 14 ± 43% and 10 ± 35% at day 5 and at day 10, respectively.
5-oxoprolinase activity, expressed as glutamate-to-5-oxoproline ratio, significantly increased
following bed rest.

Table 3. Bed rest effects on γ-glutamyl cycle enzyme activities estimated as product-to-precursor
ratios in erythrocytes.

Baseline 5th BR Day 10th BR Day p
BR Effect

Cysteinyl-glycine/glutathione, % (γ-GCT) 0.43 ± 0.09 0.49 ± 0.13 * 0.43 ± 0.10 # 0.013
5-oxoproline/glutathione, % (γ-GCT) 9.25 ± 2.44 9.59 ± 3.28 8.96 ± 2.94 0.340
glycine/cysteinyl-glycine, ratio (CGD) 50 ± 9 50 ± 9 53 ± 16 0.422
cysteine/cysteinyl-glycine, ratio (CGD) 11.2 ± 3.9 10.6 ± 2.7 9.9 ± 2.8 0.030
glutamate/5-oxoproline, ratio (OA) 1.4 ± 0.3 1.6 ± 0.4 1.5 ± 0.4 0.029
γ-glutamyl cysteine/cysteine, % (γ-GCS) 3.12 ± 0.81 3.41 ± 0.97 3.61 ± 0.62 0.015
γ-glutamyl cysteine/glutamate, % (γ-GCS) 1.14 ± 0.36 1.21 ± 0.33 1.18 ± 0.34 0.006
Glutathione/γ-glutamyl cysteine, ratio (GS) 769 ± 244 646 ± 156 757 ± 234 0.17
Glutathione/glycine, ratio (GS) 4.8 ± 0.8 4.4 ± 0.8 4.7 ± 0.8 0.07

BR, Bed Rest; γ-GCT, γ-glutamyl cyclotransferase; CGD, cysteinyl glycine dipeptidase; OA, 5-oxoprolinase; γ-GCS,
γ-glutamyl cysteine synthetase; GS, glutathione synthetase. Values are presented as mean ± SD. p, repeated
measures ANOVA or ANCOVA, post hoc analysis by paired t-test with Bonferroni correction; *, p ≤ 0.05 versus
baseline; #, p ≤ 0.05 versus 5th bed rest day. n = 19.
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Table 4 shows bed rest effects on expression levels of the γ-glutamyl cysteine syn-
thetase enzyme in erythrocytes. There was a significant bed rest effect on γ-glutamyl cys-
teine synthetase—modulator subunit, while no bed rest effect was observed on γ-glutamyl
cysteine synthetase—catalytic subunit.

Table 4. Bed rest effects on expression levels of the γ-glutamyl cysteine synthetase enzyme in
erythrocytes.

Baseline 5th BR Day 10th BR Day p
BR Effect

γ-GCS-C (fraction of GAPDH) 0.54 ± 0.13 0.54 ± 0.16 0.54 ± 0.16 0.773
γ-GCS-M (fraction of GAPDH) 1.00 ± 0.16 0.95 ± 0.09 0.96 ± 0.12 0.003
γ-GCS-M/γ-GCS-C (ratio) 1.98 ± 0.61 1.89 ± 0.58 1.95 ± 0.66 0.512

BR, Bed Rest; γ-GCS-C, γ-glutamyl cysteine synthetase—catalytic subunit; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; γ-GCS-M, γ-glutamyl cysteine synthetase—modulator subunit. p, repeated measures ANOVA or
ANCOVA, n = 10.

Figure 2 illustrates an inverse relationship (Pearson R = −0.70, p = 0.02, n = 10) between
bed rest-induced changes in the γ-glutamyl cysteine-to-cysteine ratio and the expression
level of the γ-glutamyl cysteine synthetase modulator subunit from baseline to day 5 of
bed rest.
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Figure 3 shows percent changes in glutathione concentration, γ-glutamyl cyclotrans-
ferase activity, and γ-glutamyl cysteine synthetase activity after 5, 10, and 21 days of bed
rest. Data from the present studies (MARS-PRE 2019 and X-BRAIN-net 2023 bed rest stud-
ies) were combined with results obtained in different bed rest studies [44,45]. Glutathione
concentrations decreased early to return to approximately baseline levels in the following
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days. Cysteinyl glycine-to-glutathione ratio, index of γ-glutamyl cyclotransferase activity,
and a marker of glutathione degradation increased early to return to approximately base-
line levels in the following days. γ-glutamyl cysteine-to-cysteine ratio, index of γ-glutamyl
cysteine synthetase activity, and a marker of glutathione synthesis tended to increase
throughout the bed rest period.
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Figure 3. Changes from baseline of glutathione concentration, cysteinyl glycine-to-glutathione ratio
(index of γ-glutamyl cyclotransferase activity a marker of glutathione degradation), and γ-glutamyl
cysteine-to-cysteine ratio (index of γ-glutamyl cysteine synthetase activity a marker of glutathione
synthesis) after 5, 10, and 21 days of bed rest. Data from the present studies (MARS-PRE 2019
and X-BRAIN-net 2023 bed rest studies) were combined with results obtained in different bed rest
studies [44,45]. *, p < 0.05 bed rest vs ambulatory paired t-test with Bonferroni correction; #, p < 0.05
vs bed rest 5 days unpaired t-test with Bonferroni correction.

We compared glutathione kinetics, as determined by assessing the γ-glutamyl cycle,
with the results of two previous studies [44,45] in which we measured glutathione turnover
through the direct incorporation of L-[2H2-glycine] into the tripeptide. In one study [45],
alkali supplementation significantly increased glutathione concentration by 5 ± 1% and
decreased turnover by −37 ± 13%, which suggests a predominant inhibition of degradation
rather than stimulation of glutathione synthesis. As confirmation of this kinetic assess-
ment, the analysis of the γ-glutamyl cycle in stored blood samples indicated that alkali
supplementation significantly (p < 0.05) decreased the cysteinyl-glycine-to-glutathione %
ratio from 0.61 ± 0.06 to 0.54 ± 0.04, suggesting decreased γ-glutamyl cyclotransferase
activity a marker of glutathione degradation. Alkali supplementation did not change
significantly γ-glutamyl cysteine-to-cysteine % ratio from 4.61 ± 1.00 to 5.06 ± 1.00, a
marker of glutathione synthesis and of the enzyme γ-glutamyl cysteine synthetase.

The other study [44] investigated the effects of 10 days of experimental hypoxia in
ambulatory or bed rest conditions on hematocrit, whole blood glutathione concentration,
and RBC glutathione turnover, as shown in Table 5. Hypoxia significantly increased the
hematocrit, glutathione concentration, and turnover, which suggests a predominant stimu-
lation of synthesis rather than an inhibition of glutathione degradation. As confirmation of
this kinetic assessment, γ-glutamyl cysteine synthetase significantly increased following
hypoxia, while γ-glutamyl cyclotransferase did not change. Figure 4 shows the relation-
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ships (Pearson R = 0.55, p < 0.02) between hypoxia-mediated RBC changes of γ-glutamyl
cysteine synthetase and glutathione turnover in ambulatory and bed resting subjects.

Table 5. The effects of hypoxia in ambulatory and bed rest conditions on glutathione concentrations,
fractional turnover rate, and markers of glutathione degradation and synthesis in erythrocytes; see
Ref. [44].

Ambulatory 10-Day Bed Rest p *

Normoxia Hypoxia Normoxia Hypoxia Bed Rest
Effect

Hypoxia
Effect Interaction

Hematocrit (%) 46 ± 1 47 ± 1 51 ± 1 51 ± 1 0.20 <0.001 0.12
Glutathione concentration
(mmol/L WB) 1245 ± 49 1331 ± 52 1236 ± 54 1287 ± 51 0.22 0.01 0.45

Glutathione Fractional
Turnover (%/day) 25 ± 4 38 ± 6 35 ± 3 41 ± 3 0.09 0.03 0.21
a Cysteinyl-
glycine/glutathione,
% ratio

0.33 ± 0.01 0.36 ± 0.02 0.36 ± 0.02 0.35 ± 0.01 0.08 0.10 0.53

b γ-glutamyl
cysteine/cysteine, % ratio

4.342 ± 0.341 4.344 ± 0.291 4.238 ± 0.241 4.280 ± 0.258 0.06 0.03 0.14

WB, whole blood. *, data were analyzed using a 2-factor repeated measure ANOVA with interaction. n = 11.
a, marker of glutathione degradation and of the enzyme γ-glutamyl cyclotransferase. b, marker of glutathione
synthesis and of the enzyme γ-glutamyl cysteine synthetase.
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4. Discussion

In this study, we examined the changes in erythrocyte glutathione levels during a
short-term bed rest experiment. By the 5th day of bed rest, we observed a significant
reduction in glutathione levels, with concentrations dropping by approximately 13% from
baseline. However, in the days that followed, glutathione levels rose significantly, returning
to baseline by the 10th day of bed rest. Additionally, we measured the erythrocyte levels
of intermediate metabolites in the γ-glutamyl cycle, a series of cytoplasmic reactions
critical for glutathione synthesis and degradation. Each enzyme’s activity was assessed by
calculating the ratio of product to precursor. Our findings showed that the initial depletion
of glutathione during the first days of bed rest was linked to a significant increase in the



Antioxidants 2024, 13, 1430 11 of 16

cysteinyl-glycine-to-glutathione ratio and a trend toward an increase in the 5-oxoproline-to-
glutathione ratio. These ratios, which reflect products of glutathione catabolism, indicate
the activation of γ-glutamyl cyclotransferase, the main enzyme responsible for glutathione
breakdown [24–26]. This early surge in glutathione degradation subsided in the following
days. The importance of glutathione degradation in the initial decrease followed by the
subsequent increase in glutathione levels is suggested by the inverse correlation between
changes in the cysteinyl-glycine-to-glutathione ratio (i.e., γ-glutamyl cyclotransferase
activity) and total glutathione concentration (p ≤ 0.01). Moreover, the rise in glutathione
levels from the 5th to the 10th day was associated with significant increases in the γ-
glutamyl cysteine-to-cysteine and γ-glutamyl cysteine-to-glutamate ratios, reflecting the
activity of γ-glutamyl cysteine synthetase, a key regulator of glutathione synthesis [19,21].

The initial reduction in glutathione, likely driven by an increase in its catabolism,
seems to be a response to oxidative stress during the early phase of bed rest. This inactivity-
induced early oxidative stress is associated with both circulating [6] and muscle markers [7]
of redox imbalance. In experimental models of muscle inactivity, including those in animals
and humans, mitochondrial release of reactive oxygen species (ROS) has been observed,
leading to the activation of antioxidant defenses [1]. Our previous research demonstrated
that the early activation of oxidative stress markers in muscle, such as heme oxygenase-1
and mitochondrial heat shock protein-70, occurs before muscle atrophy becomes apparent,
typically around the eighth day of short-term bed rest. During prolonged bed rest, oxidative
stress markers return to baseline by day 35 [13].

Transient glutathione depletion is also seen in other clinical conditions characterized
by acute oxidative stress, such as sepsis [48], experimental lipopolysaccharide adminis-
tration [49], intense physical exercise [50], alcohol consumption [51], intermittent hypoxia
in obstructive sleep apnea syndrome [52], hyperglycemia [53], and hyperinsulinemia [49].
Extensive evidence suggests that reduced glutathione levels are linked to oxidative stress,
insulin resistance, endothelial dysfunction, muscle weakness, cardiac dysfunction [54,55],
and non-alcoholic fatty liver disease (NAFLD) [56,57]. This supports the hypothesis that
early glutathione depletion may contribute to the physiological changes commonly associ-
ated with physical inactivity, such as insulin resistance, dyslipidemia, muscle atrophy, and
reduced muscle strength.

In this study, we assessed RBC glutathione kinetics using a novel method that measures
intermediate metabolites of the γ-glutamyl cycle in erythrocytes. This five-enzyme cycle is
essential for both the synthesis and degradation of glutathione. The clinical importance
of the γ-glutamyl cycle in maintaining glutathione homeostasis is highlighted by the
severe consequences observed in individuals with congenital enzyme defects [58]. γ-
glutamylcysteine synthetase, the rate-limiting enzyme in glutathione synthesis, is critical
in this process, with deficiencies leading to significant intracellular glutathione depletion
and associated conditions like hemolytic anemia and neurological deficits [59]. Conversely,
congenital disabilities in glutathione-degrading enzymes result in elevated intracellular
concentrations and urinary excretion of the tripeptide, along with moderate intellectual
disability [60]. Conditions such as oxoprolinuria, characterized by elevated 5-oxoproline
levels, point to enzymatic deficiencies that impair glutathione synthesis, resulting from
issues with enzymes like 5-oxoprolinase, glutathione synthetase, or γ-glutamylcysteine
synthetase [61,62]. These deficiencies underscore the delicate balance needed to maintain
appropriate glutathione levels and the potential systemic effects of disruptions in the
γ-glutamyl cycle.

We validated the assessment of the cysteinyl-glycine-to-glutathione ratio (reflecting γ-
glutamyl cyclotransferase activity) and the γ-glutamyl cysteine-to-cysteine ratio (indicating
γ-glutamylcysteine synthetase activity) as indices of glutathione degradation and synthesis
rates, respectively. This validation was conducted using blood samples from two previous
studies [44,45], where erythrocyte glutathione kinetics were directly assessed by infusing a
stable isotope of glycine and measuring its incorporation into the tripeptide. This method
accurately evaluates glutathione turnover by simultaneously determining synthesis and
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degradation rates. However, changes in glutathione turnover should be interpreted in
the context of tripeptide concentrations. When concentrations are stable, synthesis and
degradation rates are balanced. An increase in concentration, along with a rise in turnover,
suggests that synthesis is stimulated and surpasses degradation. Conversely, if turnover
decreases while concentrations rise, degradation is inhibited without significant stimulation
of synthesis.

In one study [45], administering an alkalizing agent to healthy volunteers during
21 days of bed rest led to decreased glutathione turnover and increased concentrations,
attributed to reduced degradation. Retrospective analysis of blood samples from this study
showed that alkalinization significantly increased γ-glutamyl cyclotransferase activity (mea-
sured by the cysteinyl-glycine-to-glutathione ratio) without affecting γ-glutamylcysteine
synthetase activity (measured by the γ-glutamylcysteine-to-cysteine ratio). This finding
confirms that the cysteinyl-glycine-to-glutathione ratio is a reliable marker of glutathione
degradation. In the other study [44], healthy volunteers stayed in a hypoxic environment
for 10 days under ambulatory and bed rest conditions, simulating an altitude of 4000 m. Hy-
poxia increased glutathione turnover and concentrations, attributed to enhanced synthesis.
Retrospective analysis of blood samples from this study indicated that hypoxia significantly
increased γ-glutamylcysteine synthetase activity (as shown by the γ-glutamylcysteine-
to-cysteine % ratio) without affecting γ-glutamyl cyclotransferase activity (measured by
the cysteinyl-glycine-to-glutathione % ratio). Additionally, hypoxia-induced changes in
γ-glutamylcysteine synthetase activity were significantly correlated with changes in glu-
tathione turnover (Figure 3). These results demonstrate that the γ-glutamylcysteine-to-
cysteine % ratio serves as an indicator of the rate of glutathione synthesis. Therefore,
modulating the activities of key enzymes in the γ-glutamyl cycle can effectively alter
glutathione levels in response to different pharmacological and environmental conditions.

In a subgroup of 10 subjects, we determined the expression levels of the γ-glutamylcysteine
synthetase enzyme in erythrocytes using Western blot analysis (Table 4). Despite bed rest-
induced increases in γ-glutamylcysteine synthetase activity, based on increased product-to-
precursor ratios, we observed a significant decrease in the expression of the modulator subunit
of this enzyme, with no change in the catalytic subunit. This apparent discrepancy might
be explained by a mechanism of metabolic feedback inhibition. High concentrations of γ-
glutamylcysteine relative to cysteine could signal sufficient levels of the glutathione intermediate
precursor, triggering a feedback mechanism that downregulates the modulator subunit of γ-
glutamylcysteine synthetase to prevent overproduction. This view is supported by the inverse
correlation between bed rest-induced changes in the γ-glutamylcysteine-to-cysteine ratio from
baseline to the fifth day and changes in the modulator subunit of γ-glutamylcysteine synthetase
(R = −0.70). Evidence suggests that cysteine supplementation is linked to increased glutathione
synthesis [23,55,63]. Thus, cysteine may directly decrease the γ-glutamylcysteine-to-cysteine
ratio, leading to upregulation of the modulator subunit of γ-glutamylcysteine synthetase.

We integrated data from the recent studies MARS-PRE 2019 and X-BRAIN-net 2023
with information from earlier bed rest studies [44,45] to assess how bed rest duration, up
to 21 days, affects erythrocyte glutathione levels. We examined these changes in relation
to the processes of glutathione synthesis and degradation. Glutathione concentrations
initially dropped by day 5 but returned to near baseline levels by day 10 and were sustained
through day 21. The activity of γ-glutamyl cyclotransferase, an indicator of glutathione
degradation, also increased early on but reverted to baseline levels afterward. In contrast,
γ-glutamylcysteine synthetase activity, a marker of glutathione synthesis, tended to rise
throughout the bed rest period.

Fluctuations in glutathione concentration arise from variations in its synthesis and
degradation rates. We have developed and validated a novel technique for measuring inter-
mediates of the γ-glutamyl cycle in erythrocytes, which enables simultaneous assessment
of glutathione synthesis and degradation rates. This method helps pinpoint the underlying
causes of changes in glutathione kinetics, especially in conditions that impact redox balance
and intracellular glutathione levels. Nutritional interventions, such as cysteine, glycine,
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selenium, and curcumin supplementation, can enhance intracellular glutathione levels by
promoting its synthesis or potentially inhibiting its degradation [23,29,55,63–65].

5. Study Limitations

While this study provides valuable insights into the role of the γ-glutamyl cycle in
glutathione turnover during short-term bed rest, it has some limitations. First, the sample
size was relatively small, consisting of only 19 healthy young male volunteers, which limits
the generalizability of the findings to other populations, such as females, older adults,
or individuals with underlying health conditions. Another limitation is that glutathione
concentrations were measured only in erythrocytes, which may not accurately reflect
glutathione kinetics in other tissues, such as muscle or liver, where oxidative stress and
glutathione turnover may behave differently. Future studies should aim to include a larger,
more diverse sample and assess glutathione kinetics across multiple tissues over a longer
period to provide a more comprehensive understanding of the effects of physical inactivity.

6. Conclusions

In summary, we have created a simple, non-invasive method to evaluate intracellu-
lar glutathione kinetics by measuring intra-erythrocytic γ-glutamyl cycle intermediates.
This technique allows for the detailed characterization of glutathione depletion conditions,
differentiating between accelerated degradation and reduced synthesis. It also facilitates tar-
geted pharmacological and nutritional interventions to boost glutathione levels or prevent
its depletion and enables the assessment of the effectiveness of these interventions.
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