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Abstract

A graph is edge-transitive if the natural action of its automorphism group on its edge set
is transitive. An automorphism of a graph is semiregular if all of the orbits of the subgroup
generated by this automorphism have the same length. While the tetravalent edge-transitive
graphs admitting a semiregular automorphism with only one orbit are easy to determine,
those that admit a semiregular automorphism with two orbits took a considerable effort
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and were finally classified in 2012. Of the several possible different “types” of potential
tetravalent edge-transitive graphs admitting a semiregular automorphism with three orbits,
only one “type” has thus far received no attention. In this paper we focus on this class of
graphs, which we call the Woolly Hat graphs. We prove that there are in fact no edge-
transitive Woolly Hat graphs and classify the vertex-transitive ones.

Keywords: Edge-transitive, vertex-transitive, tricirculant, Woolly Hat graph.
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1 Introduction
Investigation of tetravalent graphs admitting a large degree of symmetry has been an active
topic of research attracting many researchers as is witnessed by numerous publications on
the subject. Among such graphs, the edge-transitive ones (for which the automorphism
group acts transitively on the edge set of the graph) have received by far the most atten-
tion. An edge-transitive tetravalent graph Γ can be arc-transitive (the automorphism group
Aut(Γ) acts transitively on the set of all arcs, that is ordered pairs of adjacent vertices).
If, however, Γ is not arc-transitive (but still is edge-transitive), then it is either half-arc-
transitive or semisymmetric, depending on whether Aut(Γ) acts transitively on the vertex
set V (Γ) of Γ or not, respectively (see for instance [21, 26]).

The tetravalent edge-transitive graphs of each of these three “types” have been thor-
oughly investigated, but these families of graphs are simply far too rich and diverse to
admit a complete classification. There is thus still an abundance of questions to be an-
swered and problems to be solved. In attacking such a wide-ranging topic, it makes sense
to investigate and possibly classify certain subfamilies of these graphs. When attempting
to solve any such problem or decide what kind of subfamilies to study, it is beneficial to
have a large database of tetravalent edge-transitive graphs. With this aim in mind, Potočnik
and Wilson constructed a Census [24] of all known tetravalent edge-transitive graphs up
to order 512 (known to be complete for the arc-transitive and half-arc-transitive graphs but
possibly incomplete for the semisymmetric ones) where for each graph in the Census, vari-
ous properties of the graph are given, together with several known ways on how to construct
it.

To be able to describe the graphs from the Census and more generally within the whole
family of tetravalent edge-transitive graphs it is desirable to have a large list of known infi-
nite families of such graphs. One very natural way of obtaining such families is to analyze
and possibly classify the examples admitting a semiregular automorphism (an automor-
phism having all orbits of equal length) with few orbits. It is an easy exercise to classify
all tetravalent edge-transitive graphs admitting an automorphism with just one orbit (such
graphs are known as circulants). The situation becomes much more interesting for graphs
admitting a semiregular automorphism with two orbits (these are called bicirculants). It
has taken a considerable effort of several researchers in a handful of papers before the last
step of the classification was obtained in [13]. For instance, one of the major steps was
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the classification of edge-transitive Rose window graphs [11], a family of graphs intro-
duced in [27] that have since been the object of investigation in various contexts (see for
instance [9]).

While all of the examples in the case of circulants and bicirculants turn out to be arc-
transitive, the situation gets even more interesting when one considers the tetravalent edge-
transitive tricirculants, that is, graphs admitting a semiregular automorphism with three
orbits. Here, for the first time, half-arc-transitive examples start to appear. In fact, the
smallest half-arc-transitive graph, the Doyle-Holt graph (see [1, 4, 8]) turns out to be a
tricirculant. Moreover, infinite families of tetravalent half-arc-transitive tricirculants have
been constructed (see for instance [1]).

To be able to explain why we focus on a particular family of tetravalent tricirculants
in this paper we introduce a notion of a diagram and its simplifed version. We point out
that our diagrams are essentially what are known as voltage graphs and the corresponding
graphs are what are known as cyclic covers of the corresponding simplified diagrams (see
for instance [6, 15]).

A tetravalent tricirculant can succinctly be represented by a diagram in the following
way. Let ρ be a corresponding semiregular automorphism, let n be its order, let u, v and
w be representatives of the three orbits of ⟨ρ⟩ and let us denote these orbits by U , V and
W , respectively. We represent each of these three orbits by a circle, and then for each pair
of distinct x, y ∈ {u, v, w} we join the circle representing the orbit X of x to the circle
representing the orbit Y of y by k edges, where k is the number of neighbors of x within
Y . We orient all of these edges in one of the two possible ways, say from X to Y , and for
each a, 0 ≤ a < n, such that x is adjacent to yρa, we put the label a onto this set of edges
(where we usually omit the label 0). For each x ∈ {u, v, w} we also put a semiedge, a loop,
or a semiedge and a loop at X , whenever x has 1, 2 or 3 neighbors within X , respectively.
Note that a semiedge will be present at the circle representing X if and only if n is even
and x is adjacent to xρn/2. On a loop we put the label a, where 0 ≤ a < n/2 is such that
x is adjacent to xρa (and xρ−a). To indicate that ρ is of order n we also put an n in the
middle of the diagram. An example of a diagram is given in the left part of Figure 2 (where
we in addition indicate the names of the vertices from each of the three orbits as chosen in
Construction 2.1). The simplified diagram is obtained from the diagram by omitting n and
the labels and arrows on the edges.

Distinguishing cases depending on the maximal indegree of the three orbits of ⟨ρ⟩ (the
valency of the subgraph induced on that orbit), it is easy to see that there are 9 possible
simplified diagrams for tetravalent tricirculants (depicted in Figure 1). Considering the
number of 4-cycles through each edge, it is not difficult to show that none of the diagrams
with an orbit of indegree 3 (the first three) can give rise to edge-transitive graphs. Similar
considerations reveal that the simplified diagram IV gives rise to a unique edge-transitive
example (it is the graph of order 18, named C4[18,2] in [24], which in fact also corresponds
to the simplified diagram IX, of course for a different semiregular automorphism of order
6). The simplified diagram VIII takes a bit more work, but using the results of [20] one can
show that this diagram also gives rise to a unique edge-transitive example, namely the so
called wreath graph of order 6 (or equivalently the complement of the complete multipartite
graph K2,2,2).

The results of [25] show that there are infinitely many edge-transitive examples for the
simplified diagram V, while those of [16, 17, 26] show that there are infinitely many edge-
transitive (in fact, infinitely many half-arc-transitive and also infinitely many arc-transitive)
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I II III

IV V VI

VII VIII IX

Figure 1: The nine simplified diagrams for tetravalent tricirculants.

examples for each of the simplified diagrams VI and IX.
This leaves us with the simplified diagram VII. We call the corresponding diagram the

Woolly Hat diagram. The corresponding graphs (see Section 2) have thus far not been
investigated. It is the aim of this paper to investigate their symmetries. One of the main
results of this paper (see Theorem 3.7) is that the Woolly Hat diagram yields no edge-
transitive examples.

When constructing semisymmetric tetravalent graphs, certain structures, called LR-
structures (see [21, 22, 23]), can be very useful. The underlying graphs of these struc-
tures are tetravalent vertex-transitive graphs, which are not arc-transitive, but have some
additional properties regarding their symmetries (see [21] for a definition). Inspecting the
above mentioned Census [24], we find out that some semisymmetric graphs from the Cen-
sus arise via LR-structures corresponding to the Woolly Hat diagram. This motivates the
second part of this paper, in which we give a complete classification of the vertex-transitive
graphs corresponding to the Woolly Hat diagram (see Theorem 4.11).

2 The family and basic properties

In this section we introduce the family of graphs corresponding to the Woolly Hat diagram
and state some of their basic properties (but see also [24] where the graphs were first de-
fined). Before doing this we would like to point out that throughout the paper Zn will
always denote the residue class ring modulo n, where n is a positive integer.

Construction 2.1. For each integer n ≥ 3, for each a, b, c, d ∈ Zn, where 2a ̸= 0, b, c, d
are pairwise distinct and n, a, b, c and d have no common prime divisor, the Woolly Hat
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graph WHn(a, b, c, d) is the graph of order 3n with vertex set

{Ai : i ∈ Zn} ∪ {Bi : i ∈ Zn} ∪ {Ci : i ∈ Zn}

and in which for each i ∈ Zn we have the following adjacencies

Ai ∼ Ai−a, Ai+a, Bi, Ci

Bi ∼ Ai, Ci+b, Ci+c, Ci+d

Ci ∼ Ai, Bi−b, Bi−c, Bi−d,

where all of the subscripts are computed modulo n. The Wooly Hat diagram and a corre-
sponding drawing of the graph WH4(1, 0, 1, 3) are given in Figure 2.

A

B C

a

b

c

d

n A0

B0 C0

A1

B1 C1

A2

B2 C2

A3

B3 C3

Figure 2: The Wooly Hat diagram and the graph WH4(1, 0, 1, 3).

Note that, by definition, the subscripts of the vertices of WHn(a, b, c, d) are always
computed modulo n. Note also that the assumptions that 2a ̸= 0 in Zn and that b, c and
d are pairwise distinct ensure that the graph is regular of valency 4, while the assumption
that n, a, b, c and d have no common prime divisor ensures that the graph is connected.

Throughout the paper we abbreviate the term “a Woolly Hat graph” to a WH-graph.
We also make an agreement that the vertices of a WH-graph of the form Ai, Bi and Ci are
called the A-vertices, the B-vertices and the C-vertices, respectively.

We first record some fairly obvious symmetries of the WH-graphs. The proof is straight-
forward and is left to the reader.

Lemma 2.2. Let Γ = WHn(a, b, c, d) be a WH-graph. Then Γ admits the semiregular
automorphism ρ, mapping according to the rule

Aiρ = Ai+1, Biρ = Bi+1, Ciρ = Ci+1, i ∈ Zn, (2.1)

and the automorphism τ , mapping according to the rule

Aiτ = A−i, Biτ = C−i, Ciτ = B−i, i ∈ Zn. (2.2)
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In Figure 3 a symmetric drawing of the graph WH4(1, 0, 1, 3) from Figure 2 is given
in which the automorphism ρ corresponds to a 4-fold rotation while the automorphism τ
corresponds to reflection over the dotted line. We remark that in Figures 2 and 3, as well as
in Figures 5 and 6 from Section 4, the vertices and edges are colored in such a way that the
vertices (or edges) from the same ⟨ρ⟩-orbit receive the same color. The sole purpose of this
coloring is to make it easier to keep track of vertices and edges in these figures and should
not be confused with the coloring of the edges we will be talking about in Section 4.

A0

B0

C0

A1

B1C1

A2

B2

C2

A3

B3 C3

Figure 3: A symmetric drawing of the graph WH4(1, 0, 1, 3).

Note that WHn(a, b, c, d) = WHn(−a, b, c, d) and that for Γ = WHn(a, b, c, d) and
any q ∈ Zn, coprime to n, relabeling each Ai, Bi and Ci by Aqi, Bqi and Cqi, respectively,
yields WHn(qa, qb, qc, qd). This shows that the following holds.

Lemma 2.3. Let Γ = WHn(a, b, c, d) be a WH-graph and let q ∈ Zn be coprime to n.
Then Γ ∼= WHn(qa, qb, qc, qd). In particular, Γ ∼= WHn(a,−b,−c,−d).

Let Γ be a WH-graph and let ρ ∈ Aut(Γ) be as in (2.1). The subgroup ⟨ρ⟩ of Aut(Γ)
then has six orbits in its action on the edge set of Γ. We call the edges from the ⟨ρ⟩-orbit
of A0Aa the a-edges, those from the orbit of A0B0 the left edges, those from the orbit of
A0C0 the right edges, and for each x ∈ {b, c, d} the edges from the orbit of B0Cx the
x-edges.

We also point out that each WH-graph has certain 6-cycles. These will play an im-
portant role in the determination of the automorphism group of the WH-graphs. For each
i ∈ Zn we clearly have the 6-cycles (recall that b, c and d are pairwise distinct)

(Bi, Ci+b, Bi+b−c, Ci+b−c+d, Bi−c+d, Ci+d). (2.3)

We call the 6-cycles of this form the canonical 6-cycles. Observe that these 6-cycles are
characterized by the fact that for any pair of antipodal edges on such a 6-cycle there exists
an x ∈ {b, c, d} such that both of these edges are x-edges.
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3 Nonexistence of edge-transitive WH-graphs
In this section we prove Theorem 3.7 which states that there are no edge-transitive WH-
graphs. One of the main tools in our proof is the following nice result of A. Lucchini, which
can be found in the book [10] (we point out that the result was discovered independently by
Herzog and Kaplan, see [7]), and has been used successfully several times before in various
classification results concerning symmetries of graphs (for instance in [2, 5, 11, 12, 14] to
name just a few).

Proposition 3.1 ([7, 10]). Let G be a group containing a nontrivial cyclic subgroup H . If
|G| ≤ |H|2, then H contains a nontrivial subgroup which is normal in G.

We will be applying the above result in the setting where G is the automorphism group
of a WH-graph and H is the cyclic subgroup generated by the semiregular automorphism
ρ from (2.1). Before stating and proving the next proposition we recall the definition of a
2-arc-transitive graph and define the notion of a quotient graph that we will be using in this
paper.

A 2-arc of a graph is an ordered triple (u, v, w) of its vertices such that u ̸= w and v is
adjacent to u and w. A graph is 2-arc-transitive if its automorphism group acts transitively
on the set of its 2-arcs. Let Γ be a graph and K ≤ Aut(Γ). The quotient graph ΓK of Γ
with respect to K is the graph whose vertex set consists of the orbits of K in its action on
the vertex set of Γ and in which two distinct orbits O1 and O2 are adjacent whenever there
are u ∈ O1 and v ∈ O2 which are adjacent in Γ. Therefore, such a quotient graph is by
definition simple (in the sense that there are no loops or multiple edges).

Proposition 3.2. Let Γ = WHn(a, b, c, d) be a WH-graph and let ρ ∈ Aut(Γ) be as
in (2.1). Suppose Γ is edge-transitive and K ≤ ⟨ρ⟩ is a nontrivial normal subgroup of
Aut(Γ). Then the quotient graph ΓK of Γ with respect to K is also an edge-transitive
WH-graph. Moreover, if Γ is 2-arc-transitive, then ΓK is also 2-arc-transitive.

Proof. Since K is normal in Aut(Γ), its orbits are blocks of imprimitivity for Aut(Γ), and
so edge-transitivity implies that there are no edges of Γ joining two vertices from the same
K-orbit. Moreover, as B0 is clearly the only neighbor of A0 in the K-orbit of B0, edge-
transitivity also implies that for each vertex of Γ its four neighbors are in four different
K-orbits. Therefore, the quotient graph ΓK is regular of valency 4. Since K ≤ ⟨ρ⟩ it
is now clear that ΓK is a WH-graph. Moreover, the induced action of Aut(Γ) on ΓK is
edge-transitive, and if Aut(Γ) acts 2-arc-transitively on Γ, then so does this induced action
of Aut(Γ) on ΓK .

Our proof that there are no edge-transitive WH-graphs is carried out in two steps. We
first show that there are no 2-arc-transitive WH-graphs and then show that there are also no
edge-transitive ones. But first we make a useful observation.

Lemma 3.3. There are no edge-transitive WH-graphs of girth 3. Consequently, if the graph
WHn(a, b, c, d) is edge-transitive, then b, c and d are all nonzero.

Proof. Suppose Γ = WHn(a, b, c, d) is edge-transitive and is of girth 3. Let x ∈ {b, c, d}.
Since Γ is edge-transitive, the edge B0Cx is contained in a 3-cycle, and so B0 and Cx

have a common neighbor. By definition of Γ this is only possible if x = 0 (and this
common neighbor is A0). But then b = c = d = 0, contradicting the assumption from
Construction 2.1 that b, c and d are pairwise distinct.
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Using Lemma 2.3 by which we can assume that a divides n, together with Lemma 3.3,
a computer search for all relatively small edge-transitive WH-graphs can be performed.
A couple of hours of computation using a suitable package such as MAGMA [3] on an
ordinary computer reveals that there are no edge-transitive WH-graphs of order up to 3 · 71
(that is, with n ≤ 71). For ease of reference we record this fact as an observation.

Observation 3.4. There exists no edge-transitive WH-graph WHn(a, b, c, d) with n ≤ 71.

Proposition 3.5. There are no 2-arc-transitive WH-graphs.

Proof. By way of contradiction, suppose 2-arc-transitive WH-graphs exist and let Γ =
WHn(a, b, c, d) be a smallest 2-arc-transitive WH-graph. Let ρ be as in (2.1). By Proposi-
tion 3.2, no nontrivial subgroup of ⟨ρ⟩ is normal in Aut(Γ), and so Proposition 3.1 implies
that |Aut(Γ)| > n2. Since Γ is of order 3n and is 2-arc-transitive, |Aut(Γ)| = 3n · 12 · t,
where t is the order of a stabilizer of a 2-arc in Aut(Γ). Then n < 36t, and so Observa-
tion 3.4 implies that t > 2. Analysing 6-cycles of Γ we now show that this is not possible.

Since Γ is 2-arc-transitive and possesses the canonical 6-cycles, there exists a positive
constant λ such that each 2-arc of Γ lies on λ different 6-cycles. Clearly, any 6-cycle of Γ
containing the 2-path P = (B0, A0, C0) is of the form

(Cx, B0, A0, C0, B−y, A−y), (3.1)

where x, y ∈ {b, c, d} are such that x = −y. Therefore, the above 2-path P lies on a
6-cycle of Γ if and only if 2x = 0 for some x ∈ {b, c, d} or x+ y = 0 for a pair of distinct
x, y ∈ {b, c, d} (or both). Since b, c and d are pairwise distinct and are all nonzero (by
Lemma 3.3), 2x = 0 for at most one x ∈ {b, c, d} and x + y = 0 for at most one pair of
distinct x, y ∈ {b, c, d}. Therefore, since a condition of the form 2x = 0 gives rise to one
6-cycle through P , while a condition of the form x + y = 0 for x ̸= y gives rise to two
6-cycles through P , we have that λ ∈ {1, 2, 3}.

Suppose first that λ = 1. Inspecting the canonical 6-cycles from (2.3) we see that in this
case, for any 2-path containing no A-vertices, the unique 6-cycle through it is a canonical 6-
cycle. It thus follows that the unique 6-cycle through the 2-path (A0, Aa, Ca) must contain
a 4-path of the form (A0, Aa, Ca, Ba−x, Aa−x), where x ∈ {b, c, d}. Therefore, A0 and
Aa−x must have a common neighbor, which obviously must be an A-vertex and is thus
A−a (and so a− x = −2a). But then this 6-cycle and the one obtained by applying ρa are
two 6-cycles containing the 2-path (A−a, A0, Aa), contradicting λ = 1.

Suppose next that λ = 3. The above discussion shows that we can assume that b = n/2
and c+d = 0. Consider the corresponding three 6-cycles from (3.1). The successors of B0

(in the direction of the 2-arc (C0, A0, B0)) on them are Cb, Cc and Cd, and so each 3-arc
whose initial 2-arc is (C0, A0, B0) lies on a 6-cycle. As Γ is 2-arc-transitive, each 3-arc
lies on a 6-cycle. But this clearly is not the case for the 3-arc (B0, A0, Aa, Ba), since no
two C-vertices are adjacent, showing that λ ̸= 3.

We are left with the possibility λ = 2. Recall that in this case we can assume that
c + d = 0 and b ̸= n/2. Again, inspecting the corresponding 6-cycles from (3.1) we find
that for each 2-arc (u, v, w) of Γ there is a unique z ∈ Γ(w) \ {v} (here Γ(w) is the set
of all neighbors of w in Γ) such that Γ has no 6-cycle containing the 3-arc (u, v, w, z), and
moreover, that the two 6-cycles of Γ through (u, v, w) have precisely these three vertices
in common. We now show that this contradicts t > 2. To this end, let (u, v, w) be any
2-arc of Γ, let x ∈ Γ(u) \ {v} and y ∈ Γ(w) \ {v} be the unique vertices such that



L. W. Berman et al.: Symmetries of the Woolly Hat graphs 9

Γ has no 6-cycle through (x, u, v, w) or (u, v, w, y), and let u′, u′′, w′, w′′ be such that
Γ(u) = {x, u′, u′′, v}, Γ(w) = {v, w′, w′′, y} and that Γ has a 6-cycle through each of
(u′, u, v, w,w′) and (u′′, u, v, w,w′′), see Figure 4. Since one of the two 6-cycles through

u′′ v′′ w′′

x u wv y

u′ v′ w′

Figure 4: The local situation around a 2-arc in the case of λ = 2.

(u′, u, v) contains (u′, u, v, w), we can also assume that Γ(v) = {u, v′, v′′, w}, where v′′

is such that there are no 6-cycles through (u′, u, v, v′′) (note however that there is a 6-
cycle through (u′, u, v, v′)). Suppose now that α ∈ Aut(Γ) fixes each of u, v and w. By
definition of x and y it then also fixes each of x and y. Now, suppose that in addition α also
fixes at least one of u′, u′′, v′, v′′, w′, w′′. Because of the two 6-cycles through (u, v, w) it
is clear that if α fixes any of u′, u′′, w′, w′′ it fixes each of them. Because of the two 6-
cycles through (u′, u, v) it now follows that if α fixes any of u′, u′′, w′, w′′ it then also fixes
v′ and thus also v′′. Conversely, if α fixes any of v′ and v′′, it fixes both, and then the fact
that u′ ∈ Γ(u) \ {v} is the unique vertex such that there is no 6-cycle through (v′′, v, u, u′)
implies that α also fixes u′ (and thus each of u′, u′′, w′, w′′). This thus shows that if α fixes
any of u′, u′′, v′, v′′, w′, w′′ it fixes each of them. It is now easy to see that any such α also
fixes each neighbor of any of x, y, u′, u′′, v′, v′′, w′, w′′. Since Γ is connected, an inductive
approach then shows that α is the identity. Therefore, the stabilizer of (u, v, w) in Aut(Γ)
has at most one nontrivial element, and so t ≤ 2, a contradiction.

Before stating and proving the main result of this section we review a concept from [18]
that will play an important role in our proof. Here we only describe the part essential to our
proof, but see [18] for details. Suppose Γ is a tetravalent arc-transitive graph and C is a set
of cycles of Γ such that each edge of Γ lies on precisely one cycle from C (in other words,
C is a decomposition of the edge set of Γ into cycles). If a subgroup G ≤ Aut(Γ) preserves
the set C (that is, each element of G maps cycles from C to cycles from C) then we say that
C is a G-invariant cycle decomposition of Γ. Our argument in the proof of Theorem 3.7
will rely on the following corollary of [18, Theorem 4.2].

Proposition 3.6 ([18]). Let Γ be a tetravalent arc-transitive graph. If Γ is not 2-arc-
transitive, then there exists at least one Aut(Γ)-invariant cycle decomposition of Γ.

Theorem 3.7. There are no edge-transitive WH-graphs.

Proof. We first point out that since each WH-graph admits the automorphism τ from
Lemma 2.2 a WH-graph is edge-transitive if and only if it is arc-transitive. It thus suf-
fices to show that there are no arc-transitive WH-graphs. By way of contradiction, suppose



10 Art Discrete Appl. Math. 7 (2024) #P2.06

arc-transitive WH-graphs do exist and let Γ = WHn(a, b, c, d) be a smallest arc-transitive
WH-graph. Proposition 3.5 implies that Γ is not 2-arc-transitive, and so Proposition 3.6
implies that Γ admits at least one Aut(Γ)-invariant cycle decomposition. Let C be one
of them. For an adjacent pair of vertices u, v of Γ we denote the unique member of C
containing the edge uv by Cuv .

Just as in the proof of Proposition 3.5 we obtain that |Aut(Γ)| > n2. Since Γ is of order
3n and is arc-transitive, |Aut(Γ)| = 3n · 4 · t, where t is the order of a stabilizer of an arc
in Aut(Γ). Then n < 12t, and so Observation 3.4 implies that t > 6. In particular, t > 1.
Now, let u be a vertex of Γ and v, v′, w, w′ be its four neighbors, where we have denoted
them in such a way that (v, u, v′) is contained in Cuv and (w, u,w′) is contained in Cuw.
Let s be the size of the intersection of the vertex sets of Cuv and Cuw. Since t > 1, there
exists an automorphism α ∈ Aut(Γ) fixing v and u while moving at least one of v′, w and
w′, but as C is Aut(Γ)-invariant, α fixes Cuv pointwise and reflects Cuw with respect to u.
Consequently, α fixes each of the s common vertices of Cuv and Cuw while reflecting Cuw,
and so s ≤ 2 must hold. As Γ is vertex-transitive and C is Aut(Γ)-invariant, each pair of
distinct nondisjoint cycles of C meets in s vertices.

Consider now the left edge A0B0. With no loss of generality we can assume that
the member of C containing this edge contains the 2-path (A0, B0, Cc). Applying the
automorphism τρc, where ρ and τ are from Lemma 2.2, we see that this cycle in fact
contains the 3-path (A0, B0, Cc, Ac). Moreover, considering the orbits of this cycle under
the subgroup ⟨ρ⟩ we see that the other member of C containing the vertex B0 consists solely
of b- and d-edges and is thus of the form (B0, Cb, Bb−d, C2b−d, . . .). Edge-transitivity of
Γ therefore implies that all members of C are of length

2n

gcd(d− b, n)
. (3.2)

We distinguish two possibilities depending on what the cycle CA0B0 looks like.
CASE 1: there is a cycle in C containing (B0, A0, C0). In view of the automorphism ρ

it is clear that, besides the cycles consisting solely of the b- and d-edges, C consists of all
the cycles of the forms

(. . . , Ai, Ai+a, Ai+2a, . . .), i ∈ Zn

(. . . , Bi, Ai, Ci, Bi−c, Ai−c, Ci−c, Bi−2c, . . .), i ∈ Zn.

The first of these are of length n/ gcd(a, n) while the second are of length 3n/ gcd(c, n).
As both of these lengths need to equal the length from (3.2), we obtain gcd(d − b, n) =
2 gcd(a, n) and gcd(c, n) = 3 gcd(a, n). In particular, ⟨c⟩ is an index 3 subgroup of ⟨a⟩ in
Zn. The intersection of the two members of C containing the vertex A0 is thus

{Ai : i ∈ ⟨a⟩ ∩ ⟨c⟩} = {Ai : i ∈ ⟨c⟩},

and so s ≤ 2 implies that 2c = 0. Lemma 3.3 thus forces n to be even and c = n/2.
The cycles from C are therefore of length 6, n is divisible by 6, and the two members of
C containing A0 meet in their antipodal pair of vertices. However, considering the two
members of C containing B0 we see that the antipodal vertex in one of them is Bn/2, while
in the other one it is a C-vertex, which contradicts vertex-transitivity of Γ.

CASE 2: no cycle in C contains (B0, A0, C0). With no loss of generality we can then
assume that the cycle CA0B0 contains (B0, A0, Aa), and so applying ρ we see that besides
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the cycles consisting solely of the b- and d-edges, the only other members of C are of the
form

(. . . , Bi, Ai, Ai+a, Ci+a, Bi+a−c, Ai+a−c, Ai+2a−c, Ci+2a−c, Bi+2a−2c, . . .), i ∈ Zn.

This implies that the two members of C containing the vertex B0 are of the form

CB0Cb : (. . . , C2d−b, Bd−b, Cd, B0, Cb, Bb−d, . . .)

CB0Cc : (. . . , Ca, Aa, A0, B0, Cc, Ac, . . .).

Since t > 1, there exists an automorphism α ∈ Aut(Γ) fixing each of B0 and Cb but
interchanging A0 and Cc. It follows that α fixes the cycle CB0Cb pointwise and reflects
CB0Cc with respect to B0. In particular, α fixes Bb−d and interchanges A0 with Cc, and
thus also CA0C0 with CCcBc−d . Observe that these two cycles are of the form

CA0C0 : (. . . , B−a, A−a, A0, C0, B−c, . . .)

CCcBc−d : (. . . , Cc−b+d, Bc−b, Cc, Bc−d, Cb+c−d, . . .).

Therefore, α maps Cb+c−d to one of B−a and B−c. However, the fixed vertex Bb−d is
adjacent to Cb+c−d but is clearly not adjacent to any of B−a and B−c, bringing us to the
final contradiction.

4 The vertex-transitive WH-graphs
While there are no edge-transitive WH-graphs, one can find vertex-transitive examples.
In fact, as the next two propositions show, there are infinitely many of them. Before
introducing the corresponding two infinite families we make a simple observation. Let
Γ = WHn(a, b, c, d) be a WH-graph and recall that Γ admits the automorphisms ρ and τ
from Lemma 2.2. The subgroup ⟨ρ, τ⟩ of Aut(Γ) has two orbits on the vertex set of Γ with
one orbit consisting of all the A-vertices. It thus follows that Γ is vertex-transitive if and
only if there is an automorphism of Γ mapping at least one A-vertex to a B- or a C-vertex.

Proposition 4.1. Let n ≥ 4 be an even integer and let a, b, c, d be integers with 1 ≤ a <
n/2 and 0 ≤ b, c, d < n such that b, c and d are pairwise distinct, a, b and d are odd, while
c is even, and each of the following holds:

• d = 2a+ b;

• 2c = 3a+ 3b.

Then the graph WHn(a, b, c, d) is vertex-transitive.

Proof. By the comment preceding the statement of this proposition we only need to exhibit
an automorphism of Γ = WHn(a, b, c, d) mapping an A-vertex to a B- or a C-vertex. Let
σ be the permutation of the vertex set of Γ defined by the rule given via the following table,
where i ∈ Zn:

imod 2 Aiσ Biσ Ciσ
0 Bi Ci+c Ai

1 Ci−a+d Ai+a+b Bi−b+c−d

Due to the assumptions on the parity of a, b, c and d it is clear that σ is indeed a permutation
of the vertex set of Γ. Using the assumption that 2a = d − b and 2c = 3a + 3b one can
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also verify that it preserves adjacencies. For instance, while it is clear that the a-edges
AiAi+a with i even are mapped to edges of Γ, one can use the assumption d = 2a + b to
see that also for i odd the vertex Ai+aσ = Bi+a is adjacent to Aiσ = Ci−a+d = Ci+a+b.
Similarly, to see that the right edges AiCi with i odd are mapped to edges of Γ, one needs
to show that Ci−a+d and Bi−b+c−d are adjacent. As d = 2a + b and 2c = 3a + 3b, we
see that Ci−a+d = Ci+a+b and Bi−b+c−d = Bi−2a−2b+2c−c = Bi+a+b−c are indeed
adjacent. That σ preserves all other adjacencies is verified in a similar way and is left to
the reader.

Figure 5 shows symmetric drawings of the graphs WH4(1, 3, 0, 1) and WH4(1, 3, 2, 1),
the smallest two members of the family of vertex-transitive WH-graphs from Proposi-
tion 4.1. The colors of the vertices are consistent with Figure 2. For each of these drawings
the 6-fold rotation is an automorphism mapping an A-vertex to a B-vertex. We remark
that the counterclockwise rotation corresponds to the automorphism σρ2 in the case of
WH4(1, 3, 0, 1) and to the automorphism σ in the case of WH4(1, 3, 2, 1), where σ is as in
the proof of Proposition 4.1 and ρ as in Lemma 2.2.
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(a) WH4(1, 3, 0, 1)
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(b) WH4(1, 3, 2, 1)

Figure 5: The smallest two examples of the family of WH-graphs from Proposition 4.1.

Proposition 4.2. Let m ≥ 3 be an odd integer. Then the WH-graph WH4m(2,m − 2,
0,m+ 2) is vertex-transitive.

Proof. As in the previous proof, we only need to show that there exists an automorphism
of Γ = WH4m(2,m− 2, 0,m+ 2) which maps an A-vertex to a B- or a C-vertex. Since
m is odd, there is a unique δ ∈ {1, 3} such that m ≡ δ (mod 4). Let θ be the permutation
of the vertex set of Γ defined by the rule given via the following table, where i ∈ Zn:

imod 4 Aiθ Biθ Ciθ
0 Bi Ai Ci

δ Ci Bi Ai

2 Ci+m Ai+m Bi+m

4− δ Bi−m Ci−m Ai−m

Using the fact that m is odd and m ≡ δ (mod 4), it is easy to verify that θ is indeed a
permutation of the vertex set of Γ. Since c = 0, it is clear that θ maps all of the c-edges, the
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left edges and the right edges of Γ to edges of Γ. As a = 2 it is also easy to verify that the
a-edges of Γ are all mapped to edges of Γ. To see that the b- and the d-edges are also
mapped to edges of Γ observe that m−2 ≡ m+2 ≡ 4−δ (mod 4). It is now not difficult
to verify that the b- and the d-edges are mapped to edges of Γ. For instance, in the case of
i ≡ 0 (mod 4), we see that Biθ = Ai is indeed adjacent to Ci+m−2θ = Ai+m−2−m =
Ai−2 and Ci+m+2θ = Ai+m+2−m = Ai+2. We leave the remaining three cases to the
reader.

It turns out that WH8(2, 1, 0, 5) and WH8(2, 1, 4, 5) are both vertex-transitive and are
nonisomorphic. A symmetric drawing of each of them which is given in Figure 6 shows that
the 6-fold rotation is an automorphism mapping an A-vertex to a B-vertex. Clearly, these
two graphs belong to neither of the two families from Proposition 4.1 and Proposition 4.2.
Our goal in the remainder of this section is to prove that each vertex-transitive WH-graph
which is not isomorphic to one of these two sporadic small graphs is isomorphic to a WH-
graph from one of the two infinite families given by Proposition 4.1 and Proposition 4.2.
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(a) WH8(2, 1, 0, 5)
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(b) WH8(2, 1, 4, 5)

Figure 6: The two sporadic vertex-transitive WH-graphs.

We start by introducing some further terminology and by making a few useful observa-
tions, which we record in Proposition 4.3 for ease of reference. Let Γ = WHn(a, b, c, d)
be a vertex-transitive WH-graph and let H = ⟨ρ, τ⟩, where ρ and τ are as in Lemma 2.2.
Since Γ is vertex-transitive, Theorem 3.7 implies that the four edges incident to A0 are not
in the same Aut(Γ)-orbit. As these four edges come from two H-orbits, Aut(Γ) has pre-
cisely two orbits on the edge set of Γ and each vertex is incident to two edges from each of
these two orbits. Let R be the Aut(Γ)-orbit of the edge A0Aa. Applying ρ−a we see that
A−aA0 ∈ R, and so A0Aa and A−aA0 are the two edges from R incident to A0. Letting B
be the Aut(Γ)-orbit of the edge A0B0 we thus see that R and B are the two Aut(Γ)-orbits
on the edge set of Γ. We call the edges from R red and the ones from B blue. Since each
vertex is incident to two red and to two blue edges this gives rise to red cycles and blue
cycles.

The red cycle containing the red edge A0Aa is (A0, Aa, A2a, . . . , A−a) and is thus of
length n/ gcd(a, n). Since A0B0 is blue, there is precisely one x ∈ {b, c, d} such that
B0Cx is also blue. With no loss of generality assume B0Cc is blue. Applying ρc we thus
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see that the blue cycles are of the form (Ai, Bi, Ci+c, Ai+c, Bi+c, Ci+2c, Ai+2c, . . . , Ci−c),
i ∈ Zn. It follows that the red cycle through B0 is (B0, Cd, Bd−b, C2d−b, B2(d−b), . . . , Cb)
and is thus of length 2n/ gcd(d − b, n). Since all red cycles must be of the same length,
we must have that 2 gcd(a, n) = gcd(d − b, n). In particular, n and the order |a| of a are
both even. Our agreement regarding the colors of edges can be seen in Figure 7 where the
choice of colors is represented via the Wooly Hat diagram and is shown in the case of the
WH-graph WH4(1, 3, 0, 1).

A

B C

a

b

c

d

n A0

B0 C0

A1

B1 C1

A2

B2 C2

A3

B3 C3

Figure 7: The red and blue edges and a basic 6-cycle in WH4(1, 3, 0, 1).

Recall that each WH-graph possesses canonical 6-cycles and note that each canonical
6-cycle consists of four red and two blue edges where the blue edges are antipodal on this
cycle. We call all 6-cycles consisting of four red and two blue edges where the blue edges
are antipodal on this cycle basic. Since Γ is vertex-transitive, there exists a basic 6-cycle
containing the red 2-path P = (A0, Aa, A2a). Since no red 2-path can connect a B-vertex
to a C-vertex it follows that the two blue edges of any basic 6-cycle containing P are either
both left edges or are both right edges. It is thus clear that one of 2a = d− b or 2a = b− d
must hold. With no loss of generality we assume that 2a = d − b holds. An example of a
basic 6-cycle in the graph WH4(1, 3, 0, 1) is highlighted in Figure 7.

Suppose one of b and d is 0, say b = 0. Then the red edge B0Cb lies on a 3-cycle
containing two blue edges. Since R is an Aut(Γ)-orbit the same should hold for the red
edge B0Cd, clearly forcing d = 0 and thus contradicting the fact that d ̸= b. Therefore, b
and d must both be nonzero.

We finally look at the intersections of blue and red cycles. The intersection of the blue
and the red cycle containing the vertex A0 is

{Ai : i ∈ ⟨a⟩ ∩ ⟨c⟩}. (4.1)

On the other hand, taking into account that d− b = 2a, the intersection of the blue and the
red cycle containing the vertex B0 is

{Bi : i ∈ ⟨2a⟩ ∩ ⟨c⟩} ∪ {Ci : i ∈ (b+ ⟨2a⟩) ∩ ⟨c⟩}.

Note that the distance on the corresponding blue cycle between any two vertices from (4.1)
is a multiple of 3. However, the distance on the corresponding blue cycle between B0
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and any potential vertex from {Ci : i ∈ (b + ⟨2a⟩) ∩ ⟨c⟩} is never a multiple of 3. By
vertex-transitivity we thus get

(b+ ⟨2a⟩) ∩ ⟨c⟩ = ∅ and ⟨a⟩ ∩ ⟨c⟩ = ⟨2a⟩ ∩ ⟨c⟩. (4.2)

This shows that lcm(gcd(a, n), gcd(c, n)) = lcm(gcd(2a, n), gcd(c, n)). Since the order
of a is even, gcd(2a, n) = 2 gcd(a, n), and so gcd(c, n) is even. In fact, if we define the 2-
part of a positive integer m to be 2k, where k ≥ 0 is the largest integer such that 2k divides
m, we have thus shown that the 2-part of gcd(c, n) is larger than the 2-part of gcd(a, n).
We record all of the above observations for ease of future reference.

Proposition 4.3. Let Γ = WHn(a, b, c, d) be a vertex-transitive WH-graph. Then, chang-
ing the roles of b, c and d if necessary, the following hold:

• n is even.

• b and d are both nonzero.

• 2a = d− b.

• The 2-part of gcd(c, n) is larger than the 2-part of gcd(a, n). In particular, c is even.

• The two Aut(Γ)-orbits on the edge set of Γ are B and R, where B consists of all the
left, the right and the c-edges, while R consists of all the a-, the b- and the d-edges.

Our classification of the vertex-transitive WH-graphs relies heavily on the analysis of
certain structures in these graphs in relation to the two colors of edges. In particular, the
following notion will play an important role. We say that two vertices of a WH-graph are
basically R-antipodal if there exists a basic 6-cycle on which each of them is incident to
two red edges (and so they are antipodal on this cycle). We also say that a path, a walk
or a cycle is red (blue, respectively) if all of its edges are red (blue, respectively) and is
alternating if no two consecutive edges of it are of the same color.

Before proceeding with our analysis a remark is in order. Observe that the above result
ensures that for a vertex-transitive Γ = WHn(a, b, c, d) the order of a is even. Therefore,
d − b = 2a implies that the orbits of the subgroup ⟨ρ2a⟩, where ρ is as in (2.1), are
blocks of imprimitivity for Aut(Γ) (each of them coincides with a set consisting of every
other vertex of a red cycle). One could thus consider the quotient graph with respect to
these blocks (where we regard the “double” red edge as a single edge) and obtain a cubic
graph on which the induced action of Aut(Γ) is vertex-transitive. This graph is of course
a tricirculant (in the sense that it admits a semiregular automorphism with three orbits),
and so one could use the results of [19] where all cubic vertex-transitive tricirculants were
classified. Nevertheless, the relevant result, namely [19, Theorem 4.2], only classifies the
graphs up to isomorphism, its proof is very long and technical (about 11 pages), and even
so one would still need to carefully examine what the conclusions of that result on our
quotient graph say about the original parameters n, a, b, c and d. Especially so since the
quotient might (and in fact quite often is) be one of the sporadic small graphs of orders 6
(the prism) and 12 (the truncation of K4) from [19, Table 1]. This is why we have decided
to take a direct approach without referring to the results of [19].

We start our analysis with a useful observation regarding red 2-paths and basic 6-cycles.

Lemma 4.4. Let Γ = WHn(a, b, c, d) be a vertex-transitive WH-graph where the param-
eters n, a, b, c and d are as in Proposition 4.3. Then the following hold:
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• If 4a ̸= 0 then each red 2-path lies on precisely two basic 6-cycles.

• If 4a = 0 then each red 2-path lies on precisely four basic 6-cycles.

Proof. Let us consider the basic 6-cycles containing the red 2-path (B0, Cd, Bd−b). Clearly,
if at least one of its two blue edges is a left edge (and so there are also two a-edges on this
cycle) then both are left edges. If this is indeed the case, then the 6-cycle must contain
(A0, B0, Cd, Bd−b, Ad−b). Since d − b = 2a, one of the possibilities for the remaining
vertex of this basic 6-cycle is Aa. The only other possibility is A−a which gives rise to
a 6-cycle if and only if −2a = 2a (which is equivalent to 4a = 0). A similar situation
occurs if both blue edges are c-edges, where we seek for red 2-paths connecting Cc and
Cd−b+c. One possibility results in a canonical 6-cycle while the other is only possible if
2(d− b) = 0, which is of course equivalent to 4a = 0.

Let Γ = WHn(a, b, c, d) be a vertex-transitive WH-graph, where a, b, c, d are as in
Proposition 4.3. Consider the part of Γ depicted on Figure 8. We see that the blue edge

B0 A0 Ca+b Aa+b

Aa Ba

C3a+b A3a+bA2aB2a

A2a+bC2a+b

Figure 8: The situation around the blue edge AaBa.

AaBa has the property that each of its endvertices has a basically R-antipodal vertex, say
u for one endvertex and v for the other, such that u and v are connected by a blue edge. Let
ρ and τ be as in Lemma 2.2. Since B is an Aut(Γ)-orbit and τρc flips the blue edge B0Cc,
there is an automorphism η ∈ Aut(Γ) such that Aaη = B0 and Baη = Cc. Then C2a+bη
is basically R-antipodal to B0, A2a+bη is basically R-antipodal to Cc, and C2a+bη is con-
nected to A2a+bη by a blue edge. The next result gives the three possible conditions on the
parameters that are obtained from the corresponding analysis of the different possibilities.

Proposition 4.5. Let Γ = WHn(a, b, c, d) be a vertex-transitive WH-graph where the
parameters n, a, b, c and d are as in Proposition 4.3. Then one of the following holds:

• 2c = 3a+ 3b.

• 4a = 0 and 4c = 4b+ n/2.

• 4c = 4a+ 4b.

Proof. Let η ∈ Aut(Γ) be as in the paragraph preceding this proposition. We consider the
possibilities for C2a+bη and A2a+bη and analyse the different corresponding conditions
under which these two vertices are connected by a blue edge.

Suppose first that 4a ̸= 0. Then Lemma 4.4 implies that there are only two possibilities
for each of C2a+bη and A2a+bη. It is easy to verify (see Figure 9) that in this case

C2a+bη ∈ {Aa+b, C2a+2b−c} and A2a+bη ∈ {Ac−a−b, B2c−2a−2b}.
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Ab Ac−b

Ac−a−bAa+b
Cb Bc−b

A2a+b Ac−2a−b

B0 Cc
C2c−bBb−c

C2a+2b−c B2c−2a−2b

C2a+b Bc−2a−b

C2c−2a−bB2a+b−c

Figure 9: The situation around the blue edge B0Cc when 4a ̸= 0.

If C2a+bη = Aa+b, then for this vertex to be connected to A2a+bη by a blue edge we must
have that A2a+bη = B2c−2a−2b and a+ b = 2c− 2a− 2b, that is 2c = 3a+3b. Similarly,
if A2a+bη = Ac−a−b, then C2a+bη = C2a+2b−c and c − a − b = 2a + 2b − c, again
yielding 2c = 3a + 3b. The only remaining possibility is that C2a+bη = C2a+2b−c and
A2a+bη = B2c−2a−2b with 3c− 2a− 2b = 2a+ 2b− c, that is 4c = 4a+ 4b.

Suppose now that 4a = 0. Since 2a ̸= 0, this implies that n is divisible by 4 and that
a ∈ {n/4, 3n/4}. This time Lemma 4.4 implies that there are four possibilities for each
of C2a+bη and A2a+bη. However, as is evident from Figure 10 the extra possibilities are
just the antipodal vertices on the corresponding red 4-cycles (which are just the vertices
obtained by adding n/2 to the subscript) of the vertices obtained in the case of 4a ̸= 0. In
other words,

C2a+bη ∈ {Ab+n/4, Ab+3n/4, C2b−c, C2b−c+n/2}

and
A2a+bη ∈ {Ac−b+n/4, Ac−b+3n/4, B2c−2b, B2c−2b+n/2}.

If one of Ab+n/4, Ab+3n/4 is connected by a blue edge to one of B2c−2b, B2c−2b+n/2, then

Aa+b Ab Ac−b Ac−a−b

Cb B0 Cc Bc−b

Aa+b+n/2 Ab+n/2 Ac−b+n/2

Ac−a−b+n/2

B2c−2bC2c−bBb−cC2b−c

Cb+n/2 Bn/2 Cc+n/2 Bc−b+n/2

Bb−c+n/2 B2c−2b+n/2C2b−c+n/2 C2c−b+n/2

Figure 10: The situation around the blue edge B0Cc when 4a = 0.

2c = 3b+n/4 or 2c = 3b+3n/4. Exchanging the roles of a and −a if necessary (note that
2a = 2(−a), and so we do not violate the assumption d = 2a+b this way) we thus see that
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2c = 3a+ 3b. A similar conclusion can be made if one of C2b−c, C2b−c+n/2 is connected
by a blue edge to one of Ac−b+n/4, Ac−b+3n/4. Finally, suppose one of C2b−c, C2b−c+n/2

is connected by a blue edge to one of B2c−2b, B2c−2b+n/2. Then one of 4c = 4b(= 4b+4a)
or 4c = 4b+ n/2 holds, as claimed.

We now show that each of the three possibilities from the above proposition leads to the
graphs from Proposition 4.1, Proposition 4.2 or to the two sporadic examples with n = 8,
mentioned at the beginning of this section. The first possibility is easy to handle, while the
other two require a more detailed analysis of the structure of the corresponding graphs.

Proposition 4.6. Let Γ = WHn(a, b, c, d) be a vertex-transitive WH-graph where the
parameters n, a, b, c and d are as in Proposition 4.3. If 2c = 3a + 3b then a, b and d are
all odd, and so Γ belongs to the family of graphs from Proposition 4.1.

Proof. Proposition 4.3 implies that n is even, and so 2c = 3a + 3b implies that a + b is
also even. Therefore, a and b are of the same parity. Since d = 2a + b and c is even, the
fact that by definition Γ is connected implies that a, b and d must all be odd.

Proposition 4.7. Let WHn(a, b, c, d) be a vertex-transitive WH-graph where the parame-
ters n, a, b, c and d are as in Proposition 4.3, 4a = 0 and 4c = 4b + n/2. Then n = 8,
c ∈ {0, 4} and, exchanging the pair {b, d} with {−b,−d} if necessary, {b, d} = {1, 5}.

Proof. Let Γ = WHn(a, b, c, d) and suppose 4a = 0 and 4c = 4b + n/2. Since 2a ̸= 0
but 4a = 0, n is divisible by 4 and a ∈ {n/4, 3n/4}. Consequently, as 4(c− b) = n/2, n
in fact must be divisible by 8. Since a is thus even, b must be odd (otherwise, as c is even
and d = b + 2a, Γ is not connected). Moreover, no odd prime divisor of n can divide b as
otherwise it would also divide c (and of course a), again contradicting the assumption that
Γ is connected. Therefore, b is coprime to n, and so Lemma 2.3 implies that we can assume
b = 1. We thus get 4c = 4 + n/2, and so 2(c − 1) ∈ {n/4, 3n/4} = {a,−a}. Consider
now the situation around the blue 2-path (A0, B0, Cc) depicted on Figure 11. By vertex-

A0 Cc

B2c−2 C2c−1

Bc−1A2c−2

A2c−2+n/2 B2c−2+n/2 C2c−1+n/2 Bc−1+n/2

B0

Figure 11: The situation around the blue 2-path (A0, B0, Cc).

transitivity and since τ ∈ Aut(Γ) there exists η ∈ Aut(Γ) mapping A0 to B0, B0 to A0

and Cc to C0. Note that {B2c−2η,B2c−2+n/2η} and {C2c−1η, C2c−1+n/2η} are pairs of
antipodal vertices on the same red 4-cycle. Since {A2c−2η,A2c−2+n/2η} = {C1, C1+n/2}
and {Bc−1η,Bc−1+n/2η} = {B−1, B−1+n/2}, we see that

{B2c−2η,B2c−2+n/2η} ∈ {{A1, A1+n/2}, {B1−c, B1−c+n/2}}
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and
{C2c−1η, C2c−1+n/2η} ∈ {{A−1, A−1+n/2}, {Cc−1, Cc−1+n/2}}.

Since all of the indices of these two B-vertices and these two C-vertices are odd (recall that
c and n/2 are both even) and b = 1 and d = 1+n/2 are also odd, it thus follows that there
are no red edges between the pairs {B1−c, B1−c+n/2} and {Cc−1, Cc−1+n/2}, and so the
only possibility is that {A1, A1+n/2} and {A−1, A−1+n/2} are the two pairs of antipodal
vertices on the same red 4-cycle. But then −1 + n/4 ∈ {1, 1 + n/2} which is clearly only
possible if −1 + n/4 = 1, implying that n = 8. To complete the proof, observe that since
a is even, Proposition 4.3 implies that c is divisible by 4, and so c ∈ {0, 4}, completing the
proof.

We now finally analyse the last of the three possibilities from Proposition 4.5. In fact,
in view of Proposition 4.6, it suffices to consider the possibility that 4c = 4a + 4b but
2c ̸= 3a+3b. Before making this analysis we introduce some more terminology. Suppose
Γ = WHn(a, b, c, d) is a vertex-transitive WH-graph where the parameters n, a, b, c and d
are as in Proposition 4.3 and 4c = 4a+4b but 2c ̸= 3a+3b. Note that this implies that we
cannot at the same time have 4a = 0 with 4c = 4b+ n/2.

Suppose first that 4a ̸= 0. The proof of Proposition 4.5 then reveals that for the blue
edge B0Cc there is a unique basically R-antipodal vertex of B0 (namely C2a+2b−c) and a
unique basically R-antipodal vertex of Cc (namely B2c−2a−2b) such that these two vertices
are connected by a blue edge. Since B is an Aut(Γ)-orbit this means that for any blue edge
uv there is a unique blue edge u′v′ such that u′ is basically R-antipodal to v and v′ is
basically R-antipodal to u. In this case we say that the blue edge u′v′ corresponds to the
blue edge uv and more precisely that the blue arc (u′, v′) corresponds to the blue arc (u, v).
Of course, the relation of correspondence is symmetric and if (u′, v′) corresponds to (u, v),
then (v′, u′) corresponds to (v, u). Using the automorphism ρ from (2.1) and the fact that
we have the situation from Figure 8 we clearly get the following.

Lemma 4.8. Let WHn(a, b, c, d) be a vertex-transitive WH-graph where the parameters
n, a, b, c and d are as in Proposition 4.3. Suppose 4a ̸= 0, 4c = 4a+4b and 2c ̸= 3a+3b.
Then the following holds for each i ∈ Zn:

• (Ai, Bi) corresponds to (Ai+a+b, Ci+a+b).

• (Bi, Ci+c) corresponds to (Bi+2c−2a−2b, Ci+3c−2a−2b).

The situation is slightly different in the case where 4a = 0. Namely, the proof of
Proposition 4.5 reveals that in this case there are two blue edges that correspond to a given
blue edge in the above sense. However, in the case of 4a = 0 each blue edge clearly
lies on four basic 6-cycle but on each of them the antipodal blue edge is the same. We
can thus speak about basic pairs of blue edges (two blue edges lying on the same basic
6-cycle). In this sense however each basic pair of blue edges corresponds in the above way
to a unique basic pair of blue edges and it is also clear how to again introduce this concept
for blue arcs. Since the “basic counterpart” of (Ai, Bi) is (Ai+n/2, Bi+n/2) and similarly
for the other two types of blue edges, we simplify the notation by writing (Ai, Bi) for
{(Ai, Bi), (Ai+n/2, Bi+n/2)} (and similarly for the other types of blue edges). With this
agreement it is now easy to see (see also Figure 10) that we get the following.
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Lemma 4.9. Let WHn(a, b, c, d) be a vertex-transitive WH-graph where the parameters
n, a, b, c and d are as in Proposition 4.3. Suppose 4a = 0 and 4c = 4b but 2c ̸= 3a+ 3b.
Then the following holds for each i ∈ Zn:

• (Ai, Bi) corresponds to (Ai+a+b, Ci+a+b).

• (Bi, Ci+c) corresponds to (Bi+2c−2b, Ci+3c−2b).

Proposition 4.10. Let Γ = WHn(a, b, c, d) be a vertex-transitive WH-graph where the
parameters n, a, b, c and d are as in Proposition 4.3. If 4c = 4a + 4b but 2c ̸= 3a + 3b
then n = 4m for an odd integer m, c = 0 and, using an isomorphism from Lemma 2.3 if
necessary, we have that a = 2, b = m− 2 and d = m+ 2. In particular, Γ belongs to the
family of graphs from Proposition 4.1.

Proof. As was explained in the paragraphs preceding Lemma 4.8 and Lemma 4.9 we have
the notion of corresponding pairs of blue arcs (if 4a ̸= 0) or corresponding pairs of basic
pairs of blue arcs. We claim that a + b is of order 4 (in Zn). We describe how to see this
in the case that 4a ̸= 0 but a completely analogous argument works also in the case of
4a = 0, where one needs to work with correspondence between basic pairs of blue arcs
instead of correspondence between blue arcs. Suppose then that 4a ̸= 0 and let us consider
the following. We start at a given blue arc (u, v) and then inductively construct a sequence
of blue arcs as follows. Let (u′, v′) be the corresponding blue arc of (u, v). There is then
a unique blue arc of the form (u′, w), where w ̸= v′. The blue arc in our sequence that
follows (u, v) is then set to be (u′, w). Now, using Lemma 4.8 and taking into account the
assumption 4c = 4a+ 4b we find that starting with the initial blue arc (B0, Cc) we get the
sequence

(B0, Cc) → (B2c−2a−2b, A2c−2a−2b) → (C2c−a−b, Bc−a−b) →
→ (Ca+b, Aa+b) → (B0, Cc) → · · ·

which thus has precisely four distinct elements. As B is an Aut(Γ)-orbit and we have the
automorphism τ from (2.2), the same must hold for the sequence starting with the blue arc
(A0, B0). Here we get the sequence

(A0, B0) → (Aa+b, Ba+b) → (A2a+2b, B2a+2b) → · · · ,

thus showing that a+ b is of order 4 in Zn, as claimed.
This implies that n is divisible by 4 and 4c = 0. Moreover, no odd prime divisor of n

(which of course divides c) can divide any of a and b since otherwise it divides both (and
thus also d = 2a+ b), contradicting the assumption that Γ is connected. Moreover, since c
is even at least one of a and b is odd, and so is coprime to n. Now, suppose b is even. Then
a is odd and thus coprime to n, and so 0 ∈ b + ⟨2a⟩, contradicting (4.2). Therefore, b is
odd and thus coprime to n.

If a is odd, then Lemma 2.3 implies that we can assume a = 1, and so a + b being
even and of order 4 forces n to be divisible by 8 and b ∈ {n/4 − 1, 3n/4 − 1}. Us-
ing Lemma 2.3 with q = −1 if necessary we can thus assume that {b, d} = {n/4 − 1,
n/4 + 1}. Now, 4c = 0 implies that c ∈ {0, n/4, n/2, 3n/4}. Consider the closed
walk (A0, A1, A2, . . . , An/4−1, Cn/4−1, B0, A0) of length n/4 + 2 and note that its first
n/4 − 1 edges are red, which are then followed by a blue, a red and another blue edge.
Vertex-transitivity and the fact that we have the automorphism τ imply that there is an
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automorphism η ∈ Aut(Γ) mapping this walk to a walk starting with the red 2-path
(B0, Cn/4+1, B2). Then An/4−2η = Bn/4−2 (recall that n/4 is even) and thus An/4−1η =
Cn/2−1. Clearly, if η maps at least one of the two blue edges of the above walk to a left
or a right edge, none of them can be mapped to a c-edge. But as A0 and An/2−1 are not
adjacent, this shows that η maps both blue edges of the walk to c-edges, and so Cc and
Bn/2−1−c are adjacent via a red edge, that is 2c + 1 + n/2 ∈ {n/4 − 1, n/4 + 1}. Since
2c ∈ {0, n/2}, this is only possible if n = 8 and 2c = 4. But then the blue edge B0Cc lies
on two alternating 4-cycles, while the blue edge A0B0 lies on just one, a contradiction.

This finally shows that b is odd and a is even. Since 4(a + b) = 0 and a + b is
odd, n ≡ 4 (mod 8). Since the 2-part of gcd(a, n) is at least 2 and the 2-part of n is 4,
Proposition 4.3 and 4c = 0 imply that in fact c = 0 and the 2-part of gcd(a, n) is 2. In
view of Lemma 2.3 we can thus assume that a = 2. As a+ b is of order 4 in Zn, we must
have that b ∈ {n/4− 2, 3n/4− 2}. If b = n/4− 2 then d = b+2a = n/4+2. If however
b = 3n/4 − 2, then d = 3n/4 + 2 and using Lemma 2.3 with q = −1 shows that we can
in fact assume {b, d} = {n/4− 2, n/4 + 2}, as claimed.

This finally proves the main result of this section.

Theorem 4.11. Let Γ = WHn(a, b, c, d) be a WH-graph. Then Γ is vertex-transitive if
and only if n is even and after possibly changing the roles of b, c and d, possibly replacing
a by −a and possibly using an isomorphism from Lemma 2.3 we have that d = 2a+ b and
one of the following holds:

(1) Γ is one of WH8(2, 1, 0, 5) and WH8(2, 1, 4, 5), or

(2) a, b and d are all odd, c is even and 2c = 3a+ 3b, or

(3) n = 4m with m > 1 odd and Γ = WH4m(2,m− 2, 0,m+ 2).

We remark that the smallest two members of the family from item (2) of the above theo-
rem are the nonisomorphic graphs WH4(1, 3, 0, 1) and WH4(1, 3, 2, 1), while the smallest
member of the family from item (3) of Theorem 4.11 is the graph WH12(2, 1, 0, 5).

5 Concluding remarks
As was mentioned in the Introduction, tetravalent vertex-transitive but not arc-transitive
graphs can be useful when constructing tetravalent semisymmetric graphs. In particu-
lar, [21, Theorem 5.2] states that each worthy (no two vertices have the same set of neigh-
bors) tetravalent semisymmetric graph of girth 4 arises from what is called a “suitable
LR-structure” (see [21] for the definition). Not to add too much to the length of this paper,
let us simply say that the results of the previous sections imply that vertex-transitive WH-
graphs are very good candidates for suitable LR-structures. In particular, Lemma 2.2 and
Theorem 3.7 imply that a vertex-transitive WH-graph together with the natural coloring of
its edges, described in Section 4, giving rise to the red and blue cycles, is a suitable LR-
structure if and only if it has no alternating 4-cycles and for any of its vertices there exists
an automorphism fixing this vertex and two of its neighbors while interchanging the other
two neighbors.

It is easy to see that, of the WH-graphs appearing in Theorem 4.11, precisely those from
item (2) with the extra condition a ∈ {±b,±d} have alternating 4-cycles. Moreover, one
can verify that the two sporadic examples WH8(2, 1, 0, 5) and WH8(2, 1, 4, 5) do admit
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automorphisms fixing a vertex and two of its neighbors while swapping the remaining two
neighbors. Moreover, as the automorphism θ from the proof of Proposition 4.2 fixes the
vertex C0 and each of B−m−2 and B−m+2 while swapping B0 with A0, the only vertex-
transitive WH-graphs that might not give rise to suitable LR-structures, are the ones from
item (2) of Theorem 4.11 for which either a ∈ {±b,±d} or the only nontrivial automor-
phism fixing the vertex A0 is the automorphism τ from Lemma 2.2.

It is easy to see that if there is a q ∈ Zn such that qa = −a, qc = c and qb = d (in which
case d = 2a+ b implies qd = b), then the permutation mapping each Ai to Aqi, Bi to Bqi

and Ci to Cqi is an automorphism of WHn(a, b, c, d) fixing A0, B0 and C0 but swapping
Aa with A−a. Thus all WH-graphs admitting such a q ∈ Zn are suitable LR-structures
(provided that a /∈ {±b,±d}). We leave it as an open problem to determine if there are any
other LR-structures among the graphs from item (2) of Theorem 4.11 (that is those that do
not admit a “suitable” q).

Problem 5.1. Determine whether there exist graphs from the second item of Theorem 4.11
for which a /∈ {±b,±d}, there is no q ∈ Zn with qa = −a, qc = c and qb = d, but they
do admit an automorphism fixing A0, B0 and C0 while swapping Aa and A−a. In the case
they do, determine all such examples.

Finally, there is the natural question of which pairs of vertex-transitive WH-graphs are
isomorphic. Up to isomorphism, the only three members of the family from item (2) of
Theorem 4.11 of order 24 are WH8(1, 3, 2, 5), WH8(1, 7, 0, 1) and WH8(1, 7, 4, 1), none
of which is isomorphic to any of the two sporadic graphs from item (1) of Theorem 4.11.
Suppose Γ1 = WHn(a, b, c, d) and Γ2 = WH4m(2,m − 2, 0,m + 2) are isomorphic
graphs from items (2) and (3) of Theorem 4.11, respectively. Of course, n = 4m has to
hold. The blue cycles in Γ2 are 3-cycles, while the red cycles of Γ1 are of even length
(recall that a is odd). Therefore, a corresponding isomorphism maps the red cycles of Γ1

to the red cycles of Γ2. But since m is odd and the red cycles of Γ2 are of length 2m, while
those of Γ1 are of length 4m/ gcd(a, 4m), which is divisible by 4, this is not possible.
This contradiction shows that the only possible isomorphisms are among the graphs from
item (2) of Theorem 4.11. Of course, by Lemma 2.3 it suffices to consider the examples
with a dividing n. This brings us to our second open problem.

Problem 5.2. Determine a necessary and sufficient condition for two graphs WHn(a, b, c, d)
and WHn(a, b

′, c′, d′) with a dividing n, both satisfying the conditions from item (2) of
Theorem 4.11, to be isomorphic.
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[15] A. Malnič, R. Nedela and M. Škoviera, Lifting graph automorphisms by voltage assignments,
Eur. J. Comb. 21 (2000), 927–947, doi:10.1006/eujc.2000.0390, https://doi.org/10.
1006/eujc.2000.0390.
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