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Massively parallel measurement of  
protein–protein interactions by sequencing 
using MP3-seq

Alexandr Baryshev1,8, Alyssa La Fleur2,8, Benjamin Groves1, Cirstyn Michel3, 
David Baker    3,4,5,6, Ajasja Ljubetič    4,5,7   & Georg Seelig    1,2 

Protein–protein interactions (PPIs) regulate many cellular processes 
and engineered PPIs have cell and gene therapy applications. Here, we 
introduce massively parallel PPI measurement by sequencing (MP3-seq), an 
easy-to-use and highly scalable yeast two-hybrid approach for measuring 
PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs and 
barcode enrichment can be read by sequencing to provide a direct measure 
of interaction strength. We show that MP3-seq is highly quantitative and 
scales to over 100,000 interactions. We apply MP3-seq to characterize 
interactions between families of rationally designed heterodimers and to 
investigate elements conferring specificity to coiled-coil interactions. Lastly, 
we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) 
and train linear models on physics-based energy terms to predict MP3-seq 
values. We find that AF-M-based models could be valuable for prescreening 
interactions but experimentally measuring interactions remains necessary 
to rank their strengths quantitatively.

Synthetic protein binders mediating interactions between other pro-
teins or cells can potentially revolutionize fields ranging from cell 
therapy1 to synthetic biology2–5 and material science6–8. Early work 
often relied on natural interaction domains such as SH3 and PDZ (ref. 9). 
However, such components provide a poor starting point for rationally 
designing large-scale assemblies because of crosstalk. Consequently, 
synthetic protein circuits remain much smaller and simpler than bio-
logical protein–protein interaction (PPI) networks. To scale up synthetic 
protein-based circuits, we need large-scale libraries of modular interac-
tion domains. Ideally, these interaction domains would be orthogonal, 
whereby each domain interacts only with its designated binding partner.

Fulfilling this need through rational heterodimer design has 
yielded promising results but creating large, totally orthogonal sets 
of dimers remains challenging. Early rational design work focused on 

coiled-coil dimers (1×1s); 1×1 coil binding is primarily determined by 
complementary electrostatic and hydrophobic interactions at specific 
heptad positions. Because the biophysical rules guiding these interac-
tions are relatively well understood and can be captured by predictive 
models10,11, orthogonal sets of up to six 1×1 heterodimers have been gen-
erated12,13. Recently, a set of orthogonal 1×1s (primarily homodimers) 
was identified in a high-throughput screen14. However, the restricted 
geometry required for 1×1 coil interactions limits the number of pos-
sible orthogonal interactions. The Baker lab expanded the coiled-coil 
toolbox by introducing helical bundle heterodimers, with protomers 
consisting of two helices connected by a hairpin loop, where interac-
tions are determined by designed hydrogen-bond networks (HB-nets) 
between the bundles (2×2s)15,16. This multihelix bundle approach could 
pave the way to generating larger orthogonal sets. However, reliably 
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binders for different human B cell lymphoma 2 (Bcl-2) protein fam-
ily members. Then, we apply MP3-seq to characterize interactions 
between rationally designed 2×2 and 1×2 heterodimers, demonstrating 
that MP3-seq can measure over 100,000 PPIs in a single experiment. 
We identified successful designs and used a greedy algorithm to find 
potentially orthogonal subsets. We delved into the elements expected 
to confer 2×2 interaction specificity by screening variations of a suc-
cessful 2×2 pair. Lastly, we predict complexes for coiled-coil dimers 
with AF2 and AF-M and assess the ability of these models to predict 
interactions and orthogonality. We then use AF-M error values and 
physics-based structure energy terms from Rosetta to train simple 
models to predict MP3-seq results to investigate how complex predic-
tors could supplement high-throughput measurements.

Results
MP3-seq workflow
In MP3-seq, all molecular components required for measuring interac-
tions between two specific proteins are encoded on a single plasmid 
(Fig. 1a). A plasmid library is constructed directly through homologous 
recombination in yeast to measure all possible interactions for a set of 
proteins. Haploid MATa-type yeast is first transformed with a mixture 
of DNA fragments. One fragment is a backbone carrying a centromere 
(CEN) sequence, the selection marker, a DBD and an AD. We use the Cys(2)
His(2) zinc-finger domain of the mouse transcription factor Zif268 (ref. 
42) as the DBD and its corresponding promoter to drive the expression 
of the growth-essential enzyme His3. The herpes simplex virus-derived 
protein domain VP16 is used as the AD. Additional fragments contain 
one protein of interest and its associated barcode separated by a termi-
nator sequence. Because of their short length and distinct sequences, 
we used Tsynth23 and Tsynth27 as terminators in most experiments43. 
A simplified map of the plasmid can be seen in Supplementary Fig. 1.

After transformation, we perform an extended outgrowth and 
selection step in medium without tryptophan to ensure plasmid 
maintenance. At this point, the CEN sequence ensures each yeast 
cell (and any subsequent daughter cells) will contain approximately 
one library plasmid, which is critical to link the growth of transfected 
yeast to barcode counts44. An aliquot of the cells is frozen, while the 
remainder undergo selection in medium lacking histidine. Plasmid 
DNA is extracted from His preselection and postselection cells and the 
barcode-containing regions are amplified (Fig. 1a, right). The barcode–
barcode amplicons are sequenced and their relative enrichment can 
be calculated from barcode counts to serve as a proxy for interaction 
strength (Fig. 1b). The expression or folding of some proteins may be 
impacted by fusion with either the AD or the DBD; therefore, we test 
all proteins in two fusion orders (DBD fused to P1 and AD fused to P2; 
DBD fused to P2 and AD fused to P1).

MP3-seq analysis pipeline
First, we calculate the enrichment between the His preselection and 
postselection stages for PPI fusion order (Fig. 1b). Next, we detect autoac-
tivators and replace their His postselection values with values calculated 
from the nonautoactivating fusion order (see Autotune in Methods); 
autoactivation is an error mode in Y2H experiments where high enrich-
ment is observed for a protein for all interaction partners, suggesting 
nonspecific activation of selection marker expression45. Typically, this 
behavior is observed fused to either the AD or the DBD but not in both ori-
entations. If an autoactivator is found, its homodimer is not recoverable 
with Autotune, as there is no reverse fusion order to use for correction.

Following autoactivator removal, enrichment values from rep-
licate experiments can be averaged together to obtain interaction 
strength values. Alternatively, to correct for variation in the read count 
distribution between experimental replicates resulting from different 
sequencing depths, selection times and other experimental factors, 
we calculate the log2 fold change (LFC) using the DESeq2 package46. 
DESeq2 calculates differential enrichment across multiple replicates 

minimizing off-target interactions (for example, because of proteins 
associating in an unexpected register or orientation) remains chal-
lenging as these are not captured in the biophysical design objective 
to produce 2×2s. A practical alternative is to prepare diverse de novo 
2×2 protomer libraries and measure an all-by-all matrix of interactions. 
Afterward, an orthogonal set can be extracted17.

Many PPI measuring methods have been developed that could 
be used to run all-by-all PPI screens with varying throughput levels. 
Mass-spectrometry-based and protein-array-based methods can 
measure PPIs but require laborious protein purification steps18,19. 
Yeast-display or phage-display methods use next-generation 
sequencing technologies to increase throughput but are limited to 
‘several-versus-many’ screening20. Alpha-seq, a recent high-throughput 
method that takes advantage of the yeast mating pathway, overcomes 
this limitation and allows library-on-library screening21. However, 
throughput is still limited and not all proteins correctly fold when 
displayed on the yeast surface.

Yeast two-hybrid (Y2H) methods are a powerful alternative to 
surface display for characterizing PPIs22. In Y2H, one protein is fused to 
a DNA-binding domain (DBD) and the second to a transcriptional acti-
vation domain (AD). If the proteins interact, a functional transcription 
factor is reconstituted and drives the expression of a growth-essential 
enzyme. Early Y2H approaches tested small numbers of PPIs using 
plate-based selection but lab automation and pooling strategies23,24 
have enabled proteome-scale screens. To further address Y2H scaling 
issues, high-throughput Y2H (HT-Y2H) and enzyme complementation 
methods have been developed leveraging next-generation sequencing 
to read out interaction strength25–34. Concomitantly with experimental 
methods, custom workflows for analyzing HT-Y2H data were devel-
oped35,36. Most of the experimental methods require library construc-
tion in Escherichia coli or rely on yeast mating and, thus, need separate 
protein libraries to transform MATα and MATa yeast. High-throughput 
bacterial two-hybrid assays have been developed, which provide a 
noneukaryotic alternative for screening PPIs that avoid yeast mating 
and library transfer14. However, when testing protein interactions, it 
can be desirable to have an environment similar to their native context. 
Therefore, using Y2H-based assays to test interactions of naturally 
intracellular proteins with eukaryotic origins can be beneficial. Specifi-
cally, expressing such proteins in yeast allows for more accurate fold-
ing, the introduction of post-translational modifications and increased 
solubility when compared to bacterial expression35–37.

Deep learning models such as AlphaFold2 (AF2)38 and RoseT-
TAFold39 have been shown to predict protein structures with 
near-experimental accuracy. Structure prediction for proteins with 
multiple chains is possible, either with the original AF2 model or with 
specialized models such as AF-Multimer (AF-M)38. Given the speed at 
which these models operate compared to running Y2H assays, deter-
mining how these models can be used to prescreen PPIs or supplement 
PPI assays is attractive. Tools have been developed to run AF-M in an 
all-by-all manner to assist with PPI prescreening40 and AF-M error met-
rics have been demonstrated to be state-of-the-art protein–peptide 
interaction predictors41. However, it remains unclear how well AF-M 
can predict protein binding orthogonality.

Here, we introduced MP3-seq, a massively parallel Y2H workflow 
for measuring PPIs using sequencing. In MP3-seq, the identity of each 
protein is encoded in a DNA barcode and the relative barcode pair 
abundance before and after a selection experiment serves as a proxy 
for interaction strength. Plasmids are assembled in yeast through 
homologous recombination encoding the protein pairs of interest, 
their associated barcodes and all other elements required for Y2H 
experiments. Our workflow bypasses the need for plasmid cloning 
in E. coli or yeast mating and proteins fold and interact inside the cell 
instead of on the surface. In contrast to bacterial assays, MP3-seq 
also works with glycosylated proteins. We validate MP3-seq using 
well-characterized coiled-coil heterodimer interactions and synthetic 
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and provides Hochberg-adjusted Wald test P values (Padj), identifying 
PPIs with LFCs significantly different from an LFC of zero.

In some cases, combining MP3-seq measurements for both fusion 
orders is desirable (for example, if comparing MP3-seq LFCs to Kd values 
collected for the pair of interest). We treat each fusion order as an inde-
pendent set of measurements, turning them into two pseudoreplicates. 
These pseudoreplicates are combined with DESeq2 to calculate LFCs 
(Fig. 1b). We refer to these values as pseudoreplicate LFCs (P-LFCs).

MP3-seq benchmarking with orthogonal coiled-coil dimers
To validate MP3-seq, we screened 144 pairwise interactions between 
six orthogonal 1×1s in the National Institute of Chemistry Peptides 
(NICP) set13 (Fig. 2a). A pool of 24 DNA fragments with each of the 12 
proteins fused to either the AD or the DBD was ordered. All interaction 
pairs were assembled in a pooled experiment and interaction strengths 
were quantified with MP3-seq. As expected, His preselection barcode 
counts remained steady over time (Supplementary Fig. 2a) and applying 
different levels of 3-amino-1,2,4 triazole (3-AT), a competitive inhibitor 
of His3, affected His postselection counts (Supplementary Fig. 2b–d). 
LFCs for both orientations were calculated from five experimental repli-
cates, with interactions occurring almost exclusively between designed 
(on-target) partners (that is, P1:P2, P3:P4, etc.; Fig. 2b). Homodimer 
plasmid assembly was less efficient in MP3-seq and generally resulted in 
lower input barcode counts but coverage was sufficient for inclusion in 
the analysis (Supplementary Fig. 2e). This phenomenon is likely because 
of increased sequence homology interfering with plasmid assembly. 
For a more quantitative validation, we correlated MP3-seq LFCs with 
luciferase expression assay interaction scores in HEK293T cells13 and 
found good agreement (r2 = 0.74; Fig. 2c). Figure 2d represents P-LFC 
MP3-seq data for these PPIs as a graph, where each protein is a vertex 
and edges are significant interactions weighted by P-LFC.

In a separate all-by-all experiment with 28 proteins, we screened 
the NICP 1×1s and two sets of 1×1s derived from them (N1, N2, N5–N8 
and P5A–P8A) but with increased thermodynamic stability of their 
on-target interactions47. In this experiment, we expect related coils 
to have similar interaction patterns (for example, P5A can bind to 
P6A, N6 and P6), which agrees with the interaction graph created 
from significant MP3-seq P-LFCs in Fig. 2e. The full interaction graph 
(Supplementary Fig. 3a) showed minimal off-target crosstalk between 
NCIP proteins and their variants. We found low correlation with melt-
ing temperatures collected for the interactions but good correlations 
with split luciferase and split transcription factor interaction assays47 
(Supplementary Fig. 3b–d).

To assess whether MP3-seq values provide quantitative informa-
tion about interaction strength, we performed three all-by-all replicates 
for interactions between varying-length 1×1s designed to span a wide 
range of Kd values48 (Fig. 2f). These interactions are not expected to be 
orthogonal as weaker interactions were achieved by truncating two 
parent four-heptad binders (AN

4, BN
4) by a half or full heptad48 (Fig. 2g). 

The MP3-seq P-LFCs correlated very well with previously measured 
dissociation constants over approximately three orders of magnitude 
(r2 = 0.94; Fig. 2h).

We explored using minimum read count filtering at different 
thresholds and found that filtering brought minimal or no changes to 
correlation with the reported Kd values. However, for the NICP series, 
filtering did improve correlation (particularly for Spearman’s rho) 
(Supplementary Fig. 4a,b). Lastly, to examine the performance for 
weaker interactions, we compared the correlation of enrichment and 
P-LFC values with the Kd values for the five weakest interactions48. 
Enrichments had a slightly better ability to order weak interactions than 
P-LFCs, suggesting that a non-DeSeq2 analysis may be better suited 
for the high-throughput study of weak PPIs (Supplementary Fig. 4c).
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If the hybrid proteins interact, the DBD and AD form a transcription factor 
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are amplified and sequenced. b, Enrichment (E) can be calculated for each PPI i 
using library size-normalized read counts with a pseudo count of the minimum 
detected value per condition. c, After enrichment calculation, each replicate 
is screened for autoactivators and corrected with Autotune (see Methods). 
Replicate preselection and postselection barcode counts are merged directly 
with DESeq2 or split into pseudoreplicates and merged to obtain the LFC or 
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MP3-seq benchmarking with Bcl-2 family binders
To validate MP3-seq outside of 1×1 interactions, we tested a set of 
proteins previously characterized by biolayer interferometry49 and 
Alpha-seq21 composed of six homologous proteins from the Bcl-2 family 
(Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bfl-1 and Bcl-B) and nine de novo designed 
inhibitors of said homologs. A crystal structure of a synthetic binder 
bound to its target is shown in Fig. 3a, while Fig. 3b shows the domain 
organization of the six human proteins. All inhibitors were designed 
to interact with the BH3 domain-binding pocket. To better compare 
with the surface-display-based HT-Y2H method Alpha-seq, a truncated 
version of Mcl-1 was used.

A two-replicate MP3-seq screen of all Bcl-2 homologs against all 
inhibitors is shown in Fig. 3c. Version 1 of MP3-seq was used for the first 
replicate of this experiment. Unlike version 2, barcodes were inserted 
into the 3′ untranslated regions of the binders upstream of the termina-
tors and could, thus, differentially impact mRNA stability and protein 
levels. However, the inter-replicate correlations suggested consistent 
interactions between versions (Supplementary Fig. 5a). Only binders 
beginning with α corresponded to the final, specific designs, while the 
others were intermediate or failed designs. This can be seen in Fig. 3c, 
with a divide between the largely orthogonal rightmost four columns of 
the heat map of MP3-seq P-LFCs and the leftmost less specific columns.

Our data agree well with dissociation constants obtained from 
biolayer interferometry49 (r2 = 0.61; Fig. 3d). We found good agreement 
with Alpha-seq percentage survival for their low-throughput pairwise 
and high-throughput batched assays on the same interactions (batched 

r2 = 0.45, paired r2 = 0.61, n = 43; Supplementary Fig. 5b–e). MP3-seq 
interactions are measured with proteins expressed in yeast, while 
biolayer interferometry uses purified proteins and Alpha-seq displays 
proteins on the yeast surface, partially explaining the variation between 
our results and those published earlier.

Some Bcl-2 inhibitors failed to produce Kd values when measured 
with biolayer interferometry, likely because the interactions were 
below detection limits. We examined the undetected (n = 11) versus 
detected interactions (n = 43) and found that the mean MP3-seq value 
of PPIs that biolayer interferometry detected was significantly greater 
than those that were undetected (one-tailed independent t-test, H1: 
µdetected > µundetected, t = 4.51, P = 1.858 × 10−5; Fig. 3e). Pairwise Alpha-seq 
also had a significantly greater mean of detected interactions than 
undetected ones (H1: µdetected > µundetected, t = 1.91, P = 0.0307). However, 
high-throughput batched Alpha-seq did not exhibit this behavior (H1: 
µdetected > µundetected, t = 1.36, P = 0.0904). MP3-seq correlation improved 
for batched but not paired Alpha-seq when including all data points 
(batched r2 = 0.45, paired r2 = 0.69, n = 54; Supplementary Fig. 5b–e) 
(Fig. 3f–g). Together, these results show that MP3-seq can work with 
globular proteins in addition to coils and that MP3-seq results agree 
with those obtained by Alpha-seq and biolayer interferometry.

Lastly, we screened a set of intrinsically disordered p53 upregu-
lated modulator of apoptosis (PUMA) peptides that bind to Mcl-1 at 
the BH3 pocket (Fig. 3b). Mcl-1 binding results in the disordered PUMA 
BH3-binding motif transitioning to an ordered helix50. Peptides of BH3 
motif mutants were used to investigate the effects of helicity degree on 
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(d) and P, PA and N series designed coil interactions47 (e) to include only those 
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this intrinsically disordered protein-dependent interaction. We found 
a good correlation between MP3-seq and earlier stopped-flow fluores-
cence measurements of the Kd values for PUMA peptides interacting 
with the full Mcl-1 protein (r2 = 0.66; Fig. 3h).

Large-scale assay of designed heterodimers (DHDs)
To explore the feasibility of using MP3-seq for large-scale screening, 
we prepared a library of designed heterodimers (DHDs)16 (Supple-
mentary Methods). On-target pairs were designed as three-helix or 
four-helix bundles with buried HB-nets connecting all helices and then 
split into a helix–turn–helix hairpin and a single helix (1×2s) or 2×2s. 
Initially, we chose 100 designs for testing (DHD1; Fig. 4a), adding 52 
more designs in a second round of experiments (DHD2; Fig. 4a). As 
controls, we selected nine previously tested 2×2s16. We also included 35 
pairs of binders derived from these controls by modifying the hairpin 
loops or truncating the helices (DHD0; Fig. 4a). Finally, we added a 
series derived from a common parent 2×2 through truncating heptads 
(mALb; Fig. 4a). Sequences for DHD0–DHD2 and mALb truncations 
can be found in Supplementary Table 1. For each on-target pair, one 
protomer is designated ‘A’ and the other is designated ‘B’. Interactions 
between and within these groups were tested in MP3-seq experiments 
of varying sizes. We performed two replicates of an all-by-all screen 
including DHD0, DHD1, DHD2 and mALb proteins, as well as the Bcl-2 

homologs and their binders, resulting in a matrix of 337 × 337 = 113,569 
interactions. We performed three replicates of a screen using only DHD1 
with a subset of DHD0 and one with DHD0, DHD2 and mALb. MP3-seq 
version 1 was used for most experiments in this section. Nevertheless, 
the experiments highlight the large scales achievable with MP3-seq and 
the inter-replicate correlations suggested that the data were internally 
consistent (Supplementary Fig. 6).

We applied autotune corrections and calculated P-LFCs for all 
possible pairs. On-target interactions, where the A and B protomers 
were designed to interact, were evaluated for success. In this case, we 
defined a ‘success’ as any PPI with Padj ≤ 0.01 and P-LFC ≥ 4. The number 
of successes out of the total possible on-target PPIs in each design set 
can be seen in Fig. 4b. Every design set had an approximately 20% suc-
cess rate in the largest screen, consistent with past 22% success rates 
for α-helical bundles51. The top five P-LFC on-target interactions for 
each design category are shown in Fig. 4c.

Finding orthogonal subsets
For all four sets of designs (DHD0–DHD2 and mALb), we detected a 
large fraction of strong off-target interactions (for example, A1 and B2 
of DHD1 instead of A1 and B1). For example, in the all-by-all screen with 
all of DHD0–DHD2 and mALb, only 33 of 914 total PPIs with Padj ≤ 0.01 
and P-LFC ≥ 4 were on target.
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We asked whether we could extract potential orthogonal subsets. 
We used significant (α = 0.01) positive P-LFC values to construct a 
weighted undirected graph as in Fig. 2d,e. This approach allowed us to 
rephrase the problem as finding a graph of degree one vertices without 
self-edges, which maximizes the sum of the remaining edges. To find a 
graph satisfying our constraints, we developed a simple scoring func-
tion that rewards graphs on the basis of existing orthogonal edges or 
those over a desired orthogonality gap and punishes graphs for non-
orthogonal edges. The orthogonality gap is defined as the difference 
between the weakest on-target interaction and the strongest off-target 
interaction14. A larger gap generally results in smaller sets. This scor-
ing function was used in a greedy graph reduction method, Deleting 
Undirected Edges Thoughtfully (DUET), which removes a vertex and 

its associated edges each iteration until a one-regular graph remains 
(Supplementary Methods) (the number of degree one vertices and 
score of total graphs per algorithm step can be seen in Supplementary 
Fig 7a,b). For the DHD1 and DHD0 subset, we went from 2,001 edges 
between 202 vertices to 18 DUET pairs (Fig. 4d); for the DHD0, DHD2 
and mALb data, we went from 279 edges between 85 vertices to 11 
DUET pairs (Fig. 4e); for all designs (DHD0–DHD2 and mALb), we went 
from 1,562 edges between 270 vertices to 36 DUET pairs (Fig. 4f). Of 
these, two, two and four DUET pairs were on-target for DHD0 + DHD1, 
DHD0 + DHD2 + mALb and all designs, respectively.

The DUET final results are only orthogonal if all non-highly signifi-
cant interactions are considered noninteracting. As this may not be the 
case, we used all P-LFC > 0 between DUET pair protomers regardless of 
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significance for a more conservative analysis. First, we removed interac-
tions with protomers for which the DUET pair P-LFC was lower than the 
highest non-DUET pair P-LFC. Then, we reduced the remaining DUET 
pairs by removing whichever pair had the largest non-DUET P-LFC one 
by one (Supplementary Methods and Fig. 4g). When reduced to half the 
starting DUET pairs (squares in Fig. 4g), the orthogonal sets shown in 
Fig. 4h were left, which all had orthogonality gaps comparable to the 
NICP set in Fig. 2 and the Bcl-2 inhibitor pairs in Fig. 3. An additional 
undesirable behavior for these potentially orthogonal sets would be if 
DUET is biased toward selected proteins with missing interaction data 
(and, therefore, fewer edges in the graph). To determine whether this 
was the case, we ran permutation tests where we counted the number 
of missing interactions between the proteins in the initial DUET results 
and randomly sampled protein sets of the same size. We did not find 
that DUET results had a significantly higher number of missing interac-
tions (Supplementary Fig 7c).

Elucidating the rules of specific helix–loop–helix binding
High-throughput, high-quality data can be used to probe novel design 
rules to improve protein design. We used MP3-seq to understand bind-
ing specificity better in designed 2×2 pairs by testing variants of differ-
ent lengths and with a different number of buried HB-nets. Our target 
pair, mALb8 (the common parent of the mALb set), is a high-affinity 2×2 
heterodimer with three HB-nets between its A and B protomers (Fig. 5a). 
Two mALb protomer truncations were designed by removing one or 
two turns from the end of each α-helix (Fig. 5b and Supplementary 
Fig. 8a). The original binders and the truncations were screened with 
MP3-seq and LFCs were calculated from four replicates. The relation-
ship between length and binding affinity was highly nonlinear, as trun-
cating the binders by two turns eliminated binding (Fig. 5c). We could 
use these data to infer the shortest possible length (3.5 heptads) for 2×2 
binders containing two buried HB-nets. This pattern was similar to that 
seen for the AN and BN single-helix-truncation experiments in Fig. 1d,e.

We wanted to find the minimum number of buried HB-nets needed 
for orthogonal binding. Therefore, we removed the first (R1), second 
(R2) or both (R12) buried HB-nets from the mALb8 dimer and replaced 
them with either large (L) or small (S) hydrophobic residues (Sup-
plementary Methods). The original HB-nets are shown in Fig. 5d and 
the replacement sequences are shown in Supplementary Fig. 8b. We 
observed that two HB-net mismatches were needed to prevent bind-
ing (Fig. 5e, boxed areas). For example, AR1(s) and BR2(s) had two HB-net 
mismatches (half of the second HB-net on protomer A and half of the 
first HB-net on protomer B) and showed no binding. AR12(S) and BR2(s) 
had one HB-net mismatch (first HB-net on chain B) and still bound. 
BR12(S) weakly bound to both AR1(S) and AR2(S) with one HB-net mismatch. 
Additionally, hydrophobic residue size alone was not sufficient to 
confer orthogonality. For example, BR1(S) and BR1(L) bound to both AR1(L) 
and AR1(S). Using these simple rules and MP3-seq, we created two new 
orthogonal pairs (AR1:BR1 and AR2:BR2). We also note that the designs 
largely did not homodimerize (Fig. 5e, unboxed areas). The all-by-all 
screen of original, truncated and HB-net-removed mALb proteins can 
be found in Supplementary Fig. 8c, which showed that mALb proteins 
with one truncation had similar binding patterns with HB-net variants 
to the originals but that the second truncation eliminated binding.

Predicting orthogonal binding with linear models
To assess AF’s ability to predict orthogonal interactions, we used AF2 
and three published versions of AF-M (v1–v3) to predict complexes 
for all six 1×1 NICP pairs in Fig. 2b (Supplementary Methods). We 
compared computed error metrics (predicted local distance differ-
ence test, predicted aligned error, etc.) with MP3-seq LFC values and 
on-target and off-target classification. We noted that AF-M v2 and v3 
performed better than AF2 and AF-M v1 (Supplementary Fig. 9a,b). The 
best-performing metric was the interface predicted TM (iPTM) score 
averaged across our predicted complexes (Fig. 6a). We wanted to see 

how AF-M metrics compare to a state-of-the-art specialized model 
for 1×1 binding prediction, such as iCipa14 (Supplementary Fig. 9c). 
We found that iCipa correlated better with LFC values (Fig. 6b), par-
ticularly in the classification task (Fig. 6c). iCipa also better predicted 
orthogonality (Supplementary Fig. 9d,e).

Next, we wanted to test the generalizability of AF2 on more 
complex protein architectures; thus, we predicted structures for the 
mALb8 (2×2) complexes. There was no apparent increase in correlation 
between AF-M v2 and v3 (Supplementary Fig. 9f,g). The AF-M v3 average 
iPTM for the mALb8 interactions is shown in Fig. 6d. Heterodimeric 
interactions had higher confidence than homodimeric complexes 
but the detailed effect of the HB-net mismatches was only partially 
captured.

Encouraged by the generalization abilities of AF-M, we set out to 
determine whether a combination of AF-M error metrics and structural 
metrics can be used to train a better predictor of LFC values. Rosetta 
was used to collect physics-based metrics (energy of interaction, sur-
face of the interface, shape complementarity, etc.) for each simulated 
dimer complex. Agglomerative hierarchical clustering was used to 
reduce the number of multicollinear features between the collected 
energy terms and AF error metrics (Supplementary Fig. 10). Linear 
least square ridge regression models and logistic ridge regression 
classifiers were trained on feature sets of decreasing sizes (Methods). 
We used two train–test approaches. For the first, we ranked all data 
points by their Padj values and partitioned the dataset into high-quality 
test set interactions and a mix of high-quality and low-quality training 
set interactions (see Supplementary Methods for modeling details). 
This approach was chosen to assess the ability of models using AF-M 
complex features to fill in missing interactions. In the other approach, 
a subset of proteins was selected and all interactions involving those 
proteins were assigned to the test set. The protein-based split was used 
to evaluate how AF-M complex-based models could predict interac-
tions involving new proteins instead of filling in missing interactions 
between known proteins. Multiple train–test sets were created for this 
split by holding out different protein sets to get a distribution of test 
performances (Methods). Examples of the two test sets can be seen in 
Supplementary Fig. 11a.

The regression models performed better than using only iPTM on 
both protein architectures (Fig. 6b) and reached performances similar 
to iCipa on the 1×1 set. As expected, models using more Rosetta fea-
tures yielded better results (Supplementary Figs. 11c–g and 12a,b). All 
regression models dropped drastically in performance in the held-out 
protein task. All models did well on the held-out interaction test set 
but the iPTM area under the precision recall curve (AUPRC) dropped 
drastically when considering the full dataset, while iCipa performed at 
the same level (Fig. 6c and Supplementary Fig. 11e). The classification 
task’s performance stayed relatively high between the two tasks even 
when the training set size was reduced (Supplementary Fig. 13a,b).

Similarly, models trained on the more complicated mALb8 interac-
tions had drops in performance between the held-out interaction and 
held-out protein tasks (Supplementary Figs. 11c–g and 14). Although 
there was a smaller gain in performance when more features were 
included in modeling compared to the NICP predictors, the model with 
the most features still outperformed using iPTM alone in LFC predic-
tion (Fig. 6e). Interestingly, reducing the training set size led to gains in 
model performance, likely because of the held-out interaction test set 
initially consisting of only high LFC interactions (Supplementary Fig. 14).

Lastly, to evaluate whether simple models trained on AF-M fea-
tures to predict MP3-seq LFC values could generalize to new protein 
families, we used models trained with only AF error metrics to try to 
predict across protein families. That is, we attempted to predict the 
mALb8 interactions with models trained on NCIP proteins and vice 
versa (Supplementary Figs. 12c–f and 14b). We found in both cases 
that the models performed worse than iPTM when applied to protein 
families on which they were not trained.
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Discussion
Here, we introduce MP3-seq, an easy-to-use HT-Y2H method that can 
measure pairwise PPIs in a single yeast strain without surface display. 
We also developed a data analysis workflow based on DESeq2 that 
makes it easy to merge replicates, remove autoactivators and identify 
statistically significant interactions. The MP3-seq workflow could be 
further generalized in future work by adjusting the selection scheme 
to (experimentally) eliminate autoactivators45 or by integrating it 
with protein stability and expression assays such as Stable-seq52 or 
high-throughput protease assays53 to confirm that the tested proteins 

are folded correctly and that an apparent negative interaction measure-
ment is not because of reduced protein levels.

We validated MP3-seq using several sets of proteins for which 
interactions were previously characterized: a family of human Bcl-2 pro-
teins and their de novo designed inhibitors, a set of peptides binding 
to Mcl-1 and three sets of coiled-coil peptides. We found quantitative 
agreement between our results and those reported previously. We then 
applied our method to characterize interactions in a pool of de novo 
2×2 heterodimers containing buried HB-net and showed that it could 
scale to measure over 100,000 interactions in a single experiment.  
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Our computational workflow enabled us to identify potential orthogo-
nal subsets at various orthogonality gaps from these data.

By screening interactions between protomers with truncations 
and modified HB-nets, we probed design rules for 2×2 binders. We 
showed that the minimum length for strong binding is 3.5 heptads, 
with binding affinity dropping sharply for shorter designs. Moreo-
ver, we found that at least two HB-net mismatches are needed for 
orthogonality, thereby setting minimum requirements for future sets 
of orthogonal 2×2 binders with buried HB-nets.

Lastly, we assessed the ability of AF2 and AF-M to predict orthogo-
nal binding interactions. On the set of 1×1 dimers, we found that a 
sequence-based predictor (iCipa) correlated better with experimental 
LFC values than any single AF metric. However, using a combination 
of AF metrics and Rosetta physics-based metrics, accurate regression 
models (LFC predictor) could be trained on minimal data, capable 
of matching the best available family-specific models such as iCipa. 
While iCipa was trained on over 8,000 pairs and uses energy terms 
refined by hand, the LFC predictor can be generated automatically for 
virtually any protein family with one hundredfold fewer experimental 
data points.

While the LFC predictors excelled at test–train splits designed 
to mimic filling in missing interactions in an all-by-all screen, they 
struggled when test sets were selected to mirror the task of predicting 
interactions of ‘new’ proteins not present in training sets. This exami-
nation of AF-M error metrics and models trained on AF-M metrics and 
Rosetta simulation values showcases that, while complex predictors 
are a powerful tool, high-throughput experimental assays remain nec-
essary for tasks such as orthogonality confirmation and determining 
mutation effects on interactions.

Looking forward, we believe the increased scale and streamlined 
workflow of MP3-seq will further accelerate the adoption of HT-Y2H 
methods. These benefits will facilitate use in applications ranging 
from training predictive models of PPIs for generative protein design 
to characterizing interactions between human protein variants at high 
throughput.
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Methods
Experimental workflow
Gene fragments were ordered from Twist Biosciences for the DBD and 
AD fusions of protein binders of interest. Each fragment consisted of a 
linker coding sequence (CDS), the binder CDS, a stop codon, a synthetic 
terminator, a PCR handle, a barcode and an insulation sequence. The 
linker and insulation sequences serve as homology sequences during 
plasmid assembly in yeast. The plasmid vector contained linker homol-
ogies, the AD, the DBD, a CEN autonomously replicating sequence for 
yeast replication and TRP1 for tryptophan selection. A plasmid can be 
seen in Supplementary Fig. 1. These fragments and vectors are then 
transformed into electrocompetent Y777 yeast cells for combinato-
rial assembly through homologous recombination. Transformed cells 
were resuspended in synthetic complete medium lacking tryptophan, 
SC-TRP medium, and grown to allow redundant plasmid dropping. 
Postpassage cells were inoculated in SC-HIS-TRP medium for His 
selection or reserved and frozen for the His+ sample. After selection 
in His− medium, cells were frozen for the His− sample. Samples were 
thawed, plasmids were extracted and barcode regions were prepped for 
sequencing with qPCR. Detailed information about the experimental 
workflow can be found in the Supplementary Methods.

Analysis workflow
FASTQ files were obtained using bcl2fastq, cutadapt54 was used to 
trim barcode regions and Starcode55 was used to cluster and count 
barcode–barcode pairs for the His+ and His− files. At this point, experi-
ments were screened for autoactivators and Autotune was used to infill 
His− barcode counts as needed (Supplementary Equations 1 and 2). 
Proteins classified as autoactivators can be found in Supplementary 
Table 2. LFC and P-LFC values were then calculated with DESeq2 (ref. 46).  
Detailed information about the analysis workflow can be found in the 
Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this work are available in this arti-
cle and the Supplementary Information. Barcode count data (both raw 
barcode counts and processed barcode counts) and de novo designed 
sequences are available on GitHub (https://github.com/Seeliglab/
MP3-DUET-AUTOTUNE). Raw sequencing data are available from the 
Gene Expression Omnibus under accession code GSE271790. Source 
data are provided with this paper.

Code availability
All scripts necessary to recreate the MP3-seq pipelines, analysis 
and models can be found on GitHub (https://github.com/Seeliglab/
MP3-DUET-AUTOTUNE).
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