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Abstract

Given a graph G and assuming that some vertices of G are infected, the r-
neighbor bootstrap percolation rule makes an uninfected vertex v infected if v has at
least r infected neighbors. The r-percolation number, m(G, r), of G is the minimum
cardinality of a set of initially infected vertices in G such that after continuously
performing the r-neighbor bootstrap percolation rule each vertex of G eventually
becomes infected. In this paper, we consider percolation numbers of strong products
of graphs. If G is the strong product G1⊠ · · ·⊠Gk of k connected graphs, we prove
that m(G, r) = r as soon as r  2k−1 and |V (G)|  r. As a dichotomy, we present
a family of strong products of k connected graphs with the (2k−1 + 1)-percolation
number arbitrarily large. We refine these results for strong products of graphs
in which at least two factors have at least three vertices. In addition, when all
factors Gi have at least three vertices we prove that m(G1⊠ · · ·⊠Gk, r)  3k−1− k
for all r  2k − 1, and we again get a dichotomy, since there exist families of
strong products of k graphs such that their 2k-percolation numbers are arbitrarily
large. While m(G ⊠ H, 3) = 3 if both G and H have at least three vertices, we
also characterize the strong prisms G ⊠K2 for which this equality holds. Some of
the results naturally extend to infinite graphs, and we briefly consider percolation
numbers of strong products of two-way infinite paths.

Mathematics Subject Classifications: 05C35, 05C76, 60K35

1 Introduction

Given a graph G and an integer r  2, the r-neighbor bootstrap percolation is an update
rule for the states of vertices in G. At any given time the state of a vertex is either infected
or uninfected. From an initial set of infected vertices further updates occur simultaneously
and in discrete intervals: any uninfected vertex with at least r infected neighbors becomes
infected, while infected vertices never change their state. Given a graph G, the smallest
cardinality of a set of initially infected vertices, which results in all vertices of G being
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infected after the r-neighbor bootstrap percolation process is finished, is the r-percolation
number, m(G, r), of G.

The origins of bootstrap percolation come from physics of ferromagentism and go back
to 1979 [10], while in 1998 the concept was considered in the context of spreading an in-
fection in square grid networks [4]. Balogh and Bollobás considered the random bootstrap
percolation in hypercubes [1], where the main challenge is to find the tresholds for prob-
abilities of vertices being initially set as infected in order to get all vertices of the graph
infected with probability 1 or 0, respectively; see also a related study considering square
grids [2]. Recently, Przykucki and Shelton considered m(G, r) where G is a d-dimensional
square grid [27], while Bidgoli et al. [5] considered bootstrap percolation of specific Ham-
ming graphs, namely the Cartesian powers of complete graphs. The common feature of
the above mentioned investigations of bootstrap percolation is that they all involve vari-
ous types of Cartesian products of graphs. Besides the Cartesian product operation, the
r-neighbor bootstrap percolation was considered with respect to the minimum degree of
a graph [19], and from the complexity point of view concerning the time (i.e., number of
percolation steps) that takes to infect the entire graph [23].

A special attention was given to the case r = 2. For instance, Dairyko et al. [14]
presented Ore-type and Chvátal-type conditions related to degrees of a graph G that
enforce m(G, 2) = 2. Morris in [25] provided some bounds on the minimal bootstrap
percolation sets in rectangular grids, where a set is minimal if it yields an infection of
the whole graph while none of its proper subsets do it. As it turns out, the 2-neighbor
bootstrap percolation coincides with the concept from graphs convexity; notably, for the
so-called P3-convexity, as introduced by Centeno et al. [8], the P3-hull number of a graph
G is exactly m(G, 2). The P3-convexity and the corresponding hull number were studied
in comparison with other convexity parameters [9, 12, 13], and were also considered in
specific graph classes such as Kneser graphs [18] or Hamming graphs [6]. Coelho et
al. [12] performed a systematic study of the P3-hull number in graph products. While the
Cartesian product seems to be the most challenging one for the bootstrap percolation,
for the strong product G⊠H of any non-trivial connected graphs G and H they proved
that m(G⊠H, 2) = 2.

In this paper, we widely extend the study from [12] by investigating the r-percolation
numbers in strong products of graphs. Strong product is one of the four standard graph
products [20]. Its structure and high density provide several applicable properties. Shan-
non in [30] introduced a concept that arises in information theory, which is now known as
the Shannon capacity, and is defined through the independence number of strong powers
of a graph; see also [22] for the first major breakthrough in its study. It is also worth not-
ing that every connected graph can be isometrically embedded into the strong products
of paths [29], while the well-known Helly graphs are precisely the weak retracts of strong
products of paths [26]. The strong product of (two-way infinite) paths itself is a natural
lattice (also known as the King grid), in which numerous invariants and their applications
have been considered; see [11, 15, 16] for a short selection of recent references.

Additional motivation for studying bootstrap percolation in strong products of graphs
comes from applications. In particular, in distributed computing one wants to construct
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a network so as to reduce the failure probability [21]. As we demonstrate in this paper,
the density of the “strong product network” ensures the smallest possible value of the
bootstrap percolation numbers in many strong products of graphs (see Section 1.2), hence
it provides a convenient setting for such a network. In a different language, our results
show that many strong products of graphs are “r-bootstrap good” in the sense of the
recent study [7]. In some other applications, standard edges represent short-range links,
while long-range links may also be considered [17]; in such situations the Cartesian grid
Z□Z may as well be replaced by the strong grid as soon as all long-range links have
range between

√
2 and 2.

Another perspective on our study can be obtained by comparing it with known studies
on bootstrap percolation in Cartesian products of graphs. Even for hypercubes, which are
in a sense the simplest Cartesian products of graphs, the r-neighbor percolation numbers
have still not been determined when r  4 (the exact values for m(Qn, 2) can be found e.g.
in [6] and for m(Qn, 3) in [24]). When r  4, the asymptotic behavior of upper bounds
on m(Qn, r) has been extensively explored [3, 24], while good lower bounds seem to be
more elusive, and there are considerable gaps between known lower and upper bounds.
In light of these difficulties in Cartesian product graphs, obtaining the exact values of the
r-neighbor bootstrap percolation numbers in (many) strong products of graphs, which
is done in Section 2, provides an interesting contrast. In many cases, we do this by
finding appropriate sets of vertices that propagate, which unlike in the case of hypercubes
reaches the lower bound. In Section 3, where we deal with small values of r, we study
structural properties of (strong product) graphs and/or obtain results that are dependent
on percolation numbers of factor graphs. In particular, the result on strong prisms involves
the graphs G with m(G, 2) ∈ {2, 3}, which may be of help in better understanding of these
graphs. Yet another different approach is needed in Section 4 when dealing with powers
of infinite paths, where we need to provide an argument showing that the percolation
process advances on every step.

1.1 Formal definitions and notation

All graphs considered in this paper are simple and connected. Given a graph G a vertex
x ∈ V (G) is a cut-vertex if G − x is disconnected. The neighborhood, NG(v), of a vertex
v ∈ V (G) is the set of all vertices in G adjacent to v, and the closed neighborhood of v,
is defined as NG[v] = NG(v) ∪ {v}. Vertices u and v in a graph G are (closed) twins if
NG[u] = NG[v]. That is, u and v are adjacent and have the same neighborhoods.

We follow with a formal definition of the r-neighbor bootstrap percolation. Let A0 ⊆
V (G) be an initial set of infected vertices, and, for every t  1, let

At = At−1 ∪ {v ∈ V (G) : |N(v) ∩ At−1|  r}.

The set At \At−1 is referred to as vertices infected at time t. A vertex v is infected before
u if v ∈ At, for some t  0, while u /∈ At . We say that A0 percolates (or is a percolating

set) if

t0

At = V (G).
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A natural extremal problem is to find a smallest percolating set S = A0. For any
graph G and r  2, let

m(G, r) = min

|A0| : A0 ⊆ V (G),

∞

t=0

At = V (G)

.

Any percolating set S satisfying m(G, r) = |S| is thus a minimum percolating set, and
m(G, r) is the r-percolation number of G. Clearly, m(G, r)  r for all r  |V (G)|.

The strong product of graphs G and H is the graph G ⊠ H, whose vertex set is
V (G) × V (H), and two vertices (g, h) and (g′, h′) are adjacent precisely if one of the
following is true:

• g = g′ and hh′ ∈ E(H), or

• h = h′ and gg′ ∈ E(G), or

• gg′ ∈ E(G) and hh′ ∈ E(H).

By Gh = {(g, h) : g ∈ V (G)} we denote the subset of V (G ⊠ H) called the G-layer
on vertex h, and, by abuse of language, Gh also denotes the subgraph of G⊠H induced
by the vertices of the G-layer on h. Clearly, Gh is isomorphic to G for every h ∈ V (H).
Similarly, for g ∈ V (G), the H-layer on vertex g is gH = {(g, h) : h ∈ V (G)}.

Note that strong product operation is associative and commutative, and G1⊠ · · ·⊠Gk

has V (G1⊠· · ·⊠Gk) = V (G1)×· · ·×V (Gk), and (x1, . . . , xk)(y1, . . . , yk) ∈ E(G1⊠· · ·⊠Gk)
if and only if xi = yi or xiyi ∈ E(Gi) for all i ∈ [k]. If for a factor Gi in the strong product
G1⊠ · · ·⊠Gk we have |V (Gi)| = 2, we say that Gi is an edge-factor of the strong product.
Graph K1 is said to be trivial, and if Gi is a factor of a strong product with |V (Gi)| = 1,
Gi is a trivial factor. In this paper, we will only consider strong products in which all
factors are non-trivial.

1.2 Main results and organization of the paper

In this paper, we consider percolation numbers of strong products of non-trivial graphs.
More precisely, we study m(G1 ⊠ · · ·⊠Gk, r) depending on the number of factors k and
the threshold r. In Section 2, we study general upper bounds on the percolation numbers
of strong products of graphs, which in many cases lead to exact values. In particular, it is
often the case that the best possible value, m(G, r) = r, is obtained when G is the strong
product of k factors and the threshold r is bounded by a function of k. The results depend
also on the number of factors in the strong product that have at least three vertices, and
are illustrated in the following table:

r m(G, r)  # non-edge factors
 2k−1 r 1
 3 · 2k−2 r 2
 7 · 2k−3 7 · 2k−3 3
 2k − 1 3k−1 − k k
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The table gives the bounds on m(G1⊠ · · ·⊠Gk, r), depending on the number of non-edge
factors. Bounds in the first two lines are bold, which is to indicate the fact that in all
these cases m(G, r) = r. In particular, the first line is given by Corollary 3 and states
that m(G1 ⊠ · · · ⊠ Gk, r) = r whenever r  2k−1 and k  2. As a dichotomy we present
an example showing that m(G1 ⊠ · · ·⊠Gk, r) is not only greater than r, but can even be
arbitrarily large as soon as r = 2k−1 + 1. Next, we prove in Theorem 5 that m(G, r) = r
if r  3 · 2k−2 and G is the strong product of k factors at least two of which are not K2,
and a similar dichotomy is proved also in this case. If there are at least three non-edge
factors, we can further increase the threshold as shown in the third line (see Theorem 7),
while the last line presents an upper bound when all factors have at least three vertices
(see Theorem 8).

To see that the bound r  2k − 1 in the last line of the above table is best possible,
consider G = G1⊠ · · ·⊠Gk, where k  2 and Gi are connected graphs such that δ(Gi) = 1
for every i ∈ [k]. From the definition of the strong product it follows that δ(G) = 2k − 1.
Therefore, whenever r  2k, every vertex of degree δ(G) must be included in the set
of initially infected vertices. For instance, if Gi is isomorphic to the star K1,n for every
i ∈ [k], then G has nk vertices of degree 2k − 1 and therefore m(G, r)  nk for every
r  2k. Noting that n ∈ N can be arbitrarily large, we derive the following

Observation 1. If r  2k, then for every integer M there exist graphs G1, . . . , Gk such
that m(G1 ⊠ · · ·⊠Gk, r) > M .

In Section 3, we consider percolation numbers of strong products of graphs with only
two factors. When r = 3 and both G and H have order at least 3, Theorem 5 implies
that m(G⊠H, 3) = 3. Thus we consider the only remaining case for m(G⊠H, 3), which
is when one of the factors is K2, and we prove a characterization of the graphs G such
that m(G⊠K2, 3) = 3. Furthermore, if G and H have the property that m(G, 2) = 2 and
m(H, 2) = 2, then m(G⊠H, 4)  5, and if both G and H are not K2, then m(G⊠H, 5)
can also be bounded from above (see Theorem 14).

In Section 4, we consider a natural extension of percolation to infinite graphs. Note
that the original definition works also in the case G is an infinite graph, where the only
(silent) modification is that the initial set of infected vertices may need to be infinite in
order to percolate, in which case we set the r-percolation number to be infinite. In this
vein, Theorem 8 can also be applied to strong products of infinite graphs. In particular,
we infer that m(Z⊠,n, 2n − 1)  3n−1 − n, where Z⊠,n is the strong product of n two-way
infinite paths Z. It is natural to consider the finiteness percolation threshold of a graph G,
which is the supremum of the set of thresholds r for which m(G, r) < ∞; we denote this
number by fpt(G). It is easy to prove that 2n − 1  fpt(Z⊠,n)  3n−1, and we establish
that for n ∈ {2, 3} the upper bound is actually the exact value. In Section 5, we pose
some open problems that arise from this study.
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2 Strong products of graphs with k factors

In this section, we consider upper bounds and exact results for the percolation number
of the strong product G1 ⊠ · · · ⊠ Gk, where for the threshold r we have r < 2k. (As
mentioned in Section 1.2, there is no general upper bound for m(G1 ⊠ · · ·⊠Gk, r) when
r  2k.) The results are divided into several subsections depending on the number of
non-edge factors (that is, the number of factors with at least three vertices). The case
when all factors of the strong product of graphs are K2 is trivial, hence we first consider
the most general case when there is at least one non-edge factor.

2.1 At least one non-edge factor

We start by considering the r-neighbor bootstrap percolation in strong products of k
graphs, where the threshold r is at most by 2k−1. Clearly, m(G, r)  r for any graph G
with |V (G)|  r  2. As we will see in the next result(s), if r  2k−1, then m(G, r) = r
where G is a strong product of graphs with k factors.

Theorem 2. If 2  k  r  2k−1 and G is the strong product G1 ⊠ · · · ⊠ Gk, where Gi

are connected graphs so that |V (G)|  r, then m(G, r) = r.

Proof. Let k  2 and r ∈ {k, . . . , 2k−1} (note that k  2 implies k  2k−1). Consider the
strong product G1⊠ · · ·⊠Gk, where factors are connected, and the order of the product is
at least r. For all i ∈ [k], let |V (Gi)| = ni. Since Gi is connected, it contains a BFS-tree.
Let us denote the vertices of Gi by vi1, v

i
2, . . . , v

i
ni

such that vi1 is the root of the BFS
tree, and for each j, 2  j  ni, let p(vij) = viℓ, be the parent of vij, where ℓ < j. In
particular, the parent (and a neighbor) of vi2 is v

i
1, while v

i
3 has v

i
2 or v

i
1 as the parent (and

a neighbor).
Since m(G, r)  r is clear, it suffices to find a set S ⊂ V (G) of size r that percolates.

Let S be any subset of the set {(v1i , v2i , . . . , vki ) : i ∈ {1, 2}}, such that |S| = r. Such a
set S always exists because r  2k−1 < 2k.

First note that every vertex x = (x1, . . . , xk), where xi ∈ {vi1, vi2} for all i ∈ [k], gets
infected, since x is in S or is a neighbor of all vertices in S. We will use induction to prove
that eventually every vertex of G gets infected. Let ti ∈ [ni] for all i ∈ [k]. We claim
that every vertex x = (x1, . . . , xk) ∈ V (G), where xi ∈ {vij : j  ti} for all i ∈ [k], gets

infected. The induction is on
k

i=1 ti where for the base case we can take
k

i=1 ti = 2k;
that is ti = 2 for all i ∈ [k]. Thus the base of induction is that all vertices x = (x1, . . . , xk),
whose coordinates, xi, are in {vij : j  2} are infected, which has already been proved.

In the inductive step we assume that every vertex x = (x1, . . . , xk) ∈ V (G), where
xi ∈ {vij : j  ti} for all i ∈ [k] and some ti  ni, is infected. In addition, we may assume
there exists an index s ∈ [k] such that ts < ns, and without loss of generality, let s = 1.
Consider a vertex x = (x1, . . . , xk), where x1 = v1t1+1 and xj ∈ {vj1, v

j
2, . . . , v

j
tj} for all

j ∕= 1. Note that x is adjacent to vertices (p(v1t1+1), y
2, . . . , yk) where yi ∈ {xi, p(xi)} for

2  i  k. Since these vertices are all infected, x has at least 2k−1  r infected neighbors,
therefore it gets infected. We have thus proved that all the vertices x = (v1ℓ , x

2, . . . , xk) ∈
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V (G), where ℓ ∈ [t1+1] and xi ∈ {vij : j ∈ [ti]} for all i > 1, get infected, which concludes
the proof of the inductive step.

When considering the graph G = G1⊠· · ·⊠Gk in the r-neighbor bootstrap percolation
when r < k, we can write G = G1⊠ · · ·⊠Gr−1⊠(Gr⊠ · · ·⊠Gk), and consider Gr⊠ · · ·⊠Gk

as a sole factor. Hence, applying Theorem 2, we infer the following

Corollary 3. If k  2 and G = G1 ⊠ · · ·⊠Gk for non-trivial connected graphs Gi, then
m(G, r) = r for all r  2k−1.

By letting k = 2 in Theorem 2, and noting that the 2-neighbor bootstrap percolation
coincides with P3-hull convexity, we get the result of Coelho [12, Theorem 3.1] regarding
the P3-hull number of the strong product of two graphs.

Since the case r  2k−1 is completely resolved, we continue by investigating strong
products of k graphs and the r-neighbor bootstrap percolation, where r > 2k−1. The
following results yields a dichotomy to the corollary above by showing that as soon as
r > 2k−1, the r-percolation number of the strong product of k factors can be arbitrarily
large.

Theorem 4. If n  3, then m(Cn ⊠K2 ⊠ · · ·⊠K2, 2
k−1 +1) = 2k−1 − 1+ ⌈n

2
⌉, where K2

appears as a factor (k − 1)-times.

Proof. Note that K2 ⊠ · · · ⊠K2 is isomorphic to the complete graph K2k−1 and let G =
Cn ⊠K2k−1 . Denote V (Cn) = {v1, . . . , vn} and V (K2k−1) = {1, 2, . . . , 2k−1}. We start by
proving the lower bound m(G, 2k−1 + 1)  2k−1 − 1 + ⌈n

2
⌉.

Let S be a minimum percolating set of G. For all i ∈ [n], let Hi = G[{(vi, p), (vi+1, p) :
p ∈ [2k−1]}] be the subgraph of G, where i is taken with respect to modulo n. Clearly, Hi

is the union of two H-layers viK2k−1 and vi+1K2k−1 and is isomorphic to the complete graph
on 2k vertices. In addition, every vertex in Hi has exactly 2k−1 neighbors in G− V (Hi).
Since r = 2k−1 + 1, we derive that

|S ∩ V (Hi)|  1, for all i ∈ [n] . (1)

Without loss of generality, renaming the vertices of G if necessary, we may assume that
(v2, 1) /∈ S is a vertex infected at step 1 of the percolation process. Hence, there are at
least 2k−1 + 1 initially infected vertices within v1K2k−1 ∪ v2K2k−1 ∪ v3K2k−1 = H1 ∪ H2.
When n ∈ {3, 4}, we have |S|  2k−1 − 1 + ⌈n

2
⌉, which proves the desired lower bound.

Let n  5. Note that |{H4, . . . , Hn−1}|  1, and using (1), we get

|S| = |S ∩ (H1 ∪H2)|+ |S ∩ (H4 ∪ · · · ∪Hn−1)|  2k−1 + 1 +


n− 3

2


.

If n is even, then ⌊n−3
2
⌋ = n

2
− 2, and if n is odd, then ⌊n−3

2
⌋ = n+1

2
− 2. In both cases, we

get m(G, 2k−1 + 1)  2k−1 − 1 + ⌈n
2
⌉, as desired.
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To prove the upper bound, m(G, 2k−1+1)  2k−1−1+⌈n
2
⌉, we consider two possibilities

for a percolating set S with respect to the parity of n. If n is even, let

S = v1K2k−1 ∪ {(v3, 1), (v5, 1), . . . , (vn−1, 1)},

while if n is odd, let

S = v1K2k−1 ∪ {(v3, 1), (v5, 1), . . . , (vn, 1)}.

In either case, |S| = 2k−1 − 1 + ⌈n
2
⌉. It is easy to see that S percolates, and so the proof

is complete.

2.2 At least two non-edge factors

Theorem 4 shows that if the strong product has only one non-edge factor, Theorem 2 is
best possible. If there are at least two non-edge factors, we can improve Theorem 2 as
follows.

Theorem 5. Let G be the strong product G1 ⊠ · · ·⊠Gk of connected graphs Gi, i ∈ [k].
If |V (G)|  r and at least two of the factors have order at least 3, then m(G, r) = r for
all 2  r  3 · 2k−2.

Proof. The result for r  2k−1 follows from Theorem 2. We start with the proof of the
statement, when r = 3 · 2k−2. (The cases when r ∈ {2k−1 + 1, . . . , 3 · 2k−2 − 1} will be
dealt with in the final paragraph of this proof.)

Let n1  n2  3, and ni  2 for all i ∈ {3, . . . , k}. Denote V (Gi) = {v(i)1 , v
(i)
2 , . . . , v

(i)
ni }

for all i ∈ [k]. Since G1 is connected of order at least 3, it contains a path on three
vertices (not necessarily induced). Assume without loss of generality, renaming vertices if

necessary, that P : v
(1)
1 v

(1)
2 v

(1)
3 is a path in G1. For each i ∈ {3, . . . , k}, let Fi = {v(i)1 , v

(i)
2 }

consist of two adjacent vertices. Let

S = V (P )× {v(2)1 }×
k

i=3

Fi. (2)

Clearly, |S| = 3 · 2k−2. We claim that S percolates.
Firstly, assuming that vertices in S are infected, we show that vertices in V (P ) ×

V (G2)×
k

i=3 Fi become infected. Since G2 is connected, it suffices to show that the set

V (P )×{v(2)s }×
k

i=3 Fi being infected implies that the set V (P )×{v(2)t }×
k

i=3 Fi becomes

infected, where v
(2)
t is adjacent to v

(2)
s in G2. Indeed, each vertex (v

(1)
2 , v

(2)
t , v

(3)
i3
, . . . , v

(k)
ik

),

where ip ∈ [2] for all p ∈ {3, . . . , k}, is adjacent to all vertices in V (P )× {v(2)s }×
k

i=3 Fi.

Since |V (P )× {v(2)s }×
k

i=3 Fi| = 3 · 2k−2, we infer that vertices (v
(1)
2 , v

(2)
t , v

(3)
i3
, . . . , v

(k)
ik

),
where ip ∈ [2] for all p ∈ {3, . . . , k}, become infected. Now, consider any vertex

(v
(1)
1 , v

(2)
t , v

(3)
i3
, . . . , v

(k)
ik

),
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where ip ∈ [2] for all p ∈ {3, . . . , k}, and note that it is adjacent to all vertices

(v
(1)
i1
, v(2)s , v

(3)
i3
, . . . , v

(k)
ik

),

where ip ∈ [2] for all p ∈ [k] \ {2}, as well as to all (newly infected) vertices

(v
(1)
2 , v

(2)
t , v

(3)
i3
, . . . , v

(k)
ik

),

where ip ∈ [2] for all p ∈ {3, . . . , k}. Thus, altogether, (v(1)1 , v
(2)
t , v

(3)
i3
, . . . , v

(k)
ik

) is adjacent
to 2k−1+2k−2 = 3 ·2k−2 infected neighbors, and so it gets infected. By symmetry, we infer
the same fact about vertices (v

(1)
3 , v

(2)
t , v

(3)
i3
, . . . , v

(k)
ik

), where ip ∈ [2] for all p ∈ {3, . . . , k}.
Hence, vertices in V (P )× V (G2)×

k
i=3 Fi become infected, as claimed.

Secondly, we prove that all vertices in V (P ) ×
k

i=2 V (Gi) become infected. For this

purpose, we claim that for any i ∈ {2, . . . , k − 1}, vertices in V (P ) ×
i+1

j=2 V (Gj) ×k
j=i+2 Fj get infected assuming that vertices in V (P ) ×

i
j=2 V (Gj) ×

k
j=i+1 Fj are

infected. (Since vertices in V (P ) × V (G2) ×
k

i=3 Fi became infected as proved in the
previous paragraph, the truth of this claim implies the statement that vertices in V (P )×k

i=2 V (Gi) become infected.) By using the assumption, note that all vertices in V (P )×i
j=2 V (Gj)×{v(i+1)

1 }×
k

j=i+2 Fj are infected. Now, consider arbitrary adjacent pairs of

vertices v
(j)
j1

and v
(j)
j2

in Gj, where j ∈ {2, . . . , i}, and let Wj = {v(j)j1
, v

(j)
j2
}. Since Gi+1 is

connected, it suffices to show that the set V (P )×
i

j=2 Wj × {v(i+1)
s }×

k
j=i+2 Fj being

infected implies that the set V (P )×
i

j=2 Wj×{v(i+1)
t }×

k
j=i+2 Fj, where v

(i+1)
t is adjacent

to v
(i+1)
s in Gi+1, becomes infected. To see this, one can use analogous arguments as in

the proof in the previous paragraph. Since pairs of vertices in Wj were chosen arbitrarily,

we infer that vertices in V (P )×
k

i=2 V (Gi) become infected, as claimed.

Thirdly, let P ′ : v
(2)
i1
v
(2)
i2
v
(2)
i3

be an arbitrary path in G2, and note that any vertex of G2

lies on such a path, since G2 is connected and |V (G2)|  3. Further, let Wj = {v(j)j1
, v

(j)
j2
}

consist of arbitrary adjacent vertices in Gj, for all j ∈ {3, . . . , k}. Note that all vertices in
{v(1)1 }× V (P ′)×

k
j=3 Wj are already infected. Again, by using symmetric arguments as

earlier, one can prove that vertices in {v(1)t }×V (P ′)×
k

j=3 Wj become infected assuming

that vertices in {v(1)s } × V (P ′) ×
k

j=3 Wj are infected, where v
(1)
s v

(1)
t ∈ E(G1). Since,

G1 is connected, we deduce that V (G1) × V (P ′) ×
k

j=3 Wj gets infected. Noting that
vertices in P ′ and Wj, where j ∈ {3, . . . , k}, were arbitrarily chosen, we get that V (G)
becomes infected, and S is indeed a percolating set.

Finally, let r ∈ {2k−1+1, . . . , 3 · 2k−2− 1}. Note that it suffices to find a set S ′ in G of
size r such that S, as defined in (2), becomes infected assuming that S ′ is infected. Now,

let S ′ = S \ U , where U consists of any 3 · 2k−2 − r vertices in {v(1)2 }× {v(2)1 }×
k

i=3 Fi.
(Since r ∈ {2k−1+1, . . . , 3 ·2k−2−1}, we have |U |  3 ·2k−2−(2k−1+1) < 2k−2, hence U is

well defined.) Since S is isomorphic to P3⊠K2k−2 , vertices in {v(1)2 }×{v(2)1 }×
k

i=3 Fi are
adjacent to all other vertices in S. Hence, if S ′ is initially infected, S becomes infected,
and so S ′ is a percolating set.
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We have shown that r  3 · 2k−2 implies m(G, r) = r, whenever G is a strong product
of k graphs at least two of which have order at least 3. Now, the natural question is
whether m(G, r) is bounded from above also if r > 3 · 2k−2, and the next results shows
this is not always true. On the contrary, m(G, 3 · 2k−2 + 1) can be arbitrarily large.

Theorem 6. If n  3, then m(Cn ⊠ Cn ⊠K2 ⊠ · · · ⊠K2, 3 · 2k−2 + 1)  ⌈n
2
⌉, where K2

appears as a factor (k − 2) times.

Proof. Note that K2 ⊠ · · · ⊠K2 is isomorphic to the complete graph K2k−2 and let G =
Cn ⊠ Cn ⊠ K2k−2 . Denote V (Cn) = {v1, . . . , vn} and V (K2k−2) = {1, . . . , 2k−2}. For all
i ∈ [n] let Hi = G[{(vi, vj, p), (vi+1, vj, p) : j ∈ [n], p ∈ [2k−2]}], where i is taken with
respect to modulo n. Finally let S be a minimum percolating set of G.

Note that every vertex (vi, vj, p) ∈ V (Hi) has exactly 3 · 2k−2 neighbors in G− V (Hi).
More precisely, (vi, vj, p) is adjacent to vertices (vi−1, vj′ , p

′), where j′ ∈ {j − 1, j, j + 1}
and p′ ∈ [2k−2]. We infer that |S ∩ Hi|  1, for all i ∈ [n], which in turn implies that
|S|  ⌈n

2
⌉.

2.3 At least three non-edge factors

We can further improve Theorem 5 if there are at least three non-edge factors. However,
in this case we only obtain an upper bound.

Theorem 7. Let G be the strong product G1⊠ · · ·⊠Gk of connected graphs Gi, i ∈ [k]. If
at least three of the factors have order at least 3, then m(G, r)  7·2k−3 for all r  7·2k−3.

Proof. Since m(G, r)  c for some r and c implies m(G, r′)  c for all r′  r, it suffices
to show that m(G, 7 · 2k−3) = 7 · 2k−3.

Let G = G1 ⊠ · · · ⊠ Gk and denote V (Gi) = {v(i)1 , v
(i)
2 , . . . , v

(i)
ni } for all i ∈ [k], and

n1  n2  n3  3. Consider the paths P (i) : v
(i)
1 v

(i)
2 v

(i)
3 in Gi for all i ∈ {1, 2}. Since G1

and G2 are connected of order at least 3, such paths exist (note that P (i) is not necessarily
induced). First, let k = 3, and

S ′ = V (P (1))× V (P (2))× {v(3)1 } \ {(v(1)2 , v
(2)
2 , v

(3)
1 ), (v

(1)
1 , v

(2)
2 , v

(3)
1 )}. (3)

Clearly, |S ′| = 7. Thus consider the spreading of infection in the 7-bootstrap percolation.
The first few infection steps are presented in the following table. (In the table, we use a

simplified notation for the vertices. Notably, vertex (v
(1)
i , v

(2)
j , v

(3)
ℓ ) is written as (i, j, ℓ).)

Infection step Newly infected vertices Infected by neighbors
Step 1 (2, 2, 1), (2, 2, 2) S ′

Step 2 (3, 2, 2) Step 1 and (2, 1, 1), (3, 1, 1), (3, 2, 1), (3, 3, 1), (2, 3, 1)
Step 3 (2, 1, 2) and (2, 3, 2) Steps 1, 2, and (1, 1, 1), (2, 1, 1), (3, 1, 1), (3, 2, 1) and (1, 3, 1), (2, 3, 1), (3, 3, 1), (3, 2, 1), respectively.
Step 4.1 (1, 2, 1), (1, 2, 2) Steps 1, 3, and (1, 1, 1), (2, 1, 1), (1, 3, 1), (2, 3, 1)
Step 4.2 (3, 1, 2), (3, 3, 2) Steps 1, 2, and (2, 1, 1), (3, 1, 1), (3, 2, 1), (2, 1, 2) and (2, 3, 1), (3, 3, 1), (2, 3, 2), (3, 2, 1), respectively.
Step 5 (1, 1, 2) and (1, 3, 2) Steps 1, 4.1, and (2, 1, 2), (1, 1, 1), (2, 1, 1) and (2, 3, 1), (1, 3, 1), (3, 1, 1), respectively.
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After these infection steps, the vertices in V (P (1))×V (P (2))×{v(3)1 , v
(3)
2 } are all infected.

Next, by replacing v
(3)
1 and v

(3)
2 in the previous steps with arbitrary adjacent vertices v

(3)
s

and v
(3)
t in G3 we deduce the following claim: V (P (1)) × V (P (2)) × {v(3)s } being infected

implies that vertices in V (P (1)) × V (P (2)) × {v(3)t } also become infected. Since G3 is
connected this proves that S ′ eventually infects all vertices in V (P (1))×V (P (2))×V (G3).

Let P ′ be an arbitrary path on three vertices in G3 (P ′ is well defined because
|V (G3)|  3). By using analogous arguments as in the previous paragraph (where the
roles of the first and the third coordinate are reversed) we derive that infected vertices

{v(1)1 }× V (P (2))× V (P ′) also infect V (G1)× V (P (2))× V (P ′). Since P ′ is arbitrary and
every vertex in V (G3) lies on some path P3, this implies that V (G1) × V (P (2)) × V (G3)
becomes infected.

Finally let P ′′ be an arbitrary path on three vertices in G1. Then infected vertices
V (P ′′)×{v(2)1 }×V (P ′) eventually infect V (P ′′)×V (G2)×V (P ′). Once again since P ′ and
P ′′ can be chosen arbitrarily, this implies that V (G1)× V (G2)× V (G3) = V (G) becomes
infected.

Now let k  4. For each i ∈ {4, . . . , k}, let Fi = {v(i)1 , v
(i)
2 } consist of two adjacent

vertices. Let

S = S ′ ×
k

i=4

Fi,

where S ′ ⊂ V (G1)× V (G2)× V (G3) as defined in (3).
Let (x1, x2, x3) ∈ V (G1 ⊠ G2 ⊠ G3) be a vertex infected in Step 1 from the above

table. Then, any vertex (x1, x2, x3, u4, . . . , uk), where ui ∈ Fi for all i  4, is adjacent
to all vertices in S, therefore it has 7 · 2k−3 neighbors, and becomes infected. By using
analogous constructions for Steps 2-5, we deduce that eventually every vertex in V (P (1))×
V (P (2)) × {v(3)1 , v

(3)
2 } ×

k
i=4 Fi becomes infected. This in turn implies that vertices in

V (P (1))× V (P (2))× V (G3)×
k

i=4 Fi become infected, and in the similar way as above,

we then infer that vertices in V (G1)× V (G2)× V (G3)×
k

i=4 Fi also become infected.
By continuing this process (choosing paths on three vertices in two coordinates among

the first three coordinates, and exchanging the coordinate in which the infection is spread),
we finally derive (in a similar way as in the proof of Theorem 5) that all vertices of G
eventually become infected, and thus S percolates.

2.4 No K2 factors

In this subsection we deal with the last line of the table in Section 1.2.

Theorem 8. Let k  4 and G be the strong product G1 ⊠ · · · ⊠ Gk of connected graphs
Gi, i ∈ [k]. If |V (Gi)|  3 for all i ∈ [k], then m(G, r)  3k−1 − k for all r  2k − 1.

Proof. Note that it suffices to show that m(G, 2k − 1)  3k−1 − k. Indeed, the truth of
this inequality directly implies that m(G, r)  3k−1 − k for all r  2k − 1.

Let V (Gi) = {v(i)1 , v
(i)
2 , . . . , v

(i)
ni } for all i ∈ [k], and by the assumption ni  3 for all

i ∈ [k]. Let P (i) : v
(i)
1 v

(i)
2 v

(i)
3 be paths in Gi for all i ∈ [k]. (Since for each i ∈ [k] graph Gi
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is connected of order at least 3, such a path exists.) Let v = (v
(1)
2 , . . . , v

(k−1)
2 , v

(k)
1 ),

U = {(x1, . . . , xk−1, v
(k)
1 ) : ∃i ∈ [k − 1] with xi = v

(i)
3 , and xj = v

(j)
2 ∀j ∕= i}


{v},

and let

S =


k−1

i=1

V (P (i))× {v(k)1 }


\ U. (4)

Clearly, |S| = 3k−1 − k. Since k  4, it follows that 3k−1 − k  2k − 1. We claim that S
percolates. First note that v is adjacent to every vertex in S, so it gets infected. Let u ∈
U\{v} be an arbitrary vertex. Without loss of generality let u = (v

(1)
3 , v

(2)
2 , . . . , v

(k−1)
2 , v

(k)
1 ).

Then u is adjacent to v and also to every vertex (y1, . . . , yk−1, , v
(k)
1 ), where y1 ∈ {v(1)2 , v

(1)
3 }

and yi ∈ P (i) for all i ∈ {2, . . . , k− 1}, except for the vertices in U \ {v}. Therefore it has
2 ·3k−2− (k−1) infected neighbors, and since k  4, we have 2 ·3k−2− (k−1)  2k−1, as
desired. With this we have proved that vertices in U get infected. Therefore, all vertices
in

k−1
i=1 V (P (i))× {v(k)1 } are now infected.

Next, we will prove that vertices in
k−1

i=1 V (P (i))× V (Gk) become infected. Since Gk

is connected it suffices to show that if vertices in
k−1

i=1 V (P (i)) × {v(k)s } are infected this

implies that vertices
k−1

i=1 V (P (i)) × {v(k)t } become infected, where v
(k)
s and v

(k)
t are any

adjacent vertices in Gk. Assume now that v
(k)
s and v

(k)
t are adjacent in Gk and that vertices

of
k−1

i=1 V (P (i)) × {v(k)s } are infected. Note that all these vertices are adjacent to the

vertex (v
(1)
2 , . . . , v

(k−1)
2 , v

(k)
t ), which gets infected, since it has 3k−1 infected neighbors. Let

j ∈ {0, 1, . . . , k− 2} and suppose that all vertices in
k−1

i=1 V (P (i))× {v(k)t } which contain

at most j coordinates not equal to v
(i)
2 for some i ∈ [k] are already infected. Consider any

vertex x ∈
k−1

i=1 V (P (i))×{v(k)t } which contains exactly j+1 coordinates not equal to v
(i)
2

for some i ∈ [k]. Without loss of generality let x = (v
(1)
3 , . . . , v

(j+1)
3 , v

(j+2)
2 , . . . , v

(k−1)
2 , v

(k)
t ).

Then x has 2j+1 ·3k−j−2 infected neighbors of the form of y = (y1, . . . , yk−1, v
(k)
s ) where yi ∈

{v(i)2 , v
(i)
3 } for all i ∈ [j+1] and yi ∈ {v(i)1 , v

(i)
2 , v

(i)
3 } for all i ∈ {j+2, . . . , k−1}. Note that x

also has 2j+1−1 infected neighbors of the form of y = (y1, . . . , yj+1, v
(j+2)
2 , . . . , v

(k−1)
2 , v

(k)
t ),

where yi ∈ {v(i)2 , v
(i)
3 } for all i ∈ [j + 1], except when yi = v

(i)
3 for every i ∈ [j + 1]. Thus

x has 2j+1 · 3k−j−2 + 2j+1 − 1  2k − 1 infected neighbors, therefore it gets infected. This
proves that eventually every vertex in

k−1
i=1 V (P (i))× V (Gk) gets infected.

By continuing this process (choosing paths on three vertices in all but one coordinate,
and spreading the infection throughout the remaining coordinate), we finally derive that
all vertices of G eventually become infected, and thus S percolates.

Note that we only proved an upper bound for m(G, r), where G has k factors all
of which with at least three vertices, and the exact values are still open. Nevertheless,
Observation 1 yields a dichotomy to the above result by presenting strong products of k
graphs in which the r-percolation number, where r  2k, can be arbitrarily large.
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3 Percolation numbers of G ⊠ H

In this section, we consider m(G⊠H, r), where G and H are non-trivial connected graphs.
When r = 3 and both G and H have order at least 3, we immediately get the following
result from Theorem 5.

Corollary 9. If G and H are connected graphs each with at least 3 vertices, then m(G⊠
H, 3) = 3.

In the next subsection, we consider the only remaining case for m(G ⊠ H, 3), which
is when one of the factors is K2, and prove a characterization of the graphs G such that
m(G ⊠ K2, 3) = 3. In Section 3.2 we follow with some bounds on m(G ⊠ H, 4) and
m(G⊠H, 5).

3.1 Strong prisms and r = 3

By Corollary 9, the only remaining case for the 3-neighbor bootstrap percolation of the
strong product of two factors is when one of the factors is K2, that is, G⊠K2, or the so-
called strong prism of a graph G. We will denote the vertices of a strong prism as follows:
letting V (K2) = [2], we will write V (G⊠K2) = {vi : vi = (v, i), where v ∈ V (G), i ∈ [2]}.

Note that if x and y are twins in a graph G, and among the two only x belongs to
a percolating set of G, then S ′ = (S \ {x}) ∪ {y} is also a percolating set of G, and has
the same cardinality as S. This observation will be helpful in the proof of the following
auxiliary result.

Lemma 10. If G is a graph of order at least 3 and m(G ⊠K2, 3) = 3, then there exists
a minimum percolating set of G⊠K2 all vertices of which are in the same G-layer.

Proof. Let S be a minimum percolating set of G ⊠ K2. Note that for any v ∈ V (G),
vertices v1 and v2 are (closed) twins. Hence, if S contains three vertices no two of which
are in the same K2-layer, then by the observation preceding the lemma, we infer that S
can be modified in such a way that all of its vertices belong to the same G-layer.

Now, assume that S = {w1, w2, u1} and let x ∈ V (G⊠K2) be a common neighbor of
vertices w1, w2, u1. Consider the following two cases.

(i) If x = u2, then u1 and w1 are neighbors. Since |V (G)|  3, there exists a vertex z1
adjacent to u1 or w1 (hence, u, z and w form a path in G of which central vertex is
u or w). Note that S ′ = {u1, z1, w1} is a percolating set of G ⊠ K2, since after at
most two steps w2 gets infected as well.

(ii) If x ∕= u2, then x ∈ {z1, z2} for a vertex z ∈ V (G) \ {u, w}. In either way, z1 is
adjacent to both u1 and w1, and so uzw is a path in G. Again, S ′ = {u1, z1, w1} is
a percolating set of G ⊠K2, since z2 gets infected after the first step, and then w2

is infected after the second step.

In both cases, we found a minimum percolating set of G⊠K2 that lies in one G-layer, as
desired.
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Next we present a complete characterization of strong prisms whose 3-percolation
number equals 3.

Theorem 11. If G is a connected graph, then m(G ⊠ K2, 3) = 3 if and only if either
m(G, 2) = 2 or m(G, 2) = 3 with a percolating set S such that vertices from S lie in a
subgraph of G isomorphic to P3 or K1,3.

Proof. Firstly, let m(G, 2) = 2 and let {u, v} be a percolating set in the 2-neighbor
bootstrap percolation in G. If G ∼= K2, then S = {u1, v1, u2} is a percolating set in the
3-neighbor bootstrap percolation in G⊠K2, so we may assume that |V (G)|  3. Hence,
there is a vertex w in G adjacent to both u and v. Let S = {u1, v1, w1}, and consider
the 3-neighbor bootstrap percolation in G⊠K2. Note that w2 gets infected directly from
S, and in the second step also u2 and v2 get infected. From this point forward, the 3-
neighbor bootstrap percolation process in G⊠K2 follows analogous lines as the 2-neighbor
bootstrap percolation process in G. Notably, if z ∈ V (G) gets infected by x and y in G,
then z1 ∈ V (G)× [2] and z2 ∈ V (G)× [2] get infected by {x1, x2, y1, y2} in G⊠K2. Thus
S percolates, and m(G⊠K2, 3) = 3.

Secondly, letm(G, 2) = 3 and let S = {u, v, w} be a percolating set of G such that uvw
is a path in G. Let S ′ = {u1, v1, w1}, and consider the 3-neighbor bootstrap percolation
in G ⊠ K2. In the same way as in the previous paragraph we note that also u2, v2
and w2 get infected. In addition, we note that from this point forward, the 3-neighbor
bootstrap percolation process inG⊠K2 follows analogous lines as the 3-neighbor bootstrap
percolation process in G. Notably, if w ∈ V (G) gets infected by x, y and z in G, then
w1 ∈ V (G)× [2] and w2 ∈ V (G)× [2] get infected by {x1, x2, y1, y2, z1, z2} in G⊠K2 (in
fact, one could use only three vertices among the six to get the same result). Finally,
let S = {u, v, w} be a percolating set of G such that u, v, w are leaves in a subgraph of
G isomorphic to K1,3 whose central vertex is denoted by a. Note that S ′ = {u1, v1, z1}
immediately infects a1. Since vertices of the path u1a1v1 in G⊠K2 are infected, we infer
by the same reasoning as earlier that S ′ percolates in G⊠K2.

For the reverse implication, let m(G ⊠ K2, 3) = 3. If |V (G)|  3 one can readily
check that m(G, 2) = 2, so let G be of order at least 4. By Lemma 10, one can choose a
percolating set S such that all its vertices lie in the same G-layer. Thus we may assume
that S = {u1, v1, w1} is a percolating set of G⊠K2, where u, v, w ∈ V (G). Hence, there
exists a common neighbor x ∈ V (G⊠K2) of u1, v1, w1. Consider the following cases:

(i) x ∈ {u2, v2, w2}. Then u, v, w lie on a path P3 in G.

(ii) x /∈ {u2, v2, w2}. Then x ∈ {z1, z2} for some vertex z ∈ V (G) \ {u, v, w}. Note that
both z1 and z2 are adjacent to u1, v1, w1. Hence, u, v and w are leaves of a subgraph
of G isomorphic to K1,3 and z is its central vertex.

In both cases, either immediately or after the first step, one finds an infected path isomor-
phic to P3 in the first layer, and as noted earlier, the corresponding vertices in the second
layer also get infected. This property is maintained throughout the process; namely,
whenever a vertex u1 gets infected, its twin u2 has the same set of (infected) neighbors
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and so it also get infected at the same time (and vice versa). Since u1 had at least three
infected neighbors, at least two of them were in G1. We infer that the set {u, v, w} per-
colates in the 2-neighbor bootstrap percolation in G, therefore m(G, 2)  3. In addition,
if m(G, 2) = 3, then by the above, {u, v, w} is a percolating set, where u, v, w are in a
subgraph isomorphic to P3 or K1,3. The proof is complete.

Unfortunately, we do not know of a structural characterization of the class of graphs
with m(G, 2) = 2 or m(G, 2) = 3. One might wonder if the latter class of graphs always
contains a 2-neighbor bootstrap percolating set S that appears in the formulation of the
theorem, that is, vertices from S lying in a subgraph of G isomorphic to P3 or K1,3.
However, the following example shows this is not the case. Let G′ be the graph obtained
from C4 by adding two leaves to a vertex; see Fig. 1. Note that m(G′, 2) = 3 with the
unique percolating set S depicted in the figure (the leaves must be included in S and one
more vertex is needed), which does not satisfy the condition of Theorem 11, therefore
m(G′ ⊠K2, 3) > 3.

x

Figure 1: Graph G′ with a unique percolating set S

To gain a better understanding of the class of graphs characterized in Theorem 11,
we give some structural properties of the graphs G with m(G ⊠ K2, 3) = 3 related to
cut-vertices in G.

Proposition 12. If m(G⊠K2, 3) = 3, then G has at most one cut-vertex x, and if x is
a cut-vertex of G then G− x has at most three components.

Proof. Let G be a graph that either has two distinct cut-vertices, or G has one cut-vertex
x, such that G − x has more than three components (both cases infer |V (G)|  4). We
will show that m(G⊠K2, 3) > 3. Suppose, to the contrary, that m(G⊠K2, 3) = 3. Then
according to Theorem 11 this implies that either m(G, 2) = 2 or m(G, 2) = 3 with a
percolating set S such that vertices in S lie on a subgraph of G isomorphic to P3 or K1,3.

Firstly let x be an arbitrary cut-vertex of G and let S be a percolating set of G of
either size 2 or 3, under the 2-neighbor bootstrap percolation. Let K and L be any two
connected components of G − x. Since there are no edges between vertices in K and
vertices in L, we infer that S contains at least one vertex from either K and L. Thus if
G− x has more than three connected components, S would contain at least 4 vertices, a
contradiction.

Now, suppose that G contains an additional cut-vertex y. If G − {x, y} has three
connected components, then from the same reason as above S contains a vertex from
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each of these components. However, such a set S does not satisfy the condition that its
vertices lie on a subgraph isomorphic to P3 or K1,3.

Finally, if G− {x, y} has only two connected components, then x and y are adjacent.
Once again S contains a vertex from each connected component of G − {x, y}. Now,
if |S| = 2, then there are no common neighbors between infected vertices and S cannot
percolate. If |S| = 3, then vertices in S cannot lie on a graph isomorphic to P3 or K1,3.

Let G = K1,3 and consider m(G ⊠ K2, 3). Note that G has a cut-vertex x, which
separates G − x into three components. Also note that a set S containing the leaves of
K1,3 infects G, therefore according to Theorem 11, m(G ⊠ K2, 3) = 3. Hence, having a
cut-vertex that yields exactly three components is possible for m(G⊠K2, 3) = 3.

To see that the inverse of Proposition 12 does not hold, take the graph G′ from Fig. 1.
Note that G′ has just one cut-vertex x and G′ − x has three components. However
m(G′ ⊠ K2, 3) > 3 because m(G′, 2) = 3 with a unique percolating set S, which does
not satisfy the condition from Theorem 11. Another example is the cycle C5. It has no
cut-vertices and it is easy to see that no vertex set of size two percolates in the 2-neighbor
bootstrap percolation process. This means that m(C5, 2) = 3 since a set containing one
vertex and both of its diametral vertices is a percolating set of size 3. This is in fact
the only way to form a minimum percolating set, since the only other possible subset of
three vertices is a path P3, which does not infect any new vertices. Since the condition of
Theorem 11 is not satisfied, m(C5 ⊠K2, 2) > 3.

By Theorem 4, we infer the following result, showing that m(G⊠K2, 3) can be arbi-
trarily large.

Corollary 13. Let n ∈ N. Then m(Cn ⊠K2, 3) = ⌈n
2
⌉+ 1.

3.2 Two factors and r = 4 or r = 5

Next, we consider the 4- and the 5-neighbor bootstrap percolation in strong products of
two factors. The following result is of similar flavor as Theorem 11 in the sense that we
use the 2-percolation numbers of factor graphs.

Theorem 14. Let G and H be connected graphs such that m(G, 2) = 2 and m(H, 2) = 2.
Then, m(G⊠H, 4)  5. In addition, if there exists a percolating set of G (or H) consisting
of two adjacent vertices, then m(G⊠H, 4) = 4.

Proof. Denote V (G) = {g1, . . . , gn} and V (H) = {h1, . . . , hm} in such a way {g1, g2} and
{h1, h2} are the percolating sets of G and H, respectively. We also assume, renaming
the vertices of G and H if necessary, that every vertex gi, respectively hj, is infected in
G, respectively H, using the 2-neighbor bootstrap percolation rule by some pair gi1 , gi2 ,
respectively hj1 , hj2 , where i1 < i2 < i and j1 < j2 < j.

First let V (G) = {g1, g2}, in which case g1g2 ∈ E(G). If V (H) = {h1, h2}, then
m(G ⊠ H, 4) = 4. Hence let |V (H)|  3 and let S = {(g1, h1), (g1, h2), (g2, h1), (g2, h2)}.
Let hi be a vertex adjacent to hi1 , hi2 in H and assume that all vertices (g1, hj), (g2, hj)
for all j < i are already infected. Then (g1, hi), (g2, hi) are both adjacent to vertices
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(g1, hi1), (g2, hi1), (g1, hi2), (g2, hi2). By induction, the whole G ⊠ H gets infected and
m(G⊠H, 4) = 4.

Now let us assume that |V (G)|  3 and |V (H)|  3. Denote by S3 the subgraph
induced by {(gi, hj) : i, j ∈ [3]}. Consider two cases for a percolating set S in the
4-neighbor bootstrap percolation.

Case 1: g1g2 /∈ E(G) and h1h2 /∈ E(H). Let S = {(g1, h1), (g1, h2), (g2, h1), (g2, h2),
(g3, h1)} be a set of size 5 and consider the following 4-neighbor bootstrap percola-
tion process. Immediately (g3, h3) is infected by (all) vertices in S. After that, the
vertex (g2, h3) is infected by (g3, h3), (g2, h1), (g2, h2), (g3, h1). Finally, vertices (g3, h2)
and (g1, h3) are adjacent to (g1, h2), (g1, h3), (g2, h2), (g2, h3), (g3, h3) and (g1, h1), (g1, h2),
(g3, h1), (g3, h2), (g3, h3) respectively. This infects the whole S3.

Case 2: g1g2 ∈ E(G). Let S = {(g1, h1), (g1, h2), (g2, h1), (g2, h2)} and consider the
following 4-neighbor bootstrap percolation process. Vertex (g3, h1) is now adjacent to
every vertex in S. Since we have now obtained the same set of infected vertices as in Case
1, this set infects S3.

Now, let us assume that S3 is already infected and consider the 4-neighbor boot-
strap percolation process. Let gi be a vertex infected in the 2-neighbor bootstrap per-
colation process in G by vertices gi1 , gi2 (where i1, i2 < i) and suppose that vertices
(gk, h1), . . . , (gk, hp), for all k < i and some p  m are already infected in G ⊠H. Then
(gi, hp) gets infected by vertices (gi1 , hp), (gi2 , hp), (gi1 , hp1), (gi2 , hp1), (gi1 , hp2), (gi2 , hp2),
where hp gets infected by hp1 and hp2 in the 2-neighbor bootstrap percolation process in
H. By the same argument we can show that every vertex (gi, hj) where 3  j  p−1 has 6
infected neighbors and thus becomes infected. Finally (gi, h2) and (gi, h1) are adjacent to
(gi1 , h2), (gi2 , h2), (gi, h3), (gi1 , h3), (gi2 , h3) and (gi1 , h1), (gi2 , h1), (gi, h3), (gi1 , h3), (gi2 , h3)
respectively. Thus all vertices in {g1, . . . , gi}× {h1, . . . , hp} are now infected.

By reversing the roles of G and H, we can deduce that all vertices in {g1, . . . , gi} ×
{h1, . . . , hp+1} become infected. By using induction, we infer that all vertices in G ⊠ H
become infected. Therefore S percolates and m(G ⊠ H, 4)  5, concluding the proof of
the theorem.

Notice that throughout the infection process in the above proof, the only vertex which
was infected by less than 5 vertices, was vertex (g2, h3). Therefore it is not difficult to see
that one can modify the proof of Theorem 14 by adding the vertex (g2, h3) to the set of
initially infected vertices S, and obtain the following corollary.

Corollary 15. Let G and H be connected graphs such that m(G, 2) = 2 and m(H, 2) = 2.
If |V (G)|  3, |V (H)|  3, then m(G⊠H, 5)  6. In addition, if there exists a percolating
set of G (or H) consisting of two adjacent vertices, then m(G⊠H, 5) = 5.

Consider m(P3⊠P3, 4), and denote V (P3) = {1, 2, 3}. Suppose that S is a percolating
set of P3 ⊠ P3 with |S| = 4. Since vertices (1, 1), (1, 3), (3, 1) and (3, 3) are of degree
3, they must all be in S. They are all adjacent to vertex (2, 2), which gets infected.
After that every remaining vertex, namely (1, 2), (2, 1), (2, 3), (3, 2), contains exactly 3
infected neighbors, therefore S does not percolate. Hence, m(P3 ⊠ P3, 4) = 5. Now,
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consider m(P3 ⊠ P3, 5) and suppose that S is a percolating set with |S| = 5. Then
(1, 1), (1, 3), (3, 1) and (3, 3) are all in S. It is not difficult to check that by adding to S
any of the remaining vertices, S does not percolate. These examples show that the upper
bounds in Theorem 14 and Corollary 15 are sharp.

Let H = H1 ⊠ H2 for arbitrary connected graphs H1, H2. Since Theorem 2 states
that m(H, 2) = 2, where a percolating set consists of two adjacent vertices, the following
corollary of Theorem 14 is immediate.

Corollary 16. If m(G, 2) = 2 and |V (G)|  3, then m(G⊠H1 ⊠H2, 5) = 5.

4 Strong products of infinite paths

In this section, we extend the concept of the r-neighbor bootstrap percolation to infinite
graphs. In particular, we consider strong products of two-way infinite paths. In what
follows, we extend the consideration of the r-neighbor bootstrap percolation also to the
trivial case when r = 1. Clearly, if G is connected, then m(G, 1) = 1.

Given an infinite graph G and a positive integer r we let m(G, r) = ℓ < ∞ if S,
where |S| = ℓ, is a minimum set of vertices in G that are initially set as infected, and an
arbitrary vertex in G becomes infected by the r-neighbor bootstrap percolation process in
a finite number of steps. Otherwise, if there is no such finite set S, we let m(G, r) = ∞.
By

fpt(G) = sup{r : m(G, r) < ∞}
we define the finiteness percolation threshold of a graph G.

Clearly, if G is the complete (infinite) graph, then fpt(G) = ∞. In addition, fpt(G) =
∞ is true for any finite graph G, since m(G, r)  |V (G)| holds for any finite graph and
any positive integer r. On the other hand, it is easy to see that fpt(Z) = 1, where Z is
the two-way infinite path. As usual, let Z⊠,n = Z⊠ · · ·⊠ Z stand for the strong product
of n two-way infinite paths. We simplify the notation Z⊠,n to Zn. We wish to determine
fpt(Zn) for every n ∈ N, and we can use some results from previous sections to bound
this value. The following result follows immediately from Theorem 8.

Corollary 17. For every n ∈ N, fpt(Zn)  2n − 1.

The following upper bound for the threshold of Zn comes with an easy proof.

Proposition 18. For every n ∈ N, fpt(Zn)  3n−1.

Proof. Let G = Zn for some n ∈ N and assume that m(G, 3n−1 + 1) < ∞. Let S be the
percolating set of G. Without loss of generality and possibly by using a linear translation
of S, we may assume that S ⊆ [k]n for some positive integer k. Let x ∈ V (G)\ [k]n. Then
x has at most 3n−1 neighbors in [k]n, therefore the infection cannot spread out from the
box [k]n, a contradiction. Thus, fpt(Zn)  3n−1.

Combining Corollary 17 with Proposition 18 we get the exact value of the finiteness
percolation threshold of the strong grid Z2.
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Corollary 19. fpt(Z2) = 3.

The following result gives the finiteness percolation threshold of Z3, which needs more
effort.

Theorem 20. fpt(Z3) = 9.

Proof. From Proposition 18 we get that fpt(Z3)  9. To obtain the desired equality we
need to show that m(Z3, 9) < ∞. Let S = [5]3 and let G = Z3. We will prove that S
percolates G in the 9-neighbor bootstrap percolation process. For this purpose we will
first show that vertices in [5]× [5]× [6] get infected.

Firstly note that vertices in {2, 3, 4}× {2, 3, 4}× {6} have 9 neighbors in S. Namely,
any vertex (x1, x2, 6) where xi ∈ {2, 3, 4} for i ∈ [2] is adjacent to (y1, y2, 5), where
yi ∈ {xi − 1, xi, xi + 1} for i ∈ [2]. Secondly, vertex x = (1, 3, 6) has 6 neighbors in S,
namely (y1, y2, 5) where y1 ∈ {1, 2} and y2 ∈ {2, 3, 4}. Vertex x is also adjacent to vertices
(2, y2, 6) where y2 ∈ {2, 3, 4}, which were infected the first step. Thus, x has 9 infected
neighbors and gets infected. By using symmetric arguments, vertices (3, 1, 6), (5, 3, 6)
and (3, 5, 6) also get infected. Thirdly, vertex x = (1, 2, 6) is adjacent to (y1, y2, 5),
where y1 ∈ {1, 2} and y2 ∈ {1, 2, 3}, which are all in S. Vertex x is also adjacent
to vertices (2, y2, 6) for y2 ∈ {2, 3} and also to (1, 3, 6), all of which were infected in
previous steps. Since x has 9 infected neighbors, it gets infected. By symmetry, vertices
(1, 4, 6), (5, 2, 6), (5, 4, 6), (2, 1, 6), (2, 5, 6), (4, 1, 6) and (4, 5, 6) also get infected.

So far, with the exception of corner vertices, that is, vertices (1, 1, 6), (5, 1, 6), (2, 5, 6)
and (5, 5, 6), all other vertices in [5] × [5] × {6} have been infected. Again by using
symmetry we infer that with the exception of corner vertices all other vertices of [5] ×
[5] × {0, 6}, [5] × {0, 6} × [5] and {0, 6} × [5] × [5] become infected. More precisely,
the corner vertices that have not yet been infected are of the form x = (x1, x2, x3),
where xi ∈ {0, 6} for an i ∈ [3] and xj ∈ {1, 5} for all j ∕= i. Now, without loss of
generality, consider the corner vertex x = (5, 1, 6). Note that x is adjacent to vertices
(4, 1, 6), (4, 2, 6), (5, 2, 6), (4, 1, 5), (4, 2, 5), (5, 1, 5) and (5, 2, 5) as well as to (4, 0, 5) and
(6, 2, 5), all of which have been infected. By symmetric arguments we infer that the other
three corner vertices of [5]× [5]× [6] become infected, by which all vertices of [5]× [5]× [6]
are infected.

Now, by repeating this infection process, we can eventually infect any vertex in [5]×
[5] × {−k,−k + 1, . . . , k − 1, k} for any k ∈ Z. Finally, similarly as in the proof of
Theorem 8, reversing the roles of factors, we deduce that eventually every vertex in
{−k,−k + 1, . . . , k − 1, k}3 becomes infected, therefore S percolates.

5 Concluding remarks

In this paper, we considered the r-neighbor bootstrap percolation of a strong product
of k graphs obtaining or bounding the values of m(G1 ⊠ · · · ⊠ Gk, r). The results are
divided into several cases, in which r can be expressed as a function of k. In the basic
case, where k  2 and r  2k−1, we show m(G1⊠ · · ·⊠Gk, r) = r, by which we generalize
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the result [12, Theorem 3.1] due to Coelho et al. This case is improved when there are
at least two non-edge factors in the strong product. More precisely, when there are two
non-edge factors and r  3 ·2k−2, we get m(G1⊠ · · ·⊠Gk, r) = r, while for three non-edge
factors and r  7 · 2k−3, we get the upper bound m(G1 ⊠ · · · ⊠ Gk, r)  7 · 2k−3. The
following question is thus natural.

Question 21. Let G be the strong product G1⊠ · · ·⊠Gk of connected graphs G1, . . . , Gk,
among which there are ℓ non-edge factors. For which ℓ, where ℓ ∈ {3, . . . , k}, it holds
that

m(G1 ⊠ · · ·⊠Gk, r)  (2ℓ − 1) · 2k−ℓ,

where r  (2ℓ − 1) · 2k−ℓ ?

It is likely that in the answer to the question above, ℓ is expressed as a function of k.
Clearly, when ℓ = 3 the answer is positive by Theorem 7. In fact, when ℓ = 3 we suspect
that the upper bound can be improved so that the equality m(G1⊠ · · ·⊠Gk, r) = r holds
for all r  7 · 2k−3. We extend this into the following question.

Question 22. Let G be the strong product G1⊠ · · ·⊠Gk of connected graphs G1, . . . , Gk,
among which there are ℓ non-edge factors. For which ℓ, where ℓ ∈ {3, . . . , k}, it holds
that

m(G1 ⊠ · · ·⊠Gk, r) = r,

where r  (2ℓ − 1) · 2k−ℓ ?

Note that the positive answer to Question 22 when ℓ = k would mean a considerable
improvement of Theorem 8, which seems unlikely.

In the case of two factors (that is, k = 2) the situation has been resolved for r ∈
{2, 3}, and in part also for r ∈ {4, 5}. It would be interesting to find a generalization of
Theorem 14 in which m(G⊠H, r) would depend on the values of m(G, r1) and m(H, r2)
for some r1 and r2, which are smaller than r.

The main open problem arising in Section 4 is to determine fpt(Zn) for all n  4. In
particular, the following question is also open:

Question 23. For which n  2, we have fpt(Zn) = 3n−1?

Clearly, the above question has a positive answer for n ∈ {2, 3}. We suspect that as
n → ∞, fpt(Zn) < 3n−1.

It would also be interesting to consider the r-neighbor bootstrap percolation in other
classes of infinite graphs.
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