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Abstract
Let X be a vertex subset of a graph G. Then u, v ∈ V (G) are X -positionable if
V (P) ∩ X ⊆ {u, v} holds for any shortest u, v-path P . If each two vertices from X
are X -positionable, then X is a general position set. The general position number of
G is the cardinality of a largest general position set of G and has been already well
investigated. In this paper a variety of general position problems is introduced based on
which natural pairs of vertices are required to be X -positionable. This yields the total
(resp. dual, outer) general position number. It is proved that the total general position
sets coincide with sets of simplicial vertices, and that the outer general position sets
coincide with sets of mutually maximally distant vertices. It is shown that a general
position set is a dual general position set if and only if its complement is convex.
Several sufficient conditions are presented that guarantee that a given graph has no
dual general position set. The total general position number, the outer general position
number, and the dual general position number of arbitrary Cartesian products are
determined.
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1 Introduction

General position sets were introduced to graph theory independently in [1, 2], but in
the special case of hypercubes, these sets had been studied previously in [3]. Find-
ing a largest general position set in a graph G is an NP-hard problem [2]. In [4], a
characterization of general position sets in graphs was proved and the general position
number for the complement of bipartite graphs, the complement of trees, and the com-
plement of hypercubes was determined. Afterwards, general position sets received a
wide attention, see [5–9] for a selection of recent developments.

Mutual-visibility sets are closely related to general position sets and were recently
introduced by Di Stefano [10]. While investigating mutual-visibility sets in strong
products, there was a natural need to introduce total mutual-visibility sets [11]. This
has led to the variety of mutual-visibility sets which was formalized in [12]. Motivated
by the variety of mutual-visibility sets, the main purpose of this paper is to introduce
and study the corresponding variety of general position sets. It consists of general
position sets, total general position sets, outer general position sets, and dual general
position sets. This line of research has very recently been continued in [13], where
the total, the outer, and the dual general position sets were investigated in strong and
lexicographic products.

The rest of the paper is organized as follows. In the rest of the introduction we
give definitions needed. In the next section we introduce the variety of the general
position sets and characterize total general position sets and outer general position
sets. In Sect. 3 we focus on dual general position sets. We first observe that a general
position set is a dual general position set if and only if its complement is convex. Then
we consider graphs with small dual general position numbers. In particular, several
sufficient conditions are presented that guarantee that a given graph has no dual general
position set at all. In Sect. 4 we determine the total general position number, the outer
general position number, and the dual general position number of arbitrary Cartesian
products.

For a natural number n we set [n] = {1, . . . , n}. Graphs G = (V (G), E(G)) in this
paper are connected unless otherwise stated. The order of G is the value of |V (G)|.
The open neighborhood of a vertex u ofG is denoted by NG(u). The degree of a vertex
u of G is degG(u) = |NG(u)|. If X ⊆ V (G), then G[X ] denotes the subgraph of G
induced by X . Moreover, G − X is the subgraph of G obtained from G by deleting all
vertices from X . If G is not a tree, then its girth g(G) is the length of a shortest cycle
of G. A vertex of G is simplicial if its neighbourhood induces a complete subgraph.
The set of simplicial vertices of G will be denoted by S(G) and the cardinality of
S(G) by s(G). The clique number of G is denoted by ω(G).

The distance dG(u, v) between vertices u and v of G is the usual shortest-path
distance. The diameter diam(G) of G is the maximum distance between pairs of
vertices of G. A subgraph G ′ of a graph G is isometric, if for every two vertices x
and y of G ′ we have dG ′(x, y) = dG(x, y). A subgraph G ′ of a graph G is convex, if
for every two vertices of G ′, every shortest path in G between them lies completely
in G ′. By abuse of language we also say that a set of vertices is convex if it induces a
convex subgraph.
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The Cartesian product G � H of graphs G and H has the vertex set V (G � H) =
V (G) × V (H), and vertices (g, h) and (g′, h′) are adjacent if either gg′ ∈ E(G) and
h = h′, or g = g′ and hh′ ∈ E(H). The strong product G � H is obtained from the
Cartesian product G � H by adding the edges (g, h)(g′, h′) whenever gg′ ∈ E(G)

and hh′ ∈ E(H). The join G ⊕ H is the graph obtained from the disjoint union of G
and H by adding all possible edges between vertices from G and vertices from H .

2 The Variety

In this section we first introduce the announced variety of general position sets. After
that we characterize total general position sets and outer general position sets.

Let G = (V (G), E(G)) be a graph and X ⊆ V (G). Vertices u, v ∈ V (G) are
X -positionable if for any shortest u, v-path P we have V (P) ∩ X ⊆ {u, v}. Note that
each pair of adjacent vertices is X -positionable. Set X = V (G) \ X . Then we say that
X is

• a general position set, if every u, v ∈ X are X -positionable;
• a total general position set, if every u, v ∈ V (G) are X -positionable;
• an outer general position set, if every u, v ∈ X are X -positionable, and every
u ∈ X , v ∈ X are X -positionable; and

• a dual general position set, if every u, v ∈ X are X -positionable, and every
u, v ∈ X are X -positionable.

The cardinality of a largest general position set, a largest total general position set, a
largest outer general position set, and a largest dual general position set will be respec-
tively denoted by gp(G), gpt(G), gpo(G), and gpd(G). Also, these graph invariants
will be respectively called the general position number, the total general position
number, the outer general position number, and the dual general position number of
G. Moreover, for any invariant τ(G) from the above ones, by a τ -set we mean any set
of vertices of cardinality τ(G). In addition, for any two invariants τ1(G) and τ2(G),
by a (τ1, τ2)-graph we mean any graph G with τ1(G) = τ2(G).

If G is a graph, then by definition,

gp(G) ≥ gpo(G) ≥ gpt(G) and (1)

gp(G) ≥ gpd(G) ≥ gpt(G) . (2)

If G is a block graph, then gp(G) = s(G), see [2, Theorem 3.6]. Moreover, we can
check directly that the set of simplicial vertices of G is also a total general position
set. Hence block graphs are (gp, gpt)-graphs. Having (1) and (2) in mind we thus get
that if G is a block graph, then

gp(G) = gpo(G) = gpd(G) = gpt(G) = s(G).

In particular, if n ≥ 2, then τ(Pn) = 2 for each τ ∈ {gp, gpo, gpd, gpt}. Moreover,

• each pair of distinct vertices of Pn forms a gp-set of Pn ,
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• {1, n} is the only gpo-set of Pn ,
• {1, 2}, {1, n}, and {n − 1, n} are the only gpd-sets of Pn ,
• {1, n} is the only gpt-set of Pn .

Contrary to block graphs, by consideringCartesian products of two complete graphs
we will see that all these four parameters can be pairwise arbitrary different.

We now characterize total general position sets as follows.

Theorem 2.1 Let G be a graph and X ⊆ V (G). Then X is a total general position set
of G if and only if X ⊆ S(G). Moreover, gpt(G) = s(G).

Proof Assume first that X is a total general position set of G and consider an arbitrary
vertex x from X . Suppose that x /∈ S(G). Then x has two adjacent vertices y and z
such that dG(y, z) = 2, whichmeans that there exists a shortest y, z-path containing x .
Hence the vertices y and z are not X -positionable, a contradiction. As a consequence,
we conclude that x must belong to S(G) and then X ⊆ S(G).

To prove the converse, assume that X ⊆ S(G). Consider any two vertices u and
v from V (G) and let Puv be a shortest u, v-path of G. If u is adjacent to v, then
V (Puv) = {u, v} and hence u and v are X -positionable. Assume next that dG(u, v) ≥
2. Let Puv be the path u = x1, x2, . . . , xk = v. Then k ≥ 3. Suppose that xi ∈ X ,
where 2 ≤ i ≤ k − 1. Since xi is a simplicial vertex of G, xi−1 must be adjacent to
xi+1 and hence x1, . . . , xi−1, xi+1, . . . , xk is a u, v-path shorter than Puv . Since this
is not possible, V (Puv) ∩ X ⊆ {u, v}, and thus u and v are X -positionable. Hence X
is a total general position set of G, and then we can conclude that gpt(G) = s(G). 	

Corollary 2.2 Let G be a graph. Then gpt(G) = 0 if and only if G has no simplicial
vertices.

We continue with a characterization of outer general position sets. For this sake,
the following concepts are crucial. A vertex u of a graph G is maximally distant from
v ∈ V (G) if for everyw ∈ NG(u) it holds dG(v,w) ≤ dG(u, v). If also v ismaximally
distant from u, then u and v are said to be mutually maximally distant. The strong
resolvinggraphGSR ofG hasV (GSR) = V (G) and twovertices being adjacent inGSR
if they aremutuallymaximally distant inG. This notionwas introduced in [14] as a tool
to study the strongmetric dimension. The paper [15] gives a survey on strong resolving
graphs with an emphasis on the realization problem (which graphs have a given graph
as their strong resolving graph) and the characterization problem (characterize graphs
that are strong resolving graphs of some graphs). From our perspective, in [16] it was
proved that gp(G) ≥ ω(GSR) holds for any connected graph G.

Next we turn our attention to outer general position sets. Note first that if u and
v are vertices of G such that dG(u, v) = diam(G), then {u, v} is an outer general
position set. Hence, if G is a connected graph of order at least 2, then gpo(G) ≥ 2. In
general, outer general position sets can be characterized as follows.

Theorem 2.3 Let G be a connected graph and X ⊆ V (G). Then X is an outer general
position set of G if and only if each two vertices from X are mutually maximally
distant. Moreover,

gpo(G) = ω(GSR).

123



Variety of general position... Page 5 of 14     5 

Proof Let X ⊆ V (G) be a set with |X | ≥ 2.
Assume first that X is an outer general position set of G and let x, y ∈ X . If x and

y are not mutually maximally distant, there exists (at least) one neighbor of x or y,
say w ∈ NG(x), such that dG(w, y) = dG(x, y) + 1. Hence there exists a shortest
w, y-path which contains x . Then nomatter whetherw ∈ X orw /∈ X , this contradicts
the fact that {x, y} ⊆ X is an outer general position set.

Conversely, assume that any two vertices from X are mutually maximally distant.
Consider any two vertices u and v. If u, v ∈ X , the internal vertices of all shortest
u, v-paths are not from S as u and v are mutually maximally distant. Hence u and v are
X -positionable. Assume next that, without loss of generality, u ∈ X and v ∈ V (G)\X .
If there exists a vertex w ∈ X \ {u} lying on a shortest u, v-path, then u and w are not
mutually maximally distant. Hence u, v are X -positionable.

The formula gpo(G) = ω(GSR) now follows by the above characterization of outer
general position sets and by the definition of the strong resolving graph. 	


As already mentioned, it was proved in [16] that gp(G) ≥ ω(GSR) holds for any
connected graph G. Hence by Theorem 2.3 we have

gp(G) ≥ ω(GSR) = gpo(G).

Thus, knowing that gp(G) = ω(GSR) holds for some graph G, we also know gpo(G).
For instance, [16, Proposition 4.5] asserts that if r1 ≥ t1 ≥ 1 and r2 ≥ t2 ≥ 1, then

gp(Kr1,t1 � Kr2,t2) = r1r2 = ω((Kr1,t1 � Kr2,t2)SR),

which in turn implies that

gpo(Kr1,t1 � Kr2,t2) = r1r2.

3 Dual General Position Sets

From Theorem 2.1 it follows that if X is a total general position set of G, then each
subset of X is also a total general position set of G. Similarly, by Theorem 2.3 this
hereditary property also holds for outer general position sets. In addition, this property
is also known to hold for general position sets. A bit surprisingly, if X is a dual general
position set of G and Y ⊆ X , then Y need not be a dual general position set of G. To
see this, consider two adjacent vertices of C5 which form a dual general position set,
however, one vertex of C5 does not form such a set. So each of the properties of being
in general position, being in total general position, and being in outer general position
is hereditary, but the property of being in dual general position property is not.

The above consideration indicates that the dual general position is intrinsically
different from the other three invariants. In this section we have a closer look to it. We
first characterize which general position sets are dual general position sets. Then we
respectively consider graphs G with gpd(G) = 0, gpd(G) = 1, and gpd(G) ≥ 2.

Let X be a dual general position set in a graph G. Then, clearly, X is a general
position set. Hence to find a largest dual general position set inG if suffices to check all
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general position sets in G and check if they are also dual. For this task, the following
result is useful.

Theorem 3.1 Let X be a general position set of a graph G. Then X is a dual general
position set if and only if G − X is convex.

Proof Assume that X is a dual general position set. Let x, y ∈ V (G) \ X and let P
be a shortest x, y-path. Since X is a dual general position set, the vertices x and y are
X -positionable which in turn implies that V (P) ∩ X = ∅. It follows that G − X is
convex.

Conversely, assume that X is a general position set andG−X is convex. If x, y ∈ X ,
then x and y are X -positionable since X is a general position set. Consider next
x, y ∈ V (G) \ X . Since G − X is convex, each shortest x, y-path lies in G − X
hence no such path contains vertices from X . We can conclude that X is a dual general
position set. 	


For the later use we state explicitly the following consequence of Theorem 3.1.

Corollary 3.2 If G is a graph and X ⊆ S(G), then X is a dual general position set.

Proof Since X ⊆ S(G) we see that X is a general position set and also that G − X is
convex. Hence the assertion follows by Theorem 3.1. 	


3.1 Graphs Gwith gpd(G) = 0

In this subsectionwe focus on graphsG with gpd(G) = 0. It follows fromTheorem3.1
that gpd(G) = 0 if and only if for every general position set X the subgraph G − X is
not convex inG. Since dual general position sets are not hereditary (recall the example
of C5), we must consider all general position sets, not only singletons.

We say that an edge e of a graph G is P4-inner isometric, if e is the middle edge of
some isometric P4.

Proposition 3.3 Let G be a connected graph. If each edge of G is P4-inner isometric,
then gpd(G) = 0.

Proof Assume thatG is a graph in which each edge is P4-inner isometric. Then clearly
δ(G) ≥ 2. Suppose on the contrary that gpd(G) ≥ 1 and let x be a vertex of G from
some dual general position set X . Let y be a neighbor of x . From our assumption, the
edge xy is P4-inner isometric and let x ′, x, y, y′ be the vertices of an isometric P4,
denote it by Q, where x ′x ∈ E(G) and yy′ ∈ E(G). Then at least one of the vertices
x ′ and y belongs to X , for otherwise x ′ and y are not X -positionable.

Suppose first that y ∈ X . It implies that y′ /∈ X for otherwise x and y′ are not
X -positionable. Analogously, x ′ /∈ X also holds. But then the vertices x ′ and y′ are
not X -positionable.

Suppose second that x ′ ∈ X . Then y /∈ X , for otherwise y and x ′ are not X -
positionable. Consider now an isometric P4, say R, such that the edge x ′x is the
middle edge of R. Let R be the path on the vertices z′, x ′, x, z, where z′x ′ ∈ E(G)

and xz ∈ E(G). Since x, x ′ ∈ X we see that z′ /∈ X and z /∈ X . Since Q is isometric,
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Fig. 1 The graph Gm

we have z′ �= y and z′ �= y′. If z = y, then z′ and z = y are not X -positionable.
Similarly, if z �= y, then again z′ and z are not X -positionable. This final contradiction
implies that gpd(G) = 0. 	

Corollary 3.4 Let G be a connected graph with g(G) ≥ 6. Then gpd(G) = 0 if and
only if δ(G) ≥ 2.

Proof If δ(G) = 1 and u is a pendant vertex of G, then {u} is a dual general position
set, hence gpd(G) ≥ 1.

To prove the other direction, assume that δ(G) ≥ 2. Since g(G) ≥ 6 we see that
each edge of G is P4-inner isometric. Proposition 3.3 yields the conclusion. 	


Next, we give an infinite family of graphs whose dual general position number is
zero, yet none of their edges is P4-inner isometric. Let m ≥ 5 and consider the join
graph Gm = Pm ⊕ 2K1, see Fig. 1.

It is readily verified that no edge of Gm is P4-inner isometric. On the other hand,
the following holds.

Proposition 3.5 If m ≥ 5, then gpd(Gm) = 0.

Proof Set Gm = Pm ⊕2K1, let V (Pm) = {p1, . . . , pm} with natural adjacencies, and
let V (2K1) = {x, x ′}, see Fig. 1 again.

Let X be an arbitrary dual general position set of Gm . If x, x ′ /∈ X , then X = ∅ for
otherwise x and x ′ are not X -positionable. In the rest we may hence assume without
loss of generality that x ∈ X , for otherwise we are done.

We first claim that x ′ /∈ X . Indeed, otherwise no vertex pi , i ∈ [m], lies in X ,
but then no two vertices pi and p j , |i − j | ≥ 2, are not X -positionable. Further and
similarly, we have {p1, . . . , pm}∩X �= ∅. Hence there exists i ∈ [m] such that pi ∈ X .
Select and fix i to be the smallest such index. Then by the symmetry we may assume
that 1 ≤ i ≤ m/2�. We now distinguish two cases.

Suppose first that i = 1. Then it follows that p j /∈ X for 3 ≤ j ≤ m. Since m ≥ 5,
the vertex x lies in the middle of a shortest p3, pm-path, hence the vertices p3 and pm
are not X -positionable.

Suppose second that 2 ≤ i ≤ m/2�. By the way i is selected and by the symmetry
we have p1 /∈ X and pm /∈ X . But then p1 and pm are not X -positionable. 	
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For the cyclesC4 andC5, it is observed that gpd(C4) = gpd(C5) = 2. These graphs
can be considered as special cases of generalized theta graphs which are defined as
follows. For positive integers 1 ≤ �1 ≤ · · · ≤ �k and �2 ≥ 2, the generalized theta
graph �(�1, . . . , �k) is obtained by joining two vertices a and b with k internally
disjoint paths of lengths �1, . . . , �k .

Proposition 3.6 Let 1 ≤ �1 ≤ · · · ≤ �k , where k ≥ 2, �2 ≥ 2. Then
gpd(�(�1, . . . , �k)) = 0 if and only if one of the following cases holds:

(i) k = 2, �1 + �2 ≥ 6;
(ii) k ≥ 3, �1 = 1, �2 ≥ 5;
(iii) k ≥ 3, �1 = 2, and �i �= 3 for 2 ≤ i ≤ k;
(iv) k ≥ 3, �1 ≥ 3.

Proof Set � = �(�1, . . . , �k) for the rest of the proof and let Q1, . . . , Qk be the
internally disjoint paths of lengths �1, . . . , �k of � connecting a and b.

(i) If k = 2 and �1 +�2 ≤ 5, then� ∈ {C3,C4,C5}, hence gpd(�) ≥ 2. On the other
hand, if �1 + �2 ≥ 6, then � is a cycle of order at least 6 and thus each edge of �

is P4-inner isometric. Hence gpd(�) = 0 by Proposition 3.3.
(i i) Let k ≥ 3 and �1 = 1. Assume first that �2 ≤ 4. If �2 = 2, then the middle vertex

of Q2 is simplicial and by Corollary 3.2, {x} is a dual general position set and
so gpd(�) ≥ 1. If �2 = 3, then �[Q1 ∪ Q2] ∼= C4. Let u and v be the internal
vertices of Q2. Then we infer that �−{u, v} is convex and using Theorem 3.1 we
get gpd(�) ≥ 2. Similarly, we get that gpd(�) ≥ 2 if �2 = 4. Assume finally that
�2 ≥ 5. Then each edge of � is P4-inner isometric. By Proposition 3.3 we thus
have gpd(�) = 0.

(i i i) Let k ≥ 3 and �1 = 2. Assume first that there exists an index i such that �i = 3
and let i be the smallest such index. Note that i ≥ 2. If xi and x ′

i are the two
internal vertices of Qi , then � − {xi , x ′

i } is convex, hence Theorem 3.1 implies
that gpd(�) ≥ 2.
Assume second that �i �= 3 for each 2 ≤ i ≤ k. If �1 = · · · = �k = 2, then
� ∼= K2,k . A possible dual general position set wound need to contain two adjacent
vertices of each 4-cycle, but this is not possible. So gpd(K2,k) = 0 for k ≥ 3. Let
next j be the smallest index such that � j ≥ 4, so that �1 = · · · = � j−1 = 2. (It
is possible that j = 2.) Then the subgraph of � induced by Q1 ∪ · · · ∪ Q j−1 is
isomorphic to K2, j−1 and we readily see that no vertex from it can lie in a dual
general position set. In addition, the vertices from Q1∪Q j ′ , where j ′ ≥ j , induce
an isometric cycle of � of order at least 6, from which we conclude that none of
the vertices from the cycle can lie in a dual general position set. We conclude that
gpd(�) = 0.

(iv) In this case we have g(�) ≥ 6, hence the assertion follows by Corollary 3.4.

	


3.2 Graphs Gwith gpd(G) = 1

We next consider graphs G with gpd(G) = 1.
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Fig. 2 Graphs G6,4 and G6,5 and their largest dual general position sets

Proposition 3.7 If G is a connected graph with gpd(G) = 1, then s(G) = 1.

Proof Let G be a connected graph with gpd(G) = 1 and let {x} be a gpd-set of G.
Suppose first that s(G) = 0. Then it follows that the order of G is at least 4 as each
of the smaller graphs contains at least one simplicial vertex. In particular, since x is
not simplicial, it has two neighbors, say x ′ and x ′′, such that dG(x ′, x ′′) = 2. But then
x ′ and x ′′ are not {x}-positionable. This contradiction implies that s(G) ≥ 1. On the
other hand, Corollary 3.2 yields that s(G) ≤ 1 and we are done. 	


The converse of Proposition 3.7 is not true. For a sporadic example consider the
graph G obtained from C4 by attaching a pendant vertex to one of the vertices of C4.
Then gpd(G) = 2 �= 1 but s(G) = 1. An infinite family of such examples is the
following. For integers k ≥ 1 and � ≥ 4, let Gk,� be the graph consisting of a chain of
k cycles C� which share vertices such that for an intermediate C� its vertices of degree
3 are its diametral vertices. Finally attach a pendant vertex to a degree 2 vertex of the
last cycle. In Fig. 2 the graphs G6,4 and G6,5 are shown.

Proposition 3.8 If k ≥ 1 and � ≥ 4, then

gpd(Gk,�) =
⎧
⎨

⎩

1; � ≥ 6,
2; � = 4,
3; � = 5.

Proof Let e = uv be the pendent edge of Gk,�, where u is the pendant vertex. Since
u is a simplicial vertex of Gk,�, Corollary 3.2 implies gpd(Gk,�) ≥ 1.

Assume first � ≥ 6. Since g(Gk,�) ≥ 6 and each edge of Gk,� − u is P4-inner iso-
metric, no vertex ofGk,�−u lies in a dual general position set ofGk,�, cf. Corollary 3.4.
Hence we have gpd(Gk,�) ≤ 1 and thus gpd(Gk,�) = 1.

Assume second � = 4. Let i, i ′, j, j ′ be the vertices of the first C4 as indicated
in Fig. 2. Since {i, i ′} is a general position set of Gk,� and Gk,� − {i, i ′} is convex,
Theorem 3.1 implies that gpd(Gk,�) ≥ 2. Suppose on the contrary that gpd(Gk,�) ≥ 3
and let X be an arbitrary gpd-set of Gk,�.

Assume that X contains a vertex x with degGk,�
(x) = 4. Then at least three neigh-

bors of x lie in X for, otherwise two neighbors of x are not X -positionable. But then
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again two neighbors of x are not X -positionable. By a parallel argument we also see
that X does not contain the vertex of degree 3. It follows that each vertex of X is of
degree at most 2.

We claim that u /∈ X . Since |X | ≥ 3, there exist y, y′ ∈ X such that degGk,�
(y) =

degGk,�
(y′) = 2. (It is possible y, y′ ∈ {i, i ′, j}.) If y and y′ are adjacent, then we

may without loss of generality assume that y = i and y′ = i ′. But then i ′ and u are
not X -positionable, so this cannot happen. Assume next that y and y′ are not adjacent.
Let z and z′ be the two neighbors of y. It is clear that z and z′ are not X -positionable
if y and y′ lie on the same cycle C4. And if y and y′ are not on the same 4-cycle, then
either y lies on a shortest u, y′-path or y′ lies on the shortest u, y-path. We conclude
that indeed u /∈ X .

We have thus proved that degGk,�
(x) = 2 for each x ∈ X . Let x and x ′ be two

arbitrary vertices from X . By the same argument as used in the previous paragraph
we get that xx ′ ∈ E(Gk,�). As there are only two such edges possible, that is, i i ′ and
i ′ j , and as {i, i ′, j} is not a dual general position set, we can conclude that {i, i ′} is a
largest dual general position set and so gpd(Gk,�) = 2.

The argument for the case � = 5 is similar and left to the reader. 	


3.3 Graphs Gwith gpd(G) ≥ 2

We next consider when a set of cardinality two forms a dual general position set. In
the next result we deduce a characterization (additional to the one of Theorem 3.1) for
two adjacent vertices.

Theorem 3.9 If x and y are two adjacent vertices of a graph G, then the following
statements are equivalent.

(i) {x, y} is a dual general position set of G;
(ii) G − {x, y} is convex;
(iii) For each u, v ∈ NG(x)∪NG(y)we have dG(u, v) ≤ 2, and the graphs G[NG(x)−

{y}] and G[NG(y) − {x}] are complete.
Proof Let X = NG(x) − {y} and Y = NG(y) − {x}.
(i) ⇒ (i i): If {x, y} is a dual general position set of G, it follows from Theorem 3.1

that G − {x, y} is convex.
(i i) ⇒ (i i i): Assume that G − {x, y} is convex. Then G[X ] is complete. Indeed, for

otherwise two nonadjacent vertices x ′ and x ′′ from X are not {x, y}-
positionable. Analogously, G[Y ] is complete. Furthermore, if u ∈ X
and v ∈ Y , then dG(u, v) ≤ 3. But if dG(u, v) = 3, then G − {x, y}
is not convex, hence we conclude that dG(u, v) ≤ 2 for any u, v ∈
NG(x) ∪ NG(y).

(i i i) ⇒ (i): Let 1 ≤ dG(u, v) ≤ 2 for any two vertices u, v ∈ NG(x) ∪ NG(y), and
let G[X ] and G[Y ] be complete. Set G ′ = G − {x, y}. Consider two
arbitrary distinct vertices p and q from G ′. We claim that no shortest
p, q-path passes x or y. Let Q be an arbitrary shortest p, q-path. Suppose
first that V (Q) ∩ {x, y} = {x}. Then Q contains two neighbors of x but
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since G[X ] is complete, this is a contradiction. The case when V (Q) ∩
{x, y} = {y} is ruled out analogously. In the remaining case suppose
that V (Q) ∩ {x, y} = {x, y}. Then Q contains a subpath x ′, x, y, y′,
where x ′ ∈ X and y′ ∈ Y . But by our assumption dG(x ′, y′) ≤ 2, a
contradiction with the assumption that Q is a shortest path. We conclude
that u and v are {x, y}-positionable and consequently {x, y} is a dual
general position set.

	

A result parallel to Theorem 3.9 for two nonadjacent vertices is simpler and reads

as follows.

Proposition 3.10 Let x and y be two non-adjacent vertices of a graph G. Then the set
{x, y} is a dual general position set if and only if x and y are simplicial vertices.

Proof Assume first that {x, y} is a dual general position set. Then x is simplicial
for otherwise there exist two neighbors u and v of x such that dG(u, v) = 2. By
our assumption, u �= y and v �= y, but then u and v are not {x, y}-positionable.
Analogously y is simplicial. The reverse implication follows by Corollary 3.2. 	


4 The Variety in Cartesian Products

To determine the general position number of Cartesian product graphs is a difficult
problem and has been already widely investigated. It took several intermediately steps
before the general position number of integer lattices (alias Cartesian products of a
finite number of paths) has been determined [17]. Bounds on the general position
number of Cartesian products of arbitrary graphs were independently proved in [5,
18]. Special Cartesian products were studied in [19] (products of two trees), in [20]
(products of paths and cycles), and in [20, 21] (products of two cycles).

In this section we determine the total general position number, the outer general
position number, and the dual general position number of arbitrary Cartesian products.
For this purpose, we need some additional notation and terminology on Cartesian
products. Let G and H be graphs and consider G � H . Given a vertex h ∈ V (H), the
subgraph of G � H induced by the set of vertices {(g, h) : g ∈ V (G)}, is a G-layer
and is denoted by Gh . H -layers gH are defined analogously. Each G-layer and each
H -layer is isomorphic to G and H , respectively. If X ⊆ V (G � H), the projection
pG(X) of X to G is the set {g ∈ V (G) : (g, h) ∈ X for some h ∈ V (H)}. The
projection pH (X) of X to H is defined analogously.

For total general position sets, Corollary 2.2 implies:

Corollary 4.1 If G and H are connected graphs of order at least 2, then gpt(G � H) =
0.

Proof It is straightforward to see that G � H contains no simplicial vertices. 	

For outer general position sets, the following result is useful.
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Theorem 4.2 [22, Theorem 3] If G and H are connected graphs, each of order at least
2, then (G � H)SR ∼= GSR × HSR.

Theorem 4.3 If G and H are two connected graphs, each of order at least 2, then

gpo(G � H) = min{gpo(G), gpo(H)}.

Proof By Theorem 2.3 we have gpo(G � H) = ω((G � H)SR). Theorem 4.2 implies
that ω((G � H)SR) = ω(GSR × HSR). Since ω(G × H) = min{ω(G), ω(H)},
see [23, Exercise 16.1], we have gpo(G � H) = min{ω(GSR), ω(HSR)}. Using
Theorem 2.3 again we conclude that gpo(G � H) = min{gpo(G), gpo(H)}. 	

Corollary 4.4 If m, n ≥ 3, then gpo(Km � Kn) = min{m, n}.

For dual general position sets, the following result that characterizes convex
subgraphs of Cartesian product graphs will be applied.

Lemma 4.5 [23, Lemma 6.5] A subgraph W of G = G1 � · · · �Gk is convex if and
only if W = U1 � · · · �Uk, where each Ui is convex in Gi .

Theorem 4.6 Let G and H be twographs, each of order at least 2. Then gpd(G � H) >

0 if and only if one factor is complete and the other factor has a simplicial vertex.
Moreover,

(i) gpd(Kn � Km) = max{n,m}, and
(ii) if H is not complete and contains a simplicial vertex, then gpd(Kn � H) = n.

Proof Set V (G) = [n] and V (H) = [m]. So we have V (G � H) = [n] × [m].
Assume first that gpd(G � H) > 0 and let X be a dual general position set of

G � H . Then X is clearly a general position set of G � H and hence by Theorem 3.1,
K = (G � H) − X is a convex subgraph of G � H . Consequently, by Lemma 4.5 we
infer that K = G ′ � H ′, where G ′ is convex in G and H ′ is convex in H . Suppose that
G ′ and H ′ are proper subgraphs of G and H , respectively. Then there exist vertices
g ∈ V (G) \ V (G ′) and h ∈ V (H) \ V (H ′), such that g has a neighbor g′ ∈ V (G)

and h has a neighbor h′ ∈ V (H). Then (g′, h), (g, h), (g, h′) is an induced path of
G � H , where all its vertices are from X , a contradiction.

By the above contradiction, pG(X) = V (G) or pH (X) = V (H). We may without
loss of generality assume that pG(X) = V (G). Since layers in Cartesian products are
convex, this implies that V (G) is a general position set in G which in turn implies
that G is a complete graph. Moreover, since X is a general position set we also see
that |pH (X)| = 1 and let h be the unique vertex of H to which X projects. Now, if
h is not a simplicial vertex of H , then there exist vertices h′, h′′ ∈ NH (h) such that
h′h′′ /∈ E(H). But then K is clearly not convex, hence h must be a simplicial vertex
of H .

To complete the argument we observe that if G is complete and h ∈ V (H) is a
simplicial vertex, then by Theorem 3.1 the set V (G) × {h} is a dual general position
set.

The two formulas in the cases when gpd(G � H) > 0 follow directly from the
above discussion. 	
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In [18, Theorem 3.8] it is proved that gp(Km � Kn) = m + n − 2. Combining
this result with Corollary 4.4 and Theorem 4.6 we see that the four general position
invariants considered can vary arbitrary. For instance, for any n ≥ 3 we have:

gp(Kn � K2n) = 3n − 2,

gpd(Kn � K2n) = 2n,

gpo(Kn � K2n) = n,

gpt(Kn � K2n) = 0.

5 Concluding Remarks

In this paper we have introduced the variety of general position sets. We have com-
pletely described the total general position sets and the outer general position sets. On
the other hand, we have observed that the dual general position sets are not heredi-
tary. This fact makes the investigation of dual general position sets quite tricky. For
instance, we have given a sufficient condition for a graph G to satisfy gpd(G) = 0, yet
we were not been able to characterize graphsG with this property. The same problems
remains open for the case gpd(G) = 1.

We have seem that if G is a block graph, then gp(G) = gpo(G) = gpd(G) =
gpt(G). It would be an interesting project to characterize the graphs for which this
holds. Moreover, the same question can be posed for each subsets of the involved
invariants, for instance, to characterize the graphs G for which gp(G) = gpd(G)

holds.
Finally we comment on the complexity point of view. As already mentioned in

the introduction, finding a largest general position set is an NP-hard problem. On the
other hand, Theorem 2.1 implies that a largest total general position set in a graph is
unique and can be found in polynomial time. The complexity of finding a largest outer
general position set and of finding a largest dual general position set is not known yet.
By Theorem 2.3, the first problem is equivalent to determining the clique number of
a strong resolving graph and we suspect that this could be difficult. In addition, we
also suspect (in view of Theorem 3.1) that finding a largest dual general position set
is also difficult.
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