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Abstract

The Wiener index is defined as the sum of distances between all unordered pairs of
vertices in a graph. It is one of the most recognized and well-researched topological indices,
which is on the other hand still a very active area of research. This work presents a natural
continuation of the paper Mathematical aspects of Wiener index (Ars Math. Contemp.,
2016) in which several interesting open questions on the topic were outlined. Here we
collect answers gathered so far, give further insights on the topic of extremal values of
Wiener index in different settings, and present further intriguing problems and conjectures.
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1 Introduction
The Wiener index, W (G), is a topological index of a connected graph, defined as the sum
of the lengths of the shortest paths between all unordered pairs of vertices in the graph. In
other words, for a connected graph

W (G) =
∑

{u,v}∈V (G)

d(u, v),

where d(u, v) denotes the distance between vertices u and v in G. This graph invariant has
been investigated by numerous authors (see e.g. [24, 26, 27, 52, 56, 81]) under a variety of
other names like transmission, total status, sum of all distances, path number and Wiener
number of a graph. Due to its basic character and applicability, it has arisen in diverse
contexts, including efficiency of information, sociometry, mass transport, cryptography,
theory of communication, molecular structure, complex network topology and many more.

The index was originally introduced in 1947 by Harold Wiener for the purpose of de-
termining the approximation formula of the boiling point of paraffin [80]. The defini-
tion of Wiener index in terms of distances between vertices of a graph was first given by
Hosoya [40].

The transmission (also called the distance) of u ∈ V (G) is tG(u)=
∑
v∈V (G) dG(u, v).

Thus the Wiener index can be expressed as

W (G) =
1

2

∑
v∈V (G)

tG(v).

Another view on the Wiener index was presented in [3] as follows. Suppose that
{tG(u) |u ∈ V (G} = {d1, d2, . . . , dk}. Assume in addition that G contains ti vertices
whose transmission is di, 1 ≤ i ≤ k. Then the Wiener index of G can be expressed as

W (G) =
1

2

k∑
i=1

tidi.

We therefore say that the Wiener dimension dimW (G) of G is k. That is, the Wiener
dimension of a graph is the number of different transmissions of its vertices.

Fundamental properties regarding extremal values of Wiener index are already a part
of the folklore. In [30] and later in many subsequent papers (e.g. [36, 37]) it was shown
that for trees on n vertices, the maximum Wiener index is obtained for the path Pn, and the
minimum for the star Sn. Thus, for every tree T on n vertices, it holds

(n− 1)2 = W (Sn) ≤W (T ) ≤W (Pn) =

(
n+ 1

3

)
.

Since the distance between any two distinct vertices is at least one, we have that among all
graphs on n verticesKn has the smallest Wiener index. In general, removing (resp. adding)
of an edge from a connected graph results in increased (resp. decreased) Wiener index,
which leads to the observation that Wiener index of a connected graph is less than or equal
to the Wiener index of its spanning tree. Therefore, for any connected graph G on n
vertices, it holds (

n

2

)
= W (Kn) ≤W (G) ≤W (Pn) =

(
n+ 1

3

)
.
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Despite extensive literature on the Wiener index, many interesting and basic questions
remain open. In our previous survey [56] we have exposed some of them that mainly
pertain to extremal values of Wiener index in different settings. In this paper we continue
with summarizing knowledge accumulated since then, and integrate some new conjectures,
problems and ideas for possible future work.

2 Minimum Wiener index for chemical graphs
The degree degG(v) of a vertex v ∈ V (G) in a graph G is |NG(v)|, where NG(v) denotes
the neighborhood of v in G. The maximum degree of a graph G, maxv∈V (G) degG(v), is
denoted by ∆(G), and the minimum degree, minv∈V (G) degG(v), is denoted by δ(G).

Since every atom has a certain valency, chemists are often interested in graphs with
restricted degrees, which correspond to valencies. Particularly interesting is the class of
chemical graphs, i.e. graphs for which the degrees of its vertices do not exceed 4. In [60] the
authors addressed an “overlooked” problem of determining the minimum value of Wiener
index and corresponding extremal graphs among chemical graphs with prescribed number
of vertices. Note that the upper bound for this class of graphs is attained by paths.

Problem 2.1. Find all the chemical graphs G on n vertices with the minimum value of
Wiener index.

Inserting of an edge in a graph decreases the Wiener index, thus one would expect
that its minimum in the class of chemical graphs is attained by 4-regular graphs. Using a
computer it was verified that for n ∈ {1, 2, . . . , 5} minimum is attained for Kn. Extremal
graphs in cases n = 6, 7 are presented in Figure 1. Observe that the first two graphs in
this figure are circulant graphs C6(1, 2) and C7(1, 2), respectively, and they are vertex-
transitive. There are 1929 simple connected graphs on 8 vertices and the minimum Wiener
index value is 40, which is attained by only 6 graphs depicted in Figure 2. Note that the
first three graphs, which are the circulant graph C8(1, 2), the Cartesian product K42P2

and the complete bipartite graph K4,4 = C8(1, 3), respectively, are vertex-transitive. The
above cases support the following conjecture.

Conjecture 2.2. Every chemical graph G on n ≥ 5 vertices with the minimum value of
Wiener index is 4-regular.

Figure 1: Extremal graphs for n = 6 and n = 7.

Although computer results indicate the above conjecture to be true, the problem seems
to be far from tractable. In [60] it is shown that a chemical graph with the minimum value
of Wiener index has at most 3 vertices of degree smaller than 4. In fact, a more general
statement holds.
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Figure 2: Extremal graphs for n = 8.

Observation 2.3. If G is a graph on n vertices with maximum degree ∆, n ≥ ∆ + 1, and
with the minimum possible value of Wiener index, then G contains at most ∆− 1 vertices
whose degree is strictly smaller than ∆, and these vertices induce a clique.

3 Prescribed degrees
As mentioned earlier, among n-vertex graphs with minimum degree at least 1, the maxi-
mum Wiener index is attained by Pn. But when restricting to minimum degree at least 2,
the extremal graph is different. Observe that with the reasonable assumptions ∆ ≥ 2 and
δ ≤ n− 1, the following holds:

• W (Pn) = max{W (G); G has maximum degree at most ∆ and n vertices},

• W (Kn) = min{W (G); G has minimum degree at least δ and n vertices}.

Analogous reasons motivate the following two problems from [56].

Problem 3.1. What is the maximum Wiener index among n-vertex graphs with minimum
degree at least δ?

Problem 3.2. What is the minimum Wiener index among n-vertex graphs with maximum
degree at most ∆?

Both problems are still on the list of unsolved problems, but several results were ob-
tained under additional requirements. Fischermann et al. [33], and independently Jelen
and Trisch [44, 45] solved Problem 3.2 for trees. In addition, they determined the trees
which maximize the Wiener index among all trees of given order whose vertices are either
end-vertices or of maximum degree ∆.
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Stevanović [73] solved Problem 3.1 for trees (where δ = 1) under the assumption that
the maximum degree is precisely ∆. Let Tn,∆ be the tree on n vertices obtained by taking
a path on n−∆ + 1 vertices and joining new ∆− 1 vertices to one end-vertex of the path,
see Figure 3.

Theorem 3.3. For every n-vertex graph G with maximum degree ∆ ≥ 2 it holds that
W (G) ≤W (Tn,∆) with equality if and only if G is Tn,∆.

Figure 3: Graph T9,4.

Dong and Zhou [29] determined the maximum Wiener index of unicyclic graphs with
fixed maximum degree and they characterized the unique extremal graph.

Lin [62] characterized trees with the maximal Wiener index in the class of trees of or-
der n with exactly k vertices of maximum degree, and proposed analogous problem for the
minimum. The solution of this problem was recently presented by Božović et al. in [13].
The same authors considered a similar problem with a predetermined value of the max-
imum degree, i.e. they obtained the maximal value of Wiener index in the class of trees
of order n with exactly k vertices of a given maximum degree and showed that the corre-
sponding maximal trees are caterpillars with certain properties.

Recently Alochukwu and Dankelmann [4] obtained the following asymptotically sharp
upper bound in terms of given minimum and maximum degree.

Theorem 3.4. Let G be a graph of order n, minimum degree δ and maximum degree ∆.
ThenW (G) ≤

(
n−∆+δ

2

)
n+2∆
δ+1 +2n(n−1), and this bound is sharp apart from an additive

constant.

Another interesting class of graphs with restrictions on degrees is the class of regular
graphs, i.e. graphs for which ∆(G) = δ(G). In general, introducing edges in a graph
decreases the Wiener index, but in the class of r-regular graphs on n vertices the number
of edges is fixed, therefore the following conjecture from [54] seems to be reasonable. The
diameter, diam(G), of a graph G is the maximum distance between all pairs of vertices,
i.e. diam(G) = max{d(u, v)| u, v ∈ V (G)}.

Conjecture 3.5. Among all r-regular graphs on n vertices, the maximum Wiener index is
attained by a graph with the maximum possible diameter.

The above conjecture can be supported by the fact that in the case of trees, where the
number of edges is fixed as well, the maximum Wiener index is attained by Pn which has
the largest diameter. In fact, Chen et al. [18] recently proved that the conjecture is valid for
r = 3. More precisely, they proved a conjecture from [54], that cubic graphs of the form
Ln, presented in Figure 4, have maximum Wiener index among all cubic graphs of order n.

The minimum Wiener index in the class of trees is attained by Sn, which has the small-
est diameter. A similar claim may hold for regular graphs [54].
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Figure 4: Graphs L4k+2 (above) and L4k+4 (below).

Conjecture 3.6. Among all r-regular graphs on n vertices, the minimum Wiener index is
attained by a graph with the minimum possible diameter.

Finally, the following problem from [60] is of a special interest.

Problem 3.7. Find all k-regular graphs on n vertices with the smallest value of Wiener
index.

As observed in [60], Problem 3.7 is surprisingly related to the cages and the following
famous degree-diameter problem (see [66] for details).

Problem 3.8 (The degree-diameter problem). Given positive integers d and k, find the
largest possible number n(d, k) of vertices in a graph of maximum degree d and diameter
k.

Computer results in [60] (see also [65]) showed that among graphs with the minimum
Wiener index there are graphs achieving n(k, d) for pairs (k, d) from {(3, 2), (3, 3), (4, 2)}.
There might appear graphs achieving n(k, d) also for higher values of diameter d, but for
those we could not search the space of k-regular graphs of order n exhaustively. Anyway,
for higher diameters the graphs achieving n(k, d) do not need to be those with the small-
est Wiener index. Among extremal graphs found by a computer, n(3, 2) and n(3, 3) are
realized by the well-known Petersen graph and the Flower snark J5. Interestingly, there
appears also the Heawood graph, which is the Cage(3, 6), i.e., the smallest graph of degree
3 and girth 6, see [31].

The following conjectures were proposed in [60] (probably, it suffices to choose nk =
k + 1 therein).

Conjecture 3.9 (The even case conjecture). Let k ≥ 3, and let n be large enough with
respect to k, say n ≥ nk. Suppose that G is a graph on n vertices with the maximum
degree k, and with the smallest possible value of Wiener index. If kn is even, then G is
k-regular.

Conjecture 3.10 (The odd case conjecture). Let k ≥ 3, and let n be large enough with
respect to k, say n ≥ nk. Suppose that G is a graph on n vertices with the maximum
degree k, and with the smallest possible value of Wiener index. If kn is odd, then G has a
unique vertex of degree smaller than k and in that case this smaller degree is k − 1.

4 Wiener index of digraphs
A directed graph (a digraph) D is given by a set of vertices V (D) and a set of ordered
pairs of vertices A(D) called directed edges or arcs. If uv is an arc in D, we say that
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u dominates v. The out-degree d+(u) of a vertex u ∈ V (D) is the number of its out-
neighbors, i.e. the vertices, dominated by u. A (directed) path in D is a sequence of
vertices v0, v1, . . . , vk such that vi−1vi is an arc of D for each i ∈ {1, 2, . . . , k}, and by
adding the arc vkv0 we obtain a directed cycle. An orientation of a graph G is said to be
acyclic if it has no directed cycles. The distance d(u, v) between vertices u, v ∈ V (D) is
the length of a shortest path from u to v. Notice that d(u, v) is usually distinct from d(v, u).

Early studies of Wiener index of digraphs were limited to strongly connected digraphs,
i.e. digraphs in which a directed path between every pair of vertices exists. However, in
the studies of real directed networks it is possible that there is no directed path connecting
some pairs of vertices, thus the convention d(u, v) = 0 is used if there is no directed path
from u to v [11, 12]. Under this assumption, in analogy to graphs, the Wiener index W (D)
of a digraph D is defined as the sum of all distances, where each ordered pair of vertices is
taken into account. Hence,

W (D) =
∑

(u,v)∈V (D)×V (D)

d(u, v).

Let Wmax(G) and Wmin(G) be the maximum possible and the minimum possible,
respectively, Wiener index among all digraphs obtained by orienting the edges of a graph
G. If an orientation of G achieves the minimum Wiener index Wmin(G), we call this
orientation a minimum Wiener index orientation of G.

Problem 4.1. For a given graph G find Wmax(G) and Wmin(G).

In [58] there was posed a question if it is NP-hard to find an orientation of a given graph
which maximizes the Wiener index. Dankelmann [19] answered it affirmatively. Plesnı́k
[69] proved that finding a strongly connected orientation of a given graphG that minimizes
the Wiener index is NP-hard too, but the case for non-necessarily strongly connected di-
graphs is unsolved [58] in general. However, it can be decided in polynomial time if a given
graph with m edges has an orientation for which the Wiener index is precisely m (note that
it cannot be less).

Problem 4.2. What is the complexity of finding Wmin(G) for an input graph G?

The following conjecture from [58] remains unsolved as well, but it is known to hold
for bipartite graphs, unicyclic graphs, the Petersen graph and prisms.

Conjecture 4.3. For every graph G, the value Wmin(G) is achieved by some acyclic ori-
entation of G.

In [67, 69] Plesnı́k and Moon found strongly connected tournaments (orientations of
Kn) with the maximum and the second maximum Wiener index. In [57] it was shown that
the same tournaments solve the problem if we drop out the requirement that the digraph
should be strongly connected. In the same paper oriented Θ-graphs are studied. By Θa,b,c

we denote a graph obtained when two distinct vertices u1 and u2 are connected by three
internally vertex-disjoint paths of lengths a + 1, b + 1 and c + 1, respectively, where
a ≥ b ≥ c and b ≥ 1 (see Figure 5 where a non-strongly connected orientation of Θ3,2,1

is depicted). Although intuitively one may expect that Wmax is attained for some strongly
connected orientation, this is not the case. Namely, in [57] it is shown that the orientation
of Θa,b,c which achieves the maximum Wiener index is not strongly connected if c ≥ 1.
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For strongly connected orientations of Θa,b,c, it was shown that the maximum Wiener
index is achieved by the one in which the union of the u1, u2-paths of lengths a + 1 and
b + 1 forms a directed cycle. Li and Wu [61] confirmed the conjecture from [57], that the
same holds if we drop the assumption that orientations are strongly connected.

Theorem 4.4. Let a ≥ b ≥ c. Then Wmax(Θa,b,c) is attained by an orientation of Θa,b,c

in which the union of the paths of lengths a+ 1 and b+ 1 forms a directed cycle.

u2u1

z1

Figure 5: An orientation of Θ3,2,1.

However, the following conjecture remains open.

Conjecture 4.5. Let G be a 2-connected chordal graph. Then Wmax(G) is attained by an
orientation which is strongly connected.

Among digraphs on n vertices, the directed cycle
−→
C n (in which all edges are directed

in the same way, say clockwise) achieves the maximum Wiener index. In [55] digraphs
with the second maximum Wiener index were investigated. In [58] the Wiener theorem
was generalized to directed graphs, as well as a relation between the Wiener index and
betweenness centrality.

An orientation of a graphG is called k-coloring-induced, if it is obtained from a proper
k-coloring of G such that each edge is oriented from the end-vertex with the bigger color
to the end-vertex with the smaller color. In [58] it was proved that graphs with at most
one cycle and prisms attain the minimum Wiener index for k-coloring-induced orienta-
tion with k being the chromatic number χ(G). The same holds for bipartite graphs,
complete graphs, Petersen graph and others. These observations lead to the conjecture
that Wmin(G) of an arbitrary graph is achieved for a χ(G)-coloring-induced orientation,
which Fang and Gao [32] showed to be false. They expressed the Wiener index of a di-
graph D as W (D) =

∑
u∈V (D) w(u) where w(u) =

∑
v∈V (D) d(u, v), and defined the

notion of Wiener increment. For u ∈ V (D) the Wiener increment of u is defined as
∆w(u) = w(u) − d+(u). The Wiener increment of D, ∆W (D), is the sum of Wiener
increments of all vertices of D. Fang and Gao observed that the comparison of Wiener
indices of two different orientations of a graph is equal to the comparison of their Wiener
increments. Using this observation they found that for the graph G in Figure 6, Wmin(G)
cannot be achieved for any χ(G)-coloring-induced orientation of G, and this is not the
only counterexample. Moreover, their investigations lead them to pose the following two
conjectures.

Conjecture 4.6. For any given constant k ≥ 3, there exists a 3-colorable graph G such
that any minimum Wiener index orientation of G has a directed path of length k.
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Figure 6: A graph G, for which Wmin(G) is not achieved for any χ(G)-coloring-induced
orientation of G.

Conjecture 4.7. For any given constant k ≥ 3, there exists a 3-colorable graph G such
that Wmin(G) cannot be achieved by any k-coloring-induced orientation.

Figure 7: A no-zig-zag path (left) and a zig-zag path (right) on six vertices.

In [58] orientations of trees with the maximum Wiener index were considered. An ori-
entation of a tree is called zig-zag if there is a subpath in which edges change the orientation
twice. If an orientation is not zig-zag, it is no-zig-zag, see Figure 7. A different view on
no-zig-zag trees can be described as follows. A vertex v in a directed tree T is core, if for
every vertex u of T there exists either a directed path from u to v or a directed path from
v to u, see Figure 8. Notice that then in each component C of T − v all edges point in the
direction towards v or all edges point in the direction from v.

Figure 8: The graph on the left-hand side has two core vertices, while the right-hand side
one has no core vertex.

In [58] the following conjecture was proposed.

Conjecture 4.8. Let T be a tree. Then every orientation of T achieving the maximum
Wiener index is no-zig-zag (i.e. has a core vertex).

It was supported by showing that it holds for trees on at most 10 vertices, subdivision of
stars, and trees constructed from two stars whose central vertices are connected by a path.
Furthermore, since it is reasonable to expect that an orientation of a tree maximizing the
Wiener index also maximizes the number of pairs of vertices (u, v) between which there
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exists a path, Conjecture 4.8 is supported also by a result of Henning and Oellermann [39].
They proved that if T is a tree andD is an orientation of T that maximizes the number of or-
dered pairs (u, v) of vertices ofD for which there exists a (u, v)-path inD, thenD contains
a core vertex. However, Li and Wu [61] constructed a tree of order 85 contradicting Con-
jecture 4.8. Independently, Dankelmann [19] found an infinite family of counter-examples.
For k ∈ N, where k is a multiple of 3, let Tk be the tree obtained from a path of order k
with vertices w1, w2, . . . , wk, by connecting vertices u1, u2, . . . , uk2/9 to w1, connecting
x1 from the path x1x2x3x4x5 to w2, and a single vertex y1 to w3. Now let Dk be the
orientation of Tk such the edges of the path w1w2 . . . wk are oriented towards wk, each
edge uiw1 is oriented towards w1, the edges of the path x1x2x3x4x5 are oriented towards
x5, and the edge y1w3 is oriented towards w3, see Figure 9 for an example. Observe that
the edges of the (x5, y1)-path change their direction twice as the path is traversed, thus Dk

is a zig-zag orientation. Dankelmann proved that if k is sufficiently large, then Dk and its
converse (i.e., a digraph obtained by reversing the direction of every arc inDk) are the only
orientations of Tk that maximize the Wiener index, which contradicts Conjecture 4.8.

u4

u3

u2

u1

w1 w2 w3 w4 w5 w6

y1
x1

x2

x3

x4

x5

Figure 9: A no-zig-zag tree T6.

The Cartesian product Pm2Pn of paths on m and n vertices, respectively, is called the
grid and is denoted byGm,n. Ifm = 2, it is a called the ladder graph Ln. Kraner Šumenjak
et al. [75] proved a conjecture from [59] by showing that the maximum Wiener index of
a digraph whose underlying graph is Ln is (8n3 + 3n2 − 5n + 6)/3, and is obtained
for the orientation presented in Figure 10. In addition, they proved a lower bound for
Wmax(G2H) for general graphs G and H , and posed a question regarding its sharpness.
Let τ(G) =

∑
x∈V (G) σ(x), where σ(x) denotes the number of vertices x′ ∈ V (G) for

which there is a path from x to x′ in G.

Theorem 4.9. For any graphs G and H ,

Wmax(G2H) ≥Wmax(G)τ(H) +Wmax(H)|V (G)|2.

Problem 4.10. Is the bound given in Theorem 4.9 sharp? Find a sharp lower bound.

Another problem from [75] concerns a comparison of the maximum Wiener index of
an orientation of G with the Wiener index of the undirected graph G.

Problem 4.11. Find functions f and g so that f(W (G)) ≤ Wmax(G) ≤ g(W (G)) for all
graphs G. In particular, can f and g be linear functions?
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Figure 10: An orientation of the ladder P62P2 with the maximum Wiener index.

Note that the orientation of Ln in Figure 10 is obtained when all layers isomorphic
to one factor are directed paths directed in the same way, except one which is a directed
path directed in the opposite way. Kraner Šumenjak et al. considered the following natural
generalization of this orientation to general grids. Let Dm,n be the orientation of Gm,n
with all Pm-layers oriented up except the last Pm-layer which is oriented down, and all
Pn-layers oriented to the left except the first Pn-layer which is oriented to the right, see the
left graph in Figure 11.

(4, 1) (4, 2) (4, 6)

(1, 1) (1, 2) (1, 6)

(4, 1) (4, 2) (4, 6)

(1, 1) (1, 2) (1, 6)

Figure 11: Two orientations, D4,6 (left) and C4,6 (right), of P42P6.

The authors of [75] conjectured that for every m,n ≥ 2, it holds Wmax(Gm,n) =
W (Dm,n). However, it turns out that a comb-like orientation has significantly bigger
Wiener index. Let Cm,n be an orientation of Gm,n in which the top Pn-layer is directed
to the right and this layer is completed to a directed Hamiltonian cycle C in a zig-zag way
as shown by blue arrows on the right graph in Figure 11. Moreover, the other edges are
directed in such a way that they do not shorten directed blue path starting at the vertex
(1, 1). Of course, Cm,n exists only if n is even. In [53] it was shown that if n ≥ 4 is even,
and m ≥ 3, then W (Cm,n) > W (Dm,n), and further observations led the authors to the
following problem.

Problem 4.12. Find the biggest possible constant c, such that Wmax(Gm,n) ≥ c(mn)3 +
o
(
(mn)3

)
.

To sum up, the following is still open.

Problem 4.13. Find an orientation of Gm,n with the maximum Wiener index.

The authors think the above problem might be difficult as the extremal graphs in the
cases m = 3 and n ∈ {4, 5, 6} do not have any obvious simple property, but they are
strongly connected. Thus they ask the following.

Question 4.14. Let Mm,n be an orientation of Gm,n with the maximum Wiener index. Is
Mm,n strongly connected?
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5 Maximum Winer index of graphs with prescribed diameter
Recall that the eccentricity of a vertex in a connected graph G is the maximum distance
between this vertex and any other vertex of G, and the maximum eccentricity is the graph
diameter. Similarly, the radius of G, denoted by rad(G), is the minimum graph eccen-
tricity. In 1984 Plesnı́k identified graphs as well as digraphs with a given diameter that
minimize the Wiener index (see also [14] for a recent alternative proof), and posed the
opposite problem regarding the maximum [69].

Problem 5.1. What is the maximum Wiener index among graphs of order n and diame-
ter d?

In general this question remains unsolved, but there has been progress and important re-
sults were obtained. First, Wang and Guo [79] determined the trees with maximum Wiener
index among trees of order n and diameter d for some special values of d, 2 ≤ d ≤ 4 or
n − 3 ≤ d ≤ n − 1. Mukwembi and Vetrı́k [68] independently considered trees with the
diameter up to 6 and gave asymptotically sharp upper bounds.

DeLaViña and Waller [22] posed a conjecture with additional restrictions in Prob-
lem 5.1.

Conjecture 5.2. Let G be a graph with diameter d > 2 and order 2d+ 1. Then W (G) ≤
W (C2d+1), where C2d+1 denotes the cycle of length 2d+ 1.

Sun et al. [76] considered general small-diameter and large-diameter graphs. They
observed that if G is a graph on n vertices with diameter equal to 2, then the maximum
Wiener index is attained by the star Sn. For diameter 3 they proposed a conjecture, that the
extremal graph is isomorphic toKc

n, which is a graph of order n that consists of a complete
graph on c vertices and has the rest of the vertices attached to these c vertices as uniformly
as possible (meaning that each of the c vertices of the complete graph has either b(n−c)/cc
or d(n− c)/ce pendant vertices attached, see Figure 12 where K15

4 is depicted.

Figure 12: The graph K15
4 .

Conjecture 5.3. Let G be a graph on n vertices with diameter equal to 3. Then W (G) ≤
W (Kc

n) where c =
⌊√

n2

2(n−1)

⌋
or c =

⌈√
n2

2(n−1)

⌉
.

To explain the results pertaining to trees and a conjecure on general graphs with diam-
eter 4, we need the following definition. Let k = b

√
n− 1c. For k2 + k ≥ n − 1 we

denote by Tn the rooted tree on n vertices in which the root has degree k, n− k2 − 1 of its
neighbours are of degree k + 1 and the rest of them of degree k. When k2 + k ≤ n− 1 let
T ′n denote the rooted tree on n vertices in which the root has degree k+ 1, n− k2 − k− 1
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of its neighbours are of degree k + 1 and the rest of them of degree k. Wang and Guo [79]
gave a complete description of trees with diameter 4 that maximize the Wiener index.

Theorem 5.4. Let T be a tree on n vertices with diameter 4 and let k = b
√
n− 1c. Then

the following holds:

• if k2 + k > n− 1, then W (T ) ≤W (Tn), with equality holding only when T ∼= Tn;

• if k2 + k < n− 1, then W (T ) ≤W (T ′n), with equality holding only when T ∼= T ′n;

• if k2 +k = n−1, thenW (T ) ≤W (Tn) = W (T ′n), with equality holding only when
T ∼= Tn or T ∼= T ′n.

The authors of [76] suspect that the extremal graphs from the theorem above are ex-
tremal also for general graphs.

Conjecture 5.5. The trees Tn and T ′n remain the unique optima in the class of graphs of
diameter 4 on n vertices as it is described in Theorem 5.4 with the only exception of n = 9,
in which case C9 is also an optimal graph.

An interested reader is referred to [76] for computer results supporting Conjectures 5.2,
5.3 and 5.5. The role of extremal graphs in the case of large-diameter graphs play the so
called double brooms D(n, a, b), i.e. graphs consisting of a path on n − a − b vertices
together with a leaves adjacent to one of its end-vertices and b leaves adjacent to the other
end-vertex (see Figure 13 for an example).

Figure 13: Double broom D(12, 4, 3).

Theorem 5.6. Let G be a graph of order n and diameter n− c, where c ≥ 1 is a constant
and n is large enough relative to c. Then W (G) ≤ W (D(n, b(c + 1)/2c, d(c + 1)/2e))
with equality if and only if G ∼= D(n, b(c+ 1)/2c, d(c+ 1)/2e).

Further details on diameters n − 3 and n − 4 can be found in [76]. A different ap-
proach to Problem 5.1 was recently used by Cambie [14] who gave asymptotically sharp
upper bounds for Wiener index. As the main first step towards the proof of his result he
constructed an almost extremal graph, in which there are many pairs of vertices which are
of distance d from each other. This is achieved by having many subtrees with many leaves,
and, when the diameter is even, combining them into one tree. When the diameter is odd,
a central clique is used so that the distance between leaves of different subtrees are of dis-
tance d. Now if we take two vertices at random, the probability that both vertices are leaves
is large since the number of leaves is large. Similarly, since we have many subtrees, the
probability that both leaves are in different subtrees is large. Hence the probability that two
vertices are at maximal distance is large, implying that the average distance is close to d.
The above is a foundation of the following asymptotic solution to the problem of Plesnı́k.
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Theorem 5.7. There exist positive constants c1 and c2 such that for any d ≥ 3 the following
holds. The maximum Wiener index among all graphs of diameter d and order n is between
d− c1 d

3/2
√
n

and d− c2 d
3/2
√
n

, i.e. it is of the form d−Θ
(
d3/2√
n

)
.

In addition, Cambie [14] gives slightly stronger upper bound for trees, by which he
extends a result of Mukwembi and Vetrı́k [68]. Moreover, the results he obtained lead him
to the following question.

Question 5.8. For even d and large n, are the graphs of order n and diameter d with the
largest Wiener index all trees?

Digraphs were considered in [14] as well, where the problem of Plesnı́k is solved ex-
actly if the order is large comparing to the diameter. For the sake of completeness we
also mention that trees of order n and diameter d with the minimum Wiener index were
presented in [63].

Having in mind the close relationship between the diameter and the radius of a con-
nected graph, rad(G) ≤ diam(G) ≤ 2 rad(G), it is natural to consider the above problems
with radius instead of diameter. Chen et al. [17] posed the following question.

Problem 5.9. What is the maximum Wiener index among graphs of order n and radius r?

They succeeded to characterize graphs with the maximum Wiener index among all
graphs of order n with radius 2. Das and Nadjafi-Arani [21] gave an upper bound on
Wiener index of trees and graphs in terms of number of vertices n and radius r. In ad-
dition, they presented an upper bound on the Wiener index in terms of order, radius and
maximum degree of trees and of graphs. The authors concluded that these results are not
enough to solve Problem 5.9. Stevanović et al. [74] provide examples obtained by com-
puter experiments, which suggest that a simple characterization of the structure of trees
with maximum Wiener index among trees with a given number of vertices and radius will
probably be out of our reach in some foreseeable future.

Analogous problem for the minimum Wiener index was posed by You and Liu [84].

Problem 5.10. What is the minimum Wiener index among all graphs of order n and ra-
dius r?

If r ∈ {1, 2}, the extremal graphs attaining the minimum total distance among all
graphs of order n are easily characterized: they are complete graphs when r = 1, complete
graphs minus a maximum matching when r = 2 and n is even, and complete graphs minus
a maximum matching and an additional edge adjacent to the vertex not in the maximum
matching, when r = 2 and n is odd.

A conjecture for n ≥ 3 was posed by Chen et al. [17]. The notation Gn,r,s, where n, r
and s are positive integers such that n ≥ 2r, r ≥ 3, and n− 2r+ 1 ≥ s ≥ 1, stands for the
graph obtained in the following way: let v1, v2, v3 and v4 be four consecutive vertices on a
2r-cycle. Replace v2 with a clique of order s, replace v3 with a clique of order n−2r+2−s,
join each vertex of one clique to all vertices of the other clique, join v1 to all vertices of
Ks, and join v4 to all vertices of Kn−2r+2−s. Notice that the resulting graph has n vertices
and radius r, and W (Gn,r,s) = W (Gn,r,s′) for any s, s′ ∈ {1, . . . , r − 1}.

Conjecture 5.11. Let n and r be two positive integers with n ≥ 2r and r ≥ 3. For any
graph G of order n with radius r, W (G) ≥ W (Gn,r,1). Equality is attained if and only if
G = Gn,r,s for s ∈ {1, . . . , r − 1}.
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Cambie showed that the hypercube Q3 is a counterexample to the above conjecture, so
it does not hold when n is small, but he demonstrated that the conjecture is true asymptoti-
cally, i.e. if the order is sufficiently large compared to the radius [15].

Theorem 5.12. For any r ≥ 3, there exists a value n1(r) such that for all n ≥ n1(r) it
holds that any graph G of order n with radius r satisfies W (G) ≥ W (Gn,r,1). Equality
holds if and only if G = Gn,r,s for s ∈ {1, . . . , r − 1}.

We refer to [15] for an analog of this result for directed graphs, and to [69] for a char-
acterization of digraphs of given order and diameter with the minimum Wiener index.

6 Šoltés problem and its relaxed variations
An interesting question regarding the Wiener index is to study how Wiener index is affected
by small changes in a graph. Clearly, by removing an edge Wiener index is increased. On
the other hand, the effect of deleting a vertex is far from obvious, and it was first studied
by Šoltés. In his paper from 1991, Šoltés posed the following problem [71].

Problem 6.1. Find all graphs G in which the equality W (G) = W (G − v) holds for all
v ∈ V (G).

Therefore, if for a vertex v in a graph G it holds that W (G) = W (G− v), we say that
v satisfies the Šoltés property in G, and a graph in which every vertex satisfies the Šoltés
property is referred to as a Šoltés graph. The only known Šoltés graph so far is the cycle on
11 vertices. The above problem appears to be difficult, thus in subsequent studies relaxed
variations were considered. The authors of [50] showed that the class of graphs for which
the Wiener index does not change when a particular vertex is removed is rich, even when
restricted to unicyclic graphs with fixed length of the cycle. More precisely:

• there is a unicyclic graphG on n vertices containing a vertex v withW (G) = W (G−
v) if and only if n ≥ 9;

• there is a unicyclic graphG with a cycle of length c and a vertex satisfying the Šoltés
property if and only if c ≥ 5;

• for every graph G there are infinitely many graphs H such that G is an induced
subgraph of H and W (H) = W (H − v) for some v ∈ V (H) \ V (G).

If a vertex v has degree 1 in G, then clearly W (G) > W (G− v). In the construction of the
above mentioned infinite class of graphsGwith a vertex v satisfying the Šoltés property the
vertex v is of degree 2. In [49] the authors extended their research to graphs in which v is of
arbitrary degree. They showed that for a fixed positive integer k ≥ 2 there exist infinitely
many graphsGwith a vertex v such that degG(v) = k andW (G) = W (G−v). Moreover,
if n ≥ 7, there exists an n-vertex graph G with a vertex v so that degG(v) = n − 2 or
degG(v) = n − 1, and W (G) = W (G − v). By proving the next theorem they showed
that dense graphs cannot be a solution of Problem 6.1.

Theorem 6.2. If G is an n-vertex graph for which δ(G) ≥ n/2, then W (G) 6= W (G− v)
for every v ∈ V (G).

In the results above, removal of one vertex only was considered. So the authors pro-
posed the study of graphs G in which a given number of vertices satisfying the Šoltés
property exist [49, 51].
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Problem 6.3. For a given k, find (infinitely many) graphs G for which W (G) = W (G −
v1) = W (G− v2) = · · · = W (G− vk) for some distinct vertices v1, . . . , vk in G.

This problem was considered by Bok et al. [9, 10] who showed the existence of:

• infinitely many cactus graphs (i.e. graphs in which every edge belongs to at most
one cycle) with exactly k cycles of length at least 7 that contain exactly 2k vertices
satisfying the Šoltés property; and

• infinitely many cactus graphs with exactly k cycles of length c ∈ {5, 6} that contain
exactly k vertices satisfying the Šoltés property.

In addition, they proved that G contains no vertex with the Šoltés property if the length of
the longest cycle inG is at most 4. Another infinite family of graphs satisfying the condition
from Problem 6.3 was constructed by Hu et al. [43]. Furthermore, Hu et al. settled another
problem from [49, 51] by proving that for any k ≥ 2, there exist infinitely many graphs G
such that W (G) = W (G − {v1, v2, . . . , vk}) for some distinct vertices v1, v2, . . . , vk ∈
V (G).

Akhmejanova et. al [1] considered a relaxation of the original Šoltés problem from
another point of view. They asked for graphs with a large proportion of vertices satisfying
the Šoltés property. More precisely, they defined the function ∆v(G) = W (G)−W (G−v).
Then

|{v ∈ V (G); ∆v(G) = 0}|
|V (G)|

is the proportion of vertices satisfying the Šoltés property. So Akhmejanova et. al asked
the following.

Problem 6.4. For a fixed α ∈ (0, 1] construct an infinite series S of graphs such that for
all G = (V (G), E(G)) from S the following holds:

|{v ∈ V (G); ∆v(G) = 0}|
|V (G)|

≥ α.

Note that a solution to this problem for α = 1 would give an infinite series of solutions to
Problem 6.1. The authors noted that a slight modification of a construction from [9] yields
an infinite series of graphs with the proportion of vertices satisfying the Šoltés property
tending to 1

3 , and improved this constant by finding another two constructions. The first
construction contains many 11-cycles as induced subgraphs: given k ∈ N, k > 1, they
defined a graph B(k) on 5k+6 vertices by taking two vertices and connecting them with k
distinct paths of length 6 and one path of length 5. It turns out that for B(k) the proportion
of vertices satisfying the Šoltés property equals 2k

5k+6 , thus this proportion tends to 2
5 as k

tends to infinity. Another construction of so called lily-shaped graphs involves graphs that
are not 2-connected and whose proportion tends to 1

2 , see [1] for details. Furthermore, the
authors found a graph with the proportion 2

3 and expect that there exist an infinite series of
graphs with a proportion α > 1

2 , or perhaps even α tending to 1. Furthermore, they propose
the following problems.

Problem 6.5. For a fixed z ∈ Z, find all graphsG, for which the equalityW (G)−W (G−
v) = z holds for all vertices v.
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Problem 6.6. For a fixed z ∈ Z and α ∈ (0, 1], construct an infinite series S of graphs
such that for all G = (V (G), E(G)) from S the following inequality takes place:

|{v ∈ V (G); ∆v(G) = z}|
|V (G)|

≥ α.

In [49, 51] the problem of finding k-regular connected graphs G other than C11 for
which the equality W (G) = W (G− v) holds for at least one vertex v ∈ V (G) was posed.
The answer is affirmative, see Figure 14 for 3-regular and 4-regular graphs with 4 and 2,
respectively, (blue) vertices satisfying the Šoltés property. Using computer software and
counting cubic graphs of orders n ≤ 26, Bašić et al. [5] found that cubic graphs of order 12
or less do not contain Šoltés vertices. Cubic graphs with two Šoltés vertices first appear at
the order 14 (there are three such graphs), and examples with three and four Šoltés vertices
appear at the order 16. Moreover, they proved the following.

Theorem 6.7. There exist infinitely many cubic 2-connected graphs which contain two
Šoltés vertices.

Figure 14: Regular graphs with blue vertices satisfying the Šoltés property.

In the same paper, graphs where the ratio between the number of Šoltés vertices and the
order of the graph is at least α are called α-Šoltés graphs. So Problem 6.1 asks to find all
1-Šoltés graphs. The authors believe the solution to this problem should be graphs having
all vertices of the same degree.

Conjecture 6.8. If G is a Šoltés graph, then it is regular.

For a general regular graph G, the values W (G − u) and W (G − v) might be signif-
icantly different for two different vertices u and v from G. It may happen that removal
of one vertex increases the Wiener index, while removal of the other vertex descreases it.
However, W (G−u) and W (G− v) are equal if vertices u and v belong to the same vertex
orbit. This led the authors to believe the following.

Conjecture 6.9. If G is a Šoltés graph, then G is vertex-transitive.

Further, the authors report that a computer search on publicly available collections of
vertex-transitive graphs did not reveal any 1-Šoltés graphs. All examples of 1

3 -Šoltés graphs
are obtained by truncating certain cubic vertex-transitive graphs, and there are no Šoltés
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graphs among vertex-transitive graphs with less than 48 vertices. Recall that if v is a vertex
of degree 3 adjacent to u1, u2 and u3, then by truncation of v we mean the replacement of
v by a triangle v1v2v3, where vi is adjacent to ui, and by truncation of a cubic graph we
mean the truncation of all its vertices. Therefore it is reasonable to consider the following
conjectures and a problem.

Conjecture 6.10. If G is a Šoltés graph, then G is a Cayley graph.

Problem 6.11. Find an infinite family of cubic vertex-transitive graphs {Gi}∞i=1, such that
the truncation of Gi is a 1

3 -Šoltés graph for all i ≥ 1.

Conjecture 6.12. The cycle on eleven vertices is the only Šoltés graph.

7 Wiener index of signed graphs
A signed graph is a pair (G, σ) where G is a graph and σ is a function from E(G) to
{−1, 1}, called a signature function (also called signing in the literature). A path P is a
uv-path if its end-vertices are u and v. If P is a path in G and σ is a signature function
of G then the notation σ(P ) stands for the sum

∑
e∈P σ(e). For u, v ∈ V (G) the signed

distance dG,σ(u, v) equals minP |σ(P )| where the minimum ranges over all uv-paths P .
Spiro [72] recently introduced the Wiener index Wσ(G) of the signed graph (G, σ) as

Wσ(G) =
∑

{u,v}⊆V (G)

dG,σ(u, v).

If σ is a constant function, then dG,σ(u, v) = d(u, v), and therefore Wσ(G) = W (G). In
particular, if W (G) = W (G− v) for all v ∈ V (G), then there exists a (constant) signature
function σ of G such that Wσ(G) = Wσ(G − v). In this sense the problem of finding
signed graphs (G, σ) with Wσ(G) = Wσ(G − v) can be viewed as a relaxation of Šoltés
problem. Note that in the signed setting, it is possible to have Wσ(G) = 0. Spiro used this
fact to provide many examples of signed graphs satisfying Wσ(G) = Wσ(G − v) for all
v ∈ V (G), and even with Wσ(G) = Wσ(G−S) for any set S of size less than some value
k. To present his results, a signature function σ of a graph G is called k-canceling if for
any set S ⊆ V (G) of size less than k, we have Wσ(G−S) = 0. A graph G is k-canceling
if there exists a k-canceling signature function σ of G, and graphs with Wσ(G) = 0 are
simply referred to as canceling graphs. For instance, a complete graph Kn is k-canceling
if n ≥ 2k + 4. Furthermore, he proved the following.

Proposition 7.1. Let G′ be a bipartite graph with partite sets U and V , where |U |, |V | ≥
k+ 2, and minimum degree at least k+ 1. Let G be the graph obtained from G′ by adding
every edge between two vertices of U and every edge between two vertices of V . Then G is
k-canceling.

Another family of examples is obtained from the blowups of odd cycles: ifG is a graph
on {v1, . . . , vt}, then the {n1, . . . , nt}-blowup of G is defined to be the t-partite graph on
sets V1, . . . Vt with |Vi| = ni and with u ∈ Vi and w ∈ Vj adjacent if and only if vi, vj are
adjacent in G.

Proposition 7.2. Let G be the (n1, . . . , n2t+1)-blowup of a cycle C2t+1 with t ≥ 1. If
ni ≥ 2k for all i, then G is k-canceling.
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Furthermore, the following holds.

Theorem 7.3. If n is sufficiently large and G is an n-vertex graph with minimum degree at
least 2n

3 , then there exists a signature function σ of G such that Wσ(G) = Wσ(G− v) = 0
for all v ∈ V (G).

For necessary conditions for a graph to be canceling and several interesting open ques-
tions we refer to [72]. One of the conjectures pertains to the well known fact that in the
class of n-vertex trees the star Sn and the path Pn are extremal graphs for the Wiener in-
dex. Let (T, σ) be a signed n-vertex tree and let + be the constant signature function that
assigns +1 to every edge of Pn. Then the fact that Wσ(T ) ≤ W+(Pn) follows from the
result for the classical Wiener index since W+(Pn) = W (Pn). It remains to prove the
lower bound.

Conjecture 7.4. If (T, σ) is a signed n-vertex tree, then

Wα(Pn) ≤Wσ(T ),

where α is the alternating signature function which assigns the first edge of the path +1,
the second −1, the third +1, and so on.

Another possible direction for future study according to Spiro is the minimum signed
Wiener index W∗(G) = minσ(G), where the minimum ranges over all signature functions
σ of G. Note that this concept is analogous to the minimum digraph Wiener index of
all orientations of a graph G presented in Section 4. Spiro proposed a conjecture in which
double stars appear as extremal graphs; a double star is a tree T in which there exist vertices
x, y ∈ V (T ) such that every edge of T has at least one of the vertices x, y as an end-vertex.
Note that by this definition a star is also a double star.

Conjecture 7.5. If T is an n-vertex tree, then

W∗(Pn) ≤W∗(T ) ≤ max
D∈D

W∗(D),

where D is the set of all n-vertex double stars.

The conjecture was verified for n ≤ 9, and noted that it is false if one considers stars
instead of double stars. We refer to [72] for more interesting questions related to the pre-
sented topic.

8 Variable Wiener index vs. variable Szeged index
For an edge uv in a graph, let nv(u) denote the number of vertices strictly closer to u than
v, and analogously, let nu(v) be the number of vertices strictly closer to v than u. In his
original paper [80] Wiener observed that the Wiener index of a tree can be computed as
the sum of products nv(u) · nu(v) over all edges uv in the tree, but this is not the case in
general graphs, owing to the fact that shortest paths are typically not unique. By relaxing
the condition that the graph is a tree, the Szeged index of a graph G was defined in [34, 46]
as

Sz(G) =
∑

uv∈E(G)

nv(u) · nu(v).

Klavžar et al. [47] proved that Sz(G) ≥ W (G) for every graph G, and in [25] all graphs
for which the equality holds were classified.
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Theorem 8.1. For every graph G we have Sz(G) ≥W (G), and equality holds if and only
if every block of G is a complete graph.

The variable Wiener index (also known as the generalized Wiener index) of a graph G
is defined as

Wα(G) =
∑

{u,v}⊆V (G)

d(u, v)α,

and the variable Szeged index of a graph G is

Szα(G) =
∑

uv∈E(G)

(nv(u) · nu(v))
α
.

Note that in [38] the quantity
∑
uv∈E(T ) (nv(u) · nu(v))

α was named as the variable
Wiener index for trees, but referring to it as the variable Szeged index seems to be more
natural. By Theorem 8.1, for trees it holds W (T ) = Sz(T ). Using Karamata’s inequality
Hriňáková et al. [42] proved the following statement.

Theorem 8.2. Let T be a tree on n vertices. Then

(1) Wα(T ) ≤ Szα(T ) if α > 1,

(2) Wα(T ) ≥ Szα(T ) if 0 ≤ α < 1.

Moreover, equalities hold if and only if n = 2.

In the case when α > 1, they extended this result to the class of bipartite graphs.

Theorem 8.3. Let G be a bipartite graph on n vertices and α > 1. Then Wα(G) ≤
Szα(G) with equality if and only if n = 2.

If G is a complete graph, we have Szα(G) =
(|V (G)|

2

)
= Wα(G) for every α. Note

that α is non-negative in the above results. If α < 0 then for non-complete graphs we have
the following strict inequality [42].

Proposition 8.4. LetG be a non-complete graph. Then for every α < 0 we have Szα(G) <
Wα(G).

Based on Theorem 8.2 and examples provided in [42], Hriňáková et al. proposed the
following conjecture.

Conjecture 8.5. For every non-complete graphG there is a constant αG ∈ (0, 1] such that

Szα(G) > Wα(G), if α > αG,

Szα(G) = Wα(G), if α = αG,

Szα(G) < Wα(G), if 0 ≤ α < αG.

In other words, the conjecture states that for any non-complete graph there is a critical
exponent in (0, 1], below which the variable Wiener index is larger and above which the
variable Szeged index is larger. As seen above, this holds for trees. However, Cambie and
Haslegrave [16] found infinitely many counterexamples by constructing a family of graphs
Gk,` as follows: take a complete graph Kk, remove a k-cycle from it, and connect all its
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vertices with one end-vertex of a path of length l, see Figure 15 where G8,3 is depicted.
By fixing a connected non-complete graph G, h(α) = Szα(G) −Wα(G) is a continuous
function with h(0) < 0 and h(1) ≥ 0, which by intermediate value theorem implies that
there is at least one value of α for which h(α) = 0, and at least one such value lies in
(0, 1]. Therefore Conjecture 8.5 is equivalent to α being unique, which is not the case
for many graphs of the form Gk,`. It turns out that if k is reasonably large, then there exist
some corresponding values of ` having three values of α for which Szα(Gk,`)−Wα(Gk,`)
equals 0.

Figure 15: The graph Gk,` for k = 8 and ` = 3.

On the other hand, the authors found further families of graphs for which the statement
in Conjecture 8.5 does hold. In fact, they showed its validity for almost all graphs.

Theorem 8.6. Conjecture 8.5 holds for

• block graphs,

• edge-transitive graphs,

• bipartite graphs,

• graphs with diameter 2,

• graphs with diameter 3, n vertices and at most 1
2

(
n
2

)
edges,

• graphs with n vertices and m edges whenever m ≤ 1
4 (n4/3 − n1/3).

They also proved that Conjecture 8.5 holds for almost all random graphs in 2 models
of random graphs, see [16] for more detailed explanation. Anyway, it is an open problem
if there exist graphs G, other than complete ones, for which |{α;Szα(G)−Wα(G) = 0}|
is larger than 3. So we have the following problem.

Problem 8.7. Let G be the class of graphs which contain at least one block which is not
complete. Is |{α;Szα(G)−Wα(G) = 0}| bounded forG ∈ G? If so, what is its maximum
value?

By showing that for every graphG, the sequence (nv(u) ·nu(v))uv∈E(G) majorizes the
sequence (d(u, v))u,v∈V (G), Cambie and Haslegrave proved that a weaker version of Con-
jecture 8.5 holds. Using a different approach the same result was independently obtained
by Kovijanić Vukićević and Bulatović [78].
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Theorem 8.8. For every non-complete graph G and α > 1, we have Szα(G) > Wα(G).

We conclude this section with the following question.

Question 8.9. Does Conjecture 8.5 hold for triangle-free graphs?

9 Wiener index of apex graphs
An apex graph is a graph that becomes planar by removal of a single vertex. Along these
lines a graph G is called an apex tree if it contains a vertex x such that G − x is a tree.
Furthemore, a graph G is called an `-apex tree if there exists a vertex subset A ⊂ V (G) of
cardinality ` such that G − A is a tree and there is no other subset of smaller cardinality
with this property [82, 83].

In [82] extremal values of (additively and multiplicatively) weighted Harary indices
of apex and `-apex trees were studied. Extremal values of some other topological indices
of `-apex trees were recently explored in [2] and [48]. In the later authors studied the
generalized Wiener index and derived the following result in which K` + T denotes the
join of a complete graph K` and a tree T on n− ` vertices.

Theorem 9.1. Let G be an `-apex tree on n vertices, where ` ≥ 1 and n ≥ ` + 2, and let
α 6= 0. Then, the following two claims hold:

• If α > 0 then Wα(G) has the minimum value if and only if G = K` + T , where T
is any tree on n− ` vertices;

• If α < 0 then Wα(G) has the maximum value if and only if G = K` + T , where T
is any tree on n− ` vertices.

Moreover, in the extremal case

Wα(G) = (n2 − 2n`− 3n+ `2 + 3`+ 2) 2α−1 + (2n`+ 2n− `2 − 3`− 2) 2−1.

Observe that for α = 1 the invariant Wα is the Wiener index, and by Theorem 9.1 the
extremal value is

W (G) = (2n2 − 2n`− 4n+ `2 + 3`+ 2) 2−1.

Recall that a dumbbell graph is a graph comprised of two disjoint cliques connected
by a path. More precisely, a dumbbell graph Dc(a, b) is a graph obtained from a path
Pc = v1v2 · · · vc and disjoint complete graphs Ka and Kb by connecting v1 to a vertex
of Ka and connecting vc to a vertex of Kb, see Figure 16 for D5(3, 4). The order of so
constructed graph is a+ b+ c. Note that without loss of generality, we can always assume
that a, b 6= 2.

Theorem 9.2. Let G be an apex tree on n ≥ 3 vertices, and let α 6= 0.

• If α > 0 then Wα(G) has the maximum value if and only if G = Dn−4(3, 1);

• If α < 0 then Wα(G) has the minimum value if and only if G = Dn−4(3, 1).

Moreover, in the extremal case

Wα(G) = 1 +

n−2∑
i=1

(n− i)iα.
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Figure 16: The graph D5(3, 4).

In [48] the following conjecture was proposed.

Conjecture 9.3. Let G be an `-apex tree on n vertices, where ` ≥ 3 and n ≥ ` + 1,
such that G has maximum Wiener index. Then G is the balanced dumbbell graph, i.e.
G ∼= Dc(a, b), where a = d`/2e, b = b`/2c, and c = n− `.

10 Wiener index of line graphs
The line graph L(G) of a graphG is defined as a graph whose vertex set coincides with the
set of edges of G and two vertices of L(G) are adjacent if and only if the corresponding
edges are incident in G. Higher iterations of the line graph are defined recursively.

Lk(G) =

{
G for k = 0,
L(Lk−1(G)) for k > 0.

Van Rooij and Wilf [77] showed that for the sequence

G,L(G), L(L(G)), L(L(L(G))), . . .

only four options are possible. If G is a cycle graph, then L(G) and each subsequent graph
in this sequence is isomorphic to G itself. If G is a claw K1,3, then L(G) = C3 and
consequently the same holds for all subsequent graphs in the sequence. For a path we have
L(Pn) = Pn−1, L2(Pn) = Pn−2, . . . , Ln−1(Pn) = P1 and Lk(Pn) is an empty graph if
k ≥ n. In all the remaining cases the order of the graphs in the sequence increases without
bound.

The following problem was proposed by Gutman [35].

Problem 10.1. Find an n-vertex graph G whose line graph L(G) has maximum Wiener
index.

Supported by a result from [20], we pose the following conjecture (see also [56]).

Conjecture 10.2. Among all graphsG on n vertices,W (L(G)) attains maximum for some
dumbbell graph on n vertices.

Similar conjecture was proposed for bipartite graphs [56]. Let us call a graph a barbell
graph if it is comprised of two disjoint complete bipartite graphs connected by a path.

Conjecture 10.3. Let n be large. Among all bipartite graphs G on n vertices, W (L(G))
attains maximum for some barbell graph on n vertices.

A related question we pose is the following.
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Problem 10.4. For given n and k, find graphs G on n vertices with the extremal value of
W (Lk(G)).

Dobrynin and Mel’nikov [27] proposed to estimate the extremal values for the ratio
W (Lk(G))
W (G) , for a graph G on n vertices and explicitly stated the case k = 1 as a problem.

The minimum value was given in [54].

Theorem 10.5. Among all connected graphs on n vertices, the fraction W (L(G))
W (G) is mini-

mum for the star Sn, in which case W (L(G))
W (G) = n−2

2(n−1) .

The problem was recently solved also for the maximal value [70] .

Theorem 10.6. For a graph G on n vertices it holds that W (L(G))
W (G) ≤

(
n−1

2

)
with equality

if and only if G = Kn.

For k > 1 the problem remains open.

Problem 10.7. Find n-vertex graphs G with extremal values of W (Lk(G))
W (G) for k ≥ 2.

Note that the line graph of Kn has the greatest number of vertices, and restricting to
bipartite graphs, the (almost) balanced complete bipartite graphs have line graphs with most
vertices, soKbn/2c,dn/2e could be the graph attaining maximal value in this class of graphs.
It is expected that the minimum value should be attained by Pn, since this is the only graph
whose line graph decreases in size, see a conjecture from [56].

Conjecture 10.8. Let k ≥ 2 and let n be large. Among all graphs G on n vertices,
W (Lk(G))
W (G) attains the maximum for Kn, and it attains the minimum for Pn.

The above conjecture is supported by a result from [41], where it was proved that among
all trees on n vertices the path Pn has the smallest value of this ratio for k ≥ 3, and it was
conjectured that the same holds also in the case k = 2. Another related problem is the
following.

Problem 10.9. For various ` and k find the extremal graphs for the ratio W (Lk(G))
W (Ll(G))

.

11 Graphs with prescribed number of blocks
A graph is non-separable if it is connected and has no cut-vertices, i.e. either it is 2-
connected or it is K2. A block of G is a maximal non-separable subgraph of G. As known,
the n-path Pn, which has n − 1 blocks, has the maximum Wiener index in the class of
graphs on n vertices, and among graphs on n vertices that have just one block, the n-cycle
has the largest Wiener index. The ordering of trees with respect to decreasing Wiener index
is known up to the 17th maximum Wiener index [23, 64], and the increasing ordering up to
the 15th maximum Wiener index [28].

Bessy et al. [8] studied the ordering of n-vertex graphs with just one block (i.e. 2-vertex
connected graphs) with respect to decreasing Wiener index. Let 1 ≤ p ≤ q ≤ n−p−q+1
and q > 1. The notation Hn,p,q stands for the graph on n vertices comprised of three
internally disjoint paths with the same end-vertices, where the first path has length p, the
second one has length q, and the last one has length n− p− q + 1. Obviously Hn,1,2 is a
graph obtained from Cn by introducing a new edge connecting two vertices at distance two
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on the cycle, and Hn,2,2 is a graph that is obtained from a 4-cycle by connecting opposite
vertices by a path of length n− 3, see Figure 17.

In [8] it was shown that among graphs on n vertices that have just one block, Hn,1,2

has the second largest Wiener index if n 6= 6. If n ≥ 11, the third extremal graph is Hn,2,2.
The authors also give conjectures on the graphs with 4th and 5th greatest Wiener index in
the class of 2-connected graphs. Let H+

n,2,2 be the graph obtained from Hn,2,2 by inserting
an edge between two vertices that are at distance 1 from the vertices of degree 3, see the
third graph in Figure 17. Then H+

n,2,2 has Wiener index exactly 1 less than Hn,2,2, so it is
the fourth 2-connected graph by decreasing Wiener index for n = 9 and n ≥ 11, but it may
not be unique. However, the following can be true.

Conjecture 11.1. For n large enough,H+
n,2,2 is the graph with the 4th largest Wiener index

among blocks on n vertices.

Conjecture 11.2. For n large enough,Hn,1,3 is the graph with the 5th largest Wiener index
among blocks on n vertices.

Figure 17: Graphs Hn,1,2, Hn,2,2 and H+
n,2,2.

Bessy et al. [7] studied a general problem of finding the maximum possible value of
Wiener index among graphs on n vertices with fixed number of blocks. They showed that
among all graphs on n vertices which have p ≥ 2 blocks, the maximum Wiener index is
attained by a graph comprised of two cycles joined by a path, where one or both cycles can
be replaced by a single edge. To be more specific, we need the following notation.

If G is a connected graph and v is a cut-vertex that partitions G into subgraphs G1 and
G2, i.e., G = G1 ∪G2 and G1 ∩G2 = {v}, then we write G = G1 ◦v G2. For simplicity
reasons, by C2 we mean the complete graph K2.

Theorem 11.3. Let n and p be numbers such that n > p > 1. Among all graphs on n
vertices with p blocks, the maximum Wiener index is attained by the graphCa◦uPp−1◦vCb
for some integers a ≥ 2 and b ≥ 2, where a + b = n − p + 3, and u and v are distinct
end-vertices of Pp−1.

Note that Ca or Cb can also be edges, and then we obtain Cn−p+1 ◦u Pp, which is a
graph composed of one cycle with an attached path, or Pn if both Ca and Cb are edges.

In [6] the authors provide further details by determining the sizes of a and b in the
extremal graphs for each n and p. Roughly speaking, if n is bigger than 5p − 7, then the
extremal graph is obtained for a = 2, i.e. the graph is a path glued to a cycle. For values
n = 5p− 8 and 5p− 7, there is more than one extremal graph. And when n < 5p− 8, the
extremal graph is again unique with a and b being equal or almost equal depending on the
congruence of n− p modulo 4.
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[13] V. Božović, Ž. K. Vukićević, G. Popivoda, R.-Y. Pan and X.-D. Zhang, Extreme Wiener in-
dices of trees with given number of vertices of maximum degree, Discrete Appl. Math. 304
(2021), 23–31, doi:10.1016/j.dam.2021.07.019, https://doi.org/10.1016/j.dam.
2021.07.019.

[14] S. Cambie, An asymptotic resolution of a problem of Plesnı́k, J. Combin. Theory Ser. B
145 (2020), 341–358, doi:10.1016/j.jctb.2020.06.003, https://doi.org/10.1016/j.
jctb.2020.06.003.

[15] S. Cambie, Extremal total distance of graphs of given radius I, J. Graph Theory 97 (2021),
104–122, doi:10.1002/jgt.22644, https://doi.org/10.1002/jgt.22644.

[16] S. Cambie and J. Haslegrave, On the relationship between variable Wiener index and variable
Szeged index, Appl. Math. Comput. 431 (2022), Paper No. 127320, 8 pp., doi:10.1016/j.amc.
2022.127320, https://doi.org/10.1016/j.amc.2022.127320.

[17] Y. Chen, B. Wu and X. An, Wiener index of graphs with radius two, ISRN Comb. 2013
(2013), Article ID 906756, 5 pp., doi:10.1155/2013/906756, https://doi.org/10.
1155/2013/906756.

[18] Y.-Z. Chen, X. Li and X.-D. Zhang, The extremal average distance of cubic graphs, J.
Graph Theory 103 (2023), 713–739, doi:10.1002/jgt.22943, https://doi.org/10.
1002/jgt.22943.

[19] P. Dankelmann, On the Wiener index of orientations of graphs, Discrete Appl. Math.
336 (2023), 125–131, doi:10.1016/j.dam.2023.04.004, https://doi.org/10.1016/j.
dam.2023.04.004.

[20] P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge-Wiener index of
a graph, Discrete Math. 309 (2009), 3452–3457, doi:10.1016/j.disc.2008.09.040, https:
//doi.org/10.1016/j.disc.2008.09.040.

[21] K. C. Das and M. J. Nadjafi-Arani, On maximum Wiener index of trees and graphs with given
radius, J. Comb. Optim. 34 (2017), 574–587, doi:10.1007/s10878-016-0092-y, https://
doi.org/10.1007/s10878-016-0092-y.

[22] E. DeLaViña and B. Waller, Spanning trees with many leaves and average distance, Electron. J.
Comb. 15 (2008), Research Paper 33, 16 pp., doi:10.37236/757, https://doi.org/10.
37236/757.

[23] H.-Y. Deng, The trees on n ≥ 9 vertices with the first to seventeenth greatest Wiener indices
are chemical trees, MATCH Commun. Math. Comput. Chem. 57 (2007), 393–402, https:
//match.pmf.kg.ac.rs/content57n2.htm.

[24] A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and appli-
cations, Acta Appl. Math. 66 (2001), 211–249, doi:10.1023/A:1010767517079, https:
//doi.org/10.1023/A:1010767517079.

[25] A. A. Dobrynin and I. Gutman, Solving a problem connected with distances in graphs, Graph
Theory Notes N. Y. 28 (1995), 21–23.
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[55] M. Knor, R. Škrekovski and A. Tepeh, Digraphs with large maximum Wiener index, Appl.
Math. Comput. 284 (2016), 260–267, doi:10.1016/j.amc.2016.03.007, https://doi.org/
10.1016/j.amc.2016.03.007.
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[60] M. Knor, R. Škrekovski and A. Tepeh, Chemical graphs with the minimum value of Wiener
index, MATCH Commun. Math. Comput. Chem. 81 (2019), 119–132, https://match.
pmf.kg.ac.rs/content81n1.htm.

[61] Z. Li and B. Wu, Orientations of graphs with maximum wiener index, manuscript.

[62] H. Lin, A note on the maximal Wiener index of trees with given number of vertices of maximum
degree, MATCH Commun. Math. Comput. Chem. 72 (2014), 783–790, https://match.
pmf.kg.ac.rs/content72n3.htm.

https://doi.org/10.1016/0893-9659(96)00071-7
https://doi.org/10.1016/0893-9659(96)00071-7
https://doi.org/10.3390/sym12050802
https://doi.org/10.3390/sym12050802
https://doi.org/10.1016/j.amc.2018.05.047
https://doi.org/10.1016/j.amc.2018.05.047
https://doi.org/10.1016/j.dam.2017.12.012
http://www.grad.hr/crocodays/croc_proc_2.html
https://doi.org/10.26493/2590-9770.1526.2b3
https://doi.org/10.26493/2590-9770.1526.2b3
https://doi.org/10.1016/j.amc.2015.07.050
https://doi.org/10.1016/j.amc.2016.03.007
https://doi.org/10.1016/j.amc.2016.03.007
https://doi.org/10.26493/1855-3974.795.ebf
https://doi.org/10.26493/1855-3974.795.ebf
https://doi.org/10.1016/j.dam.2016.04.015
https://doi.org/10.1016/j.dam.2016.04.015
https://doi.org/10.1016/j.amc.2015.10.033
https://doi.org/10.1016/j.amc.2015.10.033
https://match.pmf.kg.ac.rs/content81n1.htm
https://match.pmf.kg.ac.rs/content81n1.htm
https://match.pmf.kg.ac.rs/content72n3.htm
https://match.pmf.kg.ac.rs/content72n3.htm


30 Ars Math. Contemp. 24 (2024) #P4.07

[63] H. Liu and X.-F. Pan, On the Wiener index of trees with fixed diameter, MATCH Com-
mun. Math. Comput. Chem. 60 (2008), 85–94, https://match.pmf.kg.ac.rs/
content60n1.htm.

[64] M. Liu, B. Liu and Q. Li, Erratum to ‘The trees on n ≥ 9 vertices with the first to seven-
teenth greatest Wiener indices are chemical trees’, MATCH Commun. Math. Comput. Chem.
64 (2010), 743–756, https://match.pmf.kg.ac.rs/content64n3.htm.
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