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Algorithm selection, i.e., selecting the most suitable algorithm for a specific problem, is a vital task in continuous black-box optimization.
A popular strategy used to address this task is to characterize optimization functions using Exploratory Landscape Analysis (ELA)
features, which are then utilized to train a machine learning meta-model to select the appropriate algorithm for that function. A
significant challenge with meta-models trained on current benchmarks is their often restricted ability to effectively generalize to new
functions, limiting their practical application. In this study, we investigate which ELA feature groups are the best at generalizing to
previously unseen functions when performing algorithm selection. Using the Comparing Continuous Optimizers functions, novel
functions are generated through affine recombinations of existing functions. For each ELA feature group, a meta-model is developed
on these functions, enabling it to rank various optimization algorithms. Subsequently, these trained meta-models are assessed using
functions that are increasingly out-of-distribution to what was observed during training. We show that most ELA feature groups do
not generalize well to out-of-distribution functions, implying reduced effectiveness of selecting algorithms for unfamiliar functions. In
such situations, meta-models using different ELA features for algorithm ranking often do not outperform basic predictions based on
average ranks.
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1 INTRODUCTION

A major challenge for practitioners in the optimization field is choosing the optimal algorithm for a specific objective
function. Ideally, this selection should be automatic, aiming to identify the best-performing optimization algorithm
tailored to the function at hand, a process known as automatic algorithm selection (AS). The AS task can be addressed
by training a machine learning meta-model, which, provided with a set of features representing properties of the
function to be solved, can determine the most appropriate optimization algorithm to use [11]. In the single-objective
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optimization domain, many features describing properties of optimization functions have already been proposed [6, 9].
However, the most widely used and known features are Exploratory Landscape Analysis (ELA) [4] features.

In the current literature, AS is primarily conducted using the established COmparing Continuous Optimizers
(COCO) [3] benchmark suite. The COCO benchmark suite includes 24 classes of single-objective optimization problems.
Each problem class within this benchmark contains several instances, which are derived by applying different trans-
formations like scaling or shifting to the base problems. Problem instances within the same problem class typically
share highly similar characteristics. However, when using the COCO benchmark for AS and performance prediction
there are substantial differences in how evaluation is performed. Two commonly used approaches are referred to as
“leave-one-instance-out" (LOIO) and “leave-one-problem-out" (LOPO). LOIO is a forgiving evaluation strategy where
all problem classes are present in the training set, but only a few instances from each class are used for evaluation.
This means the meta-model encounters functions with similar characteristics during training and evaluation. On the
other hand, the LOPO validation strategy is much more challenging due to the diversity of problems in the COCO
benchmark. During the evaluation phase, we may come across functions where a problem with similar characteristics
has not been previously observed during training. Therefore, choosing which strategy to use can significantly influence
the results [11].

Additionally, AS models trained using ELA features have been shown to have poor generalization capabilities to
functions that were not observed during the training [5, 10]. Consequently, there is a need to determine which individual
ELA feature groups contribute to extracting information used to construct meta-models that generalize to new problems
and how far out of distribution can we go before ELA features fail to provide quality information used for AS.

Our contribution: In our paper we provide the answer to the following research question related to the generaliz-
ability of ELA feature groups: What is the effectiveness of individual ELA feature groups in generalizing performance
compared to others? To what extent do individual feature groups demonstrate generalizability, and are there groups of
ELA features that underperform relative to the single best solver (SBS) baseline?

Our research shows that using the LOIO methodology, most ELA feature groups outperform the SBS in ranking
optimization algorithms effectively. However, the predictive power of meta-models declines notably when faced with
new problems generated through affine transformations not encountered during training, particularly under the more
rigorous LOPO strategy. In the more challenging evaluation scenario involving out-of-distribution (OOD) problems,
hardly any ELA feature group significantly surpasses the simple baseline model.

Outline: The paper is structured as follows: Section 2 outlines the methodology, covering feature extraction and
algorithm optimization. Section 3 discusses results, emphasizing algorithm generalization. Finally, Section 4 wraps up
with concluding remarks.

Reproducibility: The experiments conducted can be replicated using the code available in the Gitlab repository,
accessible at https://anonymous.4open.science/r/affine-ranking/README.md.

2 METHODOLOGY

In this section, we provide a detailed overview of the methodology for assessing each ELA feature group’s ability to
generalize to unseen instances. It involves the following steps: i) Create new problems by applying affine recombinations
to the original 24 problems from the original COCO dataset. ii) Calculate ELA features and determine the ranks of
optimization algorithms within the algorithm portfolio for all the newly created problems. iii) Split the dataset into two
parts: one comprises a single COCO problem and all the affine functions derived from it, forming the test set, while the
remaining 23 COCO functions and their affine combinations make up the training set. With this, the test set contains a
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set of progressively more difficult and OOD functions. iv) Train meta-models using individual ELA feature groups to
predict the rankings of algorithms. v) Evaluate meta-models created using different ELA feature subsets on how well
they generalize on the test set with completely new problem classes.

To illustrate how validation is conducted, let’s consider a scenario where the first COCO problem class is chosen
for the test data while the others are assigned to the training data. In this setup, problem instances 1-5, generated as
affine combinations of the 23 problem classes in the training set, are utilized to train the meta-model. Subsequently,
problem instances 6-10, where one of the base functions belongs to problem class 1, are employed to evaluate the
performance of the meta-model. This approach ensures that test instances can progressively represent more OOD
objective functions. When problem instances 6-10 are created from the 23 problem classes in the training set, the
validation strategy resembles LOIO. Conversely, when they are the furthest from the training distribution, the validation
strategy is similar to LOPO. This process is repeated for every ELA feature group and every COCO problem class. This
ensures that each individual ELA feature group described in the next subsection is tested on its generalizability on each
of the 24 problem classes. The following subsections provide a more detailed description of each component within the
methodology.

2.1 Portfolio of Optimization Algorithms

In our research, we establish a portfolio comprising 𝑘 optimization algorithms defined as A = {𝑎1, . . . , 𝑎𝑘 }. The
portfolio of algorithms in our study includes five algorithms sourced from the pymoo [1] framework version 0.5.0. We
evaluate the following optimization algorithms: Genetic Algorithm (GA); Differential Evolution (DE); Particle Swarm
Optimization (PSO); Evolutionary Strategy (ES); Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The
algorithm performance is captured by comparing the best objective function value found by each algorithm after this
execution budget, and assigning an integer rank in the range [1,5] to each algorithm.

2.2 Problem Creation and Feature Representation

As proposed in [2], new problems can be created by combining existing COCO problems, resulting in a problem set
that is more diverse than the original 24 COCO problem classes. In addition to enhancing diversity, this approach also
provides refined control over the generation of new problems, which can be designed to closely resemble existing
problems. In our paper, we specifically employ the formulation from [12], where two COCO functions are combined in
the following way:

𝐹 (𝑃𝑖,𝑚, 𝑃 𝑗,𝑛, 𝛼) (𝑥) =
exp(𝛼 𝑙𝑜𝑔(𝑃𝑖,𝑚 (𝑥) − 𝑃𝑖,𝑚 (𝑂𝑖,𝑚))+
(1 − 𝛼) 𝑙𝑜𝑔(𝑃 𝑗,𝑛 (𝑥 −𝑂𝑖,𝑚 +𝑂 𝑗,𝑛) − 𝑃 𝑗,𝑛 (𝑂 𝑗,𝑛)))

(1)

In the definition provided, 𝑃𝑎,𝑏 denotes the 𝑏-th instance of the 𝑎-th COCO problem class, with its optimum at 𝑂𝑎,𝑏 .
All optimal solutions yield a value of zero (𝑃𝑎,𝑏 (𝑂𝑎,𝑏 ) = 0.0). The parameter 𝛼 controls the combination of functions,
enabling precise control over the similarity between the new function and its parent functions.

To represent objective functions as numerical features, we employ ELA features [4], derived from fundamental
metrics calculated on sampled points and their objective function values. The full ELA feature set is comprised of
various individual features, which can be split into multiple feature groups. In our case, we analyze these specific feature
groups: cm_angle (9), cm_conv (5), cm_grad (3), disp (17), ela_distr (4), ela_level (10), ela_meta (10), ic (6), limo (9), nbc
(6) and pca (9). The parentheses indicate the number of features in each individual feature group.
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Moreover, scaling samples can improve feature informativeness [7]. We employ min-max linear scaling, adjusting
candidate solution values (𝑥) within the range of -5 to 5 to 0 to 1, and function values (𝑓 (𝑥)) are scaled to be between
0 and 1. For completes we also include a feature group that contains all the ELA features ela, its scaled counterpart
scaled_ela, and concatenation of both groups marked with concat_ela. When computing ELA features, we utilize the
pflacco library [8] with default hyperparameter values.

2.3 Meta-models and Error Metric

We employ two distinct meta-models to relate ELA feature groups to optimization algorithm ranks. These meta-models
are designed as multi-target regression models, predicting rankings for all five algorithms simultaneously. Inputs are
ELA feature groups, and outputs are five numerical values representing algorithm rankings. The meta-models utilized
are: random-forest: A random forest, an ensemble regression technique, constructs multiple decision trees during
training and outputs their mean prediction as the final result. In this study, we used the implementation from scikit-learn

version 1.3.2 with the default hyperparameters. mean: This algorithm computes the mean ranking across the training
set and makes predictions based on this average, ignoring individual problem features. It serves as the "best single
solver" in ranking, reflecting the dataset’s overall average rank.

This paper employs the following metric to assess the performance of meta-models, incorporating defined lower
and upper bounds that captures the relationships in solution quality across all algorithms within the portfolio. We use
the Pairwise Ranking Error (PRE) to assess and contrast the quality of various rankings. We use the PRE between two
ranked lists as defined in [5]. PRE is determined in the following way:

𝑃𝑅𝐸 =
1

2
( |A |
2
) ∑︁
𝑎𝑖 ∈A

∑︁
𝑎 𝑗 ∈A

𝑟 (𝑎 𝑗 , 𝑎𝑖 ) (2)

𝑟 (𝑎 𝑗 , 𝑎𝑖 ) =

0 if 𝑟𝑝 (𝑎𝑖 , 𝑎 𝑗 ) = 𝑟𝑔 (𝑎𝑖 , 𝑎 𝑗 )

1 if 𝑟𝑝 (𝑎𝑖 , 𝑎 𝑗 ) ≠ 𝑟𝑔 (𝑎𝑖 , 𝑎 𝑗 )
(3)

In this scenario, 𝑎𝑖 and 𝑎 𝑗 are algorithms from the portfolio with functions 𝑟𝑝 (𝑎𝑖 , 𝑎 𝑗 ) and 𝑟𝑔 (𝑎𝑖 , 𝑎 𝑗 ) describing the
differences in ranks of optimization algorithms. The function 𝑟𝑝 (𝑎𝑖 , 𝑎 𝑗 ) returns -1, 0, or 1, depending on whether the
predicted rank of algorithm 𝑎𝑖 is less than, equal to, or greater than the rank of algorithm 𝑎𝑖 , respectively. Likewise,
the function 𝑟𝑔 (𝑎𝑖 , 𝑎 𝑗 ) works in a similar manner, with the key distinction that it considers the rankings of algorithms
according to the ground truth. This implies that it yields -1, 0, or 1 based on the ground truth rankings, which are
determined by executing the optimization algorithms 30 times.

The PRE assesses ranking algorithm effectiveness by measuring how accurately they predict the order of items
compared to a true ranking. A PRE of 0.0 means the predicted order matches the true order perfectly. If rankings are
random, the error is 0.5, showing half are correct. A PRE of 1.0 means all pairs are misordered, indicating the worst
scenario where the predicted sequence is the opposite of the truth. Consider a set of optimization algorithms - GA,
PSO, DE, CMA-ES, and ES - evaluated on a specific problem instance. After 30 runs, their average ranks are: [4.8, 2.23,
2.7, 1.06, 4.21]. CMA-ES ranks highest while GA performs the worst. Now, a regression meta-model predicts ranks
of [4.6, 2.6, 2.39, 1.2, 4.21]. Despite most ranks differing from ground truth, only one pair of algorithms is predicted
incorrectly: DE is wrongly placed above PSO. This discrepancy yields a PRE of 0.1, indicating one out of ten pairs is
ordered incorrectly.
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Fig. 1. Predictive power of individual ELA feature groups using the PRE metric averaged across all problem classes. The figures
represent both the non-scaled and scaled versions. To enhance readability, the border of the plot displays the order of individual ELA
feature groups alongside the precise PRE they attain in both LOIO and LOPO methodologies.

3 RESULTS

In this section, we assess how effectively specific groups of ELA features predict algorithm performance on increasingly
OOD problems, following the methodology outlined in Section 2.

The experimental setup utilizes a fixed budget of 2000𝐷 function evaluations, where 𝐷 = 5, and a population size
of 20, focusing on objective functions within this dimensionality due to space and time limitations. ELA features are
computed from a sample size of 500𝐷 obtained through LHS. To account for the stochastic nature of optimization
algorithms, each algorithm in the portfolio undergoes 30 runs. For every problem class, 10 instances are employed, with
𝛼 varied from 0.0 to 1.0 in increments of 0.1.

Figure 1 demonstrates the generalizability of distinct ELA feature groups in ranking algorithms when encountering
progressively unfamiliar problems. In scenarios involving previously encountered problem classes (𝛼 = 0 similar to
LOIO), the random-forest meta-model can effectively rank optimization algorithms, surpassing the mean baseline
meta-model with nearly all individual ELA feature groups. Notable exceptions include the cm_grad feature group and
its scaled variant, both of which achieve slightly higher PRE than the baseline. Conversely, the most effective feature
groups identified using LOIO methodology are, predictably, the comprehensive feature sets encompassing all ELA
features. These are followed closely by feature sets such as ela_meta, ic, ela_level, and their scaled counterparts. However,
this scenario mainly shows that the meta-model can memorize the association between features and performance, but
does not guarantee this relation applies to new, unseen problems.

As the values of 𝛼 increase, the predictive performance of all feature groups deteriorates. When 𝛼 = 0.4, individual
meta-models are assessed on artificial problems, consisting of 0.6 of previously encountered problems and 0.4 of
entirely new problems. In this scenario, the performance of most meta-models is inferior to that of the mean baseline
meta-model. The only exemption from this rule applies to meta-models comprising all types of features (scaled, unscaled,
or concatenated) or meta-models relying solely on the ela_meta feature group. Except for the ela_meta feature group,
all other feature groups have a PRE ranging from 0.23 to 0.28, falling behind the baseline’s PRE of 0.22. This suggests
that while the baseline misranks 22% of the optimization algorithms, the feature-based model may misrank up to 28%
of them. At 𝛼 = 0.4, most feature-based meta-models exhibit poor generalization capabilities, often underperforming
when compared to the mean meta-model.
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When considering the range of 𝛼 values between 0.6 and 0.8, the comparison of feature-based meta-models with the
mean baseline reveals an even more unfavorable situation for the feature-based models. Within the specified range,
when ELA groups are computed on unscaled samples, the baseline consistently outperforms the feature-based models.
When considering scaled ELA feature groups, similar outcomes are observed, with scaled ela_meta being the only
feature group that exhibits performance close to the mean baseline. This further illustrates the challenge of achieving
superior performance compared to the SBS.

When we evaluate the meta-model on completely new problems at 𝛼 = 1 that were not combined with any of the
problems in the training set (similar to LOPO validation), the PRE of most meta-models increases further. In this case,
only two meta-models slightly outperform the baseline. These two models are the ones that utilize either all features or
ela_meta features both with prior scaling of the sample points.

A conclusion that can be drawn is that, with the current problem set and feature representation, the generalization
of a feature-based meta-model is relatively poor, and they cannot perform substantially better than the simple baseline.
The results, along with other literature [11], underscore notable differences between LOPO and LOIO strategies.
In the AS model assessment, practitioners often favor the less changing LOIO approach. Yet, this method could
misleadingly indicate the superior performance of meta-models, masking their difficulty in generalizing to new
objectives. Consequently, their effectiveness may sharply decline when applied to new problems. For example, the ic
feature set is highly influential in LOIO validation but underperforms a basic baseline in LOPO validation. It is crucial
to note that feature significance depends on the validation strategy chosen. Important features in LOIO validation may
not hold the same weight in LOPO, and vice versa.

4 CONCLUSION

This study investigates the generalizability of individual ELA feature groupswhen predicting the rankings of optimization
algorithms. More precisely, we examine the abilities of a meta-model to effectively rank optimization algorithms,
particularly when confronted with progressively OOD problems. It is crucial to explore this aspect for various reasons,
including gaining insights into functions where meta-models may fail and to what extent, determining which feature
groups exhibit the ability to generalize to new functions, and assessing whether such meta-models can surpass basic
baseline models in performance. The findings indicate that employing the LOIO strategy with similar training and test
data functions leads to strong performance across meta-models utilizing various ELA feature groups. This suggests
that for previously encountered problems, the meta-model faces no difficulties in ranking optimization algorithms.
Nevertheless, as meta-models confront increasingly OOD functions, their performance begins to decline. In the most
extreme scenario, during LOPO validation, the majority of meta-models struggle to surpass the basic baseline in
correctly ranking optimization algorithms. Furthermore, none of the individual ELA feature groups exhibit a substantial
advantage over the baseline.
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