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Abstract: Brain–computer interfaces (BCIs) are promising tools for motor neurorehabilitation. Achiev-
ing a balance between classification accuracy and system responsiveness is crucial for real-time
applications. This study aimed to assess how the duration of time windows affects performance,
specifically classification accuracy and the false positive rate, to optimize the temporal parameters of
MI-BCI systems. We investigated the impact of time window duration on classification accuracy and
false positive rate, employing Linear Discriminant Analysis (LDA), Multilayer Perceptron (MLP), and
Support Vector Machine (SVM) on data acquired from six post-stroke patients and on the external
BCI IVa dataset. EEG signals were recorded and processed using the Common Spatial Patterns
(CSP) algorithm for feature extraction. Our results indicate that longer time windows generally
enhance classification accuracy and reduce false positives across all classifiers, with LDA performing
the best. However, to maintain the real-time responsiveness, crucial for practical applications, a
balance must be struck. The results suggest an optimal time window of 1–2 s, offering a trade-off
between classification performance and excessive delay to guarantee the system responsiveness.
These findings underscore the importance of temporal optimization in MI-BCI systems to improve
usability in real rehabilitation scenarios.

Keywords: motor imagery; BCI; EEG classification

1. Introduction

Brain–computer interfaces (BCIs) are systems that can establish a direct communication
pathway between the brain and an external device [1,2]. The potential applications of BCIs
span a wide range of fields, including neurorehabilitation, gaming, and communication.
In clinical environments, BCIs provide solutions for those with motor impairments [3–6],
enabling the restoration or enhancement of communication [7] and control capabilities [8]

Non-invasive electroencephalography-based BCI is an approach to detect neural po-
tentials from the surface of the scalp. A commonly used system within this area relies on
motor imagery (MI), known as motor imagery-based BCI (MI-BCI). MI is the process of
visualizing motor actions in the mind without actual physical execution. Within the context
of MI-BCI, the technology interprets brainwave patterns linked to this mental practice,
involving changes in the brain’s electrical rhythm, known as event-related desynchroniza-
tion/synchronization (ERD/S) [9], and such brain oscillations, used to classify movements
in this study, exhibit a distinct spatiotemporal dynamic [10].

Event-related desynchronization (ERD) refers to a decrease in power within specific
frequency bands of the EEG signal, while event-related synchronization (ERS) refers to an
increase in power. These changes are typically observed in the alpha (8–13 Hz) and beta
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(13–30 Hz) frequency bands. During motor imagery tasks, specific areas of the brain exhibit
ERD/ERS patterns that correlate with imagined movements. For instance, imagining the
movement of the left hand often results in ERD in the right motor cortex and ERS in the left
motor cortex, and vice versa for the right hand.

Once the ERD/ERS patterns are decoded, the classifier outputs are used to control
external devices or perform specific actions within the BCI system. For example, a BCI user
might be able to control a computer cursor, operate a wheelchair, or communicate through
a virtual keyboard by imagining different movements.

One of the significant challenges in the widespread acceptance of BCI systems in real-
world applications is related to its reliability and complexity in detecting ERD/ERS and
other brain patterns [11–14]. Classification accuracy is the primary measure used to assess
the effectiveness of BCIs [2]. Despite advancements, a critical concern in the literature is the
lack of emphasis on the responsiveness of BCIs as real-time systems [15]. Studies often pri-
oritize classification accuracy over real-time performance, leading to delays exceeding 4 s in
translating EEG signals into actions, impacting user control perception [16]. For real-world
applications, especially those requiring immediate interaction like neurorehabilitation or
communication aids for individuals with motor disabilities, the delay in processing must
be minimized to enhance user experience and functionality [17].

Real-time processing is crucial for BCIs because it directly impacts user experience and
system usability. For BCIs to be effective, especially in applications like neurorehabilitation
or communication for individuals with motor disabilities, they must translate neural signals
into actions swiftly and accurately [17]. Studies on real-time communication systems, such
as voice over IP (VoIP), video games, and other machine interactions, indicate that delays
exceeding 0.5 s are noticeable and can disrupt user experience [18]. For example, in critical
applications like wheelchair control, a delay of 3–4 s would be intolerable as it could lead
to significant usability issues and potential safety hazards [19]. Scenarios such as having
a control pad for a wheelchair that responds only after 3–4 s or using a keyboard that
writes words with such delays highlight the necessity for swift response times in ensuring
effective and safe BCI operation [20]. However, it is also true that the MI-EEG spatial
patterns change depending on the phase of movement execution or imagery (preparation,
execution, or offset). However, longer time windows probably include richer information
on these processes, leading to better classification results, and thus, exploration into the
trade-off between responsiveness and performance is required [21].

False positives represent another significant issue that reduces the usability of BCIs.
A false positive occurs when the system erroneously interprets neural signals as an inten-
tion to perform an action. In the context of BCIs, false positives can lead to unintended
actions, which can be particularly problematic in critical real-time applications such as
wheelchair control. For instance, a BCI controlling a prosthetic limb must avoid uninten-
tional movements that could harm the user or others [20]. High false positive rates can
render a BCI unreliable, causing users to lose trust in the system and potentially abandon
its use altogether. This perception of the system not working correctly is critical because it
undermines the user’s confidence in the technology. In contrast, false negatives, where the
system fails to detect an intended action, are less disruptive because the user can repeat
the action. Therefore, minimizing false positives is more critical for maintaining user trust
and control over the BCI [22]. The false positive rate is particularly significant in critical
applications where unintended actions can have severe consequences, such as in the control
of medical devices or assistive technologies.

Achieving a delicate balance between high classification accuracy and real-time respon-
siveness is crucial for the optimal performance of brain–computer interfaces (BCIs) [2,16,23].
Broader time windows in power estimation can indeed enhance accuracy by capturing
more data points for feature extraction, as seen in various studies [24,25]. However, this
advantage often comes at the cost of reduced responsiveness due to the longer duration
needed to collect and process information within these extended windows.



Sensors 2024, 24, 6125 3 of 13

In some BCI studies, the time windows used significantly exceed the acceptable limit,
extending up to 4 s [15,26]. However, in real-world applications of BCIs, the excessive de-
lays can lead users to experience a lack of control over the system and therefore significantly
diminish the usability and acceptance of BCI technology [27–29].

The primary objective of this article is to assess how the duration of time windows
impacts performance, measured by classification accuracy and false positive rate, on a real
dataset of six post-stroke patients and on the external BCI BCIC IV 2a dataset for study
reproducibility analysis. By employing the gold standard Fisher’s Linear Discriminant
Analysis (LDA), artificial neural network Multilayer Perceptron (MLP), and linear kernel
Support Vector Machine (SVM), our goal is to demonstrate how to optimize and identify
the trade-off in the temporal parameters of MI-BCI systems.

2. Materials and Methods
2.1. Study Population and Protocol

This study involved 6 participants (AS01T–AS06T) who had suffered ischemic strokes
(3M/3F 68 ± 8 years), all exhibiting motor deficits. These patients engaged in BCI neu-
rorehabilitation during the early post-acute phase. The inclusion criteria included being
a minor/mild unilateral anterior circulation ischemic stroke patient capable of following
verbal instructions, effectively communicating, and performing BCI tasks. All patients were
recruited from the neurology clinic of Trieste University Hospital in the sub-acute phase
(the first two weeks after a stroke). The exclusion criteria were previous brain injuries, the
presence of uncontrolled seizures, hemorrhagic stroke, and cognitive impairment measured
by Montreal Cognitive Assessment (MoCA) with a score < 24. Moreover, subjects who
were not able to participate due to severe aphasia and/or unilateral spatial neglect were
also excluded.

Additionally, since this study was conducted on a dataset that cannot be made public
due to privacy reasons, to ensure scientific rigor and potential replicability, this study
was also performed on nine subjects from the BCI IVa dataset (subjects A01T–A09T). This
specific dataset was chosen because it exhibits a similar motor imagery BCI experimental
paradigm, enabling possible comparative analysis.

2.2. Study Protocol

The BCI performance evaluation utilized data collected during the calibration phase.
In this phase, the participants were asked to perform motor imagery while a hand image
was displayed on the screen for 4 s, alternating with a blank screen indicating “break.” A
fixation cross was presented before the task to prevent eye-movement artifacts caused by
the sudden appearance of stimuli on the screen. Each subject had to perform 35–40 trials
per session. The type of cueing and imagery provided to subjects is a crucial factor in such
studies, as cues have been shown to significantly influence outcomes [30]. However, in
this study, to ensure consistency and obtain comparative results, the same cues were used
as those applied in the BCI IVa dataset. Moreover, as all patients included in this study
were BCI-naive, meaning they had no prior experience with brain–computer interface
systems. To ensure proper understanding and execution of the motor imagery tasks, a
familiarization phase was conducted prior to the actual EEG recordings. During this phase,
patients performed motor imagery exercises without EEG monitoring, using a chronometry
technique to guide the timing and execution of the tasks. This familiarization process was
intended to help patients become comfortable with the motor imagery tasks and minimize
any potential learning curve effects during the EEG-based BCI trials.

2.3. EEG Signal Acquisition

MI-elicited EEG data during the calibration of BCI in the post-stroke patients were
acquired using a Micromed SAM 32 FO system (Micromed S.p.A., Mogliano Veneto, Italy).
Eleven standard Ag/AgCl wet electrodes were used, positioned at FC3, FC4, C4, C3, CP3,
CP4, CPz, C2, C4, C6, and C5. The EEG was recorded at a sampling frequency of 256 Hz and
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filtered from 8 to 30 Hz using a 2nd-order Butterworth bandpass filter. After filtering, the
continuous EEG data were segmented from 2 to 6 s relative to the appearance of the fixation
cross (see Figure 1). A detailed description of the study protocol and data acquisition for
the BCI IVa dataset can be found in [31].
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2.4. BCI Modeling

The EEG was first filtered (8–30 Hz), and as an additional preprocessing step, the data-
driven Common Spatial Patterns (CSP) filter was applied [24]. The extracted features were
then input into three classifiers: LDA, MLP, and SVM. These classifiers were selected for
their computational efficiency and suitability for real-time applications, as they are known
for their fast processing capabilities. LDA was implemented using default parameters
without regularization, as it is a widely accepted gold standard in BCI applications for its
simplicity and robustness. SVM was configured with a linear kernel and a regularization
parameter (C) set to 1.0, which ensures fast convergence and effective separation of the
classes without overfitting. MLP, a simple one-hidden-layer model with ten hidden units
and the ReLU activation function, was used with a learning rate of 0.01, providing a good
balance between quick learning and classification accuracy. The selection of these classifiers
and their parameters ensures a practical trade-off between classification performance and
real-time usability, making the system well suited for BCI applications where rapid and
accurate decision-making is crucial.

Eight distinct, non-overlapping time windows were employed to build the BCI model,
capturing various phases of the motor imagery (MI) process. These windows included
four shorter windows of 500 milliseconds each, designed to capture rapid neural activity
during the initial stages of the MI task, two windows of 1 s to monitor sustained brain
activity over a moderate period, one window of 2 s to observe more extended neural
patterns, and one window of 4 s to encompass the entire MI process. This combination of
time windows allowed for a comprehensive analysis of both short-term fluctuations and
sustained patterns in neural activity.

In the post-stroke dataset, classification accuracy was determined by the model’s
ability to distinguish motor imagery (MI) tasks from “rest” periods. For the BCI IVa external
dataset, classification accuracy was measured by how accurately the model identified left-
and right-hand MI tasks. Performance metrics were calculated using two approaches:
a 70/30% train/test split and 5-fold cross-validation. During the cross-validation, the
dataset was split into five equal parts, with each fold being used as a test set while the
remaining four served as the training set. This process was repeated five times, and the
mean classification accuracy across all folds was calculated for each combination of time
windows, subjects, and classifiers

To calculate classification accuracy, the ratio of correct predictions (both true positives
and true negatives) to the total number of predictions was used. True positives referred
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to the correct identification of MI tasks (or left/right-hand tasks in the BCI IVa dataset),
while true negatives referred to the correct identification of “rest” periods (or non-active
limb tasks in the BCI IVa dataset). Accuracy thus reflected how well the system performed
overall in distinguishing between the different tasks and conditions.

In addition to classification accuracy, the false positive ratio was assessed to evaluate
the reliability of the BCI system. A false positive was recorded when the system incorrectly
classified a non-task period as an active MI task. For stroke patients, this occurred when
the system misclassified a “rest” period as an upper limb motor imagery task, while in
the BCI IVa dataset, a false positive occurred when the system incorrectly classified the
imagery of the opposite limb. The false positive ratio was calculated by dividing the
number of false positive classifications by the total number of predictions made during
the “rest” periods for stroke patients or during the imagery of the opposite limb in the
BCI IVa dataset.

This metric was crucial in evaluating the system’s propensity to generate unintended
actions, thereby affecting the usability and trustworthiness of the BCI system.

3. Results
3.1. Classification Accuracy

The classification accuracy for the stroke patients’ dataset (Figure 2) and the BCI IVa
dataset (Figure 3) was evaluated using three classifiers: Linear Discriminant Analysis
(LDA), Multilayer Perceptron (MLP), and Support Vector Machine (SVM). In the stroke
patients’ dataset, all three classifiers demonstrated an increasing trend in accuracy with
longer time windows. For the shortest time window (0.5 s), LDA achieved an accuracy
range of approximately 65–80%, MLP ranged from 60–85%, and SVM ranged from 70–85%.
For the longest time window (4 s), LDA accuracy increased to around 85–100%, MLP to
80–95%, and SVM to 80–95%. Similarly, cross-validation accuracy improved with longer
time windows. At 0.5 s, LDA accuracy ranged from 60 to 75%, MLP ranged from 55 to
80%, and SVM ranged from 60 to 75%. At 4 s, LDA accuracy improved to 75–90%, MLP to
70–90%, and SVM to 75–85%.

In the BCI IVa dataset, all three classifiers exhibited a significant increase in accuracy
with the length of the time window. At 0.5 s, LDA accuracy ranged from 55 to 85%, MLP
from 55 to 80%, and SVM from 55 to 75%. At 4 s, LDA accuracy improved to 80–95%,
MLP to 80–95%, and SVM to 75–90%. Cross-validation accuracy also increased with time
window length. At 0.5 s, LDA accuracy ranged from 55 to 70%, MLP from 55 to 70%, and
SVM from 55 to 65%. At 4 s, LDA accuracy improved to 75–85%, MLP to 70–85%, and SVM
to 70–80%.

3.2. False Positive Ratio

The false positive ratio was calculated to assess the reliability of the BCI system
(Figures 4 and 5). In the stroke patients’ dataset, for the shortest time window (0.5 s), LDA
showed a false positive ratio of around 20–35%, MLP around 15–35%, and SVM around
20–35%. For the longest time window (4 s), the false positive ratio for LDA decreased to
10–20%, MLP to 10–20%, and SVM to 15–25%. The cross-validation false positive ratios
followed a similar pattern. At 0.5 s, LDA exhibited a false positive ratio of 15–25%, MLP
20–40%, and SVM 25–35%. At 4 s, LDA’s false positive ratio reduced to 5–15%, MLP to
15–25%, and SVM to 15–25%.
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In the BCI IVa dataset, for the 0.5 s time window, LDA showed a false positive ratio of
20–60%, MLP 15–90%, and SVM 20–50%. For the 4 s window, LDA’s false positive ratio
decreased to 10–30%, MLP to 10–30%, and SVM to 10–30%. The cross-validation false
positive ratios also decreased with longer time windows. At 0.5 s, LDA had a false positive
ratio of 20–45%, MLP 20–50%, and SVM 25–40%. At 4 s, LDA’s false positive ratio dropped
to 10–25%, MLP to 10–25%, and SVM to 10–25%.
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Overall, both datasets indicated that longer time windows resulted in higher classifica-
tion accuracy and lower false positive ratios across all classifiers. This trend was consistent
for both the training and cross-validation phases. Among the classifiers, LDA generally
performed best in terms of balancing accuracy and minimizing false positives, followed by
MLP and SVM. These findings underscore the importance of optimizing the time window
duration to enhance the performance and reliability of the MI-BCI systems.

4. Discussion

Brain–computer interfaces (BCIs) represent an interdisciplinary research frontier, inte-
grating multiple scientific and technological domains [1,2]. By capturing and processing
neural signals, BCIs allow direct device control or communication without depending
on conventional neural and muscular pathways [2]. These systems have diverse applica-
tions, including neurorehabilitation, gaming, and communication, particularly benefiting
individuals with motor disabilities. Electroencephalography (EEG), noted for its non-
invasive approach, is a common technique in BCIs, capturing electrical patterns from the
scalp [32,33].

Despite advancements, the current literature highlights several challenges in adopting
BCI technology for real-world applications. Primary concerns include the reliability and
complexity of these systems, with significant attention required for their real-time respon-
siveness [24]. While longer time windows can enhance power estimation accuracy, they
often compromise system responsiveness, leading to user dissatisfaction and a perceived
lack of control [16,34,35].

For a BCI system to be practical and user-friendly, the maximum acceptable delay
in real-time processing should not exceed 1–2 s [19,36]. Delays beyond this threshold
can significantly impair the user experience and diminish the perceived control over the
interface. Research in human–computer interaction, such as voice over IP (VoIP) and
conference calls, supports this finding, indicating that excessive delays are unacceptable as
they disrupt the flow of communication and interaction [37].

The primary aim of this study was to assess how the duration of time windows impacts
the performance of MI-BCI systems, measured by classification accuracy and false positive
ratio, using data from six post-stroke patients and the external BCI BCIC IV 2a dataset [21].
By employing LDA, MLP, and SVM, this study aimed to offer insights on how to optimize
and identify the trade-off in the temporal parameters of EEG-based MI-BCI systems and to
balance accuracy and responsiveness.

Our results demonstrate that longer time windows generally lead to higher classifica-
tion accuracy and lower false positive ratios across all classifiers. For the stroke patients’
dataset, LDA achieved the highest accuracy and the lowest false positive ratios, followed
by MLP and SVM. This trend was consistent in both the training and cross-validation
phases. Similar patterns were observed in the BCI IVa dataset, where longer time windows
significantly improved accuracy while reducing false positives.

Considering both accuracy and false positive ratio is crucial for the usability of BCI
systems. A high classification accuracy ensures that the system correctly interprets the
user’s intentions, while a low false positive ratio minimizes unintended actions, which can
be particularly problematic in clinical settings. False positives can lead to erratic device
behavior, undermining user trust and the overall effectiveness of the BCI system. Therefore,
balancing these two metrics is essential.

A good compromise between accuracy and responsiveness would involve selecting
a time window that maximizes accuracy without exceeding the 1–2 s delay threshold for
real-time processing. Based on the study’s findings, a time window in the range of 1–2 s
appears to offer an optimal balance, providing high accuracy while maintaining acceptable
responsiveness. Specifically, a 2 s window is the maximum acceptable delay, but aiming
for a 1–2 s window is optimal, as longer delays can disrupt the user experience, similar
to findings in human–computer interaction studies [38–40]. The movement-related or
motor imagery (MI) signals in the EEG, such as brain oscillations used for movement
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classification in this study, exhibit specific spatiotemporal patterns [10]. The characteristics
of these patterns change depending on the type of motor imagery task and vary in length,
with spatial patterns shifting depending on the phase of the movement, whether during
preparation, execution, or completion, which is also why it is important to prefer shorter
time windows. However, longer time windows capture more detailed information about
these processes, resulting in improved classification accuracy [10]. Therefore, in the context
of rehabilitation, balancing the trade-off between classification speed and accuracy is
especially important [21]. In this setting, detection delays can have far more significant
consequences than just affecting user experience. Successfully promoting neuroplastic
changes depends on precise timing between motor intent and the feedback received. As
such, while longer time windows may increase classification accuracy, they may not be as
effective in triggering neuroplastic changes as shorter windows.

5. Conclusions

In conclusion, our findings indicate that longer time windows generally enhance
classification accuracy and reduce false positives across all classifiers, with LDA performing
the best. However, to maintain real-time responsiveness, crucial for practical applications,
a balance must be struck. The results suggest an optimal time window of 1–2 s, offering a
trade-off between classification performance and excessive delay to guarantee the system
responsiveness. These findings underscore the importance of temporal optimization in
MI-BCI systems to improve usability and reliability in real rehabilitation scenarios.
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