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ABSTRACT: Entanglement in proteins is a fascinating structural motif that is neither easy to
detect via traditional methods nor fully understood. Recent advancements in AI-driven models
have predicted that millions of proteins could potentially have a nontrivial topology. Herein, we
have shown that long short-term memory (LSTM)-based neural networks (NN) architecture
can be applied to detect, classify, and predict entanglement not only in closed polymeric chains
but also in polymers and protein-like structures with open knots, actual protein configurations,
and also θ-curves motifs. The analysis revealed that the LSTM model can predict classes (up to the 61 knot) accurately for closed
knots and open polymeric chains, resembling real proteins. In the case of open knots formed by protein-like structures, the model
displays robust prediction capabilities with an accuracy of 99%. Moreover, the LSTM model with proper features, tested on
hundreds of thousands of knotted and unknotted protein structures with different architectures predicted by AlphaFold 2, can
distinguish between the trivial and nontrivial topology of the native state of the protein with an accuracy of 93%.

■ INTRODUCTION
Entanglement is one of the most intriguing topological motifs
found in many fields: physics, chemistry, and biology. In each
field, it may have a different meaning (e.g., quantum
entanglement, mechanical or thermal stability, or biological
function), which can be understood after its proper
classification. An example of an entanglement is knots, which
appear in a daily life, such as those in shoelaces and rope. In
mathematics, a knot is a closed, nonself-intersecting curve
embedded in a three-dimensional space. A branch of
mathematics known as knot theory provides tools to classify
and describe properties of knots as well as links or θ-curves.
Examples of those tools are so-called knot invariants, i.e., some
relatively simple mathematical objects (e.g., numbers, poly-
nomials, etc.), which can be assigned algorithmically to a given
knot. Knot invariants remain constant under the ambient
isotopy (continuous deformation) of the curve and can thus be
used to distinguish or classify knots. Two knots are considered
equivalent, i.e., have the same topology, if they can be
transformed into each other through an ambient isotopy.
More recently, artificial intelligence (AI)-based approaches have
also been used to perform topological classifications, e.g., for
randomly knotted curves.1,2 Herein, we test whether AImethods
can be used to detect and classify entanglements in polymers and
proteins.
Among the types of entanglement found in polymers, in

DNAs, and in proteins, knot motifs are the best understood3,4

and probably the least are θ-curve motifs.5,6 Mathematically,
knots are defined on the closed curves; however, this definition
can be extended to proteins which are open chains by properly
connecting both ends of the backbone.7,8 The properties of

DNAs, proteins, and polymers may be affected by the
complexity of their entanglements.3,4 Furthermore, for the
same number of monomers, knots are common in on-lattice
polymers,9 rare in proteins,9,10 and only one knotted RNA
structure is known.11

Knotted motif is present in around 1% of experimentally
resolved structures.12 The most abundant knot type is the
simplest trefoil (31),

13 but 41,
14 52,

15 61,
16 71,

17 and one complex
31#31 knot18 were also found in proteins. The topological motif
of θ-curves is based on the embedding of three-dimensional θ-
letter-shaped curves in the protein backbone chains. Such
topological motifs arise by taking into account all the covalent
connections between nonadjacent amino acids (usually disulfide
bonds) and ion-mediated bridges. As reported by Dabrowski-
Tumanski et al.,5 there are 52 nonredundant protein chains, in
PDB, embedding nontrivial θ-curves whose architecture can be
divided in seven different topologies, θ31, θ01#31, θ41, θ01#41,
θ01#52, θ54, and θ8n.
However, the number and the topological complexity of the

proteins rise if the structures predicted by AI methods are
considered.19 Although AI-type models have been used
previously for 3D structure prediction, it is only recently that
their results have reached a quality comparable to experimental
accuracy. This breakthrough allowed AlphaFold,20 RoseTTA-

Received: November 30, 2023
Revised: March 28, 2024
Accepted: April 2, 2024
Published: April 15, 2024

Articlepubs.acs.org/Macromolecules

© 2024 The Authors. Published by
American Chemical Society

4599
https://doi.org/10.1021/acs.macromol.3c02479

Macromolecules 2024, 57, 4599−4608

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
L

JU
B

L
JA

N
A

 o
n 

O
ct

ob
er

 2
3,

 2
02

4 
at

 1
1:

42
:2

0 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fernando+Bruno+da+Silva"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bos%CC%8Ctjan+Gabrovs%CC%8Cek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marta+Korpacz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kamil+Luczkiewicz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Szymon+Niewieczerzal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maciej+Sikora"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maciej+Sikora"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joanna+I.+Sulkowska"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.macromol.3c02479&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02479?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02479?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02479?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02479?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c02479?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/mamobx/57/9?ref=pdf
https://pubs.acs.org/toc/mamobx/57/9?ref=pdf
https://pubs.acs.org/toc/mamobx/57/9?ref=pdf
https://pubs.acs.org/toc/mamobx/57/9?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.macromol.3c02479?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/Macromolecules?ref=pdf
https://pubs.acs.org/Macromolecules?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Fold,21 and Evolutionary Scale Modeling (ESMFold)22 to
collectively release millions of 3D protein structure predictions
covering most of the proteomic databases. A survey of
AlphaFold database featuring a majority of UniProtKB entries
revealed around 700,000 potentially knotted proteins23

including knot types not seen before in proteins, such as 51
knot,19,24 complex knots such as 63,

25 71,
19,24 83,

24 and even a
composite knot 31#3119 (this one is already confirmed
experimentally by Bruno da Silva et al.18). To our knowledge,
no one has checked the AlphaFold Database from θ-curves point
of view, but since structures deposited in the PDB represent less
than 1% of all known proteins, it is to be expected that more
complex θ-curves may exist.
From the other perspective, deep learning models have

demonstrated exceptional abilities in recognizing and classifying
patterns.26−28 By training these models on extensive data sets
containing random curve1,2 and protein-like29 chains with
known knot types, it becomes feasible to create reliable
algorithms for automating the identification and classification
of knots within these intricate structures. Braghetto et al.30 and
Sleiman et al.31 demonstrate the effectiveness of long short-term
memory (LSTM)32 based on neural network (NN) in
accurately discerning knot types in highly geometrically complex
entangled structures. Moreover, Sleiman et al.31 have in fact
shown indirectly that these methods can work for open curves
since their approach is able to locate the knotted portion.
This raises the question of whether machine learning (ML)

models can be trained to recognize knot types in simulated
polymers that closely resemble the protein configurations found
in nature. More advanced question is whether these techniques
can be applied to open knots or other types of topological motifs,
such as θ-curves,5 bonded knots,33,34 knotoids,35,36 or lassos,37
structures also found in proteins and other biopolymers.
To determine the topology of a protein, one can close the

open curves by deterministic (e.g., by connecting the two
terminals, i.e., the first and the last α-carbons, directly with a
straight line)9 or nondeterministic means,7 or alternatively,
using a knotoid approach.38 The nondeterministic approach is
also called probabilistic or random closure. In such a case, we
enclose the entire chain in a sphere centered on the protein

structure, and next we connect protein terminals several
hundred times to two points randomly chosen on the sphere
to enclose the analyzed chain. Subsequently, these two points
are connected by an arc lying on the surface of the sphere. After
the protein chain has been closed, we can identify the topology
of the protein (a knot type) using knot invariants. In the case of
random closure, the most frequently observed knot type for a
given analyzed chain is then associated with that chain as its
dominant knot type.
Most knot invariants, such as the Jones and HOMFLYPT

polynomials (or Yamada polynomial in the case of θ-
curves),12,39,40 pose a computational challenge as they are #P-
hard to compute. Even the faster Alexander polynomial, which
has a time complexity of O(n3), where n is the number of
crossings in a given projection, is still inefficient for proteins that
possess complex geometric representations. Employing ML
techniques for knot recognition provides other opportuni-
ties.29−31 If it were possible to build such an ML that detects
knots on proteins, for example, one could use ML models to
filter doubtful cases, e.g., by fixing a very high probability
threshold to pick unknots, exclude them, and analyze through
polynomials only the presumably knotted configurations.
Herein, we tested the power of ML to distinguish different

types of entanglement based on simulated polymers, protein-like
structures, and naturally occurring knotting and unknotting in
hundreds of thousands of protein structures24 predicted by
AlphaFold 2. We have investigated and demonstrated a highly
accurate classification of various types of topologies (Figure 1),
such as open and closed trivial and nontrivial entanglement (01,
31, 41, 51, 52, and 61), and θ-curves (θ01, θ31, θ41, θ51, and θ52),
utilizing an NN architecture.

■ METHODS
Data Input. Here, we consider three types of structures from the

point of view of stiffness: polymers (without local stiffness), protein-like
chain (with dihedral and planar constant angles), and proteins. In the
case of proteins, the effective bending stiffness of the chain is influenced
by secondary structures like α-helices and β-strands, whose presence is
dictated by the amino-acid sequence and protein fold. In the case of
polymers and protein-like chains, we consider open and closed knots.
More details are given below.

Figure 1. Knot classification of polymeric and protein structures: first and second rows present closed and open polymeric knots (01, 31, 41, 51, 52, and
61). Third row introduces the trivial and the nontrivial θ-curves (θ 01, θ 31, θ 41, θ 51, and θ 52). Fourth row highlights the diverse knot classification in
native proteins�unknot (01, AF ID: A0A0N5CFD3), trefoil knot (31, PDB ID: 1J85), figure-eight knot (41, PDB ID: 5VIK), cinquefoil knot (51, AF
ID: P73136), three-twist knot (52, AF ID: A0A6P3EV80), and Stevedore knot (61, PDB ID: 4N2X).
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Polymers and Protein-like Structures.We considered three types of
topological structures: closed knots, open knots, and θ curves, each
serving as a model for random polymers. For each of the structure types,
we built an initial mathematical model of a structure composed of N
beads. For closed knots, the initial model was obtained using KnotPlot
software.41 The initial models of the open knots and θ-curves were
obtained by constructing a cubic spline representation of the model.
These splines were parametrized by arc length parametrization and
sampled at N uniformly distributed points.
From the initial model, the movements were then simulated with the

molecular dynamics (MD) simulations in the space enclosed by the
cylinder (Figure 2 and Molecular Dynamics Model description) in
order to obtain different conformations that could serve further as a
training set.

In the case of closed polymers and θ-curves, the action of forces on
the polymer cannot change its topology; however, in the case of open
knots, it would theoretically be possible for the end of the polymer to
slide out/insert through the loops and thus change the topology during
the simulation. In order to avoid such situations, the ends of the
polymers can slide only on the surface base of the cylinder in which the
starting structure was placed first. Furthermore, to model polymers, no
constraints were used. On the other hand, to mimic stiffness in the case
of protein-like, additional constraints, such as plane angles and
dihedrals, were added (see the Molecular Dynamics Model description
section).

Proteins. Two sets of proteins with 01 and 31 knots were investigated
based on: (1) the knot and unknotted configuration obtained fromMD
simulations and (2) the native conformation of unknotted and knotted
protein structures predicted by AlphaFold 2, which additionally meets
the condition of appropriate length as described below.
In the first case, we selected six protein structures with and without a

knot: A0A1H4VHL9 (1), A0A1M4N8C8 (2), and P85286 (3) were
used for 01 topology and A0A2D6CS53 (4), A0A7L1ILP5 (5), and
A0A2E8PTH8 (6) for 31 topology. Numbers in parentheses are used
for easier identification of proteins. In all cases, the protein length was

slightly longer than 128 amino acids, Table 1. Proteins were trimmed to
128 amino acids without affecting the main part of the protein (each
amino acid was represented by one bead, Cα atom). To obtain a
sufficient number of configurations to train the model, proteins were
simulated in the same way as protein-like data.
In the second case, the data were constructed based on all proteins

deposited in AlphaFold v2 (over 200 million),20 with the average
quality of the full-chain 3D structures of pLDDT > 70. We used
AlphaKnot11 database to select and download 681,000 potentially
knotted proteins. We chose only proteins without clashes in the knot
core region (based on theMolProbity tool). Structures that did not pass
visual inspection and those with obvious problems were rejected from
our analysis. From this data set, we derived two independent data sets
that we cut into 128 and 256 beads.
For the data set with 128 beads, we picked proteins that possess knot

core not longer than 126 amino acids and trimmed them to 128 amino
acids so that the knot was positioned approximately in the middle of the
sequence.
For the unknotted data set, we picked high-quality proteins from the

SwissProt part of the UniProt Database so that the number matches the
knotted set. We chose proteins with sequences longer than 160 amino
acids with 128 beads selected from the middle of the protein. Slightly
longer proteins were picked to ensure that the cut fragment is not
positioned on the flexible ends of the protein as they often present lower
pLDDT scores. To address the redundancy, we then applied sequential
clustering using the CD-HIT 70% as a threshold to both knotted and
unknotted data sets filtering out and removing very similar proteins.
Next, we labeled proteins with their InterPro architectures and split
them into training and test sets in such a way that proteins with the
given architecture can appear only in exactly one of the sets but not in
both.
Similarly, we also constructed both knotted and unknotted data sets

with the 256 beads. The 254 was the maximum knot core size, and
unknotted proteins needed to be of at least length 300. Clustering and
architecture separation methods were also applied. For even further
testing of the model learning boundaries, we also prepared knotted data
sets for 384 and 512 beads (however, finally not used). The number of
proteins and architectures are detailed in Table S2 in Supporting
Information.
In total, we constructed the following data sets: for 128 beads, the

training set consisted of 55,069 unknotted proteins (01) and 47,554
knotted proteins (31), 102,623 in total; the test set consisted of 23,500
unknotted proteins (01) and 20,824 knotted proteins (31), 44,324 in
total. For 256 beads, the training set consisted of 41,542 unknotted
proteins (01) and 41,001 knotted proteins (31). The test set consisted of
5134 unknotted proteins (01) and 5070 knotted proteins (31). The
complete data sets, based on which clustering and training were made,
are available upon request. More information about the details of the
selection of data sets is in the following sections.
Machine Learning. Features. Each sample is a frame from the

simulation, and it is given as a sequence of positions of the N beads of
the given polymer, protein-like, or protein structure (called here just a
polymer). We preprocessed these input data to a well-defined set of
features (input vectors), representing the investigated polymer, and a
corresponding set of M labels (output vectors), representing the

Figure 2. Schematic representation of the protein within the cylinder.
Lc and Rc correspond to the cylinder length and radius. The rainbow-
colored protein used in the representation corresponds to the
AlphaFold ID: A0A0K6IPI7. The AlphaFold structure has an
unknotted conformation (01). TheN andC termini exhibit unrestricted
movement along the x and y coordinates, yet are constrained along the
z-axis. The cylinder bases were hidden to enhance visualization.

Table 1. Proteins Used to Conduct MD Simulations to Train the LSTM Modela

knot type UniProtKB ID knot core short name domains Sim. in test set

0_1 A0A1H4VHL9 RbsD IPR007721; IPR023064 no
A0A1M4N8C8 panD IPR003190 no
P85286 NDK B IPR034907 no

3_1 A0A2D6CS53 1−128 DndE IPR014969 no
A0A7L1ILP5 21−67 TRMD/TRM10 IPR007356; IPR016009; IPR028564 no
A0A2E8PTH8 9−118 Unchar. no dom. no

aThe last column shows that no proteins with similar sequence (proteins at over 80% coverage and 50% sequence identity) were used to test this
model. The test set is composed of 23,500 proteins with 01 knots and 20,824 proteins with 31 knots predicted by AlphaFold 2.
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topology type of the polymer. We train two separate ML models using
the following two feature sets:

1. The input vector is a sequence of N Cartesian coordinates xi =
(xi, yi, zi), where 0 ≤ i < N, of each bead in the chain,

2. The input vector is a sequence of (N − 2) relative spherical
coordinates, where (di, θi,φi), 0≤ i <N − 2, where di(s) = |xi+1 −
xi| is the Euclidean distance between the i-th and (i + 1)-th bead,
θi =∠(xi, xi+1, xi+2) is the angle between the i, (i + 1) and (i + 2)-
th bead, andφi is the dihedral angle between beads i, i + 1, i + 2, i
+ 3, i.e., the angle ∠(Σ1, Σ2), where Σ1 is the plane on which
beads i, (i + 1) and (i + 2) lie and Σ2 is the plane on which beads
(i + 1), (i + 2) and (i + 3) lie. Note that relative spherical
coordinates are invariant under rotations and translations of the
trajectory obtained from the sequence and thus generate a much
smaller configuration space for each protein topology.

Model Architecture. Herein, we investigate the deep learning
models, which we built upon a series of LSTM layers (implementation
from the Keras42 and TensorFlow43 packages). LSTM models are
specialized types of recurrent NNs (RNNs) primarily designed to
effectively handle sequences of data, such as natural language
processing, time series analysis, and, in our case, spatial coordinate
sequences.44

LSTM models stand out due to their unique ability to capture long-
range dependencies and effectively manage the flow of information
through time steps. This is crucial when working with sequences of data
that exhibit complex temporal relationships. LSTMs achieve this by
incorporating a memory cell and gating mechanisms that allow them to
selectively retain and forget information at each time step, making them
robust in preserving important context,32 such as topological
information on spatial curves, over extended sequences.
The input to the model is a sequence of features for each sample. In

xyz coordinates, each sample is a vector of dimension (N, 3), where N
denotes the number of beads. In the case of spherical coordinates (di, θi,
φi), the input vectors are of dimension (N − 3, 3). The input vector is
then passed to three bidirectional LSTM layers withN (orN − 3) units
each. In addition, we use bidirectional LSTM layers, which allow the
model to analyze the structures in both forward and backward
directions. We pass the information through a Global Max Pooling
Layer to a sequence of three feed-forward (FF) dense layers, with 128,
64, and NT units, respectively, where NT is a number of different
topologies (labels) included in a training data set. After the first dense
layer, a dropout layer with a dropout rate of 0.2 is used to reduce
overfitting. A schematic diagram of the model is shown in Figure 3.

Molecular Dynamics Model Description. Model Construction.
Systems of closed knots and open knots consisted of 64, 128, and 256
beads; θ-curves and composite θ-curves were made up of 92, 188, and
380 beads.We introduced bond, angle, and dihedral angle potentials for
beads adjacent to the chain. Beads that did not interact via backbone
potentials interacted with the repulsive part of the Lennard-Jones
potential. The total potential has the following form

= +

+ [ + ] +

[ + ]

+
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jjjjjj
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zzzzzz

V r r

r
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( 1 cos ( )
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2
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12

where ϵb = 100 ϵ/Å2, ϵa = 2 ϵ/rad2, ϵd1 = 0.1 ϵ, and ϵd2 = 0.01 ϵ. The
hard-sphere diameter of the beads was taken to be equal to 2.0 Å, and
the distance between neighboring beads along the chain was around 3.8
Å. We also considered a simplified model of the polymer with switched-
off angles and dihedral potentials.
In the case of the triple-bonded beads which form the θ-curve

topology, at each junction we added dihedral and planar angles as if they
were added at any place along the chain. We used the same force
constants, and the θ0 and ϕ0 were taken from the generated starting
conformation. The method in which we generated these starting
structures led in general to different values for these angles at every
junction.

Cylindrical Box.We used the same confinement for systems with the
given type of entanglements in order to preserve similar packing/
compactness of systems with different topology, since, e.g., chain with a
01 knot has a tendency to more spread than a chain with a 52 knot.
Generally, we considered several sizes of the confinement; however, in
each case, height of the cylinder was equal to the diameter of its base (Lc
= 2Rc, see Figure 2). The walls were simulated with the Lennard-Jones
potential
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4 2

where di is the distance between the i-th bead and the wall, and ϵc =
10.0ϵ. The cutoff distance is 2 Å, and within that distance from the wall,
interactions between beads and the cylinder were present.
In the case of open knots, to prevent changes in topology during the

time evolution of the system, positional restraints were imposed on the
extreme beads. Each of them could move only in a plane parallel to the
bases of the cylindrical cage at a distance of around 2.0 Å of the base.
Each of the extreme beads was restrained in the vicinity of the opposite
base.

MD Simulation and Sampling. All simulations were conducted
using Gromacs v4.5.445 with introduced potential for the cylindrical
cage.46 A leapfrog stochastic dynamics integrator with an inverse
friction constant of 1.0 was used. The time step was equal to 0.0005 τ.
For temperature, we use Gromacs units (for reduced units, one has to
multiply it by 1/0.0083145).
Simulations were run at temperature set to 50 ϵ/kB, and

conformations were saved every 102 steps for knots and every 104
steps for θ-curves. In the case of proteins, conformations were
generated by means of MD simulations performed at seven different
temperatures in a range between 20 ϵ/kB and 100 ϵ/kB, and the optimal
results were obtained at a temperature equal to 20 ϵ/kB. Conformations
were saved every 102 steps.
The topology of each model was additionally checked after the

simulation to ensure that it had not changed.
Topology Determination. All of the models were analyzed by

computing the HOMFLY-PT polynomial for 100 random closures;
when finding a nontrivial topology, 200 closures were used. The details

Figure 3. Diagram of the model architecture. A sequence of vectors of
dimension [(N, 3) or (N − 3, 3) for spherical coordinates] was used as
the sequential input, which is passed to the first of three LSTM
bidirectional layers. Subsequently, the global max pooling operation
and the FF part, which in the optimal case uses three layers, successively
with 128, 64, and NT neurons.
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of the method are explained.47 The fingerprint method was used to
determine the position of the knot core.7 A structure is classified as
knotted when random closures form a nontrivial knot more frequently
than a trivial knot.
All knotted proteins were downloaded from AlphaKnot 2.0 using its

API (https://alphaknot.cent.uw.edu.pl/api). We selected only the
proteins with 31 topology and the knot core shorter or equal to 126 or
254 amino acids (depending on the data set, with 128 or 256 total
beads). The AlphaKnot Database also provided the knot core positions
for those proteins.

■ RESULTS
This study investigated the optimal approach and the best
performance of the NNsmodel to identify and classify knots and
θ-curves based on their 3D structure. The data used can be
divided into three main types: polymers, protein-like, and
proteins. For each polymer and protein-like with closed and
open knots, there are six types of topologies (01, 31, 41, 51, 52, and
61). In the case of θ-curves, there are five classes (θ01, θ31, θ41,
θ51, and θ52), as shown in Figure 1. Lastly, for proteins, we
consider two classes (01 and 31), based on the topology that is
observed in the native state of proteins.
Training and Testing. The data set was split in a typical

sequential fashion: the first 70% of samples (frames) from the
simulation were taken as the training set, the next 10% to the
validation set, and the last 20% to the testing set. This approach
was introduced to avoid leakage of data from the training data set
since frames close together in the simulation show small
variation from each other, which means that they may not be
independent of each other.
For proteins, the approach was different. In this case, we

tested two different solutions to the problem. In the first one,
training was performed on simulated configuration for six
proteins with 01 and 31 type of knots, see Figure 4 andTable 1. In

the second one, training was performed on a set composed of
native protein conformations: 55,069 with 01 knot and 47,554
with 31 knot, which we identified and preprocessed based on
AlphaFold prediction. However, tests for both approaches
(simulation-based and native conformation-based) were con-
ducted on a data set also consisting of native protein
conformations derived from AlphaFold predictions of: 23,500
with 01 knot and 20,824 with 31 knot. In this way, additional
difficulty was introduced to the simulation-based approach due
to the far greater differences between the different native
structures than it is in the case with many different
conformations but derived from the same simulation as it
takes place for polymers and protein-like. Moreover, proteins
from the training and test sets possess different architectures. All
training, validation, and test sets were normalized using
Standard Scaling (removing the mean and scaling to the unit
variance).
Themodels are optimized using the RMSprop optimizer48 for

open knots (due to better convergence behavior) and the
ADAM optimizer49 for the other cases and the categorical cross-
entropy loss function. The batch size is set to 32. The number of
epochs varies, depending on the specific experiment. Due to the
rapid stabilization of both loss and accuracy for the validation
and training set (2−3 epochs), no difference in the model’s
performance was noticed for values between 3 and 50 epochs. In
general, we tested many different hyperparameters, and most
parameters are listed in Table S1. In the case of proteins of
length 256 beads, a grid search (training the model for all
combinations of given hyperparameter values) was performed;
the range of parameters taken for optimization and the top 10
results obtained can be found in Table S3. The selected
parameters give the best performances of the models for a given
type of input data. The accuracy metric is used to evaluate the
performance of the model.
Polymers and Protein-like Chains. Closed and Open

Knots. First, we investigate the LSTM on polymer chains with
closed and open knots; the procedure for open knots simulations
is described in Data input in Methods section. In both cases, the
chains had 128 beads and were divided into six classes, as
described in Figure 3 and Table 2. As shown in Figure 5, the
confusion matrices provide a comprehensive evaluation and
detail the MLmodel’s performance. These findings provide vital
insights into the task of more precise topology classification.
Such results display classification among the actual and
predicted classes. Figure 5A, normalized confusion matrix for
closed knots, shows a satisfactory prediction for the first five
classes (01, 31, 41, 51, and 52); however, a slight difference was
observed for the 61 knot. Due to the complexity of 61 knot, the
ML may often confuse it with 41 and 52, also observed in

Figure 4. Cartoon representation of the 3D structure of the proteins
used in the simulation to train the LSTM model. The blue color
indicates the position of the knot core. Each protein has a different
protein architecture.

Table 2. Best Results for Each Type of Structure Tested

chain type topology type no. beads no. classes features optimizer accuracy [%]

polymers closed knots 128 6 (xi, yi, zi) ADAM 90
open knots 128 6 (xi, yi, zi) ADAM 92
θ-curves 92 5 (xi, yi, zi) RMSprop 95

protein-like closed knots 128 6 (di, θi, φi) ADAM 84
open knots 128 6 (di, θi, φi) RMSProp 99
θ-curves 92 5 (di, θi, φi) ADAM 79

proteins (sim) open knots 128 2 (di, θi, φi) ADAM 67
proteins (native) open knots 128 2 (di, θi, φi) ADAM 93
proteins (native) open knots 256 2 (di, θi, φi) ADAM 86
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reference.30 Interestingly, all three exhibit a high degree of
topological similarity as they are both twist knots with an even
number of twists.
Despite the slight difference observed, the confusion matrix

specifically between the labels corresponding to the 41 and 61
knots suggests that the model learned to recognize associate
geometrical patterns and transformations to a specific label, that
is, the topological class. Since proteins are not closed chains, we
constructed open polymeric chains with the same knot types as
closed knots. The goal is to assess and analyze the efficacy of NN
in classifying knot types that closely approximate to the real
system, proteins (native conformation). In Figure 5B, the
confusion matrix presents a satisfactory predictor for all knot
types investigated in this study. In both cases, LSTMwas trained
with the same features, and the results display a good accuracy,
90, and 92% for closed and open knots, respectively. The results
in Figure 5A,B, as well as in Table 2, indicate that LSTM can
identify and distinguish different topological configurations.
Figure 5D,E presents the results for protein-like chains whose

structure is characterized by constraints such as internal forces,
like: bonds (two consecutive atoms) (d), angles (θ), and
dihedral angles (ϕ). In the case of proteins, their rigidity is due to
secondary structure motifs: α helices, β strands, and turns. Thus,
in the case of polymers depending on the given persistence
length, their range is from highly flexible to relatively rigid.
Protein-like chain studied here encompasses the spectrum
between polymers and proteins. The performance of the LSTM
trained based on the features d, θ, andϕ for closed knots (Figure

5D) was moderate, which is evident by the confusion matrix
result. The model could not predict the knot types accurately
except for 31 and 61 knots. On the other hand, the LTSM trained
using identical features, as for protein-like closed knot structures,
showed the highest performance when trained and tested with
open knots. All knots were well predicted, and the accuracy for
closed and open knots is 84 and 99%, respectively.
As observed, knot-type identification using LSTM may

present low accuracy depending on the features of the model
on which it was trained on. Polymers and protein-like with open
and closed knots were set with different parameters (see Table
S1 in Supporting Information) to capture the best LSTM NN
performance.

θ-Curves. In the case of the θ-curves simulated without
constraints based on the same feature shape as for the knots, i.e.
(N, 3), we obtained rather good results (95% accuracy) as one
could expect. However, in the case of θ-curves obtained in
constrained simulations, it is only 66% accurate. However, while
a closed knot is a circle embedded in 3, a θ-curve is a spatial
graph that consists of three edges with two common vertices.50

For this reason, we proposed changing the shape of the features

to +( ), 9N 4
3

. Each of the +N 4
3

rows contains the (x, y, z)

coordinates of three beads (one from each strand). This change
brought an increase in the accuracy to 79%. However, the
efficiency of trivial θ-curve recognition drastically dropped. This
is probably due to the high flexibility of its structure. A knot with
many crossings restricts the movements of the polymer, while a

Figure 5.Normalized confusion matrices for polymer, protein-like, and θ-curves. (A−C) Panels correspond to the polymers with closed, open, and θ-
curve knots. (D−F) Panels correspond to the protein-like with closed, open, θ-curve knots. Open and closed knots are represented by six classes (01, 31,
41, 51, 52, and 61), while θ-curves with five classes (θ01, θ31, θ41, θ51, and θ52). The blue scale color corresponds to the probability, dark blue for high
probability, and light blue for low probability.
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trivial knot does not, which means that it can obtain many
different conformations, making it difficult for theNN to capture
the dependencies.
Proteins. In the context of protein structure classification, a

new challenge arises with model performance. Two approaches
were tried in this case. The first was based on generating a
conformation with MD simulation for randomly selected
proteins and training a model on them. The second approach
was based on training the model on part of a data set composed
of native conformation of proteins. For both approaches, the
trained models were tested on the same test data set consisting
of 44,324 native protein structures. In both cases, due to the
complexity of the protein structures, (di, θi, φi) variables were
used.

Simulation-Based Training Set. A natural step in the
transition from polymers to proteins is to consider conforma-
tions of proteins generated by MD simulations. To prepare the
training set, three proteins without a knot and three with the 31
knot were selected, see Table 1 and Figure 4. Each protein has a
different protein architecture, Figure 4. To obtain a sufficient
number of configurations to train the model, proteins were
simulated in the same way as protein-like data. We analyzed
combinations of all possible knotted−unknotted pairs. We
found that the best performance�of 67% accuracy�was
obtained on the data from simulations of proteins (2) and (5).
It is the simplest example of employing individual proteins in
generating a training set for the ML model, and the results are
based on individual trajectories. However, such an approach can
be a starting point for studying data from the dynamic processes
like protein folding or other large rearrangements of protein
structure over the course of MD simulations, and it can be used,
e.g., in recognition of knots in folding kinetics.

Training Set based on Native Conformation of Proteins.
The second approach was to train the model on native protein
structures. Two data sets were prepared for training and testing
purposes, consisting of knotted and unknotted proteins.
Knotted proteins were selected from AlphaKnot 2.0.11 To
ensure the diversity of the knotted data set (different protein
architecture), proteins were grouped by the InterPro domains
appearing in the knot core and clustered using CD-HIT51 at the
70% identity level. We concentrated on the 31 topology as it is
the most common topology and appears in the widest range of
protein architectures, thus ensuring that enough data can be
provided for model training. The unknotted data set was
prepared, as described in the Data Input section.
Trivial and knotted proteins were randomly distributed, and

we ensured that each architecture could be present only in either
the training or test set. In addition, we calculated the rmsd
between pairs of proteins with different architectures for 1000 of
the 17,000 possible pairs to ensure that there was no data leakage
(one architecture can be composed of several different
domains). We found that rmsd is above 4 and 6 Å for 73 and
98% of pairs, respectively (details are given in the Supporting
Information). Thus, there should be enough structural diversity
between architectures for the model to train properly.
In total, the training set was composed of 55,069 unknotted

proteins (11,426 architectures) and 47,554 knotted proteins
(602 architectures). The test set had 23,500 unknotted proteins
(4843 architectures) and 20,824 knotted proteins (454
architectures). The full list of architectures and protein IDs is
available upon request.
Following the results for the case with 128 beads, we tested

the accuracy of our model on the larger sequences of 256 beads.

The training set consisted of 41,542 unknotted proteins (6680
architectures) and 41,001 knotted proteins (2296 architec-
tures). The test set consisted of 5134 unknotted proteins (1089
architectures) and 5070 knotted proteins (932 architectures).

Results Comparison. The results obtained for knotted
protein structures are shown in Table 3 and as a confusion

matrix in Figure 6. The simulation-based model is denoted as
proteins (sim), and the native-structure-based model with 128
and 256 beads is denoted as proteins (native). Due to the slightly
unbalanced test set for the proteins, other metrics such as
precision (positive predictive value, PPV= +

TP
TP FP

), recall (true

positive rate, TPR= +
TP

TP FP
), and F1-score (F1= · ·

+
2 PPV TPR
PPV TPR

) were
also presented. Precision measures the accuracy of positive
predictions by calculating the ratio of true positives to the sum of
the true positives and false positives. Recall shows the ability to
classify relevant instances within the all positive class by
calculating the ratio of true positives to the sum of true positives
and false negatives. The F1-score, which is the harmonicmean of
precision and recall, provides a more comprehensive metric of
the model with an unbalanced test set.
A model trained on native protein structures with 128 beads

outperforms the one trained on a simulated data set due to the
definitely greater diversity of the first one. The native protein-
based training set gives a diverse pool of examples, which
provides a greater coverage of the configuration space, allowing
the variability and complexity characteristic of different proteins
to be captured. In contrast, a model trained on a limited set of
proteins lacks this expansive diversity, limiting its ability to
generalize across various proteins. By learning from a broader
spectrum of structures, the model gains a deeper understanding
of the complex relationships among smaller sequences, a whole
structure, and topology, resulting in more accurate classification.
The results for the model trained on the 256 bead window

show that the accuracy dropped as compared to the 128 bead
model. One of the possible explanations could be the limited
memory capability for LSTM models. The recommended
method of applying the model for larger proteins might be
thus to use the sliding window technique: cutting 128 beads
from overlapping parts of the protein.

■ CONCLUSIONS
In summary, our investigation of LSTM NN models on the
polymer, protein-like, and protein chains, with both closed and
open knots as well as θ-curves, has provided valuable insights
into their classification and identification. The analysis revealed
that the LSTM model can predict classes (up to the 61 knot)
accurately not only for closed knots but also for open polymeric
chains, resembling native proteins. Application of LSTM with
proper features has the ability to classify knot types in protein-
like chains, displaying robust prediction capabilities with an

Table 3. Selected Metrics for Protein Models

type no. beads acc. [%] topol. precision recall F1-score

sim 128 67 01 0.75 0.55 0.64
31 0.61 0.79 0.69

native 128 93 01 0.89 0.99 0.94
31 0.99 0.86 0.92

native 256 86 01 0.80 0.96 0.88
31 0.95 0.74 0.83
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accuracy of 99%. This suggests the model’s efficacy in handling
systems that closely approximate real-world scenarios.
The aim to precisely identify and classify knotted protein

architectures stands as a considerable challenge in scientific
research. Two different methodologies were employed: the first
approach involved many conformations of a single protein
obtained from MD simulations, while the second utilized a
single conformation from many different proteins predicted by
AlphaFold 2.0. In both cases, the model was tested on native
conformation of 23,500 unknotted and 20,824 knotted proteins
sampled from a wide range of domain architectures. Despite
different techniques, both approaches take into account the
same features to address the intricate nature of the protein
structures. The model trained on simulations displayed
promising performance with an accuracy of 67%. On the other
hand, the second approach considers a training set composed
only of native conformation of knotted (47,554) and unknotted
(55,069) 128 bead proteins, leading to an accuracy of 93%. For
the analyzed longer proteins, i.e., 256 beads in length, the results
obtained are slightly worse, and the accuracy is 86%. Such results
are promising since we ensured that there was no overlap in the
architecture of proteins between the training and testing sets,
and one of the reasons for the underperformance for longer
sequences could be the limited memory capacity of the LSTM
networks. One considered solution to this problem might be to
use a model trained on shorter sequences that tests individual
overlapping fragments in a longer sequence in a sliding-window
approach. This approach can also be applied to much longer
proteins, e.g., human proteins. Only note that it will allow knots
smaller than 126 or 254 amino acids to be found.
Currently, there are around 600,000 potentially knotted

proteins.11 Based on AlphaFold-Multimer-predicted protein
complex structures, it has been estimated that approximately
1.72% of the predicted structures contain topological links.52

The complexity and number of other types of nontrivial
topologies such as lasso and links in a single proteins chain are
not known since it was not checked in AlphaFold or EMSFold.
Creating an LSTM model to review such data (as a first filter
supported later with classic methods) would provide knowledge
of the number of entangled proteins in a given genome and type
of entanglements and thus provide data that can be further used
to analyze, e.g., potential correlation between topology and
biological function of a given protein. An LSTMmodel could be
also used to scan for the possession of nontrivial topologies in de
novo prediction or kinetics simulations of biopolymers. In
conclusion, the classification of knots remains a challenge,
especially concerning entanglement motif in biopolymers.
Within this study, we have shown that the LSTM model based

on NN architecture can achieve very good accuracy in
recognizing some knots, open knots, and θ-curves within a
polymer, protein-like, and protein chains. Consequently, one
could expect that the LSTM approach can be further developed
toward accurately predicting, distinguishing, and classifying
more complex nontrivial topologies in highly complex and
disorderly structures.
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Figure 6.Confusion matrices for proteins with two classes of topologies (01 and 31) for proteins model trained on (A) simulated data [proteins (sim)]
and model trained on (B) native structures [protein (native)] with 128 beads and (C) native structures [protein (native)] with 256 beads.
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(33) Gabrovsěk, B. An invariant for colored bonded knots. Stud. Appl.

Math. 2021, 146 (3), 586−604.
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