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Protein-proteininteractions (PPIs) regulate many cellular processes

and engineered PPIs have cell and gene therapy applications. Here, we
introduce massively parallel PPl measurement by sequencing (MP3-seq), an
easy-to-use and highly scalable yeast two-hybrid approach for measuring
PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs and
barcode enrichment can be read by sequencing to provide a direct measure
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of interaction strength. We show that MP3-seq is highly quantitative and
scales to over 100,000 interactions. We apply MP3-seq to characterize
interactions between families of rationally designed heterodimers and to
investigate elements conferring specificity to coiled-coil interactions. Lastly,
we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M)
and train linear models on physics-based energy terms to predict MP3-seq
values. We find that AF-M-based models could be valuable for prescreening
interactions but experimentally measuring interactions remains necessary
torank their strengths quantitatively.

Synthetic protein binders mediating interactions between other pro-
teins or cells can potentially revolutionize fields ranging from cell
therapy' to synthetic biology*™ and material science®®. Early work
oftenrelied on naturalinteractiondomains such as SH3 and PDZ (ref. 9).
However, such components provide a poor starting point for rationally
designing large-scale assemblies because of crosstalk. Consequently,
synthetic protein circuits remain much smaller and simpler than bio-
logical protein-proteininteraction (PPI) networks. To scale up synthetic
protein-based circuits, we need large-scale libraries of modularinterac-
tion domains. Ideally, these interaction domains would be orthogonal,
whereby eachdomaininteracts only withits designated binding partner.

Fulfilling this need through rational heterodimer design has
yielded promising results but creating large, totally orthogonal sets
of dimers remains challenging. Early rational design work focused on

coiled-coil dimers (1x1s); 1x1 coil binding is primarily determined by
complementary electrostatic and hydrophobic interactions at specific
heptad positions. Because the biophysical rules guiding these interac-
tions arerelatively wellunderstood and can be captured by predictive
models'®", orthogonal sets of up to six 1x1 heterodimers have been gen-
erated””. Recently, a set of orthogonal 1x1s (primarily homodimers)
was identified in a high-throughput screen'*. However, the restricted
geometry required for 1x1 coil interactions limits the number of pos-
sible orthogonalinteractions. The Baker lab expanded the coiled-coil
toolbox by introducing helical bundle heterodimers, with protomers
consisting of two helices connected by a hairpin loop, where interac-
tions are determined by designed hydrogen-bond networks (HB-nets)
between the bundles (2x2s)*'¢. This multihelix bundle approach could
pave the way to generating larger orthogonal sets. However, reliably
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minimizing off-target interactions (for example, because of proteins
associating in an unexpected register or orientation) remains chal-
lenging as these are not captured in the biophysical design objective
to produce 2x2s. A practical alternative is to prepare diverse de novo
2x2 protomer libraries and measure an all-by-all matrix of interactions.
Afterward, an orthogonal set can be extracted”.

Many PPl measuring methods have been developed that could
be used to run all-by-all PPI screens with varying throughput levels.
Mass-spectrometry-based and protein-array-based methods can
measure PPIs but require laborious protein purification steps'®".
Yeast-display or phage-display methods use next-generation
sequencing technologies to increase throughput but are limited to
‘several-versus-many’ screening”. Alpha-seq, arecent high-throughput
method that takes advantage of the yeast mating pathway, overcomes
this limitation and allows library-on-library screening®. However,
throughput is still limited and not all proteins correctly fold when
displayed on the yeast surface.

Yeast two-hybrid (Y2H) methods are a powerful alternative to
surface display for characterizing PPIs*. In Y2H, one proteinis fused to
aDNA-binding domain (DBD) and the second to a transcriptional acti-
vation domain (AD). If the proteinsinteract, a functional transcription
factorisreconstituted and drives the expression of agrowth-essential
enzyme. Early Y2H approaches tested small numbers of PPIs using
plate-based selection but lab automation and pooling strategies?**
have enabled proteome-scale screens. To further address Y2H scaling
issues, high-throughput Y2H (HT-Y2H) and enzyme complementation
methods have been developed leveraging next-generation sequencing
toread outinteractionstrength®>*, Concomitantly with experimental
methods, custom workflows for analyzing HT-Y2H data were devel-
oped**%. Most of the experimental methods require library construc-
tionin Escherichia colior rely on yeast mating and, thus, need separate
proteinlibraries to transform MATa and MATa yeast. High-throughput
bacterial two-hybrid assays have been developed, which provide a
noneukaryotic alternative for screening PPIs that avoid yeast mating
and library transfer'*. However, when testing protein interactions, it
canbedesirable to have an environment similar to their native context.
Therefore, using Y2H-based assays to test interactions of naturally
intracellular proteins with eukaryotic origins can be beneficial. Specifi-
cally, expressing such proteins in yeast allows for more accurate fold-
ing, theintroduction of post-translational modifications and increased
solubility when compared to bacterial expression® .

Deep learning models such as AlphaFold2 (AF2)*® and RoseT-
TAFold* have been shown to predict protein structures with
near-experimental accuracy. Structure prediction for proteins with
multiple chainsis possible, either with the original AF2 model or with
specialized models such as AF-Multimer (AF-M)*%. Given the speed at
which these models operate compared to running Y2H assays, deter-
mining how these models can be used to prescreen PPls or supplement
PPl assays is attractive. Tools have been developed to run AF-Min an
all-by-allmanner to assist with PPl prescreening*® and AF-M error met-
rics have been demonstrated to be state-of-the-art protein-peptide
interaction predictors*. However, it remains unclear how well AF-M
can predict protein binding orthogonality.

Here, we introduced MP3-seq, a massively parallel Y2H workflow
for measuring PPIs using sequencing. In MP3-seq, theidentity of each
protein is encoded in a DNA barcode and the relative barcode pair
abundance before and after a selection experiment serves as a proxy
for interaction strength. Plasmids are assembled in yeast through
homologous recombination encoding the protein pairs of interest,
their associated barcodes and all other elements required for Y2H
experiments. Our workflow bypasses the need for plasmid cloning
in E. coli or yeast mating and proteins fold and interact inside the cell
instead of on the surface. In contrast to bacterial assays, MP3-seq
also works with glycosylated proteins. We validate MP3-seq using
well-characterized coiled-coil heterodimer interactions and synthetic

binders for different human B cell lymphoma 2 (Bcl-2) protein fam-
ily members. Then, we apply MP3-seq to characterize interactions
betweenrationally designed 2x2 and1x2 heterodimers, demonstrating
that MP3-seq can measure over 100,000 PPIs in a single experiment.
We identified successful designs and used a greedy algorithm to find
potentially orthogonal subsets. We delved into the elements expected
to confer 2x2 interaction specificity by screening variations of a suc-
cessful 2x2 pair. Lastly, we predict complexes for coiled-coil dimers
with AF2 and AF-M and assess the ability of these models to predict
interactions and orthogonality. We then use AF-M error values and
physics-based structure energy terms from Rosetta to train simple
modelsto predict MP3-seq results to investigate how complex predic-
tors could supplement high-throughput measurements.

Results
MP3-seq workflow
InMP3-seq, allmolecular components required for measuring interac-
tions between two specific proteins are encoded on a single plasmid
(Fig.1a). Aplasmidlibraryis constructed directly through homologous
recombination in yeast to measure all possible interactions for a set of
proteins. Haploid MATa-type yeast is first transformed with a mixture
of DNA fragments. One fragment is abackbone carrying a centromere
(CEN)sequence, the selectionmarker,aDBD and an AD. We use the Cys(2)
His(2) zinc-finger domain of the mouse transcription factor Zif268 (ref.
42)asthe DBD and its corresponding promoter to drive the expression
ofthe growth-essential enzyme His3. The herpes simplex virus-derived
protein domain VP16 is used as the AD. Additional fragments contain
one protein of interest and its associated barcode separated by atermi-
nator sequence. Because of their short length and distinct sequences,
we used Tsynth23 and Tsynth27 as terminators in most experiments®.
Asimplified map of the plasmid can be seen in Supplementary Fig. 1.
After transformation, we perform an extended outgrowth and
selection step in medium without tryptophan to ensure plasmid
maintenance. At this point, the CEN sequence ensures each yeast
cell (and any subsequent daughter cells) will contain approximately
one library plasmid, which s critical to link the growth of transfected
yeast to barcode counts**. An aliquot of the cells is frozen, while the
remainder undergo selection in medium lacking histidine. Plasmid
DNA s extracted from His preselection and postselection cells and the
barcode-containing regions are amplified (Fig. 1a, right). The barcode-
barcode amplicons are sequenced and their relative enrichment can
be calculated from barcode counts to serve as a proxy for interaction
strength (Fig. 1b). The expression or folding of some proteins may be
impacted by fusion with either the AD or the DBD; therefore, we test
all proteins in two fusion orders (DBD fused to P1and AD fused to P2;
DBD fused to P2 and AD fused to P1).

MP3-seq analysis pipeline
First, we calculate the enrichment between the His preselection and
postselection stages for PPIfusion order (Fig. 1b). Next, we detect autoac-
tivators andreplace their His postselection values with values calculated
from the nonautoactivating fusion order (see Autotune in Methods);
autoactivationisanerror modein Y2H experiments where high enrich-
ment is observed for a protein for all interaction partners, suggesting
nonspecific activation of selection marker expression®. Typically, this
behaviorisobserved fusedtoeither the AD or the DBD but not in both ori-
entations. Ifanautoactivator is found, itshomodimeris notrecoverable
with Autotune, as there is no reverse fusion order to use for correction.
Following autoactivator removal, enrichment values from rep-
licate experiments can be averaged together to obtain interaction
strength values. Alternatively, to correct for variationin the read count
distribution between experimental replicates resulting from different
sequencing depths, selection times and other experimental factors,
we calculate the log, fold change (LFC) using the DESeq2 package*.
DESeq2 calculates differential enrichment across multiple replicates
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Fig.1|MP3-seq workflow. a, DNA-barcoded proteins Aand A’ are transformed
into yeast fused to an AD or DBD. The cells are incubated first in histidine-rich
mediaand then used to inoculate histidine-poor media for growth selection.
Ifthe hybrid proteinsinteract, the DBD and AD form a transcription factor
thatdrives His3 expression and increases growth in histidine-poor media.
Therefore, interacting pairs should be enriched in the population after selection.
Plasmids are extracted from both cultures and barcode-containing fragments
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areamplified and sequenced. b, Enrichment (E) can be calculated for each PPI {
using library size-normalized read counts with a pseudo count of the minimum
detected value per condition. ¢, After enrichment calculation, each replicate
isscreened for autoactivators and corrected with Autotune (see Methods).
Replicate preselection and postselection barcode counts are merged directly
with DESeq2 or split into pseudoreplicates and merged to obtain the LFC or
P-LFC.

and provides Hochberg-adjusted Wald test P values (P,g), identifying
PPIs with LFCs significantly different froman LFC of zero.

Insome cases, combining MP3-seq measurements for both fusion
ordersis desirable (for example, if comparing MP3-seq LFCs to K, values
collected for the pair of interest). We treat each fusion order asaninde-
pendent set of measurements, turning theminto two pseudoreplicates.
These pseudoreplicates are combined with DESeq2 to calculate LFCs
(Fig.1b). We refer to these values as pseudoreplicate LFCs (P-LFCs).

MP3-seq benchmarking with orthogonal coiled-coil dimers

To validate MP3-seq, we screened 144 pairwise interactions between
six orthogonal 1x1s in the National Institute of Chemistry Peptides
(NICP) set” (Fig. 2a). A pool of 24 DNA fragments with each of the 12
proteins fused to either the AD or the DBD was ordered. Allinteraction
pairs were assembledin apooled experiment and interaction strengths
were quantified with MP3-seq. As expected, His preselection barcode
counts remained steady over time (Supplementary Fig.2a) and applying
differentlevels of 3-amino-1,2,4 triazole (3-AT), acompetitive inhibitor
of His3, affected His postselection counts (Supplementary Fig.2b-d).
LFCsfor both orientations were calculated from five experimental repli-
cates, with interactions occurring almost exclusively between designed
(on-target) partners (that is, P1:P2, P3:P4, etc.; Fig. 2b). Homodimer
plasmid assembly was less efficient in MP3-seq and generally resulted in
lower input barcode counts but coverage was sufficient forinclusionin
theanalysis (Supplementary Fig. 2e). This phenomenonis likely because
of increased sequence homology interfering with plasmid assembly.
For a more quantitative validation, we correlated MP3-seq LFCs with
luciferase expression assay interaction scores in HEK293T cells” and
found good agreement (r? = 0.74; Fig. 2¢). Figure 2d represents P-LFC
MP3-seq data for these PPIs as a graph, where each protein is a vertex
and edges are significant interactions weighted by P-LFC.

In a separate all-by-all experiment with 28 proteins, we screened
the NICP 1x1s and two sets of 1x1s derived from them (N1, N2, N5-N8
and P5A-P8A) but with increased thermodynamic stability of their
on-target interactions”. In this experiment, we expect related coils
to have similar interaction patterns (for example, P5A can bind to
P6A, N6 and P6), which agrees with the interaction graph created
from significant MP3-seq P-LFCs in Fig. 2e. The full interaction graph
(Supplementary Fig. 3a) showed minimal off-target crosstalk between
NCIP proteins and their variants. We found low correlation with melt-
ing temperatures collected for the interactions but good correlations
with split luciferase and split transcription factor interaction assays*’
(Supplementary Fig.3b-d).

To assess whether MP3-seq values provide quantitative informa-
tionaboutinteractionstrength, we performed three all-by-all replicates
for interactions between varying-length 1x1s designed to span awide
range of K, values*® (Fig. 2f). These interactions are not expected to be
orthogonal as weaker interactions were achieved by truncating two
parent four-heptad binders (A\*, By*) by a half or full heptad*® (Fig. 2g).
The MP3-seq P-LFCs correlated very well with previously measured
dissociation constants over approximately three orders of magnitude
(r’=0.94; Fig.2h).

We explored using minimum read count filtering at different
thresholds and found that filtering brought minimal or no changes to
correlation with the reported K, values. However, for the NICP series,
filtering did improve correlation (particularly for Spearman’s rho)
(Supplementary Fig. 4a,b). Lastly, to examine the performance for
weaker interactions, we compared the correlation of enrichment and
P-LFC values with the K, values for the five weakest interactions*s.
Enrichments had aslightly better ability to order weak interactions than
P-LFCs, suggesting that a non-DeSeq2 analysis may be better suited
for the high-throughput study of weak PPIs (Supplementary Fig. 4c).
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Fig.2|Validation of MP3-seq with coiled-coil heterodimers. a, NICP series
1x1s" with complementary heptads designed to interact shown in like colors. b,
MP3-seq LFC of the NICP series interactions. All MP3-seq values were calculated
from five biological replicates except for those labeled, where labels indicate
the number of replicates available. Yellow outlines denote designed on-target
interactions. ¢, Correlation of the on-target and off-target NICP series MP3-

seq LFCs with average fold activation fluorescence values' (n = 141 PPIs; three
homodimers had insufficient reads or were autotuned and were omitted). The
gray bar is the gap separating on-target and off-target interactions. LFCs are

presented as the LFC + standard error (SE). d, e, Filtering NICP series interactions
(d) and P, PA and N series designed coil interactions* (e) to include only those
with P, < 0.05. Line weights correspond to MP3-seq P-LFCs. f, A designed 1x1and
its truncations from a previous study*®. g, MP3-seq enrichment for the Ay and By
coils and their truncations from three biological replicates. A gray ‘x” indicates
amissinginteraction. h, Correlation of n = 9 Ay and By truncation PPIMP3-seq
P-LFCs with K, values from Thomas et al.**. P-LFCs are presented as the P-LFC + SE
and dissociation constants are presented as the mean + s.d.

MP3-seq benchmarking with Bcl-2 family binders

To validate MP3-seq outside of 1x1 interactions, we tested a set of
proteins previously characterized by biolayer interferometry*’ and
Alpha-seq® composed of sixhomologous proteins from the Bcl-2 family
(Bcl-2, Bcl-X,, Bcl-w, Mcl-1, Bfl-1and Bcl-B) and nine de novo designed
inhibitors of said homologs. A crystal structure of a synthetic binder
boundtoits targetis shown in Fig. 3a, while Fig. 3b shows the domain
organization of the six human proteins. All inhibitors were designed
to interact with the BH3 domain-binding pocket. To better compare
with the surface-display-based HT-Y2H method Alpha-seq, atruncated
version of Mcl-1was used.

A two-replicate MP3-seq screen of all Bcl-2 homologs against all
inhibitorsis showninFig.3c. Version10of MP3-seqwas used for the first
replicate of this experiment. Unlike version 2, barcodes were inserted
into the 3’ untranslated regions of the binders upstream of the termina-
torsand could, thus, differentially impact mRNA stability and protein
levels. However, the inter-replicate correlations suggested consistent
interactions between versions (Supplementary Fig. 5a). Only binders
beginning with a corresponded to the final, specific designs, while the
others wereintermediate or failed designs. This canbe seenin Fig. 3c,
withadivide between the largely orthogonal rightmost four columns of
the heat map of MP3-seq P-LFCs and the leftmost less specific columns.

Our data agree well with dissociation constants obtained from
biolayer interferometry*’ (> = 0.61; Fig. 3d). We found good agreement
with Alpha-seq percentage survival for their low-throughput pairwise
and high-throughputbatched assays on the same interactions (batched

r’=0.45, paired ? = 0.61, n = 43; Supplementary Fig. 5Sb-e). MP3-seq
interactions are measured with proteins expressed in yeast, while
biolayerinterferometry uses purified proteins and Alpha-seq displays
proteins onthe yeast surface, partially explaining the variation between
our results and those published earlier.

Some Bcl-2inhibitors failed to produce K values when measured
with biolayer interferometry, likely because the interactions were
below detection limits. We examined the undetected (n=11) versus
detectedinteractions (n = 43) and found that the mean MP3-seq value
of PPIsthatbiolayer interferometry detected was significantly greater
than those that were undetected (one-tailed independent ¢-test, H;:
Mgetected > Mundetecteds £ = 4.51, P=1.858 x 107%; Fig. 3e). Pairwise Alpha-seq
also had a significantly greater mean of detected interactions than
undetected ones (H;: Pyecected > Hundetectear £ = 1.91, P=0.0307). However,
high-throughputbatched Alpha-seq did not exhibit this behavior (H;:
Haetected > Pundetectear £ = 1.36, P=0.0904). MP3-seq correlationimproved
for batched but not paired Alpha-seq when including all data points
(batched r* = 0.45, paired r* = 0.69, n = 54; Supplementary Fig. 5Sb-e)
(Fig. 3f-g). Together, these results show that MP3-seq can work with
globular proteins in addition to coils and that MP3-seq results agree
with those obtained by Alpha-seq and biolayer interferometry.

Lastly, we screened a set of intrinsically disordered p53 upregu-
lated modulator of apoptosis (PUMA) peptides that bind to Mcl-1 at
the BH3 pocket (Fig. 3b). Mcl-1binding resultsin the disordered PUMA
BH3-binding motif transitioning to an ordered helix*°. Peptides of BH3
motif mutants were used to investigate the effects of helicity degree on
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Fig.3|Validation of MP3-seq with Bcl-2 proteins. a, Colored crystal structure
of Bcl-2 and its designed BH3-binding inhibitor*’ (Protein Data Bank 5)SN). The
binder is blue and Bcl-2 is colored according to the domains. b, BH3-binding
domain annotations of the six human Bcl-2 homologs measured**, with

the experimental truncation used by Alpha-seq and that in this work shown.

¢, MP3-seq P-LFCs for inhibitor and Bcl-2 interactions calculated from two
biological replicates. Yellow boxes highlight intended on-target interactions.
d, Correlations with K; measurements from biolayer interferometry. P-LFCs

are presented as the P-LFC + SE and K, values are presented as the mean + s.d.
Only PPIs within biolayer interferometry detection limits were used (n =43). e,
MP3-seq P-LFC distributions for interactions that were detected (n = 43) and
undetected (n =11) by biolayer interferometry because of instrument detection

limits (K, > 25 mM). f, Pairwise Alpha-seq distributions. g, Batched Alpha-seq
distributions. For allbox plots in panels e-g, the whiskers are at +1.5 times
theinterquartile range, while the boxes have border lines showing the first
quartile, median and third quartile, with all data points for both sets shownin
aswarm overlay. One-tailed independent ¢-tests (HL: Plyecected > Hundetectea) WETE
used to compare the detected and undetected measurements. ****P < 0.0001
and *P < 0.05; NS, not significant (P> 0.05). Both MP3-seq P-LFC and pairwise
Alpha-seqwere significant for tlyeecreq > Hundetected (P = 1.858 x 10 and P=0.0307,
respectively), while batched Alpha-seq was not significant (P=0.0904). h,
Correlation of PUMA peptide and Mcl-1(t) PPI (n = 13) P-LFCs from two biological
replicates with PUMA peptide and full Mcl-1average K; measurements*’. P-LFCs
are presented as the P-LFC + SE and K, values are presented as the mean + s.d.

thisintrinsically disordered protein-dependentinteraction. We found
agood correlation between MP3-seq and earlier stopped-flow fluores-
cence measurements of the K, values for PUMA peptides interacting
with the full Mcl-1protein (> = 0.66; Fig. 3h).

Large-scale assay of designed heterodimers (DHDs)

To explore the feasibility of using MP3-seq for large-scale screening,
we prepared a library of designed heterodimers (DHDs)'® (Supple-
mentary Methods). On-target pairs were designed as three-helix or
four-helix bundles with buried HB-nets connecting all helices and then
splitinto a helix-turn-helix hairpin and a single helix (1x2s) or 2x2s.
Initially, we chose 100 designs for testing (DHD1; Fig. 4a), adding 52
more designs in a second round of experiments (DHD2; Fig. 4a). As
controls, we selected nine previously tested 2x2s'°. We also included 35
pairs of binders derived from these controls by modifying the hairpin
loops or truncating the helices (DHDO; Fig. 4a). Finally, we added a
series derived fromacommon parent 2x2 through truncating heptads
(mALDb; Fig. 4a). Sequences for DHDO-DHD2 and mALDb truncations
can be found in Supplementary Table 1. For each on-target pair, one
protomer is designated ‘A’ and the other is designated ‘B’. Interactions
between and within these groups were tested in MP3-seq experiments
of varying sizes. We performed two replicates of an all-by-all screen
including DHDO, DHD1, DHD2 and mALb proteins, as well as the Bcl-2

homologs and their binders, resulting in amatrix of 337 x 337 =113,569
interactions. We performed three replicates of ascreen using only DHD1
withasubset of DHDO and one with DHDO, DHD2 and mALb. MP3-seq
version1was used for most experimentsinthis section. Nevertheless,
the experiments highlight the large scales achievable with MP3-seq and
theinter-replicate correlations suggested that the datawere internally
consistent (Supplementary Fig. 6).

We applied autotune corrections and calculated P-LFCs for all
possible pairs. On-target interactions, where the A and B protomers
were designed to interact, were evaluated for success. In this case, we
defineda‘success’ asany PPIwith P, < 0.01and P-LFC > 4. The number
of successes out of the total possible on-target PPIs in each design set
canbeseeninFig.4b. Every design set had an approximately 20% suc-
cess rate in the largest screen, consistent with past 22% success rates
for a-helical bundles™. The top five P-LFC on-target interactions for
each design category are shownin Fig. 4c.

Finding orthogonal subsets

For all four sets of designs (DHDO-DHD2 and mALDb), we detected a
large fraction of strong off-target interactions (for example, Aland B2
of DHD1instead of Aland B1). For example, in the all-by-all screen with
all of DHDO-DHD2 and mALb, only 33 of 914 total PPIs with P,4; < 0.01
and P-LFC > 4 were on target.
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Fig. 4| High-throughput screening of DHDs. a, Summary of the synthetic
binder pair types. b, Successful designs for the three main sets. Gray bars are
possible pairs for the set and colored bars indicate the number of successes. c,
Top five successful designs from each set by P-LFC. Yellow boxes show on-target
interactions. The DHD1and DHDO subset had three biological replicates, the
DHDO, DHD2 and mALb subset had one biological replicate and the full set had
two replicates. Biological replicates for overlapping all-by-all PPl measurements
were combined using the data pipeline. d, From left to right, pre-DUET positive
P-LFC P,4; < 0.01PPInetwork for the DHD1and DHDO subset and the network

DHD1 DHD2
26 R
1 |5
20 1 |5
T
35 0 100 O 21

Number pairs

25 5.0
Orthogonality gap

at DUET iterations 50, 75 and 113 (final). e, Pre-DUET network for the DHDO,
DHD2 and mALb sets and the network at DUET iterations 10,15 and 37 (final). f,
Pre-DUET network for all designs and the network at DUET iterations 50, 75 and
114 (final). g, Orthogonality gaps of the DUET final networks without significance
filtering. Left and right dashed lines show the MP3-seq orthogonality gaps

for Bcl-2 and final inhibitors and the NCIP series, respectively. Yellow squares
correspond to half of the starting networks remaining. h, DUET networks
reduced to half their final iteration size.

We asked whether we could extract potential orthogonal subsets.
We used significant (« = 0.01) positive P-LFC values to construct a
weighted undirected graphasinFig.2d,e. Thisapproachallowed us to
rephrase the problem as finding a graph of degree one vertices without
self-edges, which maximizes the sum of the remaining edges. To find a
graphsatisfying our constraints, we developed a simple scoring func-
tion that rewards graphs on the basis of existing orthogonal edges or
those over a desired orthogonality gap and punishes graphs for non-
orthogonal edges. The orthogonality gap is defined as the difference
between the weakest on-targetinteraction and the strongest off-target
interaction'. A larger gap generally results in smaller sets. This scor-
ing function was used in a greedy graph reduction method, Deleting
Undirected Edges Thoughtfully (DUET), which removes a vertex and

its associated edges each iteration until a one-regular graph remains
(Supplementary Methods) (the number of degree one vertices and
score of total graphs per algorithm step can be seenin Supplementary
Fig 7a,b). For the DHD1 and DHDO subset, we went from 2,001 edges
between 202 vertices to 18 DUET pairs (Fig. 4d); for the DHDO, DHD2
and mALb data, we went from 279 edges between 85 vertices to 11
DUET pairs (Fig. 4e); for all designs (DHDO-DHD2 and mALb), we went
from 1,562 edges between 270 vertices to 36 DUET pairs (Fig. 4f). Of
these, two, two and four DUET pairs were on-target for DHDO + DHD1,
DHDO + DHD2 + mALb and all designs, respectively.

The DUET final results are only orthogonalif all non-highly signifi-
cantinteractions are considered noninteracting. As this may notbe the
case, we used all P-LFC > 0 between DUET pair protomers regardless of
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significance foramore conservative analysis. First, we removed interac-
tions with protomers for which the DUET pair P-LFC was lower thanthe
highest non-DUET pair P-LFC. Then, we reduced the remaining DUET
pairsby removing whichever pair had the largest non-DUET P-LFC one
by one (Supplementary Methods and Fig. 4g). When reduced to halfthe
starting DUET pairs (squares in Fig. 4g), the orthogonal sets shown in
Fig. 4h were left, which all had orthogonality gaps comparable to the
NICP set in Fig. 2 and the Bcl-2 inhibitor pairs in Fig. 3. An additional
undesirable behavior for these potentially orthogonal sets would be if
DUET is biased toward selected proteins with missing interaction data
(and, therefore, fewer edges in the graph). To determine whether this
wasthe case, we ran permutation tests where we counted the number
of missinginteractions between the proteinsintheinitial DUET results
and randomly sampled protein sets of the same size. We did not find
that DUET results had a significantly higher number of missing interac-
tions (Supplementary Fig 7c).

Elucidating the rules of specific helix-loop-helix binding
High-throughput, high-quality data can be used to probe novel design
rules toimprove protein design. We used MP3-seq to understand bind-
ing specificity better in designed 2x2 pairs by testing variants of differ-
entlengths and with a different number of buried HB-nets. Our target
pair, mALb8 (the common parent of the mALb set), is a high-affinity 2x2
heterodimer withthree HB-nets betweenits A and B protomers (Fig. 5a).
Two mALb protomer truncations were designed by removing one or
two turns from the end of each a-helix (Fig. 5b and Supplementary
Fig. 8a). The original binders and the truncations were screened with
MP3-seq and LFCs were calculated from four replicates. The relation-
ship betweenlength and binding affinity was highly nonlinear, as trun-
cating the binders by two turns eliminated binding (Fig. 5c). We could
usethese datatoinfer the shortest possible length (3.5 heptads) for 2x2
binders containing two buried HB-nets. This pattern was similar to that
seen for the Ayand By single-helix-truncation experimentsin Fig.1d e.
We wanted to find the minimum number of buried HB-nets needed
for orthogonal binding. Therefore, we removed the first (R1), second
(R2) orboth (R12) buried HB-nets from the mALb8 dimer and replaced
them with either large (L) or small (S) hydrophobic residues (Sup-
plementary Methods). The original HB-nets are shown in Fig. 5d and
the replacement sequences are shown in Supplementary Fig. 8b. We
observed that two HB-net mismatches were needed to prevent bind-
ing (Fig. 5e, boxed areas). For example, Ay, and By, had two HB-net
mismatches (half of the second HB-net on protomer A and half of the
first HB-net on protomer B) and showed no binding. Agxs) and By,
had one HB-net mismatch (first HB-net on chain B) and still bound.
Brias) Weakly bound to both A,y and Ag, s, with one HB-net mismatch.
Additionally, hydrophobic residue size alone was not sufficient to
confer orthogonality. For example, By, and By, bound toboth Agy,
and Ag,). Using these simple rules and MP3-seq, we created two new
orthogonal pairs (Ag;:Bg; and Ag,:Bg,). We also note that the designs
largely did not homodimerize (Fig. 5e, unboxed areas). The all-by-all
screen of original, truncated and HB-net-removed mALb proteins can
befoundinSupplementary Fig.8c, which showed that mALb proteins
with one truncation had similar binding patterns with HB-net variants
to the originals but that the second truncation eliminated binding.

Predicting orthogonal binding with linear models

To assess AF’s ability to predict orthogonal interactions, we used AF2
and three published versions of AF-M (v1-v3) to predict complexes
for all six 1x1 NICP pairs in Fig. 2b (Supplementary Methods). We
compared computed error metrics (predicted local distance differ-
ence test, predicted aligned error, etc.) with MP3-seq LFC values and
on-target and off-target classification. We noted that AF-M v2 and v3
performed better than AF2 and AF-M vl (Supplementary Fig. 9a,b). The
best-performing metric was the interface predicted TM (iPTM) score
averaged across our predicted complexes (Fig. 6a). We wanted to see

how AF-M metrics compare to a state-of-the-art specialized model
for 1x1binding prediction, such as iCipa' (Supplementary Fig. 9c).
We found that iCipa correlated better with LFC values (Fig. 6b), par-
ticularly in the classification task (Fig. 6¢). iCipa also better predicted
orthogonality (Supplementary Fig. 9d,e).

Next, we wanted to test the generalizability of AF2 on more
complex protein architectures; thus, we predicted structures for the
mALb8 (2x2) complexes. There was no apparentincrease in correlation
between AF-Mv2and v3 (Supplementary Fig. 9f,g). The AF-M v3 average
iPTM for the mALb8 interactions is shown in Fig. 6d. Heterodimeric
interactions had higher confidence than homodimeric complexes
but the detailed effect of the HB-net mismatches was only partially
captured.

Encouraged by the generalization abilities of AF-M, we set out to
determine whether acombination of AF-M error metrics and structural
metrics can be used to train a better predictor of LFC values. Rosetta
was used to collect physics-based metrics (energy of interaction, sur-
face of theinterface, shape complementarity, etc.) for each simulated
dimer complex. Agglomerative hierarchical clustering was used to
reduce the number of multicollinear features between the collected
energy terms and AF error metrics (Supplementary Fig. 10). Linear
least square ridge regression models and logistic ridge regression
classifiers were trained on feature sets of decreasing sizes (Methods).
We used two train-test approaches. For the first, we ranked all data
pointsby their P, values and partitioned the dataset into high-quality
test setinteractions and amix of high-quality and low-quality training
set interactions (see Supplementary Methods for modeling details).
This approach was chosen to assess the ability of models using AF-M
complex featurestofillin missinginteractions. In the other approach,
asubset of proteins was selected and all interactions involving those
proteins were assigned to the test set. The protein-based split was used
to evaluate how AF-M complex-based models could predict interac-
tions involving new proteins instead of filling in missing interactions
between known proteins. Multiple train-test sets were created for this
split by holding out different protein sets to get a distribution of test
performances (Methods). Examples of the two test sets canbe seenin
Supplementary Fig. 11a.

Theregression models performedbetter than using onlyiPTM on
both proteinarchitectures (Fig. 6b) and reached performances similar
to iCipa on the 1x1 set. As expected, models using more Rosetta fea-
tures yielded better results (Supplementary Figs. 11c-gand12a,b). All
regression models dropped drastically in performancein the held-out
protein task. All models did well on the held-out interaction test set
but the iPTM area under the precision recall curve (AUPRC) dropped
drastically when considering the full dataset, while iCipa performed at
thesamelevel (Fig. 6c and Supplementary Fig. 11e). The classification
task’s performance stayed relatively high between the two tasks even
when the training set size was reduced (Supplementary Fig.13a,b).

Similarly, models trained on the more complicated mALb8 interac-
tions had drops in performance between the held-out interaction and
held-out protein tasks (Supplementary Figs. 11c-g and 14). Although
there was a smaller gain in performance when more features were
included in modeling compared to the NICP predictors, the model with
the most features still outperformed using iPTM alone in LFC predic-
tion (Fig. 6e). Interestingly, reducing the training set size led to gains in
model performance, likely because of the held-out interaction test set
initially consisting of only high LFC interactions (Supplementary Fig. 14).

Lastly, to evaluate whether simple models trained on AF-M fea-
tures to predict MP3-seq LFC values could generalize to new protein
families, we used models trained with only AF error metrics to try to
predict across protein families. That is, we attempted to predict the
mALb8 interactions with models trained on NCIP proteins and vice
versa (Supplementary Figs. 12c-f and 14b). We found in both cases
that the models performed worse than iPTM when applied to protein
families on which they were not trained.
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replaced. A gray ‘<’ indicates insufficient reads. The yellow boxed regions show
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Fig. 6 | Predicted complex error for coiled dimers and simple model
performance. a, Average iPTM per complex from AF-M for the NICP 1x1s. On-
targetinteractions are marked with yellow squares. b, Test set performance of
an LFC predictor with AF-M complex features compared to iPTM values only. c,
AUPRC for classifying intended versus unintended test set interactions froma

binding classifier using AF-M complex features compared to only iPTM. The 1x1
binding predictor iCipa' is shown for comparison. Test set, n =14.d, Average
iPTM per complex with AF-M for a subset of the mALb8 interactions. e, Test set
LFC predictor performance with AF-M complex features compared to iPTM only.
Testset,n=19.

Discussion

Here, we introduce MP3-seq, an easy-to-use HT-Y2H method that can
measure pairwise PPls in asingle yeast strain without surface display.
We also developed a data analysis workflow based on DESeq2 that
makes it easy to merge replicates, remove autoactivators and identify
statistically significant interactions. The MP3-seq workflow could be
further generalized in future work by adjusting the selection scheme
to (experimentally) eliminate autoactivators® or by integrating it
with protein stability and expression assays such as Stable-seq™ or
high-throughput protease assays® to confirm that the tested proteins

arefolded correctly and that an apparent negative interaction measure-
ment is not because of reduced protein levels.

We validated MP3-seq using several sets of proteins for which
interactions were previously characterized: afamily of human Bcl-2 pro-
teins and their de novo designed inhibitors, a set of peptides binding
to Mcl-1and three sets of coiled-coil peptides. We found quantitative
agreement between our results and those reported previously. We then
applied our method to characterize interactions in a pool of de novo
2x2 heterodimers containing buried HB-net and showed that it could
scale to measure over 100,000 interactions in a single experiment.
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Our computational workflow enabled us to identify potential orthogo-
nal subsets at various orthogonality gaps from these data.

By screening interactions between protomers with truncations
and modified HB-nets, we probed design rules for 2x2 binders. We
showed that the minimum length for strong binding is 3.5 heptads,
with binding affinity dropping sharply for shorter designs. Moreo-
ver, we found that at least two HB-net mismatches are needed for
orthogonality, thereby setting minimum requirements for future sets
of orthogonal 2x2 binders with buried HB-nets.

Lastly, we assessed the ability of AF2 and AF-M to predict orthogo-
nal binding interactions. On the set of 1x1 dimers, we found that a
sequence-based predictor (iCipa) correlated better with experimental
LFC values than any single AF metric. However, using a combination
of AF metrics and Rosetta physics-based metrics, accurate regression
models (LFC predictor) could be trained on minimal data, capable
of matching the best available family-specific models such as iCipa.
While iCipa was trained on over 8,000 pairs and uses energy terms
refined by hand, the LFC predictor canbe generated automatically for
virtually any protein family with one hundredfold fewer experimental
data points.

While the LFC predictors excelled at test-train splits designed
to mimic filling in missing interactions in an all-by-all screen, they
struggled when test sets were selected to mirror the task of predicting
interactions of ‘new’ proteins not present in training sets. This exami-
nation of AF-M error metrics and models trained on AF-M metrics and
Rosetta simulation values showcases that, while complex predictors
are apowerful tool, high-throughput experimental assays remain nec-
essary for tasks such as orthogonality confirmation and determining
mutation effects on interactions.

Looking forward, we believe theincreased scale and streamlined
workflow of MP3-seq will further accelerate the adoption of HT-Y2H
methods. These benefits will facilitate use in applications ranging
from training predictive models of PPIs for generative protein design
to characterizinginteractions between human protein variants at high
throughput.
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Methods

Experimental workflow

Gene fragments were ordered from Twist Biosciences for the DBD and
AD fusions of protein binders of interest. Each fragment consisted of a
linker coding sequence (CDS), the binder CDS, astop codon, asynthetic
terminator, a PCR handle, abarcode and an insulation sequence. The
linker and insulation sequences serve as homology sequences during
plasmid assembly inyeast. The plasmid vector contained linker homol-
ogies, the AD, the DBD, a CEN autonomously replicating sequence for
yeast replicationand TRP1for tryptophanselection. A plasmid canbe
seen in Supplementary Fig. 1. These fragments and vectors are then
transformed into electrocompetent Y777 yeast cells for combinato-
rial assembly through homologous recombination. Transformed cells
were resuspended insynthetic complete medium lacking tryptophan,
SC-TRP medium, and grown to allow redundant plasmid dropping.
Postpassage cells were inoculated in SC-HIS-TRP medium for His
selection or reserved and frozen for the His* sample. After selection
in His” medium, cells were frozen for the His” sample. Samples were
thawed, plasmids were extracted and barcode regions were prepped for
sequencing with qPCR. Detailed information about the experimental
workflow can be found in the Supplementary Methods.

Analysis workflow

FASTQ files were obtained using bcl2fastq, cutadapt® was used to
trim barcode regions and Starcode® was used to cluster and count
barcode-barcode pairs for the His"and His™ files. At this point, experi-
ments were screened for autoactivators and Autotune was used to infill
His™ barcode counts as needed (Supplementary Equations 1 and 2).
Proteins classified as autoactivators can be found in Supplementary
Table2.LFCand P-LFC values were then calculated with DESeq2 (ref. 46).
Detailed information about the analysis workflow can be found in the
Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thedatathatsupportthe findings of this work are available in this arti-
cleand the Supplementary Information. Barcode count data (both raw
barcode counts and processed barcode counts) and de novo designed
sequences are available on GitHub (https://github.com/Seeliglab/
MP3-DUET-AUTOTUNE). Raw sequencing data are available from the
Gene Expression Omnibus under accession code GSE271790. Source
dataare provided with this paper.

Code availability

All scripts necessary to recreate the MP3-seq pipelines, analysis
and models can be found on GitHub (https://github.com/Seeliglab/
MP3-DUET-AUTOTUNE).

References

54. Benatuil, L., Perez, J. M., Belk, J. & Hsieh, C.-M. An improved
yeast transformation method for the generation of very large
human antibody libraries. Protein Eng. Des. Sel. 23, 155-159
(2010).

55. Martin, M. Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet J. 17,10
(20Mm).

Acknowledgements

This work was supported by the National Institutes of Health

(award RO1GM120379), National Science Foundation (award 2312398)
and Office of Naval Research (award NO0014-16-1-3189) to G.S.

A.L. would like to acknowledge funding of the European

Commission Marie Sktodowska-Curie Actions program

(CC-LEGO 792305), Slovenian research agency projects CC-
TRIGGER J1-4406, N1-0323 and P4-0176 and FET open project
Virofight (899619).

Author contributions

A.B. optimized the MP3-seq workflow, performed most experiments
and analyzed the data. A.L.F. designed the analytical pipeline
and handled writing the paper, figure creation and modeling.
B.G. conceptualized the MP3-seq approach and performed
proof-of-concept experiments. C.M. performed experiments,
created figures and wrote the paper. D.B. proposed conceptual
ideas and provided project advice. A.L. designed the mALb8 and
other de novo proteins, performed simulations, wrote the paper
and provided funding. G.S. supervised experiments, provided
funding and wrote the paper. All authors read and contributed
to the final paper.

Competinginterests
G.S. is a cofounder and shareholder of Parse Biosciences. The other
authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41589-024-01718-x.

Correspondence and requests for materials should be addressed
to Ajasja Ljubetic or Georg Seelig.

Peer review information Nature Chemical Biology thanks
Gabriel Rocklin and the other, anonymous reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Chemical Biology


http://www.nature.com/naturechemicalbiology
https://github.com/Seeliglab/MP3-DUET-AUTOTUNE
https://github.com/Seeliglab/MP3-DUET-AUTOTUNE
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE271790
https://github.com/Seeliglab/MP3-DUET-AUTOTUNE
https://github.com/Seeliglab/MP3-DUET-AUTOTUNE
https://doi.org/10.1038/s41589-024-01718-x
http://www.nature.com/reprints

nature portfolio

Corresponding author(s):  Ajasja Ljubeti¢, Georg Seelig

Last updated by author(s): Jul 9, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 0XOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  pyrosetta 2022.04+release.0c9f888, alphafold-colab 2.3.4, colabfold 1.5.2, cutadapt 4.7, starcode-v1.4, pymol 2.5.0
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Ethics oversight
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Sample size

Data exclusions

Replication

Randomization

Blinding

No sample size calculations were performed,. The size of the screened assays depended on the number of proteins present in the
benchmarking set for which previous measurements of interaction existed, or on the number of designs generated and ordered for screening
which was constrained by cost.

Interactions where a protein was determined to be an autoactivator were excluded. It is worth noting that autoactivation is a known issue
with Y2H assays of this type, and we were interested in developing a way to codify them and attempt to correct them as part of this work. We
defined autoactivators using the distribution of enrichments in each assay, and replaced auto-activating interaction readcount values from
alternate interactions in the assay (see methods). Additionally, some of the measured proteins in large assays were excluded from analysis
and discussion due to the protein designers' expressed wishes, lack of interest, and/or lack of new discussion points for the paper. These
proteins are still available in the raw data and code repository. We note that the NICP coils in Fig 2 were included in later experiments as
controls, but had decreased correlation with earlier NICP experiments due to what we believe was decreasing stock quality.

Experiments were biologically replicated at least two times, with key benchmarking sets being biologically replicated up to five times.
Technical replicates were conducted and analyzed for the NICP protein set. All attempts at replication, barring those with errors in the
experimental pipeline and experiments with nonfunctional assembly strategies, were successful.

Randomization was not applicable for this study, as high throughput sequencing studies such as this do not typically use randomization. Some
reasons for this are that the targeted nature of such assays require specific mappings of barcodes to sequences of interest which make
randomization difficult to implement, and that sequencing platforms already introduce a error rate and randomization could further increase
errors in barcode mapping.

Blinding was not relevant to this study, as it is not usually performed with high throughput sequencing experiments due to their complex
natures. Additionally, our output was objective numerical data of barcode counts so blinding would not significantly affect our data
interpretation.
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