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A B S T R A C T

We present a semi-analytical approach to compute quasi-guided elastic wave modes in hori-
zontally layered structures radiating into unbounded fluid or solid media. This problem is of
relevance, e.g., for the simulation of guided ultrasound in embedded plate structures or seismic
waves in soil layers over an elastic half-space. We employ a semi-analytical formulation to
describe the layers, thus discretizing the thickness direction by means of finite elements. For
a free layer, this technique leads to a well-known quadratic eigenvalue problem for the mode
shapes and corresponding horizontal wavenumbers. Incorporating the coupling conditions to
account for the adjacent half-spaces gives rise to additional terms that are nonlinear in the
wavenumber. We show that the resulting nonlinear eigenvalue problem can be cast in the form
of a multiparameter eigenvalue problem whose solutions represent the wave numbers in the
plate and in the half-spaces. The multiparameter eigenvalue problem is solved numerically using
recently developed algorithms. Matlab implementations of the proposed methods are publicly
available.

. Introduction

One of the classical problems in elastodynamics is the description of wave propagation in elastic layers that are in contact with
nother medium of infinite extent at one or both surfaces. We present a computational approach for this problem in the setting
here the unbounded domains are assumed homogeneous and consist either of an acoustic fluid (i.e., governed by the scalar wave
quation) or a linearly elastic isotropic solid. Such configurations are frequently encountered, particularly in two different fields of
ngineering: In soil dynamics and earthquake engineering, the analysis of wave propagation and vibration in layered soils and rock
ormations is of interest, where it can often be assumed that the layers radiate energy into a much larger domain of, e.g., water
r soil [1,2]. In this field of study, large structures and small frequencies are typically encountered. At very different spatial and
emporal scales, understanding the behavior of high-frequency guided waves in thin-walled structures immersed or embedded in
ther media is essential in the context of ultrasonic nondestructive testing, material characterization, or sensor development [3–5].

For the modeling of waves in layered media, numerous analytical, numerical, and semi-analytical approaches have been
eveloped. Analytical and semi-analytical methods are appropriate for obtaining dispersion curves of guided and quasi-guided

∗ Corresponding author.
E-mail addresses: gravenkamp.research@gmail.com (H. Gravenkamp), bor.plestenjak@fmf.uni-lj.si (B. Plestenjak), daniel.kiefer@espci.fr (D.A. Kiefer),

liasj@kth.se (E. Jarlebring).
ttps://doi.org/10.1016/j.jsv.2024.118716
eceived 16 January 2024; Received in revised form 5 August 2024; Accepted 2 September 2024
vailable online 13 September 2024 
022-460X/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license 
 http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/jsvi
https://www.elsevier.com/locate/jsvi
mailto:gravenkamp.research@gmail.com
mailto:bor.plestenjak@fmf.uni-lj.si
mailto:daniel.kiefer@espci.fr
mailto:eliasj@kth.se
https://doi.org/10.1016/j.jsv.2024.118716
https://doi.org/10.1016/j.jsv.2024.118716
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2024.118716&domain=pdf
http://creativecommons.org/licenses/by/4.0/


H. Gravenkamp et al.

i
o
d
i
e
m
s
i
t
w

d
w
m
u

Journal of Sound and Vibration 596 (2025) 118716 
waves, which will be the focus of the present work. Wave propagation in individual layers with traction-free or fixed surfaces
is well-understood, and implicit closed-form expressions for their dispersion relations are available [6,7]. However, obtaining from
these relations all solutions at a given frequency already requires sophisticated numerical root-finding algorithms. Extensions to
layered systems and their coupling to unbounded domains have been achieved by means of the Transfer Matrix Method, Global
Matrix Method, or Stiffness Matrix Method [8–10]. However, in such cases, the numerical difficulties in obtaining all solutions as
roots of the dispersion relations are significant. For this reason, semi-analytical methods have been established as effective means
of describing waves in plates and other structures of constant cross-section [11]. These approaches involve a discretization of
the structure’s cross-section, which, in the case of layered media in two dimensions, reduces to a one-dimensional discretization
along the layer’s thickness. Typically, standard finite element spaces are employed to this end [12–14], while variants based on,
e.g., non-uniform rational B-splines (NURBS) [15] or spectral collocation [16] exist. Such formulations naturally lead to a quadratic
eigenvalue problem, whose solutions represent wavenumbers and discretized mode shapes and can be solved robustly and efficiently
using conventional algorithms. To researchers in soil dynamics, this concept of semi-discretization is most famously known as Thin
Layer Method (TLM) [17], while, in the context of ultrasonic testing, the term Semi-Analytical Finite Element Method (SAFE) [18] is
common. Furthermore, the Scaled Boundary Finite Element Method (SBFEM) has been developed and expanded since the 1990s [19–
21] with the aim of extending the range of application of semi-analytical methods. The SBFEM has its origins in the TLM but
introduced a particular coordinate transformation in order to employ the semi-analytical concepts to more general bounded and
unbounded star-convex domains.

Notwithstanding the efficiency and robustness of semi-analytical methods for modeling waveguides of arbitrary cross-sections,
ncorporating an adjacent unbounded domain coupled to the structure of interest is not straightforward. Consequently, a variety
f formulations have been suggested to address this challenge. An obvious idea is to discretize a finite part of the unbounded
omain large enough to allow waves to decay sufficiently such that reflections of the computational domain’s boundary cannot
nterfere with the waveguide modes. These approaches require artificial damping in the unbounded domain, which is often achieved
ither by classical absorbing regions with artificial viscoelastic damping [22] or coordinate mapping techniques such as perfectly
atched layers (PML) [23–25], infinite elements [26,27], or similar approaches based on a problem-adapted complex coordinate

caling [28,29]. Still, the discussed discretizations increase the number of unknowns, and choosing suitable damping properties
s not always straightforward. Furthermore, they require distinguishing between those modes propagating in the waveguide and
hose excited primarily within the damped medium. Hence, it is desirable to describe the effect of the unbounded domain on the
aveguide solely by an interface condition, avoiding the additional discretization and the associated set of nonphysical parameters.

A particularly simple attempt at achieving this goal relies on approximating the effect of an unbounded domain by linear
amping (dashpot boundary condition) [30,31]. The implied assumption is that waves are radiated in the direction normal to the
aveguide’s surface into the surrounding medium, which can be a reasonable approximation, depending on the combination of
aterial parameters and the frequency range. On the other hand, incorporating the exact boundary conditions representing the
nbounded domain in a rigorous way gives rise to additional nonlinear terms in the eigenvalue problem. For the plane geometries

considered here, these nonlinear terms are typically of the form

𝜅𝑦 =
√

𝜅2 − 𝑘2, (1)

relating a vertical wavenumber 𝜅𝑦 in the unbounded medium to the common horizontal wavenumber 𝑘 (i.e., the eigenvalue), with
some constant 𝜅. In the case of an adjacent fluid medium, an iterative solution scheme has been devised, which starts from the
linear dashpot approximation and iteratively corrects each modal solution by updating the dependency of the fluid coupling on
the wavenumber in the structure [32]. This approach is relatively efficient but not always robust, as different starting values may
converge to the same solution, resulting in missing modes in the spectrum. Moreover, the trapped waves (quasi-Scholte modes) that
appear as additional solutions compared to the free plate are not always found. For the special case of a solid plate in contact with
a fluid on one side or the same fluid on both sides, Kiefer et al. [33,34] showed that the eigenvalue problem can be linearized
by a change of variables. This approach robustly finds the full spectrum but cannot be generalized to other cases. Hayashi et al.
found solutions for the same special case by exploiting symmetries in the wave propagation that enabled the linearization of the
problem [35]. More recently, Tang et al. [36] and Ducasse and Deschamps [37] independently presented linearization methods that
consist in introducing a higher-dimensional state space. The latter studies consider two different fluids on both sides of the plate.

For more general setups, including layers embedded in solid media or coupled to different materials on both sides, the solution
becomes challenging due to the presence of different modes in the unbounded media. In this paper, we will derive the coupling
conditions between elastic plates and unbounded fluid or solid media. To describe the plate, we employ a semi-analytical finite
element method with high-order Lagrange elements (as discussed in [14,38]) in order to keep the size of the resulting eigenvalue
problem to a minimum. A fluid half-space is described by only one additional degree of freedom (DOF) representing the pressure at
the interface. In the case of a solid half-space, we use displacement amplitudes at the interface, hence adding two or three degrees
of freedom (depending on whether we include shear-horizontal modes) for each unbounded domain.

Due to the incorporation of coupling conditions such as (1) and more complex relations given in Sections 3 and 4, the discretized
problem is a nonlinear eigenvalue problem (NLEVP) in the sense of [39]. The solution of such problems is an active research field,
particularly in the scope of numerical linear algebra, with a plentitude of algorithms for general problems as well as approaches
tailored to specialized structures [40], including those that arise in the modeling of waveguides [41]. Algorithms and methods have
also been included in software packages for high-performance computing such as SLEPc (Scalable Library for Eigenvalue Problem

Computations) [42].
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Fig. 1. Plate with traction-free surfaces.

For the particular type of nonlinearity encountered in the current work, we employ a rather different technique based on a
elationship between certain NLEVPs and multiparameter eigenvalue problems, as formally defined below. The general connection
as pointed out in a presentation by M. Shao1 and has been exploited to develop methods for such problems in [43]. We will
emonstrate that the nonlinear eigenvalue problem addressed here can be cast into the form of a multiparameter eigenvalue problem,
n which the vertical wavenumbers of the form 𝜅𝑦 are interpreted as additional unknown parameters related to the eigenvalue 𝑘
hrough (in the case of fluid loading) Eq. (1), or slightly different relations in the case of coupling to a solid medium.

Generally, in a multiparameter eigenvalue problem [44], we have 𝑟 equations of the form

(A𝑖0 + 𝜆1A𝑖1 +⋯ + 𝜆𝑟A𝑖𝑟) x𝑖 = 0, 𝑖 = 1,… , 𝑟, (2)

here A𝑖𝑗 is an 𝑛𝑖 × 𝑛𝑖 matrix. Eigenvalues are tuples (𝜆1,… , 𝜆𝑟) for which nonzero x𝑖 exist such that all equations are satisfied.
roblems of this type also appear, e.g., in separable boundary-value problems [45]. Recently, this formalism was applied to the
omputation of zero-group-velocity (ZGV) points in waveguides [16]. A standard numerical approach to computing all eigenvalues
onsists in constructing the associated system of generalized eigenvalue problems ∆𝑖z = 𝜆𝑖∆0z, 𝑖 = 1,… , 𝑟; for details see
ppendix B. The latter system has the same eigenvalues (𝜆1,… , 𝜆𝑟) as the original problem but can now be solved with conventional
ethods [46], since the 𝑟 equations decouple in the eigenvalues. If the problem is singular, the regular part is first extracted using
staircase-type method [47].

Our proposed approach is implemented in Matlab, making use of the toolbox MultiParEig [48] for the solution of multiparameter
igenvalue problems. The codes for reproducing the examples discussed in this paper are available for download [49]. We also
ncorporated this method in the toolbox SAMWISE [50], which allows applying this algorithm to user-defined problems.

In the following section, we briefly recap the semi-analytical formulation of a free plate and state the general form of the nonlinear
igenvalue problem resulting from including coupling conditions at the interfaces. Sections 3 and 4 explain the interface conditions
or unbounded fluid and elastic media, respectively. The solution of the nonlinear eigenvalue problems is discussed in Section 5,
efore we present some numerical examples (Section 6) and a conclusion (Section 7).

. Semi-analytical model of a layered medium

.1. Free plate

The basic semi-analytical description of waves in a free elastic plate is well-known [12–14], and various implementations are
vailable, e.g., [50,51]. Hence, the concept is only briefly recapitulated here. As depicted in Fig. 1, let the plate of thickness ℎ
ccupy the domain 𝛺, defined by the open interval  = (‧ ℎ

2 ,
ℎ
2 ) such that

𝛺 =
{

(𝑥, 𝑦) ∈ R2 |

|

|

𝑥 ∈ R, 𝑦 ∈ 
}

.

Assuming the linearized momentum equation of elasticity, the displacement field u(𝑥, 𝑦, 𝑡) in the plate is governed by

∇ ⋅ (C ∶ ∇u) − 𝜌𝜕𝑡𝑡u = 0 (3)

with the mass density 𝜌 and stiffness tensor C. Here, 𝜕𝑡𝑡 denotes the second partial derivative with respect to time and ’:’ the double
contraction of two tensors. Consider harmonic wave propagation along 𝑥 with a wavenumber 𝑘 and frequency 𝜔, i.e.,2

u(𝑥, 𝑦, 𝑡) = u(𝑘, 𝑦, 𝜔) ei(𝑘𝑥−𝜔𝑡). (4)

ubstituting Eq. (4) into (3), dividing by ei(𝑘𝑥−𝜔𝑡), and introducing traction-free boundary conditions,3 the following one-dimensional
oundary-value problem can be stated. For a given 𝜔, find (𝑘, u) such that [34]

[

(i𝑘)2C𝑥𝑥 + i𝑘C𝑥𝑦𝜕𝑦 + i𝑘C𝑦𝑥𝜕𝑦 + C𝑦𝑦𝜕2𝑦 + 𝜔2𝜌I
]

u = 0 , 𝑦 ∈  (5a)
[

i𝑘C𝑦𝑥 + C𝑦𝑦𝜕𝑦
]

u = 0 , 𝑦 = ± ℎ
2 (5b)

1 M. Shao, Conquering algebraic nonlinearity in nonlinear eigenvalue problems, presented at the SIAM Conference on Applied Linear Algebra (ALA), Hong
ong 2018; joint work with Z. Bai, W. Gao, and X. Huang.

2 Throughout this paper, we use u to denote the displacement field and a simple u for the amplitude defined by Eq. (4).
3 The typical traction-free von-Neumann boundary conditions are assumed here for notational convenience, while we may, alternatively, introduce Dirichlet

onditions at the plate’s surfaces.
3 
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with the 2nd-order tensors C𝑖𝑗 = e𝑖 ⋅ C ⋅ e𝑗 and the direction vectors e𝑖, 𝑖 ∈ {𝑥, 𝑦, 𝑧}.4 We can now employ standard finite-element
rocedures to solve this boundary-value problem [52], i.e., we pose the weak form of Eq. (5a) and subsequently apply discretization.
e denote by  = H1(𝛺) the function space of the continuous problem with the standard notation for Sobolev spaces. Multiplying

q. (5a) by test functions v ∈  (i.e., taken from the same space as u), integrating over , and applying integration by parts to the
third and fourth term yields the variational statement

− 𝑘2
(

v,C𝑥𝑥u
)

+ i𝑘
(

v,C𝑥𝑦𝜕𝑦u
)

− i𝑘
(

𝜕𝑦v,C𝑦𝑥u
)

−
(

𝜕𝑦v,C𝑦𝑦𝜕𝑦u
)

+ 𝜔2(v, 𝜌u
)

= 0, (6)

where (•, •) denotes the L2-inner product in . The weak form (6) is discretized straightforwardly by defining adequate finite element
spaces h ⊂  . Replacing the trial and test functions in (6) with the discrete counterparts uh,vh ∈ h defines the discretized
boundary-value problem. Performing the integrations numerically, one obtains a square matrix for each of the terms in (6), denoted
as

(

−𝑘2 E0 + i𝑘E1 − E2 + 𝜔2M
)

un = 0. (7)

Here, un refers to the vector of coefficients of the finite element discretization, which, in our case, are nodal displacements. Explicit
expressions for computing these matrices are given in Appendix A. Eq. (7) relates frequencies and horizontal wavenumbers, which
implicitly defines a dispersion relation. This equation poses a quadratic two-parameter eigenvalue problem that is commonly solved
by choosing a set of frequencies and computing the corresponding wavenumbers after employing a companion linearization.

Remark 1. In the case of undamped free plates or similarly simple scenarios, we can alternatively obtain dispersion curves by
choosing a set of real wavenumbers and computing the corresponding frequencies. This can be computationally cheaper, as Eq. (7)
directly poses a linear eigenvalue problem for 𝜔2. However, in the case of material damping or radiation into adjacent media, the
wavenumbers of interest are complex; hence, we must solve Eq. (7) at given frequencies, which we know to lie on a real interval.

Remark 2. In finite-element-based formulations like the one outlined above, it is straightforward to incorporate any anisotropic
material behavior of the plate into the stiffness tensor, see, e.g., [14,53]. On the other hand, when dealing with elastic half-spaces
(Section 4), we will assume those to be isotropic.

Remark 3. We will see that the computational costs for solving the nonlinear eigenvalue problems discussed in the ensuing increase
rapidly with the size of the finite-element matrices. Hence, it is crucial to choose an efficient discretization scheme. For this purpose,
it is highly beneficial to use as few elements as possible (in our current application, one element per layer) of an order adequate to
obtain reasonably accurate results in the desired frequency range. As has been discussed in much detail previously, a suitable and
rather common choice of trial and test functions is provided by Lagrange interpolation polynomials with nodes positioned at the
Gauss–Lobatto points, allowing polynomial degrees of 100 and more without numerical issues [14,38,54]. Alternatives can be found
in hierarchical shape functions or NURBS [15], leading to similar numerical properties. An overview in the context of the SBFEM
is provided in [55].

2.2. General form of the nonlinear EVP

In the following sections, we will see that incorporating the coupling to unbounded domains at the plate’s top and bottom surfaces
leads to a modified nonlinear eigenvalue problem of the general form

(

−𝑘2 E0 + i𝑘E1 − E2 + 𝜔2M + R(𝑘)
)

ϕ = 0. (8)

The eigenvector ϕ contains the nodal displacements un of the plate and also up to six additional degrees of freedom representing the
unbounded domains. The matrix function R(𝑘) involves non-polynomial terms in the eigenvalue 𝑘 and incorporates the interaction
of the waveguide with a surrounding/adjacent medium. Different approaches can be used to describe the waveguide as well as the
surrounding medium. We formulate wave propagation inside elastic media in terms of displacements, while other formulations based
on elastic potentials or mixed interpolations are possible. Waves in acoustic media can be defined in terms of the acoustic pressure
or the velocity potential (we opt for the former). We also note that it is generally possible to eliminate the degrees of freedom in
the unbounded domain and only incorporate their effect on the waveguide through (nonlinear) Neumann boundary conditions as
has been done, e.g., in [32]. However, that approach leads to a more complicated dependency of the additional terms in R(𝑘) on
the eigenvalue 𝑘 and hinders the solution by the approaches that we suggest in the following sections.

3. Elastic plate in contact with a fluid half-space

Let us begin by assuming that the elastic plate, as described in the previous section, is now coupled to an infinite acoustic
(inviscid) fluid at one of its surfaces located at 𝑦 = 𝑦𝑠, see Fig. 2. The extension to two (generally different) acoustic half-spaces will

4 For an isotropic medium with the Lamé parameters 𝜆 and 𝜇, we have

C𝑥𝑥 =

[ 𝜆 + 2𝜇 0 0
0 𝜇 0
0 0 𝜇

]

, C𝑦𝑦 =

[ 𝜇 0 0
0 𝜆 + 2𝜇 0
0 0 𝜇

]

, C𝑦𝑥 = CT
𝑥𝑦 =

[ 0 𝜇 0
𝜆 0 0
0 0 0

]

.

4 
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Fig. 2. Plate in contact with fluid half-spaces at one or both of its surfaces.

be straightforward. The acoustic pressure 𝑝 in the fluid satisfies the Helmholtz equation

Δ𝑝 + 𝜅2𝑝 = 0, (9)

where 𝜅 denotes the wavenumber in the fluid. As we are dealing with a plane surface radiating into an infinite medium, we postulate
plane pressure waves [56] of amplitude 𝑝 propagating in the fluid domain, i.e.,

𝑝(𝑥, 𝑦, 𝑡) = 𝑝 ei(𝜅𝑥 𝑥+𝜅𝑦 𝑦−𝜔 𝑡), (10)

with 𝜅𝑥 and 𝜅𝑦 being the horizontal and vertical components of the complex-valued wave vector in the fluid. Assuming continuity of
vertical displacements at the interface requires a common horizontal wavenumber in all domains, i.e., 𝜅𝑥 = 𝑘 (cf. Snell’s law [56,57]).
The vertical wavenumber is then given by

𝜅𝑦 = ±
√

𝜅2 − 𝑘2. (11)

We absorb the constant ei𝜅𝑦 𝑦𝑠 into the complex-valued amplitude 𝑝s = 𝑝 ei𝜅𝑦 𝑦𝑠 . With this, the fluid pressure along the interface 𝑦 = 𝑦𝑠
reads

𝑝(𝑥, 𝑦𝑠, 𝑡) = 𝑝s ei(𝑘𝑥−𝜔𝑡). (12)

he coupling conditions at the interface are as follows. The acoustic pressure induces a traction 𝝉 on the plate surface, i.e.,

𝝉(𝑦 = 𝑦𝑠) = n ⋅ 𝝈(𝑦 = 𝑦𝑠) = 𝑝s n (13)

with the unit outward normal vector n and the stress tensor 𝝈. Since, in our case, we have either n = e𝑦 or n = −e𝑦, this condition
simplifies to

𝜏𝑦(𝑦 = 𝑦𝑠) = ±𝑝s, (14)

where the positive/negative sign corresponds to coupling at the upper/lower surface, respectively. The second coupling condition
states that the normal derivative of the acoustic pressure is related to the acceleration at the plate’s surface by

n ⋅ ∇𝑝|
|𝑦 = 𝑦𝑠 = −�̃�n ⋅ 𝜕2𝑡 u = 𝜔2�̃�n ⋅ u (15)

with the fluid’s density �̃�. Hence, considering Eqs. (10) and (11), we obtain

± i
√

𝜅2 − 𝑘2𝑝s = 𝜔2�̃� 𝑢𝑦(𝑦 = 𝑦𝑠). (16)

Two possibilities exist for including the coupling conditions in the waveguide model. The first one, described in detail in [32],
consists in substituting Eq. (16) into (14) to obtain an expression for the traction while eliminating the acoustic pressure:

𝜏𝑦(𝑦 = 𝑦𝑠) = ∓
i𝜔2�̃�

√

𝜅2 − 𝑘2
𝑢𝑦(𝑦 = 𝑦𝑠). (17)

The above equation can be considered as a Neumann boundary condition and directly integrated into the waveguide eigenproblem.
However, the resulting nonlinear terms of the form 1∕

√

𝜅2 − 𝑘2, which are singular at 𝜅 = 𝑘, are somewhat difficult to address. Thus,
we will follow the formulation similar to [33]5 and introduce additional degrees of freedom representing the pressure amplitude(s).
At this point, we may directly make the trivial extension to two different acoustic media coupled to the lower and upper surfaces
and collect the corresponding pressure amplitudes in one vector pn. The eigenvectors are extended accordingly as

ϕ =
[

un
pn

]

. (18)

5 In [33], the fluid was described in terms of the velocity potential rather than the pressure, and the discretization of the plate was achieved using spectral
ollocation rather than finite elements. However, these differences are of little relevance for the current discussion and the solution procedure proposed in this

aper.
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Fig. 3. Plate in contact with solid half-spaces at one or both of its surfaces.

In this approach, the coupling conditions are incorporated into the nonlinear eigenvalue problem (8), extending the involved
matrices to account for the additional DOFs. The additional matrix entries due to the coupling can be read off from Eqs. (14)
and (16). In particular, Eq. (14) introduces a term independent of 𝑘 and 𝜔 and is thus to be included in the matrix E2. Similarly,
Eq. (16) involves a term proportional to 𝜔2 and can be incorporated into M. Finally, the left-hand side of (16) gives rise to terms
in

√

𝜅2 − 𝑘2, which are included in a matrix of the form

R(𝑘) = i𝜅𝑦,1 R1 + i𝜅𝑦,2 R2, (19)

with

𝜅𝑦,1 =
√

𝜅2
1 − 𝑘2, 𝜅𝑦,2 =

√

𝜅2
2 − 𝑘2. (20)

Here, the indices 1,2 refer to the fluids coupled to the lower and upper surface. Specifically, if we denote by 𝑠𝑗 the index of the
DOF corresponding to the vertical displacement at interface 𝑗 = 1, 2 and by 𝑓𝑗 the index of the pressure-DOF, the matrix entries
corresponding to coupling are

E
𝑠𝑗 ,𝑓𝑗
2 = ±1, M

𝑓𝑗 ,𝑠𝑗 = ±�̃�, R𝑓𝑗 ,𝑓𝑗
𝑗 = 1. (21)

Overall, this means that we consider (16) to be an additional equation incorporated into M and R𝑗 , while (14) is included in E2 and
represents the Neumann boundary condition imposed on the plate.

Remark 4. We may stress again that, in the case of 𝜅1 = 𝜅2 (i.e., a plate in contact with the same fluid medium at the lower and
pper surface), the resulting eigenvalue problem can be linearized as discussed in [33]. While we will study such an example in our
umerical experiments to verify the implementation, the main objective of the approach presented here is to address more complex
roblems, particularly those involving coupling to solid media or different materials (elastic or acoustic) at both surfaces.

. Elastic plate embedded in an elastic medium

We now consider the situation in which the elastic plate is in contact with an elastic half-space or embedded in an elastic
edium. For the beginning, let us again assume the presence of only one half-space coupled to the plate at 𝑦 = 𝑦𝑠; see Fig. 3.

The extension to two half-spaces of potentially different materials coupled to the lower and upper surfaces is straightforward. The
fundamental solution of waves propagating in an isotropic horizontally stratified medium (assuming plane strain) can be found in
the literature [58,59] and is only briefly reproduced here to fix notation. Again, we consider the waveguide to be aligned with the
𝑥-axis; thus, the wavenumber 𝑘 of the guided wave modes matches the 𝑥-component of the wave vector in the surrounding medium.

he displacements in the unbounded solid are a superposition of three plane waves, namely one longitudinal and two transverse
aves. The latter are denoted as shear-vertical and shear-horizontal waves, respectively. The wavenumbers of longitudinal and

ransverse waves are denoted as 𝜅 and 𝛾, and the respective vertical components of the wave vector are

𝜅𝑦 = ±
√

𝜅2 − 𝑘2, 𝛾𝑦 = ±
√

𝛾2 − 𝑘2, (22)

leading to nonlinearities similar to the case of fluid loading discussed before. Accounting for these observations, we write the
displacements u = 𝑢𝑖e𝑖 in the unbounded solid as

u(𝑥, 𝑦, 𝑡) = ∇𝜑 + ∇ ×ψ + 𝜕𝑥𝝌 , 𝑦 ∉ , (23)

where 𝜑 is the scalar potential of the longitudinal wave, ψ represents the vector potential of the shear-vertical wave, and 𝝌 describes
the shear-horizontal wave. The potentials are assumed as

𝜑 = 𝑎 ei(𝑘𝑥+𝜅𝑦𝑦−𝜔𝑡), (24a)

ψ = 𝑏 e𝑧ei(𝑘𝑥+𝛾𝑦𝑦−𝜔𝑡), (24b)

𝝌 = 𝑐 e𝑧 ei(𝑘𝑥+𝛾𝑦𝑦−𝜔𝑡) (24c)
6 
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with unknown wave amplitudes 𝑎, 𝑏, 𝑐. Substituting Eqs. (24) into (23) yields

u(𝑥, 𝑦, 𝑡) =
[

(i𝑘 e𝑥 + i𝜅𝑦 e𝑦) 𝑎 ei𝜅𝑦𝑦 + (i𝛾𝑦 e𝑥 − i𝑘 e𝑦) 𝑏 ei𝛾𝑦𝑦 + i𝑘 e𝑧 𝑐 ei𝛾𝑦𝑦
]

ei(𝑘𝑥−𝜔𝑡), (25)

hich we may write compactly as

u(𝑥, 𝑦, 𝑡) = A(𝑘) eiD𝑦 ei(𝑘𝑥−𝜔𝑡) c (26)

with

A(𝑘) =
⎡

⎢

⎢

⎣

i𝑘 i𝛾𝑦 0
i𝜅𝑦 ‧i𝑘 0
0 0 i𝑘

⎤

⎥

⎥

⎦

, (27)

D = diag[𝜅𝑦, 𝛾𝑦, 𝛾𝑦], c = (𝑎, 𝑏, 𝑐)T. (28)

Compared to the formulation used for describing a surrounding fluid, we have now introduced the unknowns c rather than the
acoustic pressure. We will also require the amplitudes of tractions acting on a plane parallel to the 𝑥-𝑧-plane, cf. Section 2.1:

�̄� (𝑥, 𝑦) = C̃𝑦𝑥 𝜕𝑥u(𝑥, 𝑦) + C̃𝑦𝑦 𝜕𝑦u(𝑥, 𝑦). (29)

Substituting Eqs. (26) into (29) yields

�̄� (𝑥, 𝑦) = i𝑘 C̃𝑦𝑥 A eiD𝑦 ei(𝑘𝑥−𝜔𝑡)c + iC̃𝑦𝑦 AD eiD𝑦 ei(𝑘𝑥−𝜔𝑡)c. (30)

To define the coupling conditions, we evaluate the displacement amplitudes at the interface 𝑦 = 𝑦𝑠 based on Eq. (26). Recalling that
u(𝑥, 𝑦, 𝑡) = u(𝑘, 𝑦, 𝜔) ei(𝑘𝑥−𝜔𝑡), we obtain

u(𝑦 = 𝑦𝑠) = Ac𝑠 (31)

with

c𝑠 = eiD𝑦𝑠 c. (32)

Eq. (31) is expanded as

u(𝑦 = 𝑦𝑠) = (i𝑘A0 + i𝜅𝑦A1 + i𝛾𝑦A2)c𝑠 (33)

with

A0 =
⎡

⎢

⎢

⎣

1 0 0
0 ‧1 0
0 0 1

⎤

⎥

⎥

⎦

, A1 =
⎡

⎢

⎢

⎣

0 0 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

, A2 =
⎡

⎢

⎢

⎣

0 1 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

. (34)

he second coupling condition is obtained by evaluating the traction amplitudes at the interface. This results in

𝝉(𝑦 = 𝑦𝑠) = i𝑘 C̃𝑦𝑥 Ac𝑠 + iC̃𝑦𝑦 ADc𝑠
= −𝑘C̃𝑦𝑥 (𝑘A0 + 𝜅𝑦A1 + 𝛾𝑦A2) c𝑠 − C̃𝑦𝑦 (𝑘A0 + 𝜅𝑦A1 + 𝛾𝑦A2)Dc𝑠, (35)

where we have used again (33). We further introduce

D1 = diag[1, 0, 0], D2 = diag[0, 1, 1] (36)

such that D = 𝜅𝑦D1 + 𝛾𝑦D2 and note that

A1 D2 = A2 D1 = 0, A1 D1 = A1, A2 D2 = A2, A0 D1 = D1, A0 D2 = −D2. (37)

Hence, the above expression for the traction is simplified as

𝝉(𝑦 = 𝑦𝑠) = (𝑘2T0 + 𝑘𝜅𝑦 T1 + 𝑘𝛾𝑦 T2 + 𝜅2T3 + 𝛾2T4) c𝑠 (38)

ith

T0 = −(C̃𝑦𝑥A0 − C̃𝑦𝑦A1 − C̃𝑦𝑦A2), (39a)

T1 = −(C̃𝑦𝑥A1 + C̃𝑦𝑦D1), (39b)

T2 = −(C̃𝑦𝑥A2 − C̃𝑦𝑦D2), (39c)

T3 = −C̃𝑦𝑦A1, (39d)

T4 = −C̃𝑦𝑦A2. (39e)

o describe the plate coupled to an infinite solid medium, we introduce the conditions defined by Eqs. (33) and (38) (for two different
edia at the two surfaces if necessary) into the nonlinear eigenvalue problem. To this end, we multiply Eq. (33) by i𝑘; hence, all
7 
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coupling terms are either proportional to 𝑘𝜅𝑦 or 𝑘𝛾𝑦 or can be integrated into the existing matrices E0, E1, E2. The eigenvector
contains the nodal displacements un in the plate and the plane wave amplitudes in the unbounded media, which we abbreviate
s cn:

ϕ =
[

un
cn

]

. (40)

Analogously to Eq. (19), we introduce terms describing the interaction with the unbounded media. In the general case of two
half-spaces consisting of different materials, the additional matrix function in the nonlinear eigenvalue problem is of the form

R(𝑘) = 𝑘𝜅𝑦,1 R1,1 + 𝑘𝛾𝑦,1 R2,1 + 𝑘𝜅𝑦,2 R1,2 + 𝑘𝛾𝑦,2 R2,2. (41)

The additional terms to be included in the matrices E0, E1, E2 are directly given by Eqs. (33) and (38). Denoting by 𝑝𝑗 and 𝑞𝑗 the
DOFs corresponding to the plate and unbounded domain at interface 𝑗, respectively, the components introduced by the coupling
conditions are

E
𝑝𝑗 ,𝑞𝑗
0 = ∓T0,𝑗 , R𝑝𝑗 ,𝑞𝑗

1,𝑗 = ±T1,𝑗 , R𝑝𝑗 ,𝑞𝑗
2,𝑗 = ±T2,𝑗 , E

𝑝𝑗 ,𝑞𝑗
2 = ∓𝜅2

𝑗 T3,𝑗 ∓ 𝛾2𝑗 T4,𝑗 ,

E
𝑞𝑗 ,𝑝𝑗
1 = −I, E

𝑞𝑗 ,𝑞𝑗
0 = A0, R𝑞𝑗 ,𝑞𝑗

1,𝑗 = −A1, R𝑞𝑗 ,𝑞𝑗
2,𝑗 = −A2. (42)

5. Solution procedure

5.1. Solving the NLEVP

This section summarizes the approach we employ for solving the nonlinear eigenvalue problems derived before. The key
is to realize that, in the particular cases encountered here, we can rewrite the NLEVP as a linear multiparameter eigenvalue
problem. In particular, this is achieved by generalizing the transformation in [43, Lemma 2.5], which relies on introducing auxiliary
variables. For the so-obtained multiparameter eigenvalue problem, established algorithms exist, and their implementation is publicly
available [48]. Hence, we will not delve into the numerical details of the computation. For the sake of tangibility, we present, in
this section, a rather general and clear form of the multiparameter eigenvalue problem, albeit it is not always the most efficient
version. Some comments and suggestions for improving efficiency are given in the appendix. The following theorem illustrates how
the problem can be cast into a multiparameter eigenvalue problem.

Theorem 1. If (𝑘,ϕ) is a solution to (8) with R(𝑘) given by (19), then the parameters i𝑘, i𝜅𝑦,1, i𝜅𝑦,2, 𝜉0 form a solution to the four-parameter
eigenvalue problem

(

−E2 + 𝜔2M + i𝑘E1 + i𝜅𝑦,1R1 + i𝜅𝑦,2R2 + 𝜉0 E0

)

ϕ = 0 (43a)
([

0 ‧𝜅2
1

1 0

]

+ i𝜅𝑦,1
[

1 0
0 1

]

+ 𝜉0

[

0 ‧1
0 0

])

x1 = 0 (43b)
([

0 ‧𝜅2
2

1 0

]

+ i𝜅𝑦,2
[

1 0
0 1

]

+ 𝜉0

[

0 ‧1
0 0

])

x2 = 0 (43c)
([

0 0
0 1

]

+ i𝑘
[

0 1
1 0

]

+ 𝜉0

[

1 0
0 0

])

x3 = 0 (43d)

where

𝜅2
𝑦,1 ∶= 𝜅2

1 − 𝑘2, 𝜅2
𝑦,2 ∶= 𝜅2

2 − 𝑘2, 𝜉0 = −𝑘2 (44)

and x1 ≠ 0, x2 ≠ 0 and x3 ≠ 0.

Proof. The first Eq. (43a) is satisfied by the definition of 𝜅𝑦,1, 𝜅𝑦,2 and 𝜉0 in (44). The determinant of the matrix in (43b) is
𝜅2
1 + 𝜉0 − 𝜅2

𝑦,1, which vanishes for 𝜅𝑦,1 and 𝜉0 given in the definition (44). Since the matrix is singular, there exists a non-zero vector
x1 such that (43b) is satisfied. Eq. (43c) follows analogously. The determinant of the matrix in (43d) is 𝜉0 + 𝑘2, which is zero for
the definition of 𝜉0, and there exists a non-zero vector x3 such that (43d) is satisfied. □

The above construction is by no means unique, i.e., there are other ways to build a multiparameter eigenvalue problem containing
the solutions of the original problem. However, it is the formulation with the smallest number of additional auxiliary variables that
we could find for the general case. Moreover, we built it such that if all matrices of the original problem (finite-element matrices and
coupling matrices) are real, then all matrices of the multiparameter eigenvalue problem (43) are real. This is important for numerical
computations as it is well known that eigenvalue problems with real matrices can generally be solved faster than problems with
complex matrices (irrespective of whether the eigenvalues are real-valued).

For special cases, there are transformations with fewer variables. In the case where the plate is either coupled to a fluid only
at one of its surfaces or to the same fluid at both surfaces, we may simply eliminate one parameter, say 𝜅𝑦,2, and remove the
corresponding third equation in the above system, yielding a three-parameter eigenvalue problem. Specifically, in the case of the

same fluid on both sides, we have 𝜅𝑦,1 = 𝜅𝑦,2 and hence 𝜅𝑦,1R1 + 𝜅𝑦,2R2 =∶ 𝜅𝑦1R. However, as mentioned before, there are more

8 



H. Gravenkamp et al.

o

p
p
g
a
d
t
f
∆

u
A
t

f
a
l
p
f
a
m
c
v
d

5

p
T
(

Journal of Sound and Vibration 596 (2025) 118716 
efficient ways to solve this special case [33]. Another important special case is the one where the plate consists only of isotropic
materials, in which case the problem can be further simplified as shown in Appendix D.

For coupling to solid media, R(𝑘) is given by (41). In this case we introduce new parameters

𝜉1 = 𝑘𝜅𝑦,1, 𝜉2 = 𝑘𝛾𝑦,1, 𝜉3 = 𝑘𝜅𝑦,2, 𝜉4 = 𝑘𝛾𝑦,2 (45)

and, together with i𝑘 and 𝜉0, obtain the six-parameter eigenvalue problem
(

−E2 + 𝜔2M + i𝑘E1 + 𝜉1R1,1 + 𝜉2R2,1 + 𝜉3R1,2 + 𝜉4R2,2 + 𝜉0E0
)

ϕ = 0 (46a)
([

0 ‧𝜅2
1

0 0

]

+ 𝜉1

[

1 0
0 1

]

+ 𝜉0

[

0 ‧1
1 0

])

x1 = 0 (46b)
([

0 ‧𝛾21
0 0

]

+ 𝜉2

[

1 0
0 1

]

+ 𝜉0

[

0 ‧1
1 0

])

x2 = 0 (46c)
([

0 ‧𝜅2
2

0 0

]

+ 𝜉3

[

1 0
0 1

]

+ 𝜉0

[

0 ‧1
1 0

])

x3 = 0 (46d)
([

0 ‧𝛾22
0 0

]

+ 𝜉4

[

1 0
0 1

]

+ 𝜉0

[

0 ‧1
1 0

])

x4 = 0 (46e)
([

0 0
0 1

]

+ i𝑘
[

0 1
1 0

]

+ 𝜉0

[

1 0
0 0

])

x5 = 0 (46f)

with the definitions given in Eq. (44) and, additionally,

𝛾2𝑦,1 ∶= 𝛾21 − 𝑘2, 𝛾2𝑦,2 ∶= 𝛾22 − 𝑘2. (47)

Note that the determinant of the matrix in Eq. (46b) (analogously for (46c)–(46e)) is now 𝜉0(𝜅2
1 + 𝜉0 − 𝜅2

𝑦,1), which again vanishes
for 𝜅𝑦,1 and 𝜉0 given by (44), but also for 𝑘 = 0 (rigid body modes). Eq. (46f) again poses the relationship 𝜉0 = −𝑘2 (cf. (43d)).
Furthermore, if the plate is coupled to the same material on both sides or one of the surfaces is free, we can reduce the number of
parameters. In this case, we can remove 𝜉3 and 𝜉4 and the corresponding fourth and fifth equations, resulting in a four-parameter
eigenvalue problem. We can also account for the situation where the plate is coupled to a fluid medium at one surface and a solid
at the other. In this case, we include one parameter for the fluid, say 𝜉1, as in Eq. (43) and two parameters, say 𝜉3, 𝜉4, in the form
f (46), resulting in a five-parameter eigenvalue problem.

To numerically solve (43) and (46), we employ the Matlab implementations of numerical methods for multiparameter eigenvalue
roblems available in [48]. Thus, we will not explain the numerical computation in much detail. The mentioned numerical methods
roceed by first decoupling the system of EVPs given by (43) and (46) in the eigenvalues. Accordingly, i𝑘 is an eigenvalue of a
eneralized eigenvalue problem ∆1v = i𝑘∆0v, where matrices ∆0 and ∆1 are the so-called operator determinants. These matrices
re of size 𝑛Δ×𝑛Δ with 𝑛Δ =

∏𝑟
𝑖=1 𝑛𝑖, i.e., the product of the sizes of the matrices in each equation, cf., (2). Specifically, the operator

eterminants are of size 8𝑛1 ×8𝑛1 for (43) and 32𝑛1 ×32𝑛1 for (46), where 𝑛1 ×𝑛1 is the size of the matrices in (43a) or (46a). Hence,
he computational effort increases rapidly with the number of sought parameters. The details on the construction of ∆0 and ∆1
rom the matrices in (43) and (46) are summarized in Appendix B, see also [16] or [45]. The corresponding operator determinant
0 for the multiparameter eigenvalue problems (43) and (46) is singular. It is known that in such case we can find eigenvalues

sing a generalized staircase-type numerical algorithm from [47], whose Matlab implementation is available in [48] as well. In
ppendix C, we present a workaround for the particular problems (43) and (46) that uses a shift to avoid additional steps necessary

o deal with a singular ∆0, resulting in a more efficient computation.
A few remarks on the above formulation are in order. We solve the multiparameter eigenvalue problem for a set of given

requencies; hence, the frequency 𝜔 is treated as a constant rather than an additional parameter. On the other hand, 𝑘2 is identified as
n additional parameter in the notation adopted here. Alternatively, we could linearize Eqs. (43) and (46a) in 𝑘 with a companion
inearization, which doubles the size of the corresponding matrices. This is usually done when solving the quadratic eigenvalue
roblem corresponding to the free plate (Section 2.1). Both variants lead to operator determinants of the same size. However, the
irst variant offers the advantage that it can be written in such a way that all matrices in the multiparameter eigenvalue problems
re real (provided that the finite-element matrices are real), making the computation more efficient. In the case of coupling to fluid
edia, the parameters directly correspond to 𝑘, 𝑘2, 𝜅𝑦,1, 𝜅𝑦,2, the last two being the vertical wavenumbers in the two fluids. In

ontrast, coupling to solid media results in additional parameters of the form 𝑘𝜅𝑦 and 𝑘𝛾𝑦. Also note that, since we obtain these
ertical wavenumbers together with the eigenvalues 𝑘, we can directly evaluate the solution at any location inside the unbounded
omains.

.2. Postprocessing

It is important to note that the solution procedure allows both positive and negative signs of all wavenumbers, including those of
artial waves in the half-spaces. Specifically, we obtain all valid solutions with either sign of each vertical wavenumber, cf., Eq. (22).
his is a natural consequence of enforcing conditions on only the square of the vertical wavenumbers, specifically, Eqs. (44) and

47). This, in turn, implies that we do not only compute solutions characterized by waves propagating away from the plate inside
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the unbounded media, but also towards it. For a given physical setup, the relevant modes are selected in a postprocessing step. For
instance, one may choose those solutions where the vertical wavenumbers of all partial waves in the top (bottom) half-spaces have
positive (negative) real parts; i.e., all wave vectors of partial waves point away from the plate surface. This particular selection will
be deployed for the most part in the examples section, partly because these results can be verified using the commercial software
disperse [60,61]. However, based on the modeled experiment or the user’s interest, other criteria may be more feasible or relevant.
In particular, it seems more meaningful to determine those modes that radiate energy into the unbounded media (away from the
plate). This can be assessed by computing the Poynting vector P based on the solution inside the halfspaces and checking the sign
of the vertical component. For the acoustic fluid, the time-averaged Poynting vector (at 𝑥 = 0, 𝑦 = 𝑦𝑠)6 is given as

P̂𝑓 = 1
2R(v∗𝑝), (48)

where the asterisk denotes the complex conjugate, R is the real part, and the particle velocity is obtained as

v = −i𝜔u. (49)

Note that we require, for this purpose, only the vertical component

𝑃 𝑓
𝑦 = 1

2R(𝑣∗𝑦 𝑝), (50)

which is particularly trivial to evaluate at the plate’s surface coupled to the fluid, since both the pressure and the vertical
displacement are components of the eigenvector (as vertical displacements are continuous across the interface, we may use the
displacement of the plate rather than computing the displacement inside the fluid). However, it is easy to check that, in a fluid
halfspace, the direction of the Poynting vector coincides with that of the wave vector. Hence, both criteria described above result
in the identical subset of modes. The same does not hold for a solid halfspace. There, the time-averaged Poynting vector is given as

P̂𝑠 = − 1
2R(v∗ ⋅ 𝝈). (51)

gain, to determine which modes propagate energy away from the plate, we only need to evaluate the 𝑦-component of this vector,
.e.,

𝑃 𝑠
𝑦 = − 1

2R(v∗ ⋅ 𝝉), (52)

which is also simple to compute at the interface, where the traction 𝝉 is readily given by Eq. (38). Employing this criterion reveals
that there is typically a rather large number of modes that propagate energy away from the plate, even though a wave vector
corresponding to one of the partial waves points towards the plate. We will see a comparison of these two different criteria in
Section 6.4. Other solutions that exhibit a power flux towards the plate should nevertheless not be considered spurious. It could be
interesting to study them in the context of, e.g., air-coupled or immersed ultrasonic testing or seismic waves interacting with soil
layers. Also let us remember that, for some solutions, the vertical component of the Poynting vector may vanish (trapped modes).
Thus, when employing this criterion in a numerical method, we will have to specify a threshold in the computation of the power
flux depending on whether or not we wish to filter out such trapped modes. Finally, when presenting results of dispersion curves
computed in this manner, one typically omits modes with an attenuation above a somewhat arbitrary value. In our numerical
examples, the modes that are not within the chosen range of plotted attenuation are also omitted from the phase velocity plots.

6. Numerical examples

In order to validate and illustrate the competitiveness of our approach, we present four numerical examples that involve plate
structures of different materials coupled to acoustic and elastic half-spaces. Homogeneous elastic plates are discretized by a single
finite element whose polynomial degree 𝑝𝑒 is chosen according to the recommendation given in [63] as

𝑝𝑒 =
⌈𝑎0
2

⌉

+ 3, 𝑎0 =
ℎ𝜔max

𝑐𝑠
. (53)

Here, 𝑎0 is a dimensionless frequency, computed based on the shear wave velocity 𝑐𝑠, layer thickness ℎ, and maximum frequency
of interest 𝜔max. The symbol ⌈•⌉ denotes the ceiling function, i.e., the result is rounded up to the next integer. In [63], this choice
of the element order was designed such that the approximation error of any of the propagating modes at the given frequency and
material does not exceed 0.1%. When modeling plates consisting of several layers, the polynomial degree of each layer is chosen
separately based on its local shear wave velocity and thickness. For each example, we plot the dispersion curves in terms of phase
velocity and attenuation. In addition, we visualize the wave fields created by two selected modes at different frequencies in order to
provide some physical insight into the wave propagation behavior. The relevant parameters of all materials used in the examples are
summarized in Table 1. All computations have been performed using a Matlab implementation of the proposed approach, executed
on a desktop computer using an 11th Gen Intel Core i9-11900K processor (3.50 GHz) and 16 GB RAM. A minimal implementation of
the examples presented in the following is publicly available [49]. They are also included in the open source software SAMWISE [50],
which allows applying this methodology to user-defined structures.

6 Note that the magnitude of the Poynting vector depends on the spatial coordinates 𝑥 and 𝑦 due to the imaginary part of the wavenumbers 𝑘 and 𝜅𝑦 [62].

However, as we are interested solely in the direction of the power flux, it shall suffice to arbitrarily evaluate the Poynting vector at any position.
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Table 1
Overview of material parameters used in the numerical experiments.

Density 𝜌 Wave speeds 𝑐𝓁 , 𝑐𝑡 Lamé parameters 𝜆, 𝜇

Brass 8.40 g/cm3 4.40 km/s 2.20 km/s 81.312 GPa 40.656 GPa
Teflon 2.20 g/cm3 1.35 km/s 0.55 km/s 2.679 GPa 0.666 GPa
Titanium 4.46 g/cm3 6.06 km/s 3.23 km/s 70.726 GPa 46.531 GPa
Water 1.00 g/cm3 1.48 km/s
Oil 0.87 g/cm3 1.74 km/s

Fig. 4. (a) Phase velocity and (b) attenuation of guided waves in a 1 mm thick brass plate immersed in water. Results are computed using the proposed method
(‘MultiParEig’) and validated against the alternative approach based on a linearization [33]. The symbols □ and ◊ indicate arbitrarily chosen modes whose
wave fields are plotted in Fig. 7.

6.1. Brass plate immersed in water

As a first numerical experiment for validating the proposed approach, we consider waves propagating along a brass plate of
thickness 1 mm immersed in water. We compute dispersion properties for 300 frequencies up to 4 MHz. According to Eq. (53) and
considering the material parameters presented in Table 1, a discretization using one element with a polynomial degree of 9 (i.e., 10
nodes) is sufficient to obtain accurate results. We assume plane strain conditions, hence considering in-plane displacements only
(‘Lamb-type’ modes). The shear-horizontal (out-of-plane) modes are omitted here as they do not couple to the acoustic medium.
Consequently, we obtain finite-element matrices of size 22 × 22, including the two DOFs representing the pressure at the upper
and lower surface. As the plate is coupled to the same fluid on both sides, we can employ, for validation, the simpler approach of
linearizing the eigenvalue problem by means of a change of variables as described in [33]. In a postprocessing step, we select the
modes that propagate away from the plate inside the halfspaces, see Section 5.2. Fig. 4 shows the dispersion curves in terms of phase
velocity and attenuation. The approach proposed in this paper is labeled ‘MultiParEig’ (multiparameter eigenvalue problem), while
‘linearization’ refers to the method in [33]. Results are in excellent agreement with relative differences between eigenvalues below
0.1% when comparing both approaches. The computing time required for obtaining the complete dispersion curves was about 1.6 s
(i.e., 5 ms per frequency) when exploiting the linearization described in Appendix D and 3.6 s without this improvement.

A particular challenge in modeling embedded waveguides is the occurrence of so-called trapped modes, which can be encountered
when the horizontal wavenumber of a guided mode is larger than the free-field wavenumber in the adjacent unbounded medium.
Such modes are characterized by a vanishing power flux through the waveguide’s boundaries; hence, they propagate along the
structure without attenuation, i.e., I(𝑘) = 0. Moreover, the wave field of these modes is confined to the proximity of the waveguide,
exhibiting an exponential decrease with the distance from the waveguide, I(𝜅𝑦) > 0. We show in Fig. 5 magnified parts of the
ispersion curves together with the vertical component 𝜅𝑦 of the wavenumber in the fluid above the plate to demonstrate that the
roposed approach is capable of representing correctly the behavior of the trapped modes as well as the known bifurcation of the
0 mode. For detailed discussions on the behavior of these modes and their interpretation, the reader is referred to [34,56].

To better clarify the effect of the precise interface conditions, we present in Fig. 6, a comparison between the current approach
nd the approximate linear (‘dashpot’) boundary condition as described in [30,31]. While the dashpot approximation gives
easonably good results for the higher modes, it does not accurately represent the attenuation of modes with a phase velocity close
o the wave speed in the fluid. In particular, it cannot accurately describe the trapped modes discussed above. This observation is in
greement with the discussion in [32], where it was concluded that the dashpot condition is a suitable technique in situations
ith a large acoustic mismatch at the interface and for relatively high frequencies. On the other hand, the dashpot boundary

ondition does not evoke significant computational costs compared to the free waveguide problem and is trivial to extend to arbitrary
eometries [31]. In this particular example, the computing time required to obtain the dispersion curves was only about 0.1 s when
sing the dashpot boundary condition.
11 
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Fig. 5. (a,b) Details of the dispersion curves presented in Fig. 4 at small frequencies, together with the (c) real part and (d) imaginary part of the vertical
wavenumber in the fluid. Note that I(𝜅𝑦) ≠ 0 holds for all depicted modes, though the mode indicated by −◦− takes very small positive values at the low
frequencies shown here.

Fig. 6. Dispersion curves of the immersed brass plate, comparing the current approach (‘MultiParEig’) to the linear approximation (‘dashpot’) described in [30].
The dashpot approximation underestimates the attenuation due to radiation.

Fig. 7. Wave fields of two modes in the water-immersed brass plate at (a) 1 MHz and (b) 3.5 MHz. The modes are indicated in the dispersion diagram in Fig. 4
by the symbols □ and ◊.
12 
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Fig. 8. (a) Phase velocity and (b) attenuation of guided waves in a 1 mm thick brass plate coupled on one side to infinite Teflon. Results are computed using
the proposed FEM-based approach and validated against the software disperse.

Fig. 9. Mode shapes in a brass plate coupled to Teflon of (a) the fundamental symmetric mode at 1 MHz and (b) the seventh propagating mode at 3 MHz. The
modes are indicated in the dispersion diagram in Fig. 8 by the symbols □ and ◊.

In Fig. 7, we present the wave fields of two arbitrarily selected modes at 1 MHz and 3.5 MHz, indicated on the dispersion graphs
in Fig. 4 as □□□ and ◊◊◊. The color scales represent the local magnitudes of acoustic pressure in the fluid and displacement in the plate,
respectively. Note that, even though we only discretize the plate’s thickness, the wave field anywhere inside the plate as well as in
the surrounding medium can be evaluated in a post-processing step. In particular, the displacements inside the plate for arbitrary
values of 𝑥 are obtained by Eq. (4) and interpolation along the thickness using the finite-element trial functions. Similarly, the
acoustic pressure in the water is evaluated based on Eq. (10), where the vertical wavenumbers have been obtained as solutions to
the multiparameter eigenvalue problem. Furthermore, the particle displacement in the acoustic domains is obtained as

u𝑝 =
1

𝜔2 𝜌
∇𝑝, (54)

which is visualized by the grid distortion in Fig. 7. As expected, it can be observed that the horizontal wavenumber in the acoustic
domains matches that of the guided wave inside the plate. The horizontal displacement is discontinuous at the material interfaces
since the fluid does not support shearing. At the higher frequency where the wavelength is small and attenuation due to energy
leakage is significant (Fig. 7(b)), we can also note how the magnitude decreases as the wave propagates in positive 𝑥-direction.
13 
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Fig. 10. (a) Phase velocity and (b) attenuation of guided wave modes in a layered plate (titanium-brass-titanium) between an elastic (Teflon) and a fluid (oil)
half-space. Results are computed using the proposed FEM-based approach and validated against the software disperse.

6.2. Brass plate coupled to infinite Teflon

To validate the computation of waveguide modes radiating into another elastic medium, we consider the same 1 mm thick
brass plate as in the previous example, now attached on one surface to a half-space with the elastic parameters of Teflon, as given
in Table 1. The choice of this rather arbitrary example is motivated by the circumstance that it can be verified using the free
demonstration version of the commercial software disperse [60,61]. Here, we compute dispersion curves up to a frequency of 7 MHz
in increments of 25 kHz; hence, we require a finite element of order 13. In this example, we include not only the in-plane (‘Lamb-
modes’), but also the shear-horizontal modes that cause displacements in the out-of-plane direction 𝑧 only. Consequently, we obtain
matrices of size 45 × 45, including three DOFs for the unbounded domain. Phase velocity and attenuation of all leaky modes are
shown in Fig. 8. The results are in excellent agreement between the proposed approach and the Global Matrix Method implemented
in the disperse software. We obtained a few additional solutions where the automatic tracing algorithm in disperse failed to find
the roots; apart from that, there is no discernible difference between the methods. For the purpose of this validation, we chose to
plot only those modes with 𝜅𝑦,1 ≥ 0 and 𝛾𝑦,1 ≥ 0. Employing the criterion based on the direction of the power flux as mentioned in
Section 5.2 yields additional solutions that are not included in those computed by disperse. The computational costs for this example
are significantly larger compared to the simpler case in the previous subsection due to the larger number of parameters and larger
matrix sizes, requiring about 35 s to compute the shown dispersion curves (123 ms per frequency). Again, we visualize in Fig. 9 the
mode shapes of two modes at frequencies of 1 MHz and 3.5 MHz by computing the displacement field in a section of the plate and
part of the adjacent medium. Since both materials are now elastic, both longitudinal and shear components are transmitted from
the plate into the unbounded medium, and consequently, all displacement components are continuous at the interface.

6.3. Layered plate between a fluid and an elastic half-space

In this rather general example, we consider a multi-layered plate coupled to an elastic and a fluid half-space at the lower and
upper surfaces, respectively. The plate itself consists of three layers (titanium-brass-titanium), each with a thickness of 1 mm. For
the half-spaces, material parameters of Teflon and oil are assumed, as given in Table 1. For the brass layer, we require an element
order of eight, while an order of six is sufficient for the titanium layers up to a frequency of 3 MHz. Assuming again a plane strain
state with two displacement components per node, we obtain finite-element matrices of size 45 × 45, including the three DOFs
(two displacements and one pressure) describing the unbounded domains. Dispersion curves are given in Fig. 10, computed at 121
frequencies with an increment of 25 kHz. The computing time was about 56 s (460 ms per frequency). Again, results agree well with
the reference solution obtained using disperse, though some challenges were encountered in the application of the Global Matrix

ethod when trying to trace all modes over the entire frequency range. Fig. 11 illustrates the relatively complex mode shapes inside
he multi-layered specimen compared to the previous examples.

.4. Solid layer between two elastic half-spaces

As a final numerical study, we address the computationally most demanding case in which the plate is coupled to two different
olid media at the lower and upper surfaces, leading to the six-parameter eigenvalue problem in Eq. (46). The layer consists of
itanium, while the elastic parameters of Teflon (below the plate) and brass (above the plate) are assumed for the half-spaces. We
hoose a frequency range up to 10 MHz, requiring a finite element of order 13 to discretize the plate. The frequency increment
as selected as 50 kHz. Results for the ‘Lamb-type’ modes are presented in Fig. 12. Again, a comparison is made with the software
isperse, Fig. 12(a) and (b) showing the modes with vertical wavenumbers pointing away from the plate in both halfspaces. This
xample is particularly challenging due to the relatively small acoustic mismatch between titanium and brass, resulting in significant
14 
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Fig. 11. Mode shapes of two waves at (a) 1 MHz and (b) 2.5 MHz for the trilayered plate (titanium-brass-titanium) between an elastic (Teflon) and a fluid (oil)
half-space. The modes are indicated in the dispersion diagram in Fig. 12 by the symbols □ and ◊.

radiation into the upper half-space. When using disperse, – which requires tracing individual modes starting from isolated roots of
the dispersion relation – finding all solutions is not straightforward. To achieve the shown comparison, we made extensive use of
the software’s feature to search for roots in regions where we expected to find modes based on our own computations. Still, we
were not able to trace all branches over the entire frequency range in disperse, and for some modes, the tracing algorithm abruply
switches to a different mode. To better illustrate this issue, we include in Fig. 12(c) and (d) all modes that do not propagate energy
towards the plate (zoomed in for conciseness)7. This selection results in many additional modes compared to the criterion based on
wavenumbers. These results clarify the difficulty of mode-tracing algorithms in the presence of many similar branches. It can also
be noted that all roots found by disperse are among those valid solutions. The modes that were traced successfully agree well with
our solutions, which shall suffice to demonstrate the validity of both formulations. Our approach required about 186 s to compute
the dispersion curves (920 ms per frequency). The wave fields visualized in Fig. 13 help demonstrate the difficulty of this example.
Due to the drastically different elastic constants between titanium and teflon, waves propagate with significantly smaller vertical
wavelengths in the lower half-space. At the same time, the difference between titanium and brass is so small that the interface at
𝑦 = 1mm is hardly noticeable. However, even for this rather extreme case, the proposed approach yields robust results.

6.5. Accuracy and computational costs

The numerical examples demonstrate that the results obtained using the proposed approach are in excellent agreement with the
Global Matrix Method implemented in disperse as well as with the linearization in the special case discussed in the first example. The
formulation of the boundary conditions is exact and, hence, the coupling to unbounded domains does not give rise to inaccuracies
apart from potential numerical errors in the solution of the multiparameter eigenvalue problem. The solution inside the layered
structures, on the other hand, is approximated by finite elements and can be expected to converge to the exact solution in the usual
manner when increasing the number of elements (‘h-refinement’) or the polynomial degree of the elements (‘p-refinement’). We
exemplarily demonstrate this behavior by means of the setup used in Section 6.3, as it involves coupling to both fluid and solid

7 More specifically, we include modes with 𝑃 𝑠
𝑦 > −0.01max(|𝑃 𝑠

𝑦 |) at the top surface and 𝑃 𝑠
𝑦 < 0.01max(|𝑃 𝑠

𝑦 |) at the lower surface where max(|𝑃 𝑠
𝑦 |) denotes the

maximum vertical absolute power flux of all modes. This is to say, we include trapped modes with vanishing power flux through the plate surfaces.
15 
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Fig. 12. Phase velocity and attenuation of guided wave modes in a 1 mm thick titanium plate between two elastic half-spaces consisting of brass and Teflon,
respectively. Results are computed using the proposed FEM-based approach and validated against the software disperse. In (a) and (b), modes are selected based
on the sign of the vertical wavenumber, while (c) and (d) result from employing the criterion based on the power flux.

media as well as a layered structure. Convergence is analyzed for the first eight modes at a frequency around 2 MHz (cf. Fig. 10).
The error in eigenvalues is computed as

𝜖 =

√

√

√

√

∑8
𝑖=1 |𝑘𝑖 − �̄�𝑖|2
∑8

𝑖=1 |�̄�𝑖|2
, (55)

where �̄�𝑖 denote the reference solutions obtained using disperse. Fig. 14 shows the convergence of this error when increasing the
size 𝑛1 of the finite-element matrices. When using a constant element order 𝑝𝑒 and increasing the number of elements (shown for
element orders of 𝑝𝑒 = 1 and 𝑝𝑒 = 2), the error is expected to behave asymptotically as 𝑛−2𝑝𝑒1 for sufficiently smooth problems, which
is confirmed by the results. More precisely, the slopes computed between the last two points of these graphs equal 2.01 and 3.99,
respectively. In addition, we show the convergence of the error when increasing the polynomial degree of the elements while keeping
their number constant (here one element per layer). As has been discussed in detail in previous studies [63,64], this discretization
scheme converges rapidly (exponentially under optimal conditions) and, hence, has been used to choose the finite element mesh as
discussed in the beginning of this section. In Fig. 14, we also list the reference values used in this study as obtained from disperse.

As mentioned before, the computational costs for solving the multiparameter eigenvalue problem can become significant when
increasing the size of the finite-element matrices 𝑛1 or the number of parameters 𝑟. To illustrate this relationship more concisely,
we plot in Fig. 15 the computing times used for solving the multiparameter eigenvalue problem at one frequency (here 1 MHz) for
varying values of 𝑛1 and 𝑟. To obtain these results, we have used the same examples described above, since they cover all cases from
𝑟 = 2 to 𝑟 = 6. The matrix size 𝑛1 has been increased by varying the element order. We may note that in the case of 𝑟 = 2 (coupling
to one fluid), the computing time is still around 0.1 s when the matrix size exceeds 100 × 100. When considering the coupling to
two different solid media (𝑟 = 6), the computing time is around 50 s for similar 𝑛1. However, the numerical studies confirm that, in
many typical scenarios, the size of the finite-element matrices can be kept well below 𝑛1 = 100 as long as we make use of efficient
high-order discretizations.
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Fig. 13. Mode shapes of two modes at (a) 3 MHz and (b) 6 MHz for the titanium plate between a Teflon half-space (below) and a brass half-space (above). The
modes are indicated in the dispersion diagram in Fig. 12 by the symbols □ and ◊.

Fig. 14. Convergence of the error in eigenvalues when increasing the number of elements of a given polynomial degree (𝑝𝑒 = 1, 𝑝𝑒 = 2) and for constant number
of elements when increasing the polynomial degree (𝑝-refinement). The table shows the reference solution used to compute the error.

7. Conclusions

We have demonstrated that the interface conditions arising from the coupling between an elastic layered medium and adjacent
acoustic or elastic unbounded domains can be incorporated into a conventional semi-analytical waveguide model. The resulting
nonlinear eigenvalue problem is solved by exploiting the connection to multiparameter eigenvalue problems, for which established
algorithms are available. As a result, we obtain the wavenumbers of guided waves, as well as those in the adjacent media,
together with the corresponding semi-discretized mode shapes. These problems are computationally relatively demanding to solve
compared to those of free plates. This is particularly true in the case of two adjacent elastic media, which require the solution of
generalized eigenvalue problems more than 32 times larger than that describing the free plate. Nevertheless, we demonstrated that
the computational costs are manageable for relevant applications when using efficient discretization schemes to model the plate. As
of now, we have restricted the presented formulation to isotropic and nondissipative half-spaces (while the plate’s material can be
anisotropic). This limitation may be possible to overcome by generalizations to be done in future work.
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Fig. 15. Computational time 𝑡CPU used for solving the multiparameter eigenvalue problem for varying matrix size 𝑛1 and number of parameters 𝑟. The table
ists the matrix sizes and computational times per frequency for our numerical examples with the discretizations used in the respective sections.
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ppendix A. Finite-element matrices

Applying a finite-element discretization to the weak form (6) involves choosing an approximation of the displacement amplitudes

u = N(𝜁 )un, (A.1)

where un is the vector of nodal values, and N is the matrix of shape functions defined in the element’s local coordinate 𝜁 . The FE
matrices are obtained as [14,65]

E0 = ∫

1

−1
BT
1 ĈB1|J|d𝜁, E1 = ∫

1

−1

(

BT
1 ĈB2 − B

T
2 ĈB1

)

|J|d𝜁, E2 = ∫

1

−1
BT
2 ĈB2|J|d𝜁, M = 𝜌∫

1

−1
NTN|J|d𝜁, (A.2)

here Ĉ denotes the elasticity matrix in Voigt notation, |J| is the Jacobian defining the coordinate transformation from 𝑦 to 𝜁 , and
1, B2 are defined as

B1 = b1N, B2 =
1 b2N,𝜁 , with b1 =

[

0 0 1
]T

, b2 =
[

1 0 0
]T

. (A.3)

𝑦,𝜁 0 1 0 0 0 1
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Appendix B. Multiparameter eigenvalue problems and operator determinants

An 𝑟-parameter eigenvalue problem has the form

(A𝑖0 + 𝜆1A𝑖1 +⋯ + 𝜆𝑟A𝑖𝑟) x𝑖 = 0, 𝑖 = 1,… , 𝑟, (B.1)

where A𝑖𝑗 is an 𝑛𝑖×𝑛𝑖 matrix and x𝑖 ≠ 0 for 𝑖 = 1,… , 𝑟. If (B.1) is satisfied then the tuple (𝜆1,… , 𝜆𝑟) is an eigenvalue and z = x1⊗⋯⊗x𝑟
is the corresponding eigenvector, where ‘‘⊗’’ denotes the Kronecker product.8 The problem (B.1) is related to a system of 𝑟 generalized
eigenvalue problems

∆𝑖z = 𝜆𝑖∆0z, 𝑖 = 1,… , 𝑟, (B.2)

where the matrices

∆0 =
|

|

|

|

|

|

|

A11 ⋯ A1𝑟
⋮ ⋮
A𝑟1 ⋯ A𝑟𝑟

|

|

|

|

|

|

|⊗

=
∑

𝜎∈𝑆𝑟

𝑠𝑔𝑛(𝜎)A1𝜎1 ⊗ A2𝜎2 ⊗⋯⊗ A𝑟𝜎𝑟 (B.3)

and

∆𝑖 = (−1)
|

|

|

|

|

|

|

A11 ⋯ A1,𝑖−1 A10 A1,𝑖+1 ⋯ A1𝑟
⋮ ⋮ ⋮ ⋮ ⋮
A𝑟1 ⋯ A𝑟,𝑖−1 A𝑟0 A𝑟,𝑖+1 ⋯ A𝑟𝑟

|

|

|

|

|

|

|⊗

, 𝑖 = 1,… , 𝑟, (B.4)

are called operator determinants. For details see, e.g., [66]. Note that (B.3) is a generalized Leibniz formula for the determinant,
where we sum over all permutations 𝜎 in the permutation group 𝑆𝑟, with the Kronecker product instead of the usual product. If
∆0 is nonsingular, the problem (B.1) is regular, and the matrices ∆−1

0 ∆1,… ,∆−1
0 ∆𝑟 commute. A regular 𝑟-parameter eigenvalue

problem (B.1) has ∏𝑟
𝑖=1 𝑛𝑖 eigenvalues.

Example 1. For 𝑟 = 2, the problem (B.1) has the form

A10x1 + 𝜆1A11x1 + 𝜆2A12x1 = 0, (B.5a)

A20x2 + 𝜆1A21x2 + 𝜆2A22x2 = 0. (B.5b)

If we multiply (B.5a) by A22x2 from the right and multiply (B.5b) by A12x1 from the left using the Kronecker product, we obtain

(A10 ⊗ A22)(x1 ⊗ x2) + 𝜆1(A11 ⊗ A22)(x1 ⊗ x2) + 𝜆2(A12 ⊗ A22)(x1 ⊗ x2) = 0, (B.6a)

(A12 ⊗ A20)(x1 ⊗ x2) + 𝜆1(A12 ⊗ A21)(x1 ⊗ x2) + 𝜆2(A12 ⊗ A22)(x1 ⊗ x2) = 0. (B.6b)

Taking z = x1 ⊗ x2 and subtracting (B.6b) from (B.6a) yields the generalized eigenvalue problem

(A12 ⊗ A20 − A10 ⊗ A22)z = 𝜆1(A11 ⊗ A22 − A12 ⊗ A21)z. (B.7)

In a similar way, we obtain from (B.5) the second generalized eigenvalue problem

(A10 ⊗ A21 − A11 ⊗ A20)z = 𝜆2(A11 ⊗ A22 − A12 ⊗ A21)z. (B.8)

From (B.3) and (B.4), we can write (B.7) and (B.8) as ∆1z = 𝜆1∆0z and ∆2z = 𝜆2∆0z, which is equal to (B.2).

Appendix C. Apply shift to singular problem

The matrices ∆𝑖, 𝑖 = 0,… , 4, associated with the four-parameter eigenvalue problem (43) are such that ∆0 is singular, but
∆0 + 𝑠∆4 is nonsingular for a generic shift 𝑠 ≠ 0. Thus, it is more efficient to solve a shifted system of generalized eigenvalue
problems

∆1z = i�̃�(∆0 + 𝑠∆4)z, ∆2z = i𝜅𝑦,1(∆0 + 𝑠∆4)z, ∆3z = i𝜅𝑦,2(∆0 + 𝑠∆4)z, ∆4z = 𝜉0(∆0 + 𝑠∆4)z (C.1)

and then recover the eigenvalues of (43) as

i𝑘 = i�̃�
1 − 𝑠𝜉0

, i𝜅𝑦,1 =
i𝜅𝑦,1

1 − 𝑠𝜉0
, i𝜅𝑦,2 =

i𝜅𝑦,2
1 − 𝑠𝜉0

, 𝜉0 =
𝜉0

1 − 𝑠𝜉0
. (C.2)

This approach circumvents the computationally complex staircase algorithm. Note that the infinite eigenvalues of (43) correspond
to 1 − 𝑠𝜉0 = 0. The same idea can be applied to (46), where ∆0 + 𝑠∆6 is nonsingular for a generic shift 𝑠 ≠ 0.

8 The Kronecker product A ⊗ B of the 𝑚 × 𝑛-matrix A = [𝐴𝑖𝑗 ] with the 𝑝 × 𝑞-matrix B yields the block matrix [𝐴𝑖𝑗B] of size 𝑚𝑝 × 𝑛𝑞. For three matrices,

⊗ B⊗ C = (A⊗ B)⊗ C = A⊗ (B⊗ C). Vectors are treated like matrices with one column. For two matrices and two vectors, (Ax)⊗ (By) = (A⊗ B)(x⊗ y).
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Appendix D. Improve efficiency for isotropic plates

The quadratic eigenvalue problem (7) describing the free plate is typically solved at a given frequency by employing a
inearization, resulting in a standard eigenvalue problem of twice the original size in 𝑘. If the plate consists of isotropic materials,

there exists a transformation yielding a linear eigenvalue problem of the original size. That is to say, it involves terms multiplied by
𝑘2 but none in 𝑘 so that we can treat it as a linear eigenvalue problem in 𝜉0 = −𝑘2. If the isotropic plate is coupled to unbounded
fluid media, we can apply this approach analogously to our current formulation after minor modifications concerning the interface
conditions. Consider the problem (43) and sort the degrees of freedom into horizontal displacements, vertical displacements, and
pressures. As is known in the case of free plates [65,67], the resulting finite-element matrices have a particular block structure:

⎛

⎜

⎜

⎜

⎝

−

⎡

⎢

⎢

⎢

⎣

E
𝑥𝑥
2 0 0
0 E

𝑦𝑦
2 E

𝑦𝑝
2

0 0 0

⎤

⎥

⎥

⎥

⎦

+ 𝜔2

⎡

⎢

⎢

⎢

⎣

M
𝑥𝑥

0 0
0 M

𝑦𝑦
0

0 M
𝑝𝑦

0

⎤

⎥

⎥

⎥

⎦

+ i𝑘
⎡

⎢

⎢

⎢

⎣

0 E
𝑥𝑦
1 0

E
𝑦𝑥
1 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

+ (i𝑘)2
⎡

⎢

⎢

⎢

⎣

E
𝑥𝑥
0 0 0
0 E

𝑦𝑦
0 0

0 0 0

⎤

⎥

⎥

⎥

⎦

+i𝜅𝑦,1
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 R𝑝𝑝

1

⎤

⎥

⎥

⎦

+ i𝜅𝑦,2
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 R𝑝𝑝

2

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎣

u𝑥n
u𝑦n
pn

⎤

⎥

⎥

⎦

= 0. (D.1)

We multiply the second and third equations in the above system by i𝑘 and modify the eigenvectors to obtain
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ence, we have obtained a three-parameter eigenvalue problem with parameters i𝜅𝑦,1, i𝜅𝑦,2, 𝜉0 that is solved analogously to (43)
but without requiring (43d). Consequently, the operator determinants are of size 4𝑛1 × 4𝑛1 (instead of 8𝑛1 × 8𝑛1), leading to a less
xpensive assembly and solution of the generalized eigenproblem (B.2).
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