
This is the Author-Accepted Version of the paper:

G. Ceniki, G. Petelin and T. Eftimov, "Impact of Scaling in ELA
Feature Calculation on Algorithm Selection Cross-Benchmark
Transferability," 2024 IEEE Congress on Evolutionary Computation
(CEC), Yokohama, Japan, 2024, pp. 1-8, doi:
10.1109/CEC60901.2024.10612032.

© 2024 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Impact of Scaling in ELA Feature Calculation on

Algorithm Selection Cross-Benchmark Transferability

Gjorgjina Cenikj,1,2,∗ Gašper Petelin1,2 and Tome Eftimov1

1Computer Systems Department, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia

and 2Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia

∗Jamova cesta 39. Gjorgjina Cenikj, Jožef Stefan Institute, 1000 Ljubljana, Slovenia. gjorgjina.cenikj@ijs.si

Abstract

Exploratory Landscape Analysis (ELA) features are the most common choice for representing single-objective

continuous optimization problem instances in Algorithm Selection (AS) methods. However, ELA features have

been shown to have low generalization to unseen problems. Recently, it has also been shown that scaling

objective function values before ELA feature calculation can be beneficial for AS methods evaluated on the

Black-Box Optimization Benchmarking suite. In this paper, we aim to evaluate whether the same holds true for

other benchmarks. In particular, we take into account four different benchmark suites and investigate the ability

of an AS model trained on one benchmark to generalize to another benchmark. We also evaluate the impact

of scaling objective function values before ELA feature calculation on AS performance. We observe a benefit

of scaling objective function values in the case of the use of all ELA features together, however, conflicting

outcomes are obtained when different feature groups are used individually. Our analysis shows no benefit of the

joint use of the ELA features calculated on the original and scaled objective function values.

Key words: algorithm selection, exploratory landscape analysis, transfer learning

© The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com3

Email:email-id.com

4 Cenikj et al.

1. Introduction

Algorithm Selection (AS), the task of selecting an optimal optimization algorithm

for a given problem, is driven by the desire to harness the diverse performance

exhibited by different algorithms across different problem instances (Kerschke et al.,

2019). AS can be addressed as a Machine Learning (ML) problem, where given

a vectorized representation of the problem instance that represents its landscape

characteristics, an ML model is trained to find the most suitable algorithm for that

problem instance.

In the field of single-objective numerical optimization, problem instances

are most commonly represented using the Exploratory Landscape Analysis

(ELA) (Mersmann et al., 2011) features. These are mathematical and statistical

features computed on candidate solutions sampled from the decision space of the

problem instance. While ELA features have been extensively used across different

AS studies (Jankovic et al., 2021; Prager and Trautmann, 2023; Škvorc et al., 2022;

Kerschke et al., 2016), they also exhibit limitations such as sensitivity to sample size

and the sampling method used for solution sampling from the decision space(Renau

et al., 2020; Škvorc et al., 2021), and lack of invariance to transformations such

as scaling and shifting of the problem (Škvorc et al., 2021, 2020). They have also

demonstrated limited effectiveness in generalizing to new problems when used for

AS (Petelin and Cenikj, 2023; Cenikj et al., 2024).

In (Prager and Trautmann, 2023), it was pointed out that the issue of ELA

features being sensitive to problem transformations could be partially mitigated by

performing a min-max normalization of the objective function values before feature

calculation. This was also hypothesized to improve the ability of AS models to

generalize to unseen functions, where the range of the objective function values

Impact of Scaling in ELA Feature 5

differs substantially from the range of the objective function values of the problem

instances in the training data. The utility of the proposed scaling has been shown

on the The Black-Box Optimization Benchmarking (BBOB) (Hansen et al., 2009)

suite, in three evaluation strategies (Prager and Trautmann, 2023), tackling the

tasks of problem classification as well as AS. However, the BBOB benchmark is

somewhat limited in problem diversity. Namely, it contains 24 problem classes, from

which problem instances can be generated by applying some transformation (such

as shifting or scaling) of the original problem. In this way, an arbitrary number

of problem instances can be generated from a single problem class, however, the

resulting problem instances are highly similar to each other.

To provide a more comprehensive analysis of the impact of scaling of the

objective function values before ELA feature calculation, in this paper, we evaluate

the generalization ability of AS models, trained and tested using four different

benchmark suites. We take into account the BBOB benchmark (Hansen et al.,

2009) and the recently proposed affine combinations of BBOB problems (Dietrich

and Mersmann, 2022). We also use two problem generators (Kudela and Matousek,

2022; Tian et al., 2020) to generate two additional benchmark suites. These four

benchmark suites have already been involved in a study analyzing the generalizability

of AS models across benchmark suites (Cenikj et al., 2024) using the ELA features

and the recently proposed TransOpt (Cenikj et al., 2023) features. However, in this

case, all of the ELA features were explored together, and the impact of scaling

objective function values was not taken into account. Other studies on the topic of

generalizability of AS models also use some of these benchmark suites independently.

For instance, (Škvorc et al., 2022) uses the BBOB and a random function generator,

while (Petelin and Cenikj, 2023) uses the BBOB and its affine combinations. To

6 Cenikj et al.

the best of our knowledge, this is the first study that evaluates the generalization

of individual ELA feature groups across four different benchmarks, also taking

into account the impact of scaling objective function values before ELA feature

calculation.

Consistent with previous work (Prager and Trautmann, 2023), our results

indicate that only a few feature groups are affected by the scaling. Specifically, these

are the ela meta, basic, pca, and ic feature groups, where scaling also influences AS

performance. Our results show that when the ELA features are computed using the

original objective function values, problems with extreme values belonging to one

benchmark might be located far away from problems of other benchmarks in the

problem landscape, leading to lower transferability of the AS model. Scaling the

objective function values results in the benchmarks being embedded closer together,

which enhances the transferability of the AS model when all features are used

together, however, conflicting outcomes are obtained when features from different

feature groups are used individually.

The rest of the paper is organized as follows. Section 2 details the methodology

and the experimental setup. Section 3 contains the results, while Section 4 concludes

the paper.

Reproducibility: The data and code used in this study are available online at

https://github.com/gjorgjinac/AS ela scaling.

2. Methodology

In this section, we first introduce the problem portfolios, i.e., the set of benchmarks

used for training and evaluating the AS model. We then present the algorithms

included in the algorithm portfolio, as well as the performance metric used to

Impact of Scaling in ELA Feature 7

compare them. Next, we describe the ELA features utilized to characterize the

problem instances. Finally, we present the training of the ML model used for AS, as

well as the evaluation metric. Our methodology is closely aligned to that of (Cenikj

et al., 2024), with the difference that we take into account individual ELA feature

groups and analyze the impact of scaling objective function values before feature

calculation. The problem portfolios and algorithm performance data are reused

across both studies, as are the ELA features calculated without objective function

values.

2.1. Problem Portfolios

Next, the benchmark suites utilized in this study are explained in more detail. We

need to note that for all benchmarks, we use 3d problems, where d is the problem

dimension. We have also performed the same experiments for 10d problems, however,

due to space limitations, we do not present them within this manuscript. They can

be found in our github repository.

BBOB benchmark - The BBOB (Hansen et al., 2009, 2020) suite is a set of 24

single-objective optimization problems. Different problem instances can be created

from the original problem by applying a transformation (such as scaling or shifting).

We use the first 100 problem instances from each of the 24 problems from the BBOB

suite, resulting in a total of 2,400 problem instances from this benchmark.

AFFINE benchmark - We use the first five problem instances from the 24

BBOB problem classes to generate affine combinations as proposed in (Vermetten

et al., 2023). The combinations are generated by combining problem instances from

different problem classes that have the same instance ID. For example, the first

instance of the first problem class is combined with the first instances of the other

23 problem classes. We need to emphasize here that instances with different IDs

8 Cenikj et al.

from different problem classes are not combined together. We do this to limit the

number of generated instances. The combination is done with alpha values of 0.25,

0.50, and 0.75 for all pairs of problem instances. In this way, we get 8,280 problem

instances.

RANDOM benchmark - We create 5,000 random problem instances using

the random generator proposed in (Tian et al., 2020). The generator builds a tree

representation by randomly combining mathematical operands and operators from

a predefined pool, where each operand and operator has a certain probability of

being chosen. We use the Python version of the random function generator, which

was initially implemented in Matlab and was re-implemented in Python in (Long

et al., 2022). Please note that some of the objective functions in this dataset are

duplicated or very similar. This is due to the way function generation is done and

is a limitation of the generator. From the initial pool of generated functions, we

remove those that produce invalid or constant values, resulting in 4,446 functions

used in the experiments.

ZIGZAG benchmark - We create 5,000 random problem instances by

randomly initializing the parameters of the four zigzag functions proposed in (Kudela

and Matousek, 2022). These four functions combine a zigzag function with different

multimodal functions. Different instances from these functions can be generated

by specifying three parameters, which we initialize as follows. The k parameter,

controlling the period of the zigzag function, is randomly sampled as an integer in

the range [0,30]. The m parameter, controlling its amplitude, is sampled in the range

[0,1]. The λ parameter, controlling the location of the local minima, is also sampled

in the range [0,1]. It has been shown that depending on the m, k, and λ parameters,

Impact of Scaling in ELA Feature 9

the generator can produce diverse enough objective functions where some algorithms

have difficulty solving them while others do not.

2.2. Algorithm Portfolio

The algorithm portfolio consists of four different algorithms: Differential Evolution

(DE) (Storn and Price, 1997), Genetic Algorithm (GA) (Chahar et al.,

2021), Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), and

Evolutionary Strategy (ES) (Beyer and Schwefel, 2002). These algorithms are taken

with their default configurations in the pymoo library, version 0.6.0. We have selected

these algorithms due to their availability in the pymoo library, providing easy use

with a standardized implementation, however, other algorithm portfolios can be

tested as part of future work. All algorithms use Latin Hypercube Sampling (Menč́ık,

2016) to construct the initial population.

The algorithms are executed on all benchmarks in a fixed-budget scenario with

a population size of 10d, where d is the problem dimension. The performance of the

algorithm is recorded at budgets of 10, 30, and 50 iterations. In the scope of this

manuscript, we are only presenting the results of the AS for a budget of 50 iterations

due to space limits. We have also performed experiments with budgets of 10 and 30

iterations, which can be found in our github repository. For a 3d problem, a budget

of 50 iterations is equivalent to a total of 1,500 function evaluations (50 iterations

with a population size of 30). We perform ten executions of each algorithm on all of

the problem instances, and calculate the algorithm performance as described in the

next section.

10 Cenikj et al.

2.3. Algorithm Performance Metric

In our experimental setup, we adopt a fixed-budget scenario to assess the algorithms,

wherein the evaluation involves recording the best-found objective function value

after a specified budget of algorithm iterations. Given that the RANDOM and

ZIGZAG algorithms lack a defined optimum for the considered problem instances,

we deviate from the conventional approach of predicting achieved precision (distance

of the best-found solution to the optimum) (Jankovic et al., 2021). Instead, we opt

to use a relative score that was introduced in (Cenikj et al., 2024) and is defined as

follows.

Let yarp represent the best solution (lowest objective function value) found by

algorithm a in run r for problem instance p. This value, yarp, is normalized by the

range of solutions found by other algorithms for the same problem instance and

initial population (same run). Denoting brp and wrp as the best and worst solutions

found for problem instance p in run r by any algorithm in the set, respectively, we

derive the scaled best objective function value achieved by algorithm a in run r on

problem instance p:

sarp =
yarp − brp
wrp − brp

. (1)

This metric quantifies the extent to which the best solution found by algorithm a

in run r outperforms other algorithms executed with the same initial population.

The overall performance of algorithm a on problem instance p across all runs is

summarized by calculating the final value sap, obtained by taking the median of all

sarp. It is important to note that this is a minimization function, meaning that the

best algorithm for a given problem has the lowest score.

Impact of Scaling in ELA Feature 11

Table 1. Example of the calculation of the algorithm performance metric for one problem instance

run DE ES GA PSO

Objective value of best solution found (Per run)
1 -15.10 -14.18 -14.95 -15.03
2 -15.09 -14.13 -14.37 -14.16
3 -15.12 -13.94 -14.89 -15.07

Normalized Algorithm Score (Per run)
1 0.00 1.00 0.16 0.08
2 0.00 1.00 0.75 0.97
3 0.00 1.00 0.19 0.04
Final Algorithm Score (Median across all runs)

0.00 1.00 0.19 0.08

Table 1 provides an illustrative example of how algorithm performance scores are

computed for a single problem instance and a specific budget. It is important to note

that, in the example, each algorithm is executed three times, whereas, in reality, we

execute the algorithms ten times on each problem instance. The table is segmented

into three parts, each depicting a distinct stage in the algorithm performance metric

calculation process. The initial segment presents the objective function values of the

best solutions found by each algorithm after a fixed budget of function iterations.

In the subsequent step, these values undergo normalization within each run through

min-max normalization column-wise. This implies that, for each run, the best-

performing algorithm attains a score of 0, while the worst algorithm obtains a score

of 1. In this particular example, DE is identified as the best algorithm, and ES as

the worst. The final algorithm score is computed by determining the median of the

normalized algorithm scores across all runs. It is worth noting that, in certain cases

where algorithms exhibit high variability between runs, it is possible that none of

the algorithms will have a final score of 0 or 1.

12 Cenikj et al.

We opt to use such a performance metric for several reasons: 1) As opposed

to using multi-class classification (Škvorc et al., 2022) and predicting a single best

algorithm, this approach captures the performance of all algorithms and allows us

to perform multi-target regression predicting the performance of all algorithms at

the same time, circumventing the issue that a model is penalized for predicting one

out of two algorithms with very similar performance. 2) In contrast with the ranking

approach, where each algorithm is assigned an integer score based on its performance,

our approach captures a fine-grained difference in performance, allowing algorithms

with similar best-obtained values to have similar scores.

2.4. Problem Representations

We compute ELA features from the following categories using the flacco R

library (Kerschke and Trautmann, 2019): basic, disp, ela distr, ela level, ela meta,

ic, nbc, and pca. In this way, we calculate a total of 93 features for each problem

instance. We calculate these features twice, once using the original objective function

values, and once using the objective function values scaled using min-max scaling in

the range [0,1] within the samples of each problem individually.

We discard eight features which measure the additional function evaluations

needed to calculate the feature (costs fun evals from each feature group) because

they have a constant value for all problems. We also discard the eight features which

measure the execution time needed to calculate the features (costs runtime from each

feature group), since this feature might differ for the unscaled and scaled sample,

but the difference is not due to the scaling itself.

It is important to note that some of these features contain missing or constant

values, which we remove before training the AS. When the features are calculated

with the original objective function values, 1 nbc, 4 pca and 11 basic features are

Impact of Scaling in ELA Feature 13

removed, apart from the costs runtime and costs fun evals, which are removed for

all feature groups. Calculating the ELA features with the scaled objective function

values, results in the additional removal of 1 feature from the pca and ic feature

groups, and 2 additional features from the basic group.

A full list of the removed features is available in our github repository. We

calculate the ELA features on a sample of the problem instances obtained with

Latin Hypercube Sampling in the range of [-5,5]d, with a sample size of 50d, where d

is the problem dimension. This sample size has been previously shown to work well

for the AS task (Kerschke et al., 2016).

2.5. Model

We use a Random Forest (RF) model to perform multi-target regression, where

the model predicts the performance score of each algorithm. We chose the RF

model because it has good performance on tabular data (Shwartz-Ziv and Armon,

2022) and it provides feature importance values that help with interpretability. The

RF model is executed using the default configuration parameters in the scikit-

learn (Pedregosa et al., 2011a) python library version 1.2.2. We do not perform

parameter tuning in order to evaluate the impact of the proposed features only,

on a fixed model configuration. A separate RF model is trained for each algorithm

execution budget, each one predicting the scores obtained by the algorithms after

this budget. To evaluate the impact of scaling objective function values before ELA

feature calculation, we perform three experiments:

1) Using the ELA features calculated with the original objective function values,

2) Using the ELA features calculated with the objective function values scaled

within the samples of each problem instance,

14 Cenikj et al.

3) Using a concatenation of the ELA features calculated with the original

objective function values and those calculated with the scaled objective function

values.

To ensure the robustness of the results, the training of the RF models is repeated

10 times. In each execution, an entire benchmark is used to train the model, and

the evaluation is carried out on the remaining three benchmarks. The training is

repeated 10 times because different random seeds influence the RF learning process.

2.6. Algorithm Selector Loss

To capture the true performance of the algorithm predicted to be the best by the

algorithm selector, we calculate the loss of the AS:

loss =
1

|P|
∑
p∈P

1− (ssp − sbp) (2)

where ssp is the true score of the selected algorithm which was predicted to have the

best performance for problem instance p, while sbp is the score of the best-performing

algorithm on problem instance p (i.e. the virtual best solver). This score would get

a value of zero if the worst algorithm is predicted to be the best for all problem

instances, and a value of one if the best algorithm is predicted to be the best for all

problem instances.

Table 2 demonstrates how the loss is calculated for two problem instances and

three algorithms. For the first instance, the true best algorithm is DE with a score of

0, and the model predicts it to be the best. The loss score is 1, because the metric is

simply “flipped” so we are maximizing it. For the second instance, the GA algorithm

is predicted to be the best, however, the true score of the GA algorithm is 0.2, and

the true best-performing algorithm is DE with a score of 0.05. If one were to use the

Impact of Scaling in ELA Feature 15

Table 2. An example of how the loss metric is calculated for two problem instances

instance True scores Predicted scores Loss
DE GA ES DE GA ES

0 0.00 1.0 0.3 0.00 0.2 0.3 1.00
1 0.05 0.2 1.0 0.40 0.0 0.7 0.85

GA algorithm instead of the DE algorithm in practice, the choice of GA over DE,

they would get a result that is 0.15 (0.2 - 0.05) worse than if they were to use the

true best algorithm. The loss score in this case is 0.85 (1-0.15).

3. Results

In this section, we first identify the ELA features affected by the scaling of the

objective function values. We then present the results of the AS obtained with

different ELA feature groups. Finally, we analyze the reasons behind the observed

impacts of the objective function value scaling on the results of the AS.

3.1. Features Affected By Scaling

To identify the features that are affected by the scaling of the objective function

value, we calculate the mean absolute error (MAE) of the original feature values

and the ones obtained with the scaled sample. Figure 1 shows the features for which

the MAE exceeds 0.05. The vertical axis shows the name of the feature, as well as

the original MAE value in brackets, while the y-axis shows the MAE in logarithmic

scale. From the figure, we can see that the features impacted by the scaling come

from the ela level, ela meta, basic, pca, ela distr, and ic feature groups. However,

it is important to note that the features from the ela level group exhibit small

MAE values, as is the case with the pca.expl var.cov init, pca.expl var PC1.cov init,

ela distr.number of peaks, ic.eps.s and ic.eps.ratio. The features with the

largest MAE values are ela meta.lin simple.intercept, ela meta.lin simple.coef.min,

16 Cenikj et al.

Fig. 1: ELA features affected by the scaling of the objective function values

ela meta.lin simple.coef.max, ela meta.lin simple.coef.max by min, ela meta.quad simple.cond,

basic.objective min, and basic.objective max. Most of these ela meta features capture

the coefficients of a linear model fit to the samples of the objective function, while

the two basic features simply extract the minimum and maximum of the objective

function values obtained in each problem sample.

This analysis indicates that scaling affects the values of some of the features,

while others remain unchanged by it, which is consistent with findings of previous

studies (Prager and Trautmann, 2023).

Impact of Scaling in ELA Feature 17

3.2. Algorithm Performance Across Benchmarks

Next, we analyze the performance of the algorithms on the four benchmarks. Figure 2

shows the empirical cumulative distribution of the algorithm scores across the

benchmarks. Each subplot refers to a different benchmark, while different colors

denote different algorithms. This plot can be interpreted in the following way.

Since the algorithm performance score (indicated on the x-axis) is a minimization

metric, lower algorithm scores indicate better performance. The y-axis represents

the proportion of instances which have a score which is equal to or lower than the

corresponding value on the x-axis. The closer the algorithm is to the upper left

corner, the better its overall performance on the benchmark. For example, on the

AFFINE, BBOB, and ZIGZAG benchmarks, the ES algorithm performs the best.

It achieves a score close to zero for approximately 75% of problem instances in the

BBOB benchmark, 90% of problem instances in the AFFINE benchmark, 93% of

problem instances in the ZIGZAG benchmark, but only 40% of problem instances

on the RANDOM benchmark. This means that if one simply uses the single-best

solver from the BBOB, AFFINE or ZIGZAG benchmark to solve problems from the

RANDOM benchmark, poor results will be achieved compared to other algorithms,

highlighting the need for AS models. The BBOB and AFFINE benchmarks produce

a similar ranking of the algorithms in the order ES, PSO, DE, and GA. On the other

hand, the RANDOM benchmark produces a completely different ordering. On this

benchmark, the best algorithm is DE, while the ES algorithm provides the worst

results.

18 Cenikj et al.

0.00

0.25

0.50

0.75

1.00
Pr

op
or

tio
n

benchmark = RANDOM benchmark = AFFINE

0.0 0.5 1.0
algorithm score

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

benchmark = BBOB

0.0 0.5 1.0
algorithm score

benchmark = ZIGZAG

algorithm name
DE
ES
GA
PSO

Fig. 2: Empirical cumulative distribution of algorithm scores across benchmarks

3.3. Algorithm Selection Results

Figure 3 shows the loss obtained by the AS model using different ELA feature groups.

The subplots within each figure contain the AS loss obtained with a different feature

group. We should note that we present results for all feature groups, regardless of

whether the features were affected by scaling or not. We do this because we want

to analyze the generalization power of the all of the feature groups, even if they are

not impacted by scaling.

The horizontal axis contains the names of the training and testing benchmarks,

in the form TRAIN-TEST. For instance, AFFINE-BBOB indicates that the model

Impact of Scaling in ELA Feature 19

was trained on the AFFINE benchmark, and evaluated on the BBOB benchmark.

On the other hand, the vertical axis contains the names of the features being used. In

this case, “ELA” refers to the features obtained using the objective function values

in their original range, “ELA Y Scaling” refers to the features calculated using the

scaled objective function values, while “Merged” denotes the concatenated “ELA”

and “ELA Y Scaling” features. “Dummy” denotes the baseline feature-less model

which simply predicts the mean on the train set for each algorithm portfolio.

Looking at the topmost subplot, showing the results when all features are

used, our first observation is that in many cases, the ELA-based AS model does

not beat the dummy. This is the case for AFFINE-ZIGZAG, BBOB-AFFINE,

BBOB-ZIGZAG, ZIGZAG-AFFINE, ZIGZAG-BBOB, and ZIGZAG-RANDOM.

Such behavior is owed to the fact that the BBOB, AFFINE, and ZIGZAG benchmark

have the same single best solver, as observed in the previous section. This means

that simply predicting the best algorithm from the training benchmark performs very

well on the testing benchmark. This is not the case when the training and testing

benchmarks have a different single best solver. When all features are used, scaling the

objective function values generally has a positive or neutral impact on the AS loss,

meaning that the loss obtained using the ”ELA Y Scaling” features is greater or equal

to the loss obtained using the original ”ELA” features. An improvement in the loss

is observed in the case of AFFINE-BBOB, AFFINE-RANDOM, BBOB-AFFINE,

BBOB-RANDOM and BBOB-ZIGZAG although the difference between the ”ELA”

and ”ELA Y Scaling” is only substantial in the case of AFFINE-RANDOM.

Looking at the results obtained using the ELA features calculated without

scaling, we can see that some feature groups obtain better results when used

individually, compared to using all of the feature groups together. Such is the

20 Cenikj et al.

case for the disp, ela level, ela meta, pca on AFFINE-RANDOM, and ela level on

RANDOM-BBOB. Please note that here we are not considering the benchmark

combination where the ELA-based models do not beat the dummy.

For the basic features, we can see that the scaling results in the AS having the

same loss as the Dummy model. This is due to the fact that when the objective

function values are scaled, the basic features have constant values for all problem

instances, and therefore, the model essentially cannot learn anything. Examples of

these features include the problem dimension and the number of samples from the

problem (which are constant for all problems on which the AS is trained), as well as

the minimum and maximum of the objective function values (which become constant

for all problems when the objective function values are scaled).

The ela meta features seem to benefit from scaling when the AS is trained on

the RANDOM benchmark.

Scaling has a positive impact on the AS loss when the ic features are used in

the case of AFFINE-RANDOM, BBOB-ZIGZAG, RANDOM-AFFINE, RANDOM-

BBOB, and a negative impact in the case AFFINE-BBOB, AFFINE-ZIGZAG,

BBOB-AFFINE, BBOB-RANDOM and RANDOM-ZIGZAG.

The pca features benefit from scaling in the cases AFFINE-BBOB, AFFINE-

ZIGZAG, BBOB-AFFINE, BBOB-RANDOM, BBOB-ZIGZAG, RANDOM-AFFINE,

RANDOM-BBOB, however, a negative effect is observed in the case of RANDOM-

ZIGZAG.

In general, we do not observe a benefit of the joint use of the features calculated

with and without scaling.

Impact of Scaling in ELA Feature 21

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.93 0.60 0.91 0.96 0.75 0.97 0.91 0.84 0.85 0.96 0.90 0.52
0.95 0.77 0.91 0.97 0.76 0.98 0.90 0.84 0.84 0.96 0.90 0.52
0.93 0.60 0.91 0.96 0.74 0.97 0.90 0.84 0.85 0.96 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: all

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.88 0.53 0.95 0.86 0.55 0.92 0.67 0.62 0.66 0.95 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52
0.87 0.53 0.94 0.86 0.55 0.92 0.67 0.62 0.65 0.95 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: basic

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.92 0.77 0.96 0.95 0.54 0.96 0.91 0.83 0.84 0.96 0.90 0.52
0.92 0.77 0.96 0.95 0.53 0.96 0.91 0.83 0.84 0.96 0.90 0.52
0.92 0.77 0.96 0.95 0.53 0.96 0.91 0.83 0.84 0.96 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: disp

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.89 0.58 0.90 0.93 0.53 0.92 0.68 0.65 0.46 0.94 0.89 0.52
0.90 0.59 0.90 0.93 0.53 0.92 0.68 0.63 0.46 0.94 0.89 0.52
0.90 0.58 0.90 0.93 0.53 0.92 0.68 0.65 0.46 0.94 0.89 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: ela_distr

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.94 0.76 0.95 0.96 0.60 0.96 0.90 0.86 0.85 0.96 0.90 0.52
0.93 0.76 0.94 0.96 0.60 0.97 0.90 0.86 0.86 0.96 0.90 0.52
0.94 0.76 0.95 0.96 0.59 0.97 0.91 0.88 0.87 0.96 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: ela_level

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.94 0.74 0.89 0.96 0.74 0.98 0.68 0.66 0.75 0.96 0.90 0.52
0.95 0.75 0.90 0.97 0.75 0.98 0.75 0.72 0.77 0.95 0.88 0.52
0.94 0.75 0.90 0.96 0.75 0.98 0.71 0.70 0.79 0.95 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: ela_meta

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.94 0.54 0.98 0.94 0.72 0.76 0.72 0.67 0.61 0.96 0.90 0.52
0.92 0.65 0.93 0.93 0.56 0.91 0.74 0.69 0.55 0.96 0.90 0.51
0.94 0.60 0.95 0.94 0.72 0.76 0.76 0.70 0.62 0.96 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: ic

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.92 0.57 0.96 0.95 0.55 0.95 0.83 0.79 0.71 0.96 0.90 0.52
0.92 0.57 0.96 0.95 0.55 0.95 0.83 0.79 0.71 0.96 0.90 0.52
0.92 0.57 0.96 0.95 0.55 0.95 0.83 0.79 0.71 0.96 0.90 0.52
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: nbc

AF
FI

NE
-B

BO
B

AF
FI

NE
-R

AN
DO

M

AF
FI

NE
-Z

IG
ZA

G

BB
OB

-A
FF

IN
E

BB
OB

-R
AN

DO
M

BB
OB

-Z
IG

ZA
G

RA
ND

OM
-A

FF
IN

E

RA
ND

OM
-B

BO
B

RA
ND

OM
-Z

IG
ZA

G

ZI
GZ

AG
-A

FF
IN

E

ZI
GZ

AG
-B

BO
B

ZI
GZ

AG
-R

AN
DO

M

train-test

ELA
ELA Y Scaling

Merged
Dummyfe

at
ur

es 0.92 0.75 0.79 0.91 0.73 0.82 0.62 0.62 0.70 0.96 0.90 0.51
0.93 0.75 0.89 0.95 0.74 0.92 0.74 0.70 0.54 0.96 0.90 0.52
0.94 0.78 0.82 0.93 0.73 0.82 0.61 0.57 0.62 0.96 0.90 0.51
0.90 0.52 0.99 0.96 0.52 0.99 0.50 0.48 0.14 0.96 0.90 0.52

Feature group: pca

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

0.25
0.50
0.75

Fig. 3: AS loss obtained with each ELA feature group

22 Cenikj et al.

3.4. Visualizations

To understand why scaling impacts AS results as shown before, we analyze the 2-

dimensional visualizations of the problem instances within benchmarks. To this end,

the original ELA features and the ones obtained with scaled objective function values

are reduced to two dimensions using t-distributed stochastic neighbor embedding

(i.e., t-SNE) (van der Maaten and Hinton, 2008) with the default parameter values in

the scikitlearn (Pedregosa et al., 2011b) library (euclidean distance, 1000 iterations

and a perplexity of 30). Figure 4 shows the embedding of the benchmarks in 2-

d space when all ELA features are used. The subfigure on the left shows the

visualization generated with the ELA features calculated on the original objective

function values, while the subfigure on the right shows the one generated with ELA

features calculated on the scaled objective function values. In this figure, different

colors indicate problems from different benchmarks. We can observe that when

scaling is not applied, the different benchmarks can be clearly distinguished. The

AFFINE and BBOB benchmarks are somewhat overlapping, while the ZIGZAG

and RANDOM benchmarks occupy their own part of the problem landscape and

can be visually divided from the others. To some degree, this can explain the lack

of generalization between some benchmark suites. On the contrary, when the ELA

features are calculated with scaling, the problem landscape seems to have no clear

structure, with instances from different benchmarks being mixed together.

A similar pattern is present in Figure 5, demonstrating the visualization for

the ela meta features, for which we observed that scaling impacts the AS results

in a positive way when the training is done on the RANDOM benchmark. When

the ela meta features are calculated on the original objective function values, the

AFFINE and BBOB benchmarks are mostly occupying the same part of the problem

Impact of Scaling in ELA Feature 23

landscape, while the RANDOM and ZIGZAG benchmark are somewhat divided

from the other benchmarks. This is not the case when using the ela meta calculated

with scaling, where instances from different benchmarks are embedded close to each

other. This explains the observed effect of scaling positively impacting the ela meta

features when the training is done on the RANDOM benchmark, since it results in

the RANDOM problems being embedded close to the other benchmarks, allowing

for better model generalizability.

Due to page limitations, we omit the visualizations generated with the other

feature groups, however, they are included in our github repository.

4. Conclusions

In this paper, we investigate the impact of scaling objective function values before

ELA feature calculation, on the generalizability of an AS model across different

benchmark suites. In line with previous work (Prager and Trautmann, 2023), we

find that only a few feature groups are sensitive to the scaling. In particular, these

are the ela meta, basic, pca, and ic feature groups, where scaling also impacts AS

generalization between several benchmark pairs. Our findings indicate that when

the ELA features are calculated using the original objective function values, some

benchmarks with extreme values are embedded far away from other benchmarks in

the problem landscape, resulting in lower generalizability of the AS model. Scaling

the objective function values results in the benchmarks being more closely embedded,

which improves generalizability when all feature groups are used together. In most

cases, a benefit of scaling is also observed when the ela meta features are used

individually. On the other hand, the scaling completely removes any predictive power

from the basic feature group, which should be rather obvious, since scaling results

24 Cenikj et al.

(a) Original

(b) Scaled

Fig. 4: Benchmarks represented using all ELA features, reduced in 2 dimensions
using TSNE

Impact of Scaling in ELA Feature 25

(a) Original

(b) Scaled

Fig. 5: Benchmarks represented using the ela meta features, reduced in 2 dimensions
using TSNE

26 Cenikj et al.

in these features having a constant value for all problems. For the ic and pca feature

groups, we derive no clear conclusion on whether scaling has a positive or negative

impact, since conflicting results were obtained for different pairs of training and

testing benchmarks. Our results show no benefit of using a concatenation of the

features calculated with and without scaling.

5. Acknowledgements

Funding in direct support of this work: Slovenian Research Agency: research core

funding No. P2-0098, young researcher grants No. PR-12393 to GC and No. PR-

11263 to GP, and project No. J2-4460.

References

H. Beyer and H. Schwefel. Evolution strategies - a comprehensive introduction. Natural Computing, 1(1):3–52,

March 2002. doi: 10.1023/A:1015059928466.

G. Cenikj, G. Petelin, and T. Eftimov. Transopt: Transformer-based representation learning for optimization

problem classification. 2023 IEEE Symposium Series on Computational Intelligence, 2023. URL http://

arxiv.org/abs/2311.18035.

G. Cenikj, G. Petelin, and T. Eftimov. A cross-benchmark examination of feature-based algorithm selector

generalization in single-objective numerical optimization. Swarm and Evolutionary Computation, 87:101534,

2024. ISSN 2210-6502. doi: https://doi.org/10.1016/j.swevo.2024.101534. URL https://www.sciencedirect.com/

science/article/pii/S2210650224000725.

V. Chahar, S. Katoch, and S. Chauhan. A review on genetic algorithm: Past, present, and future. Multimedia

Tools and Applications, 80, 02 2021. doi: 10.1007/s11042-020-10139-6.

K. Dietrich and O. Mersmann. Increasing the diversity of benchmark function sets through affine recombination.

In G. Rudolph, A. V. Kononova, H. Aguirre, P. Kerschke, G. Ochoa, and T. Tušar, editors, Parallel Problem

Solving from Nature – PPSN XVII, pages 590–602, Cham, 2022. Springer International Publishing. ISBN

978-3-031-14714-2.

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless

Functions Definitions. Research Report RR-6829, INRIA, 2009. URL https://hal.inria.fr/inria-00362633.

N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff. COCO: A platform for comparing

continuous optimizers in a black-box setting. Optimization Methods and Software, pages 1–31, 2020.

http://arxiv.org/abs/2311.18035
http://arxiv.org/abs/2311.18035
https://www.sciencedirect.com/science/article/pii/S2210650224000725
https://www.sciencedirect.com/science/article/pii/S2210650224000725
https://hal.inria.fr/inria-00362633

Impact of Scaling in ELA Feature 27

A. Jankovic, T. Eftimov, and C. Doerr. Towards feature-based performance regression using trajectory data. In

Applications of Evolutionary Computation: 24th International Conference, EvoApplications 2021, Held as

Part of EvoStar 2021, April 7–9, 2021, Proceedings 24, pages 601–617. Springer, 2021.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 - International Conference

on Neural Networks, volume 4, pages 1942–1948 vol.4, 1995. doi: 10.1109/ICNN.1995.488968.

P. Kerschke and H. Trautmann. Comprehensive Feature-Based Landscape Analysis of Continuous and

Constrained Optimization Problems Using the R-Package Flacco, pages 93–123. Springer, 2019. ISBN

978-3-030-25147-5. doi: 10.1007/978-3-030-25147-5\ 7. URL https://doi.org/10.1007/978-3-030-25147-5_7.

P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann. Low-budget exploratory landscape analysis on multiple

peaks models. pages 229–236, 07 2016. doi: 10.1145/2908812.2908845.

P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann. Automated Algorithm Selection: Survey and

Perspectives. Evolutionary Computation, 27(1):3–45, 03 2019. ISSN 1063-6560. doi: 10.1162/evco\ a\ 00242.

URL https://doi.org/10.1162/evco_a_00242.

J. Kudela and R. Matousek. New benchmark functions for single-objective optimization based on a zigzag pattern.

IEEE Access, 10:8262–8278, 2022. doi: 10.1109/ACCESS.2022.3144067.

F. X. Long, B. van Stein, M. Frenzel, P. Krause, M. Gitterle, and T. Bäck. Learning the characteristics of

engineering optimization problems with applications in automotive crash. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO ’22, page 1227–1236, New York, NY, USA, 2022. Association

for Computing Machinery. ISBN 9781450392372. doi: 10.1145/3512290.3528712. URL https://doi.org/10.1145/

3512290.3528712.

J. Menč́ık. Latin hypercube sampling. In J. Mencik, editor, Concise Reliability for Engineers, chapter 16.

IntechOpen, Rijeka, 2016. doi: 10.5772/62370. URL https://doi.org/10.5772/62370.

O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph. Exploratory landscape analysis.

In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 829–836, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011a.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011b.

G. Petelin and G. Cenikj. How far out of distribution can we go with ela features and still be able to rank

algorithms? In 2023 IEEE Symposium Series on Computational Intelligence (SSCI), pages 341–346, 2023.

doi: 10.1109/SSCI52147.2023.10371880.

R. P. Prager and H. Trautmann. Nullifying the inherent bias of non-invariant exploratory landscape analysis

features. In Applications of Evolutionary Computation, page 411–425, Berlin, Heidelberg, 2023. Springer-

Verlag. ISBN 978-3-031-30228-2. doi: 10.1007/978-3-031-30229-9\ 27. URL https://doi.org/10.1007/

https://doi.org/10.1007/978-3-030-25147-5_7
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1145/3512290.3528712
https://doi.org/10.1145/3512290.3528712
https://doi.org/10.5772/62370
https://doi.org/10.1007/978-3-031-30229-9_27

28 Cenikj et al.

978-3-031-30229-9_27.

Q. Renau, C. Doerr, J. Dreo, and B. Doerr. Exploratory landscape analysis is strongly sensitive to the sampling

strategy. In Proc. of Parallel Problem Solving from Nature (PPSN), pages 139–153, 09 2020. ISBN 978-3-030-

58115-2.

R. Shwartz-Ziv and A. Armon. Tabular data: Deep learning is not all you need. Information Fusion, 81:84–90,

2022.

R. Storn and K. Price. Differential evolution - a simple and efficient heuristic for global optimization over continuous

spaces. Journal of Global Optimization, 11:341–359, 01 1997. doi: 10.1023/A:1008202821328.

Y. Tian, S. Peng, X. Zhang, T. Rodemann, K. C. Tan, and Y. Jin. A recommender system for metaheuristic

algorithms for continuous optimization based on deep recurrent neural networks. IEEE Transactions on

Artificial Intelligence, 1(1):5–18, 2020. doi: 10.1109/TAI.2020.3022339.

L. van der Maaten and G. Hinton. Viualizing data using t-sne. Journal of Machine Learning Research, 9:

2579–2605, 11 2008.

D. Vermetten, F. Ye, T. Bäck, and C. Doerr. Ma-bbob: Many-affine combinations of bbob functions for evaluating

automl approaches in noiseless numerical black-box optimization contexts. In Proc. of Genetic and Evolutionary

Computation Conference (GECCO), GECCO ’23, page 813–821, New York, NY, USA, 06 2023. Association

for Computing Machinery.

U. Škvorc, T. Eftimov, and P. Korošec. Understanding the problem space in single-objective numerical

optimization using exploratory landscape analysis. Applied Soft Computing, 90:106138, 2020. ISSN 1568-

4946. doi: https://doi.org/10.1016/j.asoc.2020.106138. URL https://www.sciencedirect.com/science/article/

pii/S1568494620300788.

U. Škvorc, T. Eftimov, and P. Korošec. The effect of sampling methods on the invariance to function

transformations when using exploratory landscape analysis. In 2021 IEEE Congress on Evolutionary

Computation (CEC), pages 1139–1146, 2021. doi: 10.1109/CEC45853.2021.9504739.

U. Škvorc, T. Eftimov, and P. Korošec. Transfer learning analysis of multi-class classification for landscape-

aware algorithm selection. Mathematics, 10(3), 2022. ISSN 2227-7390. doi: 10.3390/math10030432. URL

https://www.mdpi.com/2227-7390/10/3/432.

https://doi.org/10.1007/978-3-031-30229-9_27
https://doi.org/10.1007/978-3-031-30229-9_27
https://www.sciencedirect.com/science/article/pii/S1568494620300788
https://www.sciencedirect.com/science/article/pii/S1568494620300788
https://www.mdpi.com/2227-7390/10/3/432

