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ABSTRACT
We prove new inequalities and equalities for the generalized and
the joint spectral radius (and their essential versions) of Hadamard
(Schur) geometric means of bounded sets of positive kernel opera-
tors on Banach function spaces. In the case of non-negative matri-
ces that define operators on Banach sequences, we obtain addi-
tional results. Our results extend the results of several authors that
appeared relatively recently.
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1. Introduction

In [1], X. Zhan conjectured that, for non-negative N × N matrices A and B, the spectral
radius ρ(A ◦ B) of the Hadamard product satisfies

ρ(A ◦ B) ≤ ρ(AB), (1)

where AB denotes the usual matrix product of A and B. This conjecture was confirmed by
K.M.R. Audenaert in [2] by proving

ρ(A ◦ B) ≤ ρ((A ◦ A)(B ◦ B))
1
2 ≤ ρ(AB). (2)

These inequalities were established via a trace description of the spectral radius. Soon
after, inequality (1) was reproved, generalized and refined in different ways by several
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authors ([3–12]). Using the fact that the Hadamard product is a principal submatrix of
the Kronecker product, R.A. Horn and F. Zhang proved in [6], the inequalities

ρ(A ◦ B) ≤ ρ(AB ◦ BA)
1
2 ≤ ρ(AB). (3)

Applying the techniques of [6], Z. Huang proved that

ρ(A1 ◦ A2 ◦ · · · ◦ Am) ≤ ρ(A1A2 · · ·Am) (4)

for n × n non-negative matrices A1,A2, . . . ,Am (see [7]). A.R. Schep was the first one
to observe that the results from [13,14] are applicable in this context (see [11,12]). He
extended inequalities (2) and (3) to non-negative matrices that define bounded oper-
ators on sequence spaces (in particular on lp spaces, 1 ≤ p < ∞) and proved in [11,
Theorem 2.7] that

ρ(A ◦ B) ≤ ρ((A ◦ A)(B ◦ B))
1
2 ≤ ρ(AB ◦ AB)

1
2 ≤ ρ(AB) (5)

(note that there was an error in the statement of [11, Theorem 2.7], which was corrected
in [8,12]). In [8], the second author of the current paper extended the inequality (4) to non-
negativematrices that define bounded operators on Banach sequence spaces (see below for
the exact definitions) and proved that the inequalities

ρ(A ◦ B) ≤ ρ((A ◦ A)(B ◦ B))
1
2 ≤ ρ(AB ◦ AB)

β
2 ρ(BA ◦ BA)

1−β
2 ≤ ρ(AB) (6)

and

ρ(A ◦ B) ≤ ρ(AB ◦ BA)
1
2 ≤ ρ(AB ◦ AB)

1
4 ρ(BA ◦ BA)

1
4 ≤ ρ(AB). (7)

hold, where β ∈ [0, 1]. Moreover, he generalized these inequalities to the setting of the
generalized and the joint spectral radius of bounded sets of such non-negative matrices.

In [11, Theorem 2.8], A.R. Schep proved that the inequality

ρ
(
A

( 1
2
)
◦ B

( 1
2
))

≤ ρ(AB)
1
2 (8)

holds for positive kernel operators on Lp spaces. Here A( 12 ) ◦ B( 12 ) denotes the Hadamard
geometric mean of operators A and B. In [5, Theorem 3.1], R. Drnovšek and the second
author, generalized this inequality and proved that the inequality

ρ

(
A

( 1
m

)
1 ◦ A

( 1
m

)
2 ◦ · · · ◦ A

( 1
m

)
m

)
≤ ρ(A1A2 · · ·Am)

1
m (9)

holds for positive kernel operators A1, . . . ,Am on an arbitrary Banach function space L.
In [10], the second author refined (9) and showed that the inequalities

ρ

(
A

( 1
m

)
1 ◦ A

( 1
m

)
2 ◦ · · · ◦ A

( 1
m

)
m

)

≤ ρ

(
P

( 1
m

)
1 ◦ P

( 1
m

)
2 ◦ · · · ◦ P

( 1
m

)
m

) 1
m

≤ ρ(A1A2 · · ·Am)
1
m . (10)

hold, where Pj = Aj . . .AmA1 . . .Aj−1 for j = 1, . . . ,m. In [15, Theorem 3.2], the second
author showed that (10) holds also for the essential radius ρess under the additional con-
dition that L and its Banach dual L∗ have to order continuous norms. Formally, here and
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throughout the articleAj−1 = I for j = 1 (eventhough Imight not be a well-defined kernel
operator). In particular, the following kernel version of (3) holds:

ρ
(
A( 12 ) ◦ B( 12 )

)
≤ ρ

(
(AB)(

1
2 ) ◦ (BA)(

1
2 )

) 1
2 ≤ ρ(AB)

1
2 . (11)

Several additional closely related results, generalizations and refinements of the above
results were obtained in [3,15–17].

In [9, Theorem 3.4] and [15, Theorem 3.5], the second author generalized inequalities
(9) and (11) and their essential version to the setting of the generalized and the joint spec-
tral radius (and their essential versions) of bounded sets of positive kernel operators on a
Banach function space (see also Theorems 2.3 and 2.4).

The rest of the article is organized in the following way. In Section 2, we recall defini-
tions and results that we will use in our proofs. In Section 3, we extend the main results
of [15] by proving new inequalities and equalities for the generalized and the joint spec-
tral radius (and their essential versions) ofHadamard (Schur) geometricmeans of bounded
sets of positive kernel operators on Banach function spaces (Theorems 3.1(i), 3.2(i), 3.3, 3.4
and 3.6(i)). In the case of non-negativematrices that define operators on Banach sequences
we prove further new inequalities that extend the main results of [8] (Theorems 3.2(ii), 3.5
and 3.6(ii)). All the inequalities mentioned above are very special instances of our results.
In Section 4, we prove new results on geometric symmetrization of bounded sets of posi-
tive kernel operators on L2(X,μ) and on weighted geometric symmetrization of bounded
sets of non-negative matrices that define operators on l2(R), which extend some results
from [3,16,18].

2. Preliminaries

Let μ be a σ -finite positive measure on a σ -algebraM of subsets of a non-void set X. Let
M(X,μ) be the vector space of all equivalence classes of (almost everywhere equal) com-
plex measurable functions on X. A Banach space L ⊆ M(X,μ) is called a Banach function
space if f ∈ L, g ∈ M(X,μ), and |g| ≤ |f | imply that g ∈ L and ‖g‖ ≤ ‖f ‖. Throughout the
article, it is assumed that X is the carrier of L, that is, there is no subset Y of X of strictly
positive measure with the property that f = 0 a.e. on Y for all f ∈ L (see [19]).

Let R denote the set {1, . . . ,N} for some N ∈ N or the set N of all natural numbers. Let
S(R) be the vector lattice of all complex sequences (xn)n∈R. A Banach space L ⊆ S(R) is
called a Banach sequence space if x ∈ S(R), y ∈ L and |x| ≤ |y| imply that x ∈ L and ‖x‖L ≤
‖y‖L. Observe that a Banach sequence space is a Banach function space over a measure
space (R,μ), where μ denotes the counting measure on R. Denote by L the collection of
all Banach sequence spaces L satisfying the property that en = χ{n} ∈ L and ‖en‖L = 1 for
all n ∈ R. For L ∈ L the set R is the carrier of L.

Standard examples of Banach sequence spaces are Euclidean spaces, lp spaces for 1 ≤
p ≤ ∞, the space c0 ∈ L of all null convergent sequences (equipped with the usual norms
and the counting measure), while standard examples of Banach function spaces are the
well-known spaces Lp(X,μ) (1 ≤ p ≤ ∞) and other less known examples such as Orlicz,
Lorentz,Marcinkiewicz andmore general rearrangement-invariant spaces (see e.g. [20–22]
and the references cited there), which are important, e.g. in interpolation theory and in
the theory of partial differential equations. Recall that the cartesian product L = E × F
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of Banach function spaces is again a Banach function space, equipped with the norm
‖(f , g)‖L = max{‖f ‖E, ‖g‖F}.

If {fn}n∈N ⊂ M(X,μ) is a decreasing sequence and f = inf{fn ∈ M(X,μ) : n ∈ N}, then
we write fn ↓ f . A Banach function space L has an order continuous norm, if 0 ≤ fn ↓ 0
implies ‖fn‖L → 0 as n → ∞. It is well known that spaces Lp(X,μ), 1 ≤ p < ∞, have
order continuous norm. Moreover, the norm of any reflexive Banach function space is
order continuous. In particular, we will be interested in Banach function spaces L such
that L and its Banach dual space L∗ have order continuous norms. Examples of such spaces
are Lp(X,μ), 1 < p < ∞, while the space L = c0 is an example of a non-reflexive Banach
sequence space, such that L and L∗ = l1 have order continuous norms.

By an operator on a Banach function space L, we always mean a linear operator on L.
An operator A on L is said to be positive if it maps non-negative functions to non-negative
ones, i.e. AL+ ⊂ L+, where L+ denotes the positive cone L+ = {f ∈ L : f ≥ 0 a.e.}. Given
operators A and B on L, we write A ≥ B if the operator A−B is positive.

Recall that a positive operator A is always bounded, i.e. its operator norm

‖A‖ = sup{‖Ax‖L : x ∈ L, ‖x‖L ≤ 1} = sup{‖Ax‖L : x ∈ L+, ‖x‖L ≤ 1} (12)

is finite. Also, its spectral radius ρ(A) is always contained in the spectrum.
An operator A on a Banach function space L is called a kernel operator if there exists

a μ × μ-measurable function a(x, y) on X × X such that, for all f ∈ L and for almost all
x ∈ X, ∫

X
|a(x, y)f (y)| dμ(y) < ∞ and (Af )(x) =

∫
X
a(x, y)f (y) dμ(y).

One can check that a kernel operator A is positive iff its kernel a is non-negative almost
everywhere.

Let L be a Banach function space such that L and L∗ have order continuous norms and
let A and B be positive kernel operators on L. By γ (A) we denote the Hausdorff measure
of non-compactness of A, i.e.

γ (A) = inf {δ > 0 : there is a finite M ⊂ L such that A(DL) ⊂ M + δDL} ,

where DL = {f ∈ L : ‖f ‖L ≤ 1}. Then γ (A) ≤ ‖A‖, γ (A + B) ≤ γ (A) + γ (B), γ (AB) ≤
γ (A)γ (B) and γ (αA) = αγ (A) for α ≥ 0. Also 0 ≤ A ≤ B implies γ (A) ≤ γ (B) (see
e.g. [23, Corollary 4.3.7 and Corollary 3.7.3]). Let ρess(A) denote the essential spectral
radius of A, i.e. the spectral radius of the Calkin image of A in the Calkin algebra. Then

ρess(A) = lim
j→∞ γ (Aj)1/j = inf

j∈N

γ (Aj)1/j (13)

and ρess(A) ≤ γ (A). Recall that if L = L2(X,μ), then γ (A∗) = γ (A) and ρess(A∗) =
ρess(A), whereA∗ denotes the adjoint ofA. Note that equalities (13) and ρess(A∗) = ρess(A)

are valid for any bounded operator A on a given complex Banach space L (see e.g. [23,
Theorem 4.3.13 and Proposition 4.3.11]).

Observe that (finite or infinite) non-negative matrices, that define operators on Banach
sequence spaces, are a special case of positive kernel operators (see e.g. [3,5,8,24,25], and
the references cited there).
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It is well known that kernel operators play a very important, often even central, role in a
variety of applications from differential and integro-differential equations, problems from
physics (in particular from thermodynamics), engineering, statistical and economic mod-
els, etc (see e.g. [26–29] and the references cited there). For the theory of Banach function
spaces and more general Banach lattices we refer the reader to the books [19,20,23,30,31].

LetA andB be positive kernel operators on a Banach function space Lwith kernels a and
b respectively, and α ≥ 0. TheHadamard (or Schur) product A ◦ B of A and B is the kernel
operator with kernel equal to a(x, y)b(x, y) at point (x, y) ∈ X × X which can be defined
(in general) only on some order ideal of L. Similarly, the Hadamard (or Schur) power A(α)

of A is the kernel operator with kernel equal to (a(x, y))α at point (x, y) ∈ X × X which
can be defined only on some order ideal of L.

Let A1, . . . ,Am be positive kernel operators on a Banach function space L, and
α1, . . . ,αm positive numbers such that

∑m
j=1 αj = 1. Then theHadamardweighted geomet-

ric mean A = A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m of the operators A1, . . . ,Am is a positive kernel

operator defined on the whole space L, since A ≤ α1A1 + α2A2 + . . . + αmAm by the
inequality between the weighted arithmetic and geometric means.

A matrix A = [aij]i,j∈R is called non-negative if aij ≥ 0 for all i, j ∈ R. For notational
convenience, we sometimes write a(i, j) instead of aij.

We say that a non-negative matrix A defines an operator on L if Ax ∈ L for all x ∈ L,
where (Ax)i = ∑

j∈R aijxj. Then Ax ∈ L+ for all x ∈ L+ and so A defines a positive kernel
operator on L.

Let us recall the following result which was proved in [13, Theorem 2.2] and [14,
Theorem 5.1 and Example 3.7] (see also e.g. [9, Theorem 2.1]).

Theorem 2.1: Let {Aij}k,mi=1,j=1 be positive kernel operators on a Banach function space L and
let α1, α2,. . . , αm are positive numbers.

(i) If
∑m

j=1 αj = 1, then the positive kernel operator

A :=
(
A(α1)
11 ◦ · · · ◦ A(αm)

1m

)
. . .

(
A(α1)
k1 ◦ · · · ◦ A(αm)

km

)
(14)

satisfies the following inequalities

A ≤ (A11 · · ·Ak1)
(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm), (15)

‖A‖ ≤
∥∥∥(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)
∥∥∥

≤ ‖A11 · · ·Ak1‖α1 · · · ‖A1m · · ·Akm‖αm (16)

ρ (A) ≤ ρ
(
(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)
)

≤ ρ (A11 · · ·Ak1)
α1 · · · ρ (A1m · · ·Akm)αm . (17)
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If, in addition, L and L∗ have order continuous norms, then

γ (A) ≤ γ
(
(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)
)

≤ γ (A11 · · ·Ak1)
α1 · · · γ (A1m · · ·Akm)αm , (18)

ρess (A) ≤ ρess

(
(A11 · · ·Ak1)

(α1) ◦ · · · ◦ (A1m · · ·Akm)(αm)
)

≤ ρess (A11 · · ·Ak1)
α1 · · · ρess (A1m · · ·Akm)αm . (19)

(ii) If L ∈ L, ∑m
j=1 αj ≥ 1 and {Aij}k,mi=1,j=1 are non-negative matrices that define positive

operators on L, then A from (14) defines a positive operator on L and the inequali-
ties (15), (16) and (17) hold.

The following result is a special case of Theorem 2.1.

Theorem 2.2: Let A1, . . . ,Am be positive kernel operators on a Banach function space L and
α1, . . . ,αm positive numbers.

(i) If
∑m

j=1 αj = 1, then

‖A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ‖ ≤ ‖A1‖α1‖A2‖α2 · · · ‖Am‖αm (20)

and

ρ(A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ ρ(A1)

α1 ρ(A2)
α2 · · · ρ(Am)αm . (21)

If, in addition, L and L∗ have order continuous norms, then

γ (A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ γ (A1)

α1γ (A2)
α2 · · · γ (Am)αm (22)

and

ρess(A
(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m ) ≤ ρess(A1)

α1 ρess(A2)
α2 · · · ρess(Am)αm . (23)

(ii) If L ∈ L, ∑m
j=1 αj ≥ 1 and if A1, . . . ,Am are non-negative matrices that define pos-

itive operators on L, then A(α1)
1 ◦ A(α2)

2 ◦ · · · ◦ A(αm)
m defines a positive operator on L

and (20) and (21) hold.
(iii) If L ∈ L, t ≥ 1 and if A,A1, . . . ,Am are non-negative matrices that define operators

on L, then A(t) defines an operator on L and the following inequalities hold

A(t)
1 · · ·A(t)

m ≤ (A1 · · ·Am)(t), (24)

ρ(A(t)
1 · · ·A(t)

m ) ≤ ρ(A1 · · ·Am)t , (25)

‖A(t)
1 · · ·A(t)

m ‖ ≤ ‖A1 · · ·Am‖t . (26)
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Let	 be a bounded set of bounded operators on a complex Banach space L. Form ≥ 1,
let

	m = {A1A2 · · ·Am : Ai ∈ 	}.
The generalized spectral radius of 	 is defined by

ρ(	) = lim sup
m→∞

[ sup
A∈	m

ρ(A)]1/m (27)

and is equal to

ρ(	) = sup
m∈N

[ sup
A∈	m

ρ(A)]1/m.

The joint spectral radius of 	 is defined by

ρ̂(	) = lim
m→∞[ sup

A∈	m
‖A‖]1/m. (28)

Similarly, the generalized essential spectral radius of 	 is defined by

ρess(	) = lim sup
m→∞

[ sup
A∈	m

ρess(A)]1/m (29)

and is equal to

ρess(	) = sup
m∈N

[ sup
A∈	m

ρess(A)]1/m.

The joint essential spectral radius of 	 is defined by

ρ̂ess(	) = lim
m→∞[ sup

A∈	m
γ (A)]1/m. (30)

It is well known that ρ(	) = ρ̂(	) for a precompact nonempty set	 of compact operators
on L (see e.g. [32–34]), in particular for a bounded set of complex n × n matrices (see
e.g. [35–39,40]). This equality is called the Berger–Wang formula or also the generalized
spectral radius theorem (for an elegant proof in the finite-dimensional case see [36]). It is
known that also the generalized Berger-Wang formula holds, i.e, that for any precompact
nonempty set 	 of bounded operators on L we have

ρ̂(	) = max{ρ(	), ρ̂ess(	)}
(see e.g. [32–34]). Observe also that it was proved in [32] that in the definition of ρ̂ess(	)

one may replace the Haussdorf measure of non-compactness by several other seminorms,
for instance, it may be replaced by the essential norm.

In general, ρ(	) and ρ̂(	) may differ even in the case of a bounded set 	 of compact
positive operators on L (see [39] or also [9]). Also, in [41] the reader can find an example
of two positive non-compact weighted shifts A and B on L = l2 such that ρ({A,B}) = 0 <

ρ̂({A,B}). As already noted in [33] also ρess(	) and ρ̂ess(	) may in general be different.
The theory of the generalized and the joint spectral radius has many important applica-

tions for instance to discrete and differential inclusions, wavelets, invariant subspace theory
(see e.g. [33–36,42] and the references cited there). In particular, ρ̂(	) plays a central role
in determining stability in convergence properties of discrete and differential inclusions.
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In this theory, the quantity log ρ̂(	) is known as the maximal Lyapunov exponent (see
e.g. [42]).

We will use the following well-known facts that hold for all r ∈ {ρ, ρ̂, ρess, ρ̂ess}:
r(	m) = r(	)m and r(
	) = r(	
) (31)

where 
	 = {AB : A ∈ 
 ,B ∈ 	} andm ∈ N.
Let
1, . . . ,
m be bounded sets of positive kernel operators on a Banach function space

L and let α1, . . . αm be positive numbers such that
∑m

i=1 αi = 1. Then the bounded set of
positive kernel operators on L, defined by



(α1)
1 ◦ · · · ◦ 
(αm)

m = {A(α1)
1 ◦ · · · ◦ A(αm)

m : A1 ∈ 
1, . . . ,Am ∈ 
m},

is called theweightedHadamard (Schur) geometricmean of sets
1, . . . ,
m. The set

( 1
m )

1 ◦
· · · ◦ 


( 1
m )

m is called the Hadamard (Schur) geometric mean of sets 
1, . . . ,
m.
The following result that follows from Theorem 2.1(i) was established in ([9,

Theorem 3.3] and [15, Theorems 3.1 and 3.8].

Theorem 2.3: Let 
1, . . . ,
m be bounded sets of positive kernel operators on a Banach
function space L and let α1, . . . ,αm be positive numbers such that∑m

i=1 αi = 1. If r ∈ {ρ, ρ̂} and n ∈ N, then

r(
(α1)
1 ◦ · · · ◦ 
(αm)

m ) ≤ r((
n
1 )(α1) ◦ · · · ◦ (
n

m)(αm))
1
n ≤ r(
1)

α1 . . . r(
m)αm (32)

and

r
(




( 1
m

)
1 ◦ · · · ◦ 


( 1
m

)
m

)
≤ r(
1
2 · · · 
m)

1
m . (33)

If, in addition, L and L∗ have order continuous norms, then (32) and (33) hold also for each
r ∈ {ρess, ρ̂ess}.

The following theorem [15, Theorem 3.5] was one of the main results in [15].

Theorem2.4: Let
 and	 be bounded sets of positive kernel operators on aBanach function
space L. If r ∈ {ρ, ρ̂} and β ∈ [0, 1], then we have

r
(



( 1
2
)
◦ 	

( 1
2
))

≤ r
(
(
	)

( 1
2
)
◦ (	
)

( 1
2
)) 1

2

≤ r
(
(
	)

( 1
2
)
◦ (
	)

( 1
2
)) 1

4 r
(
(	
)

( 1
2
)
◦ (	
)

( 1
2
)) 1

4 ≤ r(
	)
1
2 , (34)

r
(



( 1
2
)
◦ 	

( 1
2
))

≤ r
((



( 1
2
)
◦ 


( 1
2
)) (

	
( 1
2
)
◦ 	

( 1
2
))) 1

2

≤ r
(
(
	)

( 1
2
)
◦ (
	)

( 1
2
)) β

2 r
(
(	
)

( 1
2
)
◦ (	
)

( 1
2
)) 1−β

2 ≤ r(
	)
1
2 . (35)

If, in addition, L and L∗ have order continuous norms, then (34) and (35) hold also for each
r ∈ {ρess, ρ̂ess}.
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Given L ∈ L, let 
1, . . . ,
m be bounded sets of non-negative matrices that define
operators on L and let α1, . . . ,αm be positive numbers such that

∑m
i=1 αi ≥ 1. Then the

set



(α1)
1 ◦ · · · ◦ 
(αm)

m = {A(α1)
1 ◦ · · · ◦ A(αm)

m : A1 ∈ 
1, . . . ,Am ∈ 
m}
is a bounded set of non-negative matrices that define operators on L by Theorem 2.2(ii).
By applying Theorem 2.1(ii), one can also prove the following result in a similar way as [15,
Theorem 3.8]. We omit the details of the proof.

Theorem 2.5: Given L ∈ L, let 
 ,
1, . . . ,
m be bounded sets of non-negative matrices
that define operators on L. Let α1, . . . ,αm be positive numbers such that

∑m
j=1 αj ≥ 1, n ∈ N

and r ∈ {ρ, ρ̂}. Then Inequalities (32) hold.
In particular, if t ≥ 1, then

r(
(t)) ≤ r((
n)(t))
1
n ≤ r(
)t . (36)

3. Further inequalities and equalities

In [15] and later it remained unnoticed that several inequalities in Theorem 2.4 are in fact
equalities, which are established in the following result.

Theorem3.1: Let
 and	 be bounded sets of positive kernel operators on aBanach function
space L and let α1, . . . ,αm be positive numbers such that

∑m
j=1 αj = 1.

(i) If r ∈ {ρ, ρ̂} and β ∈ [0, 1], then

r(
) = r(
(α1) ◦ · · · ◦ 
(αm)) (37)

and

r(
	) = r((
( 12 ) ◦ 
( 12 ))(	( 12 ) ◦ 	( 12 )))

= r
(
(
	)

( 1
2
)
◦ (
	)

( 1
2
))β

r
(
(	
)

( 1
2
)
◦ (	
)

( 1
2
))1−β

. (38)

If, in addition, L and L∗ have order continuous norms, then (37) and (38) hold also for
each r ∈ {ρess, ρ̂ess}.

(ii) If L ∈ L, r ∈ {ρ, ρ̂}, m, n ∈ N, α ≥ 1 and if
 is a bounded set of non-negative matrices
that define operators on L, then

r(
(m)) ≤ r(
 ◦ · · · ◦ 
) ≤ r(
n ◦ · · · ◦ 
n)
1
n ≤ r(
)m, (39)

where in (39) the Hadamard products in
 ◦ · · · ◦ 
 and in
n ◦ · · · ◦ 
n are taken m
times, and

r(
(α)) ≤ r(
(α−1) ◦ 
) ≤ r((
n)(α−1) ◦ 
n)
1
n ≤ r(
)α . (40)
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Proof: (i) To prove (37) first observe that
 ⊂ 
(α1) ◦ · · · ◦ 
(αm), sinceA = A(α1) ◦ · · · ◦
A(αm) for all A ∈ 
 . It follows that

r(
) ≤ r(
(α1) ◦ · · · ◦ 
(αm)) ≤ r(
)α1 · · · r(
)αm = r(
)

by Theorem 2.3 and so r(
) = r(
(α1) ◦ · · · ◦ 
(αm)).
Similary, to prove (38) observe that 
	 ⊂ (
( 12 ) ◦ 
( 12 ))(	( 12 ) ◦ 	( 12 )), since AB =

(A( 12 ) ◦ A( 12 ))(B( 12 ) ◦ B( 12 )) for all A ∈ 
 and B ∈ 	. It follows that

r(
	) ≤ r((
( 12 ) ◦ 
( 12 ))(	( 12 ) ◦ 	( 12 )))

≤ r
(
(
	)

( 1
2
)
◦ (
	)

( 1
2
))β

r
(
(	
)

( 1
2
)
◦ (	
)

( 1
2
))1−β ≤ r(
	)

by (35), which proves (38). It is proved similarly that (37) and (38) hold also for each r ∈
{ρess, ρ̂ess} in the case when L and L∗ have order continuous norms.

(ii) For the proof of (39) observe that
(m) ⊂ 
 ◦ · · · ◦ 
 , sinceA(m) = A ◦ · · · ◦ A for
allA ∈ 
 . By Theorem2.5, Inequalities (39) follow. Inequalities (40) are proved in a similar
way. �

Remark 1: Equalities (38) show that the third inequality in (34) and the second and third
inequality in (35) are in fact equalities.

This also implies that (only) [15, Remark 3.6] is false. Indeed, [8, Example 3.11] is not
an example that would support the claim stated in [15, Remark 3.6]. The second author of
this article regrets for stating this false remark in [15].

The following result extends Inequalities (17) and (32) and Theorem 2.5.

Theorem 3.2: Let {
ij}k,mi=1,j=1 be bounded sets of positive kernel operators on a Banach
function space L and let α1, . . . ,αm be positive numbers.

(i) If r ∈ {ρ, ρ̂}, ∑m
i=1 αi = 1 and n ∈ N, then

r
((



(α1)
11 ◦ · · · ◦ 


(αm)
1m

)
. . .

(



(α1)
k1 ◦ · · · ◦ 


(αm)

km

))

≤ r
(
(
11 · · · 
k1)

(α1) ◦ · · · ◦ (
1m · · · 
km)(αm)
)

≤ r
(
((
11 · · · 
k1)

n)(α1) ◦ · · · ◦ ((
1m · · · 
km)n)(αm)
) 1

n

≤ r (
11 · · · 
k1)
α1 · · · r (
1m · · · 
km)αm . (41)

If, in addition, L and L∗ have order continuous norms, then Inequalities (41) hold also
for each r ∈ {ρess, ρ̂ess}.

(ii) If L ∈ L, r ∈ {ρ, ρ̂}, ∑m
j=1 αj ≥ 1 and {
ij}k,mi=1,j=1 are bounded sets of non-negative

matrices that define positive operators on L, then Inequalities (41) hold.
In particular, if 
1, . . . ,
k are bounded sets of non-negative matrices that define

positive operators on L and t ≥ 1, then

r(
(t)
1 · · · 
(t)

k ) ≤ r((
1 · · · 
k)
(t)) ≤ r(((
1 · · · 
k)

n)(t))
1
n ≤ r(
1 · · · 
k)

t . (42)
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Proof: (i) Let r ∈ {ρ, ρ̂}, ∑m
i=1 αi = 1 and n ∈ N. To prove the first inequality in (41), let

l ∈ N and

A ∈
((



(α1)
11 ◦ · · · ◦ 


(αm)
1m

)
. . .

(



(α1)
k1 ◦ · · · ◦ 


(αm)

km

))l
.

Then A = A1 · · ·Al, where for each i = 1, . . . , l, we have

Ai =
(
A(α1)
i11 ◦ · · · ◦ A(αm)

i1m

)
. . .

(
A(α1)
ik1 ◦ · · · ◦ A(αm)

ikm

)
,

where Ai11 ∈ 
11, . . . ,Ai1m ∈ 
1m, . . . ,Aik1 ∈ 
k1, . . . ,Aikm ∈ 
km. Then by (15) for
each i = 1, . . . , l, we have

Ai ≤ Ci := (Ai11Ai21 · · ·Aik1)
(α1) ◦ · · · ◦ (Ai1mAi2m · · ·Aikm)(αm),

where Ci ∈ (
11 · · · 
k1)
(α1) ◦ · · · ◦ (
1m · · · 
km)(αm). Therefore

A ≤ C := C1 · · ·Cl ∈
(
(
11 · · · 
k1)

(α1) ◦ · · · ◦ (
1m · · · 
km)(αm)
)l
,

ρ(A)1/l ≤ ρ(C)1/l and ‖A‖1/l ≤ ‖C‖1/l, which implies the first inequality in (41). The
second and third inequality in (41) follow from (32).

If, in addition, L and L∗ have order continuous norms and r ∈ {ρess, ρ̂ess}, then Inequal-
ities (41) are proved similarly. Under the assumptions of (ii) Inequalities (41) are proved in
a similar way by applying Theorems 2.1(ii) and 2.5. �

Next, we extend Theorem 2.4 by refining (33).

Theorem 3.3: Let 
1, . . . ,
m be bounded sets of positive kernel operators on a Banach
function space L and let �j = 
j . . . 
m
1 . . . 
j−1 for j = 1, . . . ,m. If r ∈ {ρ, ρ̂}, then

r
(




( 1
m

)
1 ◦ 


( 1
m

)
2 ◦ · · · ◦ 


( 1
m

)
m

)
≤ r

(
�

( 1
m

)
1 ◦ �

( 1
m

)
2 ◦ · · · ◦ �

( 1
m

)
m

) 1
m

≤ r
((

�n
1
)( 1

m ) ◦ (�n
2)

( 1
m ) ◦ · · · ◦ (

�n
m
)( 1

m )
) 1

nm ≤ r(
1
2 · · · 
m)
1
m . (43)

If, in addition, L and L∗ have order continuous norms, then Inequalities (43) are valid also
for all r ∈ {ρess, ρ̂ess}.
Proof: Let r ∈ {ρ, ρ̂}. Denote

	1 = 


( 1
m

)
1 ◦ · · · ◦ 


( 1
m

)
m , 	2 = 


( 1
m

)
2 ◦ · · · ◦ 


( 1
m

)
m ◦ 


( 1
m

)
1 , . . . ,

	m = 


( 1
m

)
m ◦ 


( 1
m

)
1 ◦ · · · ◦ 


( 1
m

)
m−1.

Then by (31), (41) and commutativity of Hadamard product, we have

r
(




( 1
m

)
1 ◦ 


( 1
m

)
2 ◦ · · · ◦ 


( 1
m

)
m

)m
= r

((



( 1
m

)
1 ◦ 


( 1
m

)
2 ◦ · · · ◦ 


( 1
m

)
m

)m)

= r(	1	2 · · · 	m) ≤ r
(

�

( 1
m

)
1 ◦ �

( 1
m

)
2 ◦ · · · ◦ �

( 1
m

)
m

)
,

which proves the first inequality in (43). The second and the third inequality in (43) follow
from (32) (or from (41)), since r(�1) = r(�2) = · · · r(�m) = r(
1
2 · · · 
m) by (31). If,
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in addition, L and L∗ have order continuous norms, then (43) for r ∈ {ρess, ρ̂ess} is proved
in a similar way. �

The following result extends (38).

Theorem 3.4: Let 
1, . . . ,
m be bounded sets of positive kernel operators on a Banach
function space L and let α1, . . . ,αm be non-negative numbers such that

∑m
j=1 αj = 1. If�j =


j . . . 
m
1 . . . 
j−1 for j = 1, . . . ,m, β ∈ [0, 1], then for all r ∈ {ρ, ρ̂} we have

r (
1
2 · · · 
m) = r
((



(β)
1 ◦ 


(1−β)
1

)
· · ·

(



(β)
m ◦ 


(1−β)
m

))

= r
(
�

(β)
1 ◦ �

(1−β)
1

)α1 · · · r
(
�

(β)
m ◦ �

(1−β)
m

)αm
. (44)

If, in addition, L and L∗ have order continuous norms, then Equalities (44) are valid for
r ∈ {ρess, ρ̂ess}.

Proof: Let r ∈ {ρ, ρ̂}. To prove Equalities (44) we use the first inequality in (41) and (31)
to obtain that

r
((



(β)
1 ◦ 


(1−β)
1

)
· · ·

(



(β)
m ◦ 


(1−β)
m

))
≤ r

(
�

(β)
i ◦ �

(1−β)
i

)
(45)

for all i = 1, . . . ,m. Indeed, by (31) and the first inequality in (41) we have

r((
(β)
1 ◦ 


(1−β)
1 ) · · · (
(β)

m ◦ 

(1−β)
m ))

= r((
(β)
i ◦ 


(1−β)
i ) · · · (
(β)

m ◦ 

(1−β)
m )(


(β)
1 ◦ 


(1−β)
1 ) · · · (
(β)

i−1 ◦ 

(1−β)
i−1 ))

≤ r(�(β)
i ◦ �

(1−β)
i ),

which proves (45). Since
∑m

j=1 αj = 1, Inequality (45) implies

r((
(β)
1 ◦ 


(1−β)
1 ) · · · (
(β)

m ◦ 

(1−β)
m )) ≤ r(�(β)

1 ◦ �
(1−β)
1 )α1 · · · r(�(β)

m ◦ �
(1−β)
m )αm

≤ r(
1 · · · 
m). (46)

The second inequality in (46) follows from (32) and the fact that r(�1) = · · · = r(�m) =
r(
1 · · · 
m). Since 
i ⊂ 


(β)
i ◦ 


(1−β)
i for all i = 1, . . . ,m and β ∈ [0, 1], we obtain

r(
1 · · · 
m) ≤ r((
(β)
1 ◦ 


(1−β)
1 ) · · · (
(β)

m ◦ 

(1−β)
m )),

which together with (46) proves Equalities (44). If, in addition, L and L∗ have order
continuous norms, then Equalities (44) are proved in a similar way for r ∈ {ρess, ρ̂ess}. �

The following result, that extends the main results from [8], is proved in a similar way
as Theorem 3.3 by applying Theorems 2.5 and 3.2(ii) instead of Theorems 2.3 and 3.2(i) in
the proofs above.

Theorem 3.5: Given L ∈ L, let 
1, . . . ,
m be bounded sets of non-negative matri-
ces that define operators on L and �j = 
j . . . 
m
1 . . . 
j−1 for j = 1, . . . ,m. Assume
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that α ≥ 1
m, αj ≥ 0, j = 1, . . . ,m,

∑m
j=1 αj ≥ 1 and n ∈ N. If r ∈ {ρ, ρ̂} and 	j =



(αm)
j . . . 


(αm)
m 


(αm)
1 . . . 


(αm)
j−1 for j = 1, . . . ,m, then we have

r
(



(α)
1 ◦ · · · ◦ 
(α)

m

)
≤ r

(
�

(α)
1 ◦ · · · ◦ �(α)

m

) 1
m

≤ r
(
(�n

1)
(α) ◦ · · · ◦ (�n

m)(α)
) 1

mn ≤ r (
1 · · · 
m)α , (47)

r
(



(α)
1 ◦ · · · ◦ 
(α)

m

)
≤ r

(



(αm)
1 · · · 
(αm)

m

) 1
m

≤ r
(
(
1 · · · 
m)(αm)

) 1
m ≤ r

(
((
1 · · · 
m)n)(αm)

) 1
nm ≤ r (
1 · · · 
m)α . (48)

If, in addition, α ≥ 1 then

r
(



(α)
1 ◦ · · · ◦ 
(α)

m

)
≤ r

(
�

(α)
1 ◦ · · · ◦ �(α)

m

) 1
m ≤ r

(
(�n

1)
(α) ◦ · · · ◦ (�n

m)(α)
) 1

mn

≤
(
r
(
(�n

1)
(m)

)
· · · r

(
(�n

m)(m)
)) α

m2n ≤ r (
1 · · · 
m)α , (49)

r
(



(α)
1 ◦ · · · ◦ 
(α)

m

)
≤ r

(
	

( 1
m )

1 ◦ · · · ◦ 	
( 1
m )

m

) 1
m

≤ r
(
(	n

1 )
( 1
m ) ◦ · · · ◦ (	n

m)(
1
m )

) 1
mn ≤ r

(



(αm)
1 · · · 
(αm)

m

) 1
m

≤ r
(
(
1 · · · 
m)(αm)

) 1
m ≤ r

(
((
1 · · · 
m)n)(αm)

) 1
nm ≤ r (
1 · · · 
m)α . (50)

Proof: Inequalities (47) are proved in a similar way as Theorem 3.3 by applying Theo-
rems 2.5 and 3.2(ii) instead of Theorems 2.3 and 3.2(i). For the proof of (48) observe
that



(α)
1 ◦ · · · ◦ 
(α)

m = (

(αm)
1 )(

1
m ) ◦ · · · ◦ (
(αm)

m )(
1
m )

for i = 1, . . . ,m. Now the first inequality in (48) follows from (33) (or from (49)):

r
(



(α)
1 ◦ · · · ◦ 
(α)

m

)
= r

(
(


(αm)
1 )(

1
m ) ◦ · · · ◦ (
(αm)

m )(
1
m )

)
≤ r

(



(αm)
1 · · · 
(αm)

m

) 1
m .

Other inequalities in (48) follow from Theorem 3.2(ii).
Assume α ≥ 1. The first and second inequality in (49) follow from (47). To prove

the third inequality in (49) notice that (�n
i )

(α) = ((�n
i )

(m))(
α
m ), α

m ≥ 1
m and apply

Theorem 2.5. The last inequality in (49) follows again from Theorem 2.5 and the fact that
r(�1) = · · · = r(�m) = r(
1 · · · 
m).

To prove the first three inequalities in (50), observe that 

(α)
i = (


(mα)
i )(

1
m ), α

m ≥ 1
m

and apply Theorem 3.3. The remaining three inequalities in (50) follow from (48), which
completes the proof. �

We will need the following well-known inequalities (see e.g. [43]). For non-negative
measurable functions and for non-negative numbers α and β such that α + β ≥ 1, we
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have

f α1 g
β
1 + · · · + f αmg

β
m ≤ (f1 + · · · + fm)α(g1 + · · · + gm)β (51)

More generally, for non-negative measurable functions {fij}k,mi=1,j=1 and for non-negative
numbers αj, j = 1, . . . ,m, such that

∑m
j=1 αj ≥ 1 we have

(f α111 · · · f αm1m ) + · · · + (f α1k1 · · · f αmkm ) ≤ (f11 + · · · + fk1)α1 · · · (f1m + · · · + fkm)αm (52)

The sum of bounded sets 
 and 	 is a bounded set defined by 
 + 	 = {A + B : A ∈

 ,B ∈ 	}.
Theorem 3.6: Let {
ij}k,mi=1,j=1 be bounded sets of positive kernel operators on a Banach
function space L and let α1, . . . ,αm be positive numbers.

(i) If r ∈ {ρ, ρ̂}, ∑m
j=1 αj = 1 and n ∈ N, then

r
((



(α1)
11 ◦ · · · ◦ 


(αm)
1m

)
+ . . . +

(



(α1)
k1 ◦ · · · ◦ 


(αm)

km

))

≤ r
(
(
11 + · · · + 
k1)

(α1) ◦ · · · ◦ (
1m + · · · + 
km)(αm)
)

≤ r
(
((
11 + · · · + 
k1)

n)(α1) ◦ · · · ◦ ((
1m + · · · + 
km)n)(αm)
) 1

n

≤ r (
11 + · · · + 
k1)
α1 · · · r (
1m + · · · + 
km)αm . (53)

If, in addition, L and L∗ have order continuous norms, then Inequalities (53) hold also
for each r ∈ {ρess, ρ̂ess}.

(ii) If L ∈ L, r ∈ {ρ, ρ̂}, ∑m
j=1 αj ≥ 1 and {
ij}k,mi=1,j=1 are bounded sets of non-negative

matrices that define positive operators on L, then Inequalities (53) hold.

Proof: (i) Let r ∈ {ρ, ρ̂}, ∑m
i=1 αi = 1 and n ∈ N. To prove the first inequality in (53) let

l ∈ N and

A ∈
((



(α1)
11 ◦ · · · ◦ 


(αm)
1m

)
+ . . . +

(



(α1)
k1 ◦ · · · ◦ 


(αm)

km

))l
.

Then A = A1 · · ·Al, where for each i = 1, . . . , l we have

Ai =
(
A(α1)
i11 ◦ · · · ◦ A(αm)

i1m

)
+ . . . +

(
A(α1)
ik1 ◦ · · · ◦ A(αm)

ikm

)
,

where Ai11 ∈ 
11, . . . ,Ai1m ∈ 
1m, . . . ,Aik1 ∈ 
k1, . . . ,Aikm ∈ 
km. Then by (52) for
each i = 1, . . . , l we have

Ai ≤ Ci := (Ai11 + Ai21 + · · · + Aik1)
(α1) ◦ · · · ◦ (Ai1m + Ai2m + · · · + Aikm)(αm),

where Ci ∈ (
11 + · · · + 
k1)
(α1) ◦ · · · ◦ (
1m + · · · + 
km)(αm). Therefore

A ≤ C := C1 · · ·Cl ∈
(
(
11 + · · · + 
k1)

(α1) ◦ · · · ◦ (
1m + · · · + 
km)(αm)
)l
,

r(A)1/l ≤ r(C)1/l and ‖A‖1/l ≤ ‖C‖1/l, which implies the first inequality in (53). The
second and third inequality in (53) follow from (32).
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If, in addition, L and L∗ have order continuous norms and r ∈ {ρess, ρ̂ess}, then Inequal-
ities (53) are proved similarly. Under the assumptions of (ii) Inequalities (53) are proved in
a similar way by applying Theorems 2.1(ii) and 2.5. �

4. Weighted geometric symmetrizations

Let 
 and 	 be bounded sets of positive kernel operators on L2(X,μ) and α ∈ [0, 1].
Denote by
∗ and Sα(
) bounded sets of positive kernel operators on L2(X,μ) defined by

∗ = {A∗ : A ∈ 
} and

Sα(
) = 
(α) ◦ (
∗)(1−α) = {A(α) ◦ (B∗)(1−α) : A,B ∈ 
}.
We denote simply S(
) = S 1

2
(
), the geometric symmetrization of 
 . Observe that

(
	)∗ = 	∗
∗ and (
m)∗ = (
∗)m for allm ∈ N. By (32) it follows that

r(Sα(
)) ≤ r(Sα(
m))
1
m ≤ r(
) (54)

for all m ∈ N and r ∈ {ρ, ρ̂, ρess, ρ̂ess}, since r(
) = r(
∗). In particular, for all r ∈
{ρ, ρ̂, ρess, ρ̂ess} and n ∈ N ∪ {0} we have

r(Sα(
)) ≤ r(Sα(
2n))2
−n ≤ r(
). (55)

Consequently,

r(Sα(
))2 ≤ r(Sα(
2)) ≤ r(
)2 (56)

holds for all r ∈ {ρ, ρ̂, ρess, ρ̂ess}.
The following result that follows from (55) extends [18, Theorem2.2], [16, Theorem3.5]

and [3, Theorem 3.5(i)].

Theorem 4.1: Let 
 be a bounded set of positive kernel operators on L2(X,μ), α ∈ [0, 1]
and let rn = r(Sα(
2n))2

−n for n ∈ N ∪ {0} and r ∈ {ρ, ρ̂, ρess, ρ̂ess}. Then for each n

r(Sα(
)) = r0 ≤ r1 ≤ · · · ≤ rn ≤ r(
).

Proof: By (55) we have rn ≤ r(
). Since rn−1 ≤ rn for all n ∈ N by the first inequality
in (56), the proof is completed. �

The following result extends [3, Proposition 3.2].

Proposition 4.2: Let 
1, . . . ,
m be bounded sets of positive kernel operators on L2(X,μ),
α ∈ [0, 1], n ∈ N and r ∈ {ρ, ρ̂, ρess, ρ̂ess}. Then we have

r(Sα(
1) · · · Sα(
m)) ≤ r
(
(
1 · · · 
m)(α) ◦ ((
m · · · 
1)

∗)(1−α)
)

≤ r
(
((
1 · · · 
m)n)(α) ◦ (((
m · · · 
1)

∗)n)(1−α)
) 1

n

≤ r(
1 · · · 
m)α r(
m · · · 
1)
1−α , (57)

r(Sα(
1) + · · · + Sα(
m)) ≤ r (Sα(
1 + · · · + 
m))

≤ r
(
Sα((
1 + · · · + 
m)n)

) 1
n ≤ r(
1 + · · · + 
m). (58)



2854 K. BOGDANOVIĆ AND ALJOŠA PEPERKO

In particular, we have

r (Sα(
1)Sα(
2)) ≤ r
(
(
1
2)

(α) ◦ ((
2
1)
∗)(1−α)

)

≤ r
(
((
1
2)

n)(α) ◦ (((
2
1)
∗)n)(1−α)

) 1
n ≤ r(
1
2). (59)

Proof: By Theorem 3.2(i) we have

r (Sα(
1) · · · Sα(
m)) = r
(
(


(α)
1 ◦ (
∗

1 )(1−α)) · · ·
(

(α)

m ◦ (
∗
m)(1−α)

))

≤ r
(
(
1 · · · 
m)(α) ◦ ((
m · · · 
1)

∗)(1−α)
)

≤ r
(
((
1 · · · 
m)n)(α) ◦ (((
m · · · 
1)

∗)n)(1−α)
) 1

n

≤ r(
1 · · · 
m)α r((
m · · · 
1)
∗)1−α = r(
1 · · · 
m)α r(
m · · · 
1)

1−α ,

where the last equality follows from the fact that r(
) = r(
∗). The inequalities in (58) are
proved in a similar way by applying Theorem 3.6 and (55). The first and second inequalities
in (59) are special cases of (57), while the third inequality follows from (57) and the fact
that r(
1
2) = r(
2
1). �

Let
 be a bounded set of non-negativematrices that define operators on l2(R) and let α
andβ be non-negative numbers such thatα + β ≥ 1. The set Sα,β(
) = 
(α) ◦ (
∗)(β) =
{A(α) ◦ (B∗)(β) : A,B ∈ 
} is a bounded set of non-negative matrices that define operators
on l2(R) by Theorem 2.1(ii).

For r ∈ {ρ, ρ̂}, the following result extends Theorem 4.1 in the case of bounded set
of non-negative matrices that define operators on l2(R). It also extends a part of [3,
Theorem 3.5(ii)].

Theorem 4.3: Let 
 be a bounded set of non-negative matrices that define operators on
l2(R) and r ∈ {ρ, ρ̂}. Assume α and β are non-negative numbers such that α + β ≥ 1 and
denote rn = r(Sα,β(
2n))2

−n for n ∈ N ∪ {0}. Then we have

r(Sα,β(
)) = r0 ≤ r1 ≤ · · · ≤ rn ≤ r(
)α+β . (60)

Proof: By Theorem 2.5, we have

r(Sα,β(
)) = r(
(α) ◦ (
∗)(β)) ≤ r
(
(
2n)(α) ◦ ((
∗)2

n
)(β)

)2−n

= rn ≤ r(
)α+β .
(61)

In particular, for n = 1, we have

r(Sα,β(
))2 ≤ r(Sα,β(
2)) ≤ r(
)2(α+β). (62)

Since rn−1 ≤ rn for all n ∈ N ∪ {0} by the first inequality in (62), the proof of (60) is
completed. �
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The following result is proved in similar way as Proposition 4.2 using Theorem 3.2(ii)
instead of Theorem 3.2(i).

Proposition 4.4: Let 
, 
1, . . . ,
m be bounded sets of non-negative matrices that define
operators on l2(R), n ∈ N and let α and β be non-negative numbers such that α + β ≥ 1.
Then we have

r(Sα,β(
1) · · · Sα,β(
m)) ≤ r
(
(
1 · · · 
m)(α) ◦ ((
m · · · 
1)

∗)(β)
)

≤ r
(
((
1 · · · 
m)n)(α) ◦ (((
m · · · 
1)

∗)n)(β)
) 1

n

≤ r(
1 · · · 
m)α r(
m · · · 
1)
β , (63)

r(Sα,β(
)) ≤ r(Sα,β(
n))
1
n ≤ r(
)α+β , (64)

r(Sα,β(
1) + · · · + Sα,β(
m)) ≤ r
(
Sα,β(
1 + · · · + 
m)

)
≤ r

(
Sα,β((
1 + · · · + 
m)n)

) 1
n ≤ r(
1 + · · · + 
m)α+β , (65)

r(Sα,β(
1)Sα,β(
2)) ≤ r
(
(
1
2)

(α) ◦ ((
2
1)
∗)(β)

)

≤ r
(
((
1
2)

n)(α) ◦ (((
2
1)
∗)n)(β)

) 1
n ≤ r(
1
2)

α+β (66)

for r ∈ {ρ, ρ̂}.

Proof: Inequalities (63) and (65) are proved in a similarway as inequalities (57) and (58) by
using Theorems 3.2(ii) and 3.6(ii). Inequalities (64) and (66) are special cases of (63). �
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